1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23  * Copyright (c) 2019 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * See abd.c for a general overview of the arc buffered data (ABD).
28  *
29  * Linear buffers act exactly like normal buffers and are always mapped into the
30  * kernel's virtual memory space, while scattered ABD data chunks are allocated
31  * as physical pages and then mapped in only while they are actually being
32  * accessed through one of the abd_* library functions. Using scattered ABDs
33  * provides several benefits:
34  *
35  *  (1) They avoid use of kmem_*, preventing performance problems where running
36  *      kmem_reap on very large memory systems never finishes and causes
37  *      constant TLB shootdowns.
38  *
39  *  (2) Fragmentation is less of an issue since when we are at the limit of
40  *      allocatable space, we won't have to search around for a long free
41  *      hole in the VA space for large ARC allocations. Each chunk is mapped in
42  *      individually, so even if we are using HIGHMEM (see next point) we
43  *      wouldn't need to worry about finding a contiguous address range.
44  *
45  *  (3) If we are not using HIGHMEM, then all physical memory is always
46  *      mapped into the kernel's address space, so we also avoid the map /
47  *      unmap costs on each ABD access.
48  *
49  * If we are not using HIGHMEM, scattered buffers which have only one chunk
50  * can be treated as linear buffers, because they are contiguous in the
51  * kernel's virtual address space.  See abd_alloc_chunks() for details.
52  */
53 
54 #include <sys/abd_impl.h>
55 #include <sys/param.h>
56 #include <sys/zio.h>
57 #include <sys/arc.h>
58 #include <sys/zfs_context.h>
59 #include <sys/zfs_znode.h>
60 #ifdef _KERNEL
61 #include <linux/kmap_compat.h>
62 #include <linux/scatterlist.h>
63 #endif
64 
65 #ifdef _KERNEL
66 #if defined(MAX_ORDER)
67 #define	ABD_MAX_ORDER	(MAX_ORDER)
68 #elif defined(MAX_PAGE_ORDER)
69 #define	ABD_MAX_ORDER	(MAX_PAGE_ORDER)
70 #endif
71 #else
72 #define	ABD_MAX_ORDER	(1)
73 #endif
74 
75 typedef struct abd_stats {
76 	kstat_named_t abdstat_struct_size;
77 	kstat_named_t abdstat_linear_cnt;
78 	kstat_named_t abdstat_linear_data_size;
79 	kstat_named_t abdstat_scatter_cnt;
80 	kstat_named_t abdstat_scatter_data_size;
81 	kstat_named_t abdstat_scatter_chunk_waste;
82 	kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER];
83 	kstat_named_t abdstat_scatter_page_multi_chunk;
84 	kstat_named_t abdstat_scatter_page_multi_zone;
85 	kstat_named_t abdstat_scatter_page_alloc_retry;
86 	kstat_named_t abdstat_scatter_sg_table_retry;
87 } abd_stats_t;
88 
89 static abd_stats_t abd_stats = {
90 	/* Amount of memory occupied by all of the abd_t struct allocations */
91 	{ "struct_size",			KSTAT_DATA_UINT64 },
92 	/*
93 	 * The number of linear ABDs which are currently allocated, excluding
94 	 * ABDs which don't own their data (for instance the ones which were
95 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
96 	 * ABD takes ownership of its buf then it will become tracked.
97 	 */
98 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
99 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
100 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
101 	/*
102 	 * The number of scatter ABDs which are currently allocated, excluding
103 	 * ABDs which don't own their data (for instance the ones which were
104 	 * allocated through abd_get_offset()).
105 	 */
106 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
107 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
108 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
109 	/*
110 	 * The amount of space wasted at the end of the last chunk across all
111 	 * scatter ABDs tracked by scatter_cnt.
112 	 */
113 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
114 	/*
115 	 * The number of compound allocations of a given order.  These
116 	 * allocations are spread over all currently allocated ABDs, and
117 	 * act as a measure of memory fragmentation.
118 	 */
119 	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
120 	/*
121 	 * The number of scatter ABDs which contain multiple chunks.
122 	 * ABDs are preferentially allocated from the minimum number of
123 	 * contiguous multi-page chunks, a single chunk is optimal.
124 	 */
125 	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
126 	/*
127 	 * The number of scatter ABDs which are split across memory zones.
128 	 * ABDs are preferentially allocated using pages from a single zone.
129 	 */
130 	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
131 	/*
132 	 *  The total number of retries encountered when attempting to
133 	 *  allocate the pages to populate the scatter ABD.
