1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2023, 2024, Klara Inc.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_disk.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
35 #include <sys/abd.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zio.h>
38 #include <linux/blkpg.h>
39 #include <linux/msdos_fs.h>
40 #include <linux/vfs_compat.h>
41 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
42 #include <linux/blk-cgroup.h>
43 #endif
44 
45 /*
46  * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
47  * block_device. Since it carries the block_device inside, its convenient to
48  * just use the handle as a proxy.
49  *
50  * Linux 6.9.x uses a file for the same purpose.
51  *
52  * For pre-6.8, we just emulate this with a cast, since we don't need any of
53  * the other fields inside the handle.
54  */
55 #if defined(HAVE_BDEV_OPEN_BY_PATH)
56 typedef struct bdev_handle zfs_bdev_handle_t;
57 #define	BDH_BDEV(bdh)		((bdh)->bdev)
58 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
59 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
60 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
61 #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
62 typedef struct file zfs_bdev_handle_t;
63 #define	BDH_BDEV(bdh)		(file_bdev(bdh))
64 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
65 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
66 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
67 #else
68 typedef void zfs_bdev_handle_t;
69 #define	BDH_BDEV(bdh)		((struct block_device *)bdh)
70 #define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
71 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
72 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
73 #endif
74 
75 typedef struct vdev_disk {
76 	zfs_bdev_handle_t		*vd_bdh;
77 	krwlock_t			vd_lock;
78 } vdev_disk_t;
79 
80 /*
81  * Maximum number of segments to add to a bio (min 4). If this is higher than
82  * the maximum allowed by the device queue or the kernel itself, it will be
83  * clamped. Setting it to zero will cause the kernel's ideal size to be used.
84  */
85 uint_t zfs_vdev_disk_max_segs = 0;
86 
87 /*
88  * Unique identifier for the exclusive vdev holder.
89  */
90 static void *zfs_vdev_holder = VDEV_HOLDER;
91 
92 /*
93  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
94  * device is missing. The missing path may be transient since the links
95  * can be briefly removed and recreated in response to udev events.
96  */
97 static uint_t zfs_vdev_open_timeout_ms = 1000;
98 
99 /*
100  * Size of the "reserved" partition, in blocks.
101  */
102 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
103 
104 /*
105  * BIO request failfast mask.
106  */
107 
108 static unsigned int zfs_vdev_failfast_mask = 1;
109 
110 /*
111  * Convert SPA mode flags into bdev open mode flags.
112  */
113 #ifdef HAVE_BLK_MODE_T
114 typedef blk_mode_t vdev_bdev_mode_t;
115 #define	VDEV_BDEV_MODE_READ	BLK_OPEN_READ
116 #define	VDEV_BDEV_MODE_WRITE	BLK_OPEN_WRITE
117 #define	VDEV_BDEV_MODE_EXCL	BLK_OPEN_EXCL
118 #define	VDEV_BDEV_MODE_MASK	(BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
119 #else
120 typedef fmode_t vdev_bdev_mode_t;
121 #define	VDEV_BDEV_MODE_READ	FMODE_READ
122 #define	VDEV_BDEV_MODE_WRITE	FMODE_WRITE
123 #define	VDEV_BDEV_MODE_EXCL	FMODE_EXCL
124 #define	VDEV_BDEV_MODE_MASK	(FMODE_READ|FMODE_WRITE|FMODE_EXCL)
125 #endif
126 
127 static vdev_bdev_mode_t
128 vdev_bdev_mode(spa_mode_t smode)
129 {
130 	ASSERT3U(smode, !=, SPA_MODE_UNINIT);
131 	ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
132 
133 	vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
134 
135 	if (smode & SPA_MODE_READ)
136 		bmode |= VDEV_BDEV_MODE_READ;
137 
138 	if (smode & SPA_MODE_WRITE)
139 		bmode |= VDEV_BDEV_MODE_WRITE;
140 
141 	ASSERT(bmode & VDEV_BDEV_MODE_MASK);
142 	ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
143 
144 	return (bmode);
145 }
146 
147 /*
148  * Returns the usable capacity (in bytes) for the partition or disk.
149  */
150 static uint64_t
151 bdev_capacity(struct block_device *bdev)
152 {
153 	return (i_size_read(bdev->bd_inode));
154 }
155 
156 #if !defined(HAVE_BDEV_WHOLE)
157 static inline struct block_device *
158 bdev_whole(struct block_device *bdev)
159 {
160 	return (bdev->bd_contains);
161 }
162 #endif
163 
164 #if defined(HAVE_BDEVNAME)
165 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
166 #else
167 static inline void
168 vdev_bdevname(struct block_device *bdev, char *name)
169 {
170 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
171 }
172 #endif
173 
174 /*
175  * Returns the maximum expansion capacity of the block device (in bytes).
