1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/spa.h>
30 #include <sys/zio.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zfs_context.h>
35 #include <sys/arc.h>
36 #include <sys/zfs_refcount.h>
37 #include <sys/vdev.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/multilist.h>
42 #include <sys/abd.h>
43 #include <sys/zil.h>
44 #include <sys/fm/fs/zfs.h>
45 #ifdef _KERNEL
46 #include <sys/shrinker.h>
47 #include <sys/vmsystm.h>
48 #include <sys/zpl.h>
49 #include <linux/page_compat.h>
50 #include <linux/notifier.h>
51 #include <linux/memory.h>
52 #endif
53 #include <sys/callb.h>
54 #include <sys/kstat.h>
55 #include <sys/zthr.h>
56 #include <zfs_fletcher.h>
57 #include <sys/arc_impl.h>
58 #include <sys/trace_zfs.h>
59 #include <sys/aggsum.h>
60 
61 /*
62  * This is a limit on how many pages the ARC shrinker makes available for
63  * eviction in response to one page allocation attempt.  Note that in
64  * practice, the kernel's shrinker can ask us to evict up to about 4x this
65  * for one allocation attempt.
66  *
67  * The default limit of 10,000 (in practice, 160MB per allocation attempt
68  * with 4K pages) limits the amount of time spent attempting to reclaim ARC
69  * memory to less than 100ms per allocation attempt, even with a small
70  * average compressed block size of ~8KB.
71  *
72  * See also the comment in arc_shrinker_count().
73  * Set to 0 to disable limit.
74  */
75 int zfs_arc_shrinker_limit = 10000;
76 
77 #ifdef CONFIG_MEMORY_HOTPLUG
78 static struct notifier_block arc_hotplug_callback_mem_nb;
79 #endif
80 
81 /*
82  * Return a default max arc size based on the amount of physical memory.
83  * This may be overridden by tuning the zfs_arc_max module parameter.
84  */
85 uint64_t
86 arc_default_max(uint64_t min, uint64_t allmem)
87 {
88 	uint64_t size;
89 
90 	if (allmem >= 1 << 30)
91 		size = allmem - (1 << 30);
92 	else
93 		size = min;
94 	return (MAX(allmem * 5 / 8, size));
95 }
96 
97 #ifdef _KERNEL
98 /*
99  * Return maximum amount of memory that we could possibly use.  Reduced
100  * to half of all memory in user space which is primarily used for testing.
101  */
102 uint64_t
103 arc_all_memory(void)
104 {
105 #ifdef CONFIG_HIGHMEM
106 	return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
107 #else
108 	return (ptob(zfs_totalram_pages));
109 #endif /* CONFIG_HIGHMEM */
110 }
111 
112 /*
113  * Return the amount of memory that is considered free.  In user space
114  * which is primarily used for testing we pretend that free memory ranges
115  * from 0-20% of all memory.
116  */
117 uint64_t
118 arc_free_memory(void)
119 {
120 #ifdef CONFIG_HIGHMEM
121 	struct sysinfo si;
122 	si_meminfo(&si);
123 	return (ptob(si.freeram - si.freehigh));
124 #else
125 	return (ptob(nr_free_pages() +
126 	    nr_inactive_file_pages()));
127 #endif /* CONFIG_HIGHMEM */
128 }
129 
130 /*
131  * Return the amount of memory that can be consumed before reclaim will be
132  * needed.  Positive if there is sufficient free memory, negative indicates
133  * the amount of memory that needs to be freed up.
134  */
135 int64_t
136 arc_available_memory(void)
137 {
138 	return (arc_free_memory() - arc_sys_free);
139 }
140 
141 static uint64_t
142 arc_evictable_memory(void)
143 {
144 	int64_t asize = aggsum_value(&arc_sums.arcstat_size);
145 	uint64_t arc_clean =
146 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
147 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
148 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
149 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
150 	uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
151 
152 	/*
153 	 * Scale reported evictable memory in proportion to page cache, cap
154 	 * at specified min/max.