134 	 */
135 	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
136 	/*
137 	 *  The total number of retries encountered when attempting to
138 	 *  allocate the sg table for an ABD.
139 	 */
140 	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
141 };
142 
143 static struct {
144 	wmsum_t abdstat_struct_size;
145 	wmsum_t abdstat_linear_cnt;
146 	wmsum_t abdstat_linear_data_size;
147 	wmsum_t abdstat_scatter_cnt;
148 	wmsum_t abdstat_scatter_data_size;
149 	wmsum_t abdstat_scatter_chunk_waste;
150 	wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER];
151 	wmsum_t abdstat_scatter_page_multi_chunk;
152 	wmsum_t abdstat_scatter_page_multi_zone;
153 	wmsum_t abdstat_scatter_page_alloc_retry;
154 	wmsum_t abdstat_scatter_sg_table_retry;
155 } abd_sums;
156 
157 #define	abd_for_each_sg(abd, sg, n, i)	\
158 	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
159 
160 /*
161  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
162  * ABD's.  Smaller allocations will use linear ABD's which uses
163  * zio_[data_]buf_alloc().
164  *
165  * Scatter ABD's use at least one page each, so sub-page allocations waste
166  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
167  * half of each page).  Using linear ABD's for small allocations means that
168  * they will be put on slabs which contain many allocations.  This can
169  * improve memory efficiency, but it also makes it much harder for ARC
170  * evictions to actually free pages, because all the buffers on one slab need
171  * to be freed in order for the slab (and underlying pages) to be freed.
172  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
173  * possible for them to actually waste more memory than scatter (one page per
174  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
175  *
176  * Spill blocks are typically 512B and are heavily used on systems running
177  * selinux with the default dnode size and the `xattr=sa` property set.
178  *
179  * By default we use linear allocations for 512B and 1KB, and scatter
180  * allocations for larger (1.5KB and up).
181  */
182 static int zfs_abd_scatter_min_size = 512 * 3;
183 
184 /*
185  * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
186  * just a single zero'd page. This allows us to conserve memory by
187  * only using a single zero page for the scatterlist.
188  */
189 abd_t *abd_zero_scatter = NULL;
190 
191 struct page;
192 /*
193  * _KERNEL   - Will point to ZERO_PAGE if it is available or it will be
194  *             an allocated zero'd PAGESIZE buffer.
195  * Userspace - Will be an allocated zero'ed PAGESIZE buffer.
196  *
197  * abd_zero_page is assigned to each of the pages of abd_zero_scatter.
198  */
199 static struct page *abd_zero_page = NULL;
200 
201 static kmem_cache_t *abd_cache = NULL;
202 static kstat_t *abd_ksp;
203 
204 static uint_t
205 abd_chunkcnt_for_bytes(size_t size)
206 {
207 	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
208 }
209 
210 abd_t *
211 abd_alloc_struct_impl(size_t size)
212 {
213 	/*
214 	 * In Linux we do not use the size passed in during ABD
215 	 * allocation, so we just ignore it.
216 	 */
217 	(void) size;
218 	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
219 	ASSERT3P(abd, !=, NULL);
220 	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
221 
222 	return (abd);
223 }
224 
225 void
226 abd_free_struct_impl(abd_t *abd)
227 {
228 	kmem_cache_free(abd_cache, abd);
229 	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
230 }
231 
232 #ifdef _KERNEL
233 static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;
234 
235 /*
236  * Mark zfs data pages so they can be excluded from kernel crash dumps
237  */
238 #ifdef _LP64
239 #define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E
240 
241 static inline void
242 abd_mark_zfs_page(struct page *page)
243 {
244 	get_page(page);
245 	SetPagePrivate(page);
246 	set_page_private(page, ABD_FILE_CACHE_PAGE);
247 }
248 
249 static inline void
250 abd_unmark_zfs_page(struct page *page)
251 {
252 	set_page_private(page, 0UL);
253 	ClearPagePrivate(page);
254 	put_page(page);
255 }
256 #else
257 #define	abd_mark_zfs_page(page)
258 #define	abd_unmark_zfs_page(page)
259 #endif /* _LP64 */
260 
261 #ifndef CONFIG_HIGHMEM
262 
263 #ifndef __GFP_RECLAIM
264 #define	__GFP_RECLAIM		__GFP_WAIT
265 #endif
266 
267 /*
268  * The goal is to minimize fragmentation by preferentially populating ABDs
269  * with higher order compound pages from a single zone.  Allocation size is
270  * progressively decreased until it can be satisfied without performing
271  * reclaim or compaction.  When necessary this function will degenerate to
272  * allocating individual pages and allowing reclaim to satisfy allocations.