176  *
177  * It is possible to expand a vdev when it has been created as a wholedisk
178  * and the containing block device has increased in capacity.  Or when the
179  * partition containing the pool has been manually increased in size.
180  *
181  * This function is only responsible for calculating the potential expansion
182  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
183  * responsible for verifying the expected partition layout in the wholedisk
184  * case, and updating the partition table if appropriate.  Once the partition
185  * size has been increased the additional capacity will be visible using
186  * bdev_capacity().
187  *
188  * The returned maximum expansion capacity is always expected to be larger, or
189  * at the very least equal, to its usable capacity to prevent overestimating
190  * the pool expandsize.
191  */
192 static uint64_t
193 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
194 {
195 	uint64_t psize;
196 	int64_t available;
197 
198 	if (wholedisk && bdev != bdev_whole(bdev)) {
199 		/*
200 		 * When reporting maximum expansion capacity for a wholedisk
201 		 * deduct any capacity which is expected to be lost due to
202 		 * alignment restrictions.  Over reporting this value isn't
203 		 * harmful and would only result in slightly less capacity
204 		 * than expected post expansion.
205 		 * The estimated available space may be slightly smaller than
206 		 * bdev_capacity() for devices where the number of sectors is
207 		 * not a multiple of the alignment size and the partition layout
208 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
209 		 * "reserved" EFI partition: in such cases return the device
210 		 * usable capacity.
211 		 */
212 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
213 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
214 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
215 		psize = MAX(available, bdev_capacity(bdev));
216 	} else {
217 		psize = bdev_capacity(bdev);
218 	}
219 
220 	return (psize);
221 }
222 
223 static void
224 vdev_disk_error(zio_t *zio)
225 {
226 	/*
227 	 * This function can be called in interrupt context, for instance while
228 	 * handling IRQs coming from a misbehaving disk device; use printk()
229 	 * which is safe from any context.
230 	 */
231 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
232 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
233 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
234 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
235 	    zio->io_flags);
236 }
237 
238 static void
239 vdev_disk_kobj_evt_post(vdev_t *v)
240 {
241 	vdev_disk_t *vd = v->vdev_tsd;
242 	if (vd && vd->vd_bdh) {
243 		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
244 	} else {
245 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
246 		    v->vdev_path);
247 	}
248 }
249 
250 static zfs_bdev_handle_t *
251 vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
252 {
253 	vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
254 
255 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
256 	return (bdev_file_open_by_path(path, bmode, holder, NULL));
257 #elif defined(HAVE_BDEV_OPEN_BY_PATH)
258 	return (bdev_open_by_path(path, bmode, holder, NULL));
259 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
260 	return (blkdev_get_by_path(path, bmode, holder, NULL));
261 #else
262 	return (blkdev_get_by_path(path, bmode, holder));
263 #endif
264 }
265 
266 static void
267 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
268 {
269 #if defined(HAVE_BDEV_RELEASE)
270 	return (bdev_release(bdh));
271 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
272 	return (blkdev_put(BDH_BDEV(bdh), holder));
273 #elif defined(HAVE_BLKDEV_PUT)
274 	return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
275 #else
276 	fput(bdh);
277 #endif
278 }
279 
280 static int
281 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
282     uint64_t *logical_ashift, uint64_t *physical_ashift)
283 {
284 	zfs_bdev_handle_t *bdh;
285 	spa_mode_t smode = spa_mode(v->vdev_spa);
286 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
287 	vdev_disk_t *vd;
288 
289 	/* Must have a pathname and it must be absolute. */
290 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
291 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
292 		vdev_dbgmsg(v, "invalid vdev_path");
293 		return (SET_ERROR(EINVAL));
294 	}
295 
296 	/*
297 	 * Reopen the device if it is currently open.  When expanding a
298 	 * partition force re-scanning the partition table if userland
299 	 * did not take care of this already. We need to do this while closed
300 	 * in order to get an accurate updated block device size.  Then
301 	 * since udev may need to recreate the device links increase the
302 	 * open retry timeout before reporting the device as unavailable.