155 	 */
156 	uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
157 	min = MAX(arc_c_min, MIN(arc_c_max, min));
158 
159 	if (arc_dirty >= min)
160 		return (arc_clean);
161 
162 	return (MAX((int64_t)asize - (int64_t)min, 0));
163 }
164 
165 /*
166  * The _count() function returns the number of free-able objects.
167  * The _scan() function returns the number of objects that were freed.
168  */
169 static unsigned long
170 arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
171 {
172 	/*
173 	 * __GFP_FS won't be set if we are called from ZFS code (see
174 	 * kmem_flags_convert(), which removes it).  To avoid a deadlock, we
175 	 * don't allow evicting in this case.  We return 0 rather than
176 	 * SHRINK_STOP so that the shrinker logic doesn't accumulate a
177 	 * deficit against us.
178 	 */
179 	if (!(sc->gfp_mask & __GFP_FS)) {
180 		return (0);
181 	}
182 
183 	/*
184 	 * This code is reached in the "direct reclaim" case, where the
185 	 * kernel (outside ZFS) is trying to allocate a page, and the system
186 	 * is low on memory.
187 	 *
188 	 * The kernel's shrinker code doesn't understand how many pages the
189 	 * ARC's callback actually frees, so it may ask the ARC to shrink a
190 	 * lot for one page allocation. This is problematic because it may
191 	 * take a long time, thus delaying the page allocation, and because
192 	 * it may force the ARC to unnecessarily shrink very small.
193 	 *
194 	 * Therefore, we limit the amount of data that we say is evictable,
195 	 * which limits the amount that the shrinker will ask us to evict for
196 	 * one page allocation attempt.
197 	 *
198 	 * In practice, we may be asked to shrink 4x the limit to satisfy one
199 	 * page allocation, before the kernel's shrinker code gives up on us.
200 	 * When that happens, we rely on the kernel code to find the pages
201 	 * that we freed before invoking the OOM killer.  This happens in
202 	 * __alloc_pages_slowpath(), which retries and finds the pages we
203 	 * freed when it calls get_page_from_freelist().
204 	 *
205 	 * See also the comment above zfs_arc_shrinker_limit.
206 	 */
207 	int64_t limit = zfs_arc_shrinker_limit != 0 ?
208 	    zfs_arc_shrinker_limit : INT64_MAX;
209 	return (MIN(limit, btop((int64_t)arc_evictable_memory())));
210 }
211 
212 static unsigned long
213 arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
214 {
215 	ASSERT((sc->gfp_mask & __GFP_FS) != 0);
216 
217 	/* The arc is considered warm once reclaim has occurred */
218 	if (unlikely(arc_warm == B_FALSE))
219 		arc_warm = B_TRUE;
220 
221 	/*
222 	 * Evict the requested number of pages by reducing arc_c and waiting
223 	 * for the requested amount of data to be evicted.
224 	 */
225 	arc_reduce_target_size(ptob(sc->nr_to_scan));
226 	arc_wait_for_eviction(ptob(sc->nr_to_scan), B_FALSE);
227 	if (current->reclaim_state != NULL)
228 #ifdef	HAVE_RECLAIM_STATE_RECLAIMED
229 		current->reclaim_state->reclaimed += sc->nr_to_scan;
230 #else
231 		current->reclaim_state->reclaimed_slab += sc->nr_to_scan;
232 #endif
233 
234 	/*
235 	 * We are experiencing memory pressure which the arc_evict_zthr was
236 	 * unable to keep up with. Set arc_no_grow to briefly pause arc
237 	 * growth to avoid compounding the memory pressure.
238 	 */
239 	arc_no_grow = B_TRUE;
240 
241 	/*
242 	 * When direct reclaim is observed it usually indicates a rapid
243 	 * increase in memory pressure.  This occurs because the kswapd
244 	 * threads were unable to asynchronously keep enough free memory
245 	 * available.