273  */
274 void
275 abd_alloc_chunks(abd_t *abd, size_t size)
276 {
277 	struct list_head pages;
278 	struct sg_table table;
279 	struct scatterlist *sg;
280 	struct page *page, *tmp_page = NULL;
281 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
282 	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
283 	unsigned int max_order = MIN(zfs_abd_scatter_max_order,
284 	    ABD_MAX_ORDER - 1);
285 	unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
286 	unsigned int chunks = 0, zones = 0;
287 	size_t remaining_size;
288 	int nid = NUMA_NO_NODE;
289 	unsigned int alloc_pages = 0;
290 
291 	INIT_LIST_HEAD(&pages);
292 
293 	ASSERT3U(alloc_pages, <, nr_pages);
294 
295 	while (alloc_pages < nr_pages) {
296 		unsigned int chunk_pages;
297 		unsigned int order;
298 
299 		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
300 		chunk_pages = (1U << order);
301 
302 		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
303 		if (page == NULL) {
304 			if (order == 0) {
305 				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
306 				schedule_timeout_interruptible(1);
307 			} else {
308 				max_order = MAX(0, order - 1);
309 			}
310 			continue;
311 		}
312 
313 		list_add_tail(&page->lru, &pages);
314 
315 		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
316 			zones++;
317 
318 		nid = page_to_nid(page);
319 		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
320 		chunks++;
321 		alloc_pages += chunk_pages;
322 	}
323 
324 	ASSERT3S(alloc_pages, ==, nr_pages);
325 
326 	while (sg_alloc_table(&table, chunks, gfp)) {
327 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
328 		schedule_timeout_interruptible(1);
329 	}
330 
331 	sg = table.sgl;
332 	remaining_size = size;
333 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
334 		size_t sg_size = MIN(PAGESIZE << compound_order(page),
335 		    remaining_size);
336 		sg_set_page(sg, page, sg_size, 0);
337 		abd_mark_zfs_page(page);
338 		remaining_size -= sg_size;
339 
340 		sg = sg_next(sg);
341 		list_del(&page->lru);
342 	}
343 
344 	/*
345 	 * These conditions ensure that a possible transformation to a linear
346 	 * ABD would be valid.
347 	 */
348 	ASSERT(!PageHighMem(sg_page(table.sgl)));
349 	ASSERT0(ABD_SCATTER(abd).abd_offset);
350 
351 	if (table.nents == 1) {
352 		/*
353 		 * Since there is only one entry, this ABD can be represented
354 		 * as a linear buffer.  All single-page (4K) ABD's can be
355 		 * represented this way.  Some multi-page ABD's can also be
356 		 * represented this way, if we were able to allocate a single
357 		 * "chunk" (higher-order "page" which represents a power-of-2
358 		 * series of physically-contiguous pages).  This is often the
359 		 * case for 2-page (8K) ABD's.
360 		 *
361 		 * Representing a single-entry scatter ABD as a linear ABD
362 		 * has the performance advantage of avoiding the copy (and
363 		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
364 		 * A performance increase of around 5% has been observed for
365 		 * ARC-cached reads (of small blocks which can take advantage
366 		 * of this).
367 		 *
368 		 * Note that this optimization is only possible because the
369 		 * pages are always mapped into the kernel's address space.
370 		 * This is not the case for highmem pages, so the
371 		 * optimization can not be made there.
372 		 */
373 		abd->abd_flags |= ABD_FLAG_LINEAR;
374 		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
375 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
376 		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
377 	} else if (table.nents > 1) {
378 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
379 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
380 
381 		if (zones) {
382 			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
383 			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
384 		}
385 
386 		ABD_SCATTER(abd).abd_sgl = table.sgl;
387 		ABD_SCATTER(abd).abd_nents = table.nents;
388 	}
389 }
390 #else
391 
392 /*
393  * Allocate N individual pages to construct a scatter ABD.  This function
394  * makes no attempt to request contiguous pages and requires the minimal
395  * number of kernel interfaces.  It's designed for maximum compatibility.