303 	 */
304 	vd = v->vdev_tsd;
305 	if (vd) {
306 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
307 		boolean_t reread_part = B_FALSE;
308 
309 		rw_enter(&vd->vd_lock, RW_WRITER);
310 		bdh = vd->vd_bdh;
311 		vd->vd_bdh = NULL;
312 
313 		if (bdh) {
314 			struct block_device *bdev = BDH_BDEV(bdh);
315 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
316 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
317 				/*
318 				 * If userland has BLKPG_RESIZE_PARTITION,
319 				 * then it should have updated the partition
320 				 * table already. We can detect this by
321 				 * comparing our current physical size
322 				 * with that of the device. If they are
323 				 * the same, then we must not have
324 				 * BLKPG_RESIZE_PARTITION or it failed to
325 				 * update the partition table online. We
326 				 * fallback to rescanning the partition
327 				 * table from the kernel below. However,
328 				 * if the capacity already reflects the
329 				 * updated partition, then we skip
330 				 * rescanning the partition table here.
331 				 */
332 				if (v->vdev_psize == bdev_capacity(bdev))
333 					reread_part = B_TRUE;
334 			}
335 
336 			vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
337 		}
338 
339 		if (reread_part) {
340 			bdh = vdev_blkdev_get_by_path(disk_name, smode,
341 			    zfs_vdev_holder);
342 			if (!BDH_IS_ERR(bdh)) {
343 				int error =
344 				    vdev_bdev_reread_part(BDH_BDEV(bdh));
345 				vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
346 				if (error == 0) {
347 					timeout = MSEC2NSEC(
348 					    zfs_vdev_open_timeout_ms * 2);
349 				}
350 			}
351 		}
352 	} else {
353 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
354 
355 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
356 		rw_enter(&vd->vd_lock, RW_WRITER);
357 	}
358 
359 	/*
360 	 * Devices are always opened by the path provided at configuration
361 	 * time.  This means that if the provided path is a udev by-id path
362 	 * then drives may be re-cabled without an issue.  If the provided
363 	 * path is a udev by-path path, then the physical location information
364 	 * will be preserved.  This can be critical for more complicated
365 	 * configurations where drives are located in specific physical
366 	 * locations to maximize the systems tolerance to component failure.
367 	 *
368 	 * Alternatively, you can provide your own udev rule to flexibly map
369 	 * the drives as you see fit.  It is not advised that you use the
370 	 * /dev/[hd]d devices which may be reordered due to probing order.
371 	 * Devices in the wrong locations will be detected by the higher
372 	 * level vdev validation.
373 	 *
374 	 * The specified paths may be briefly removed and recreated in
375 	 * response to udev events.  This should be exceptionally unlikely
376 	 * because the zpool command makes every effort to verify these paths
377 	 * have already settled prior to reaching this point.  Therefore,
378 	 * a ENOENT failure at this point is highly likely to be transient
379 	 * and it is reasonable to sleep and retry before giving up.  In
380 	 * practice delays have been observed to be on the order of 100ms.
381 	 *
382 	 * When ERESTARTSYS is returned it indicates the block device is
383 	 * a zvol which could not be opened due to the deadlock detection
384 	 * logic in zvol_open().  Extend the timeout and retry the open
385 	 * subsequent attempts are expected to eventually succeed.
386 	 */
387 	hrtime_t start = gethrtime();
388 	bdh = BDH_ERR_PTR(-ENXIO);
389 	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
390 		bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
391 		    zfs_vdev_holder);
392 		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
393 			/*
394 			 * There is no point of waiting since device is removed
395 			 * explicitly
396 			 */
397 			if (v->vdev_removed)
398 				break;
399 
400 			schedule_timeout(MSEC_TO_TICK(10));
401 		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
402 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
403 			continue;
404 		} else if (BDH_IS_ERR(bdh)) {
405 			break;
406 		}
407 	}
408 
409 	if (BDH_IS_ERR(bdh)) {
410 		int error = -BDH_PTR_ERR(bdh);
411 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
412 		    (u_longlong_t)(gethrtime() - start),
413 		    (u_longlong_t)timeout);
414 		vd->vd_bdh = NULL;
415 		v->vdev_tsd = vd;
416 		rw_exit(&vd->vd_lock);
417 		return (SET_ERROR(error));
418 	} else {
419 		vd->vd_bdh = bdh;
420 		v->vdev_tsd = vd;
421 		rw_exit(&vd->vd_lock);
422 	}
423 
424 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
425 
426 	/*  Determine the physical block size */
427 	int physical_block_size = bdev_physical_block_size(bdev);
428 
429 	/*  Determine the logical block size */