246 	 */
247 	if (current_is_kswapd()) {
248 		ARCSTAT_BUMP(arcstat_memory_indirect_count);
249 	} else {
250 		ARCSTAT_BUMP(arcstat_memory_direct_count);
251 	}
252 
253 	return (sc->nr_to_scan);
254 }
255 
256 static struct shrinker *arc_shrinker = NULL;
257 
258 int
259 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
260 {
261 	uint64_t free_memory = arc_free_memory();
262 
263 	if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
264 		return (0);
265 
266 	if (txg > spa->spa_lowmem_last_txg) {
267 		spa->spa_lowmem_last_txg = txg;
268 		spa->spa_lowmem_page_load = 0;
269 	}
270 	/*
271 	 * If we are in pageout, we know that memory is already tight,
272 	 * the arc is already going to be evicting, so we just want to
273 	 * continue to let page writes occur as quickly as possible.
274 	 */
275 	if (current_is_kswapd()) {
276 		if (spa->spa_lowmem_page_load >
277 		    MAX(arc_sys_free / 4, free_memory) / 4) {
278 			DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
279 			return (SET_ERROR(ERESTART));
280 		}
281 		/* Note: reserve is inflated, so we deflate */
282 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
283 		return (0);
284 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
285 		/* memory is low, delay before restarting */
286 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
287 		DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
288 		return (SET_ERROR(EAGAIN));
289 	}
290 	spa->spa_lowmem_page_load = 0;
291 	return (0);
292 }
293 
294 static void
295 arc_set_sys_free(uint64_t allmem)
296 {
297 	/*
298 	 * The ARC tries to keep at least this much memory available for the
299 	 * system.  This gives the ARC time to shrink in response to memory
300 	 * pressure, before running completely out of memory and invoking the
301 	 * direct-reclaim ARC shrinker.
302 	 *
303 	 * This should be more than twice high_wmark_pages(), so that
304 	 * arc_wait_for_eviction() will wait until at least the
305 	 * high_wmark_pages() are free (see arc_evict_state_impl()).
306 	 *
307 	 * Note: Even when the system is very low on memory, the kernel's
308 	 * shrinker code may only ask for one "batch" of pages (512KB) to be
309 	 * evicted.  If concurrent allocations consume these pages, there may
310 	 * still be insufficient free pages, and the OOM killer takes action.
311 	 *
312 	 * By setting arc_sys_free large enough, and having
313 	 * arc_wait_for_eviction() wait until there is at least arc_sys_free/2
314 	 * free memory, it is much less likely that concurrent allocations can
315 	 * consume all the memory that was evicted before checking for
316 	 * OOM.
317 	 *
318 	 * It's hard to iterate the zones from a linux kernel module, which
319 	 * makes it difficult to determine the watermark dynamically. Instead
320 	 * we compute the maximum high watermark for this system, based
321 	 * on the amount of memory, assuming default parameters on Linux kernel
322 	 * 5.3.
323 	 */
324 
325 	/*
326 	 * Base wmark_low is 4 * the square root of Kbytes of RAM.
327 	 */
328 	long wmark = 4 * int_sqrt(allmem/1024) * 1024;
329 
330 	/*
331 	 * Clamp to between 128K and 64MB.
332 	 */
333 	wmark = MAX(wmark, 128 * 1024);
334 	wmark = MIN(wmark, 64 * 1024 * 1024);
335 
336 	/*
337 	 * watermark_boost can increase the wmark by up to 150%.
338 	 */
339 	wmark += wmark * 150 / 100;
340 
341 	/*
342 	 * arc_sys_free needs to be more than 2x the watermark, because
343 	 * arc_wait_for_eviction() waits for half of arc_sys_free.  Bump this up
344 	 * to 3x to ensure we're above it.
345 	 */
346 	arc_sys_free = wmark * 3 + allmem / 32;
347 }
348 
349 void
350 arc_lowmem_init(void)
351 {
352 	uint64_t allmem = arc_all_memory();
353 
354 	/*
355 	 * Register a shrinker to support synchronous (direct) memory
356 	 * reclaim from the arc.  This is done to prevent kswapd from
357 	 * swapping out pages when it is preferable to shrink the arc.