396  */
397 void
398 abd_alloc_chunks(abd_t *abd, size_t size)
399 {
400 	struct scatterlist *sg = NULL;
401 	struct sg_table table;
402 	struct page *page;
403 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
404 	int nr_pages = abd_chunkcnt_for_bytes(size);
405 	int i = 0;
406 
407 	while (sg_alloc_table(&table, nr_pages, gfp)) {
408 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
409 		schedule_timeout_interruptible(1);
410 	}
411 
412 	ASSERT3U(table.nents, ==, nr_pages);
413 	ABD_SCATTER(abd).abd_sgl = table.sgl;
414 	ABD_SCATTER(abd).abd_nents = nr_pages;
415 
416 	abd_for_each_sg(abd, sg, nr_pages, i) {
417 		while ((page = __page_cache_alloc(gfp)) == NULL) {
418 			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
419 			schedule_timeout_interruptible(1);
420 		}
421 
422 		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
423 		sg_set_page(sg, page, PAGESIZE, 0);
424 		abd_mark_zfs_page(page);
425 	}
426 
427 	if (nr_pages > 1) {
428 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
429 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
430 	}
431 }
432 #endif /* !CONFIG_HIGHMEM */
433 
434 /*
435  * This must be called if any of the sg_table allocation functions
436  * are called.
437  */
438 static void
439 abd_free_sg_table(abd_t *abd)
440 {
441 	struct sg_table table;
442 
443 	table.sgl = ABD_SCATTER(abd).abd_sgl;
444 	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
445 	sg_free_table(&table);
446 }
447 
448 void
449 abd_free_chunks(abd_t *abd)
450 {
451 	struct scatterlist *sg = NULL;
452 	struct page *page;
453 	int nr_pages = ABD_SCATTER(abd).abd_nents;
454 	int order, i = 0;
455 
456 	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
457 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
458 
459 	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
460 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
461 
462 	abd_for_each_sg(abd, sg, nr_pages, i) {
463 		page = sg_page(sg);
464 		abd_unmark_zfs_page(page);
465 		order = compound_order(page);
466 		__free_pages(page, order);
467 		ASSERT3U(sg->length, <=, PAGE_SIZE << order);
468 		ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
469 	}
470 	abd_free_sg_table(abd);
471 }
472 
473 /*
474  * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
475  * the scatterlist will be set to the zero'd out buffer abd_zero_page.
476  */
477 static void
478 abd_alloc_zero_scatter(void)
479 {
480 	struct scatterlist *sg = NULL;
481 	struct sg_table table;
482 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
483 	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
484 	int i = 0;
485 
486 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
487 	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
488 	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
489 		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
490 		schedule_timeout_interruptible(1);
491 	}
492 	abd_mark_zfs_page(abd_zero_page);
493 #else
494 	abd_zero_page = ZERO_PAGE(0);
495 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
496 
497 	while (sg_alloc_table(&table, nr_pages, gfp)) {
498 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
499 		schedule_timeout_interruptible(1);
500 	}
501 	ASSERT3U(table.nents, ==, nr_pages);
502 
503 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
504 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
505 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
506 	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
507 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
508 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
509 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
510 
511 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
512 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
513 	}
514 
515 	ABDSTAT_BUMP(abdstat_scatter_cnt);
516 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
517 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
518 }
519 
520 #else /* _KERNEL */
521 
522 #ifndef PAGE_SHIFT
523 #define	PAGE_SHIFT (highbit64(PAGESIZE)-1)
524 #endif
525 
526 #define	zfs_kmap_atomic(chunk)		((void *)chunk)
527 #define	zfs_kunmap_atomic(addr)		do { (void)(addr); } while (0)
528 #define	local_irq_save(flags)		do { (void)(flags); } while (0)
529 #define	local_irq_restore(flags)	do { (void)(flags); } while (0)
530 #define	nth_page(pg, i) \
531 	((struct page *)((void *)(pg) + (i) * PAGESIZE))
532 
533 struct scatterlist {
534 	struct page *page;
535 	int length;
536 	int end;
537 };
538 
539 static void
540 sg_init_table(struct scatterlist *sg, int nr)
541 {
542 	memset(sg, 0, nr * sizeof (struct scatterlist));
543 	sg[nr - 1].end = 1;
544 }
545 
546 /*
547  * This must be called if any of the sg_table allocation functions
548  * are called.