430 	int logical_block_size = bdev_logical_block_size(bdev);
431 
432 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
433 	v->vdev_nowritecache = B_FALSE;
434 
435 	/* Set when device reports it supports TRIM. */
436 	v->vdev_has_trim = bdev_discard_supported(bdev);
437 
438 	/* Set when device reports it supports secure TRIM. */
439 	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
440 
441 	/* Inform the ZIO pipeline that we are non-rotational */
442 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
443 
444 	/* Physical volume size in bytes for the partition */
445 	*psize = bdev_capacity(bdev);
446 
447 	/* Physical volume size in bytes including possible expansion space */
448 	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
449 
450 	/* Based on the minimum sector size set the block size */
451 	*physical_ashift = highbit64(MAX(physical_block_size,
452 	    SPA_MINBLOCKSIZE)) - 1;
453 
454 	*logical_ashift = highbit64(MAX(logical_block_size,
455 	    SPA_MINBLOCKSIZE)) - 1;
456 
457 	return (0);
458 }
459 
460 static void
461 vdev_disk_close(vdev_t *v)
462 {
463 	vdev_disk_t *vd = v->vdev_tsd;
464 
465 	if (v->vdev_reopening || vd == NULL)
466 		return;
467 
468 	if (vd->vd_bdh != NULL)
469 		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
470 		    zfs_vdev_holder);
471 
472 	rw_destroy(&vd->vd_lock);
473 	kmem_free(vd, sizeof (vdev_disk_t));
474 	v->vdev_tsd = NULL;
475 }
476 
477 static inline void
478 vdev_submit_bio_impl(struct bio *bio)
479 {
480 #ifdef HAVE_1ARG_SUBMIT_BIO
481 	(void) submit_bio(bio);
482 #else
483 	(void) submit_bio(bio_data_dir(bio), bio);
484 #endif
485 }
486 
487 /*
488  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
489  * replace it with preempt_schedule under the following condition:
490  */
491 #if defined(CONFIG_ARM64) && \
492     defined(CONFIG_PREEMPTION) && \
493     defined(CONFIG_BLK_CGROUP)
494 #define	preempt_schedule_notrace(x) preempt_schedule(x)
495 #endif
496 
497 /*
498  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
499  * as an argument removing the need to set it with bio_set_dev().  This
500  * removes the need for all of the following compatibility code.
501  */
502 #if !defined(HAVE_BIO_ALLOC_4ARG)
503 
504 #ifdef HAVE_BIO_SET_DEV
505 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
506 /*
507  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
508  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
509  * As a side effect the function was converted to GPL-only.  Define our
510  * own version when needed which uses rcu_read_lock_sched().
511  *
512  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
513  * part, moving blkg_tryget into the private one. Define our own version.
514  */
515 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
516 static inline bool
517 vdev_blkg_tryget(struct blkcg_gq *blkg)
518 {
519 	struct percpu_ref *ref = &blkg->refcnt;
520 	unsigned long __percpu *count;
521 	bool rc;
522 
523 	rcu_read_lock_sched();
524 
525 	if (__ref_is_percpu(ref, &count)) {
526 		this_cpu_inc(*count);
527 		rc = true;
528 	} else {
529 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
530 		rc = atomic_long_inc_not_zero(&ref->data->count);
531 #else
532 		rc = atomic_long_inc_not_zero(&ref->count);
533 #endif
534 	}
535 
536 	rcu_read_unlock_sched();
537 
538 	return (rc);
539 }
540 #else
541 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
542 #endif
543 #ifdef HAVE_BIO_SET_DEV_MACRO
544 /*
545  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
546  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
547  * the entire macro.  Provide a minimal version which always assigns the
548  * request queue's root_blkg to the bio.
549  */
550 static inline void
551 vdev_bio_associate_blkg(struct bio *bio)
552 {
553 #if defined(HAVE_BIO_BDEV_DISK)
554 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
555 #else
556 	struct request_queue *q = bio->bi_disk->queue;
557 #endif
558 
559 	ASSERT3P(q, !=, NULL);
560 	ASSERT3P(bio->bi_blkg, ==, NULL);
561 
562 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
563 		bio->bi_blkg = q->root_blkg;
564 }
565 
566 #define	bio_associate_blkg vdev_bio_associate_blkg
567 #else
568 static inline void
569 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
570 {
571 #if defined(HAVE_BIO_BDEV_DISK)
572 	struct request_queue *q = bdev->bd_disk->queue;
573 #else
574 	struct request_queue *q = bio->bi_disk->queue;
575 #endif
576 	bio_clear_flag(bio, BIO_REMAPPED);
577 	if (bio->bi_bdev != bdev)
578 		bio_clear_flag(bio, BIO_THROTTLED);
579 	bio->bi_bdev = bdev;
580 
581 	ASSERT3P(q, !=, NULL);
582 	ASSERT3P(bio->bi_blkg, ==, NULL);
583 
584 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
585 		bio->bi_blkg = q->root_blkg;
586 }
587 #define	bio_set_dev		vdev_bio_set_dev
588 #endif
589 #endif