358 	 */
359 	arc_shrinker = spl_register_shrinker("zfs-arc-shrinker",
360 	    arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS);
361 	VERIFY(arc_shrinker);
362 
363 	arc_set_sys_free(allmem);
364 }
365 
366 void
367 arc_lowmem_fini(void)
368 {
369 	spl_unregister_shrinker(arc_shrinker);
370 	arc_shrinker = NULL;
371 }
372 
373 int
374 param_set_arc_u64(const char *buf, zfs_kernel_param_t *kp)
375 {
376 	int error;
377 
378 	error = spl_param_set_u64(buf, kp);
379 	if (error < 0)
380 		return (SET_ERROR(error));
381 
382 	arc_tuning_update(B_TRUE);
383 
384 	return (0);
385 }
386 
387 int
388 param_set_arc_min(const char *buf, zfs_kernel_param_t *kp)
389 {
390 	return (param_set_arc_u64(buf, kp));
391 }
392 
393 int
394 param_set_arc_max(const char *buf, zfs_kernel_param_t *kp)
395 {
396 	return (param_set_arc_u64(buf, kp));
397 }
398 
399 int
400 param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
401 {
402 	int error;
403 
404 	error = param_set_int(buf, kp);
405 	if (error < 0)
406 		return (SET_ERROR(error));
407 
408 	arc_tuning_update(B_TRUE);
409 
410 	return (0);
411 }
412 
413 #ifdef CONFIG_MEMORY_HOTPLUG
414 static int
415 arc_hotplug_callback(struct notifier_block *self, unsigned long action,
416     void *arg)
417 {
418 	(void) self, (void) arg;
419 	uint64_t allmem = arc_all_memory();
420 	if (action != MEM_ONLINE)
421 		return (NOTIFY_OK);
422 
423 	arc_set_limits(allmem);
424 
425 #ifdef __LP64__
426 	if (zfs_dirty_data_max_max == 0)
427 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
428 		    allmem * zfs_dirty_data_max_max_percent / 100);
429 #else
430 	if (zfs_dirty_data_max_max == 0)
431 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
432 		    allmem * zfs_dirty_data_max_max_percent / 100);
433 #endif
434 
435 	arc_set_sys_free(allmem);
436 	return (NOTIFY_OK);
437 }
438 #endif
439 
440 void
441 arc_register_hotplug(void)
442 {
443 #ifdef CONFIG_MEMORY_HOTPLUG
444 	arc_hotplug_callback_mem_nb.notifier_call = arc_hotplug_callback;
445 	/* There is no significance to the value 100 */
446 	arc_hotplug_callback_mem_nb.priority = 100;
447 	register_memory_notifier(&arc_hotplug_callback_mem_nb);
448 #endif
449 }
450 
451 void
452 arc_unregister_hotplug(void)
453 {
454 #ifdef CONFIG_MEMORY_HOTPLUG
455 	unregister_memory_notifier(&arc_hotplug_callback_mem_nb);
456 #endif
457 }
458 #else /* _KERNEL */
459 int64_t
460 arc_available_memory(void)
461 {
462 	int64_t lowest = INT64_MAX;
463 
464 	/* Every 100 calls, free a small amount */
465 	if (random_in_range(100) == 0)
466 		lowest = -1024;
467 
468 	return (lowest);
469 }
470 
471 int
472 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
473 {
474 	(void) spa, (void) reserve, (void) txg;
475 	return (0);
476 }
477 
478 uint64_t
479 arc_all_memory(void)
480 {
481 	return (ptob(physmem) / 2);
482 }
483 
484 uint64_t
485 arc_free_memory(void)
486 {
487 	return (random_in_range(arc_all_memory() * 20 / 100));
488 }
489 
490 void
491 arc_register_hotplug(void)
492 {
493 }
494 
495 void
496 arc_unregister_hotplug(void)
497 {
498 }
499 #endif /* _KERNEL */
500 
501 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
502 	"Limit on number of pages that ARC shrinker can reclaim at once");
503