549  */
550 static void
551 abd_free_sg_table(abd_t *abd)
552 {
553 	int nents = ABD_SCATTER(abd).abd_nents;
554 	vmem_free(ABD_SCATTER(abd).abd_sgl,
555 	    nents * sizeof (struct scatterlist));
556 }
557 
558 #define	for_each_sg(sgl, sg, nr, i)	\
559 	for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
560 
561 static inline void
562 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
563     unsigned int offset)
564 {
565 	/* currently we don't use offset */
566 	ASSERT(offset == 0);
567 	sg->page = page;
568 	sg->length = len;
569 }
570 
571 static inline struct page *
572 sg_page(struct scatterlist *sg)
573 {
574 	return (sg->page);
575 }
576 
577 static inline struct scatterlist *
578 sg_next(struct scatterlist *sg)
579 {
580 	if (sg->end)
581 		return (NULL);
582 
583 	return (sg + 1);
584 }
585 
586 void
587 abd_alloc_chunks(abd_t *abd, size_t size)
588 {
589 	unsigned nr_pages = abd_chunkcnt_for_bytes(size);
590 	struct scatterlist *sg;
591 	int i;
592 
593 	ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
594 	    sizeof (struct scatterlist), KM_SLEEP);
595 	sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
596 
597 	abd_for_each_sg(abd, sg, nr_pages, i) {
598 		struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
599 		sg_set_page(sg, p, PAGESIZE, 0);
600 	}
601 	ABD_SCATTER(abd).abd_nents = nr_pages;
602 }
603 
604 void
605 abd_free_chunks(abd_t *abd)
606 {
607 	int i, n = ABD_SCATTER(abd).abd_nents;
608 	struct scatterlist *sg;
609 
610 	abd_for_each_sg(abd, sg, n, i) {
611 		struct page *p = nth_page(sg_page(sg), 0);
612 		umem_free_aligned(p, PAGESIZE);
613 	}
614 	abd_free_sg_table(abd);
615 }
616 
617 static void
618 abd_alloc_zero_scatter(void)
619 {
620 	unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
621 	struct scatterlist *sg;
622 	int i;
623 
624 	abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
625 	memset(abd_zero_page, 0, PAGESIZE);
626 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
627 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
628 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
629 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
630 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
631 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
632 	ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
633 	    sizeof (struct scatterlist), KM_SLEEP);
634 
635 	sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
636 
637 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
638 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
639 	}
640 
641 	ABDSTAT_BUMP(abdstat_scatter_cnt);
642 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
643 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
644 }
645 
646 #endif /* _KERNEL */
647 
648 boolean_t
649 abd_size_alloc_linear(size_t size)
650 {
651 	return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
652 }
653 
654 void
655 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
656 {
657 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
658 	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
659 	if (op == ABDSTAT_INCR) {
660 		ABDSTAT_BUMP(abdstat_scatter_cnt);
661 		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
662 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
663 		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
664 	} else {
665 		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
666 		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
667 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
668 		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
669 	}
670 }
671 
672 void
673 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
674 {
675 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
676 	if (op == ABDSTAT_INCR) {
677 		ABDSTAT_BUMP(abdstat_linear_cnt);
678 		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
679 	} else {
680 		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
681 		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
682 	}
683 }
684 
685 void
686 abd_verify_scatter(abd_t *abd)
687 {
688 	size_t n;
689 	int i = 0;
690 	struct scatterlist *sg = NULL;
691 
692 	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
693 	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
694 	    ABD_SCATTER(abd).abd_sgl->length);
695 	n = ABD_SCATTER(abd).abd_nents;
696 	abd_for_each_sg(abd, sg, n, i) {
697 		ASSERT3P(sg_page(sg), !=, NULL);
698 	}
699 }
700 
701 static void
702 abd_free_zero_scatter(void)
703 {
704 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
705 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
706 	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
707 
708 	abd_free_sg_table(abd_zero_scatter);
709 	abd_free_struct(abd_zero_scatter);
710 	abd_zero_scatter = NULL;
711 	ASSERT3P(abd_zero_page, !=, NULL);
712 #if defined(_KERNEL)
713 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
714 	abd_unmark_zfs_page(abd_zero_page);
715 	__free_page(abd_zero_page);
716 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
717 #else
718 	umem_free_aligned(abd_zero_page, PAGESIZE);
719 #endif /* _KERNEL */
720 }
721 
722 static int
723 abd_kstats_update(kstat_t *ksp, int rw)
724 {
725 	abd_stats_t *as = ksp->ks_data;
726 
727 	if (rw == KSTAT_WRITE)
728 		return (EACCES);
729 	as->abdstat_struct_size.value.ui64 =
730 	    wmsum_value(&abd_sums.abdstat_struct_size);
731 	as->abdstat_linear_cnt.value.ui64 =
732 	    wmsum_value(&abd_sums.abdstat_linear_cnt);
733 	as->abdstat_linear_data_size.value.ui64 =
734 	    wmsum_value(&abd_sums.abdstat_linear_data_size);
735 	as->abdstat_scatter_cnt.value.ui64 =
736 	    wmsum_value(&abd_sums.abdstat_scatter_cnt);
737 	as->abdstat_scatter_data_size.value.ui64 =
738 	    wmsum_value(&abd_sums.abdstat_scatter_data_size);
739 	as->abdstat_scatter_chunk_waste.value.ui64 =
740 	    wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
741 	for (int i = 0; i < ABD_MAX_ORDER; i++) {
742 		as->abdstat_scatter_orders[i].value.ui64 =
743 		    wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
744 	}
745 	as->abdstat_scatter_page_multi_chunk.value.ui64 =
746 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
747 	as->abdstat_scatter_page_multi_zone.value.ui64 =
748 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
749 	as->abdstat_scatter_page_alloc_retry.value.ui64 =
750 	    wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
751 	as->abdstat_scatter_sg_table_retry.value.ui64 =
752 	    wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
753 	return (0);
754 }
755 
756 void
757 abd_init(void)
758 {
759 	int i;
760 
761 	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
762 	    0, NULL, NULL, NULL, NULL, NULL, 0);
763 
764 	wmsum_init(&abd_sums.abdstat_struct_size, 0);
765 	wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
766 	wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
767 	wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
768 	wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
769 	wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
770 	for (i = 0; i < ABD_MAX_ORDER; i++)
771 		wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
772 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
773 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
774 	wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
775 	wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
776 
777 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
778 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
779 	if (abd_ksp != NULL) {
780 		for (i = 0; i < ABD_MAX_ORDER; i++) {
781 			snprintf(abd_stats.abdstat_scatter_orders[i].name,
782 			    KSTAT_STRLEN, "scatter_order_%d", i);
783 			abd_stats.abdstat_scatter_orders[i].data_type =
784 			    KSTAT_DATA_UINT64;
785 		}
786 		abd_ksp->ks_data = &abd_stats;
787 		abd_ksp->ks_update = abd_kstats_update;
788 		kstat_install(abd_ksp);
789 	}
790 
791 	abd_alloc_zero_scatter();
792 }
793 
794 void
795 abd_fini(void)
796 {
797 	abd_free_zero_scatter();
798 
799 	if (abd_ksp != NULL) {
800 		kstat_delete(abd_ksp);
801 		abd_ksp = NULL;
802 	}
803 
804 	wmsum_fini(&abd_sums.abdstat_struct_size);
805 	wmsum_fini(&abd_sums.abdstat_linear_cnt);
806 	wmsum_fini(&abd_sums.abdstat_linear_data_size);
807 	wmsum_fini(&abd_sums.abdstat_scatter_cnt);
808 	wmsum_fini(&abd_sums.abdstat_scatter_data_size);
809 	wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
810 	for (int i = 0; i < ABD_MAX_ORDER; i++)
811 		wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
812 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
813 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
814 	wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
815 	wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
816 
817 	if (abd_cache) {
818 		kmem_cache_destroy(abd_cache);
819 		abd_cache = NULL;
820 	}
821 }
822 
823 void
824 abd_free_linear_page(abd_t *abd)
825 {
826 	/* Transform it back into a scatter ABD for freeing */
827 	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
828 	abd->abd_flags &= ~ABD_FLAG_LINEAR;
829 	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
830 	ABD_SCATTER(abd).abd_nents = 1;
831 	ABD_SCATTER(abd).abd_offset = 0;
832 	ABD_SCATTER(abd).abd_sgl = sg;
833 	abd_free_chunks(abd);
834 
835 	abd_update_scatter_stats(abd, ABDSTAT_DECR);
836 }
837 
838 /*
839  * If we're going to use this ABD for doing I/O using the block layer, the
840  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
841  * plan to store this ABD in memory for a long period of time, we should
842  * allocate the ABD type that requires the least data copying to do the I/O.
843  *
844  * On Linux the optimal thing to do would be to use abd_get_offset() and
845  * construct a new ABD which shares the original pages thereby eliminating
846  * the copy.  But for the moment a new linear ABD is allocated until this
847  * performance optimization can be implemented.
848  */
849 abd_t *
850 abd_alloc_for_io(size_t size, boolean_t is_metadata)
851 {
852 	return (abd_alloc(size, is_metadata));
853 }
854 
855 abd_t *
856 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
857     size_t size)
858 {
859 	(void) size;
860 	int i = 0;
861 	struct scatterlist *sg = NULL;
862 
863 	abd_verify(sabd);
864 	ASSERT3U(off, <=, sabd->abd_size);
865 
866 	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
867 
868 	if (abd == NULL)
869 		abd = abd_alloc_struct(0);
870 
871 	/*
872 	 * Even if this buf is filesystem metadata, we only track that
873 	 * if we own the underlying data buffer, which is not true in
874 	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
875 	 */
876 
877 	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
878 		if (new_offset < sg->length)
879 			break;
880 		new_offset -= sg->length;
881 	}
882 
883 	ABD_SCATTER(abd).abd_sgl = sg;
884 	ABD_SCATTER(abd).abd_offset = new_offset;
885 	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
886 
887 	return (abd);
888 }
889 
890 /*
891  * Initialize the abd_iter.
892  */
893 void
894 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
895 {
896 	ASSERT(!abd_is_gang(abd));
897 	abd_verify(abd);
898 	aiter->iter_abd = abd;
899 	aiter->iter_mapaddr = NULL;
900 	aiter->iter_mapsize = 0;
901 	aiter->iter_pos = 0;
902 	if (abd_is_linear(abd)) {
903 		aiter->iter_offset = 0;
904 		aiter->iter_sg = NULL;
905 	} else {
906 		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
907 		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
908 	}
909 }
910 
911 /*
912  * This is just a helper function to see if we have exhausted the
913  * abd_iter and reached the end.
914  */
915 boolean_t
916 abd_iter_at_end(struct abd_iter *aiter)
917 {
918 	return (aiter->iter_pos == aiter->iter_abd->abd_size);
919 }
920 
921 /*
922  * Advance the iterator by a certain amount. Cannot be called when a chunk is
923  * in use. This can be safely called when the aiter has already exhausted, in
924  * which case this does nothing.
925  */
926 void
927 abd_iter_advance(struct abd_iter *aiter, size_t amount)
928 {
929 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
930 	ASSERT0(aiter->iter_mapsize);
931 
932 	/* There's nothing left to advance to, so do nothing */
933 	if (abd_iter_at_end(aiter))
934 		return;
935 
936 	aiter->iter_pos += amount;
937 	aiter->iter_offset += amount;
938 	if (!abd_is_linear(aiter->iter_abd)) {
939 		while (aiter->iter_offset >= aiter->iter_sg->length) {
940 			aiter->iter_offset -= aiter->iter_sg->length;
941 			aiter->iter_sg = sg_next(aiter->iter_sg);
942 			if (aiter->iter_sg == NULL) {
943 				ASSERT0(aiter->iter_offset);
944 				break;
945 			}
946 		}
947 	}
948 }
949 
950 /*
951  * Map the current chunk into aiter. This can be safely called when the aiter
952  * has already exhausted, in which case this does nothing.
953  */
954 void
955 abd_iter_map(struct abd_iter *aiter)
956 {
957 	void *paddr;
958 	size_t offset = 0;
959 
960 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
961 	ASSERT0(aiter->iter_mapsize);
962 
963 	/* There's nothing left to iterate over, so do nothing */
964 	if (abd_iter_at_end(aiter))
965 		return;
966 
967 	if (abd_is_linear(aiter->iter_abd)) {
968 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
969 		offset = aiter->iter_offset;
970 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
971 		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
972 	} else {
973 		offset = aiter->iter_offset;
974 		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
975 		    aiter->iter_abd->abd_size - aiter->iter_pos);
976 
977 		paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
978 	}
979 
980 	aiter->iter_mapaddr = (char *)paddr + offset;
981 }
982 
983 /*
984  * Unmap the current chunk from aiter. This can be safely called when the aiter
985  * has already exhausted, in which case this does nothing.
986  */
987 void
988 abd_iter_unmap(struct abd_iter *aiter)
989 {
990 	/* There's nothing left to unmap, so do nothing */
991 	if (abd_iter_at_end(aiter))
992 		return;
993 
994 	if (!abd_is_linear(aiter->iter_abd)) {
995 		/* LINTED E_FUNC_SET_NOT_USED */
996 		zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
997 	}
998 
999 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
1000 	ASSERT3U(aiter->iter_mapsize, >, 0);
1001 
1002 	aiter->iter_mapaddr = NULL;
1003 	aiter->iter_mapsize = 0;
1004 }
1005 
1006 void
1007 abd_cache_reap_now(void)
1008 {
1009 }
1010 
1011 #if defined(_KERNEL)
1012 /*
1013  * bio_nr_pages for ABD.
1014  * @off is the offset in @abd
1015  */
1016 unsigned long
1017 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1018 {
1019 	unsigned long pos;
1020 
1021 	if (abd_is_gang(abd)) {
1022 		unsigned long count = 0;
1023 
1024 		for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1025 		    cabd != NULL && size != 0;
1026 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1027 			ASSERT3U(off, <, cabd->abd_size);
1028 			int mysize = MIN(size, cabd->abd_size - off);
1029 			count += abd_nr_pages_off(cabd, mysize, off);
1030 			size -= mysize;
1031 			off = 0;
1032 		}
1033 		return (count);
1034 	}
1035 
1036 	if (abd_is_linear(abd))
1037 		pos = (unsigned long)abd_to_buf(abd) + off;
1038 	else
1039 		pos = ABD_SCATTER(abd).abd_offset + off;
1040 
1041 	return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1042 	    (pos >> PAGE_SHIFT));
1043 }
1044 
1045 static unsigned int
1046 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1047 {
1048 	unsigned int offset, size, i;
1049 	struct page *page;
1050 
1051 	offset = offset_in_page(buf_ptr);
1052 	for (i = 0; i < bio->bi_max_vecs; i++) {
1053 		size = PAGE_SIZE - offset;
1054 
1055 		if (bio_size <= 0)
1056 			break;
1057 
1058 		if (size > bio_size)
1059 			size = bio_size;
1060 
1061 		if (is_vmalloc_addr(buf_ptr))
1062 			page = vmalloc_to_page(buf_ptr);
1063 		else
1064 			page = virt_to_page(buf_ptr);
1065 
1066 		/*
1067 		 * Some network related block device uses tcp_sendpage, which
1068 		 * doesn't behave well when using 0-count page, this is a
1069 		 * safety net to catch them.
1070 		 */
1071 		ASSERT3S(page_count(page), >, 0);
1072 
1073 		if (bio_add_page(bio, page, size, offset) != size)
1074 			break;
1075 
1076 		buf_ptr += size;
1077 		bio_size -= size;
1078 		offset = 0;
1079 	}
1080 
1081 	return (bio_size);
1082 }
1083 
1084 /*
1085  * bio_map for gang ABD.
1086  */
1087 static unsigned int
1088 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1089     unsigned int io_size, size_t off)
1090 {
1091 	ASSERT(abd_is_gang(abd));
1092 
1093 	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1094 	    cabd != NULL;
1095 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1096 		ASSERT3U(off, <, cabd->abd_size);
1097 		int size = MIN(io_size, cabd->abd_size - off);
1098 		int remainder = abd_bio_map_off(bio, cabd, size, off);
1099 		io_size -= (size - remainder);
1100 		if (io_size == 0 || remainder > 0)
1101 			return (io_size);
1102 		off = 0;
1103 	}
1104 	ASSERT0(io_size);
1105 	return (io_size);
1106 }
1107 
1108 /*
1109  * bio_map for ABD.
1110  * @off is the offset in @abd
1111  * Remaining IO size is returned
1112  */
1113 unsigned int
1114 abd_bio_map_off(struct bio *bio, abd_t *abd,
1115     unsigned int io_size, size_t off)
1116 {
1117 	struct abd_iter aiter;
1118 
1119 	ASSERT3U(io_size, <=, abd->abd_size - off);
1120 	if (abd_is_linear(abd))
1121 		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1122 
1123 	ASSERT(!abd_is_linear(abd));
1124 	if (abd_is_gang(abd))
1125 		return (abd_gang_bio_map_off(bio, abd, io_size, off));
1126 
1127 	abd_iter_init(&aiter, abd);
1128 	abd_iter_advance(&aiter, off);
1129 
1130 	for (int i = 0; i < bio->bi_max_vecs; i++) {
1131 		struct page *pg;
1132 		size_t len, sgoff, pgoff;
1133 		struct scatterlist *sg;
1134 
1135 		if (io_size <= 0)
1136 			break;
1137 
1138 		sg = aiter.iter_sg;
1139 		sgoff = aiter.iter_offset;
1140 		pgoff = sgoff & (PAGESIZE - 1);
1141 		len = MIN(io_size, PAGESIZE - pgoff);
1142 		ASSERT(len > 0);
1143 
1144 		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1145 		if (bio_add_page(bio, pg, len, pgoff) != len)
1146 			break;
1147 
1148 		io_size -= len;
1149 		abd_iter_advance(&aiter, len);
1150 	}
1151 
1152 	return (io_size);
1153 }
1154 
1155 /* Tunable Parameters */
1156 module_param(zfs_abd_scatter_enabled, int, 0644);
1157 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1158 	"Toggle whether ABD allocations must be linear.");
1159 module_param(zfs_abd_scatter_min_size, int, 0644);
1160 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1161 	"Minimum size of scatter allocations.");
1162 /* CSTYLED */
1163 module_param(zfs_abd_scatter_max_order, uint, 0644);
1164 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1165 	"Maximum order allocation used for a scatter ABD.");
1166 #endif
1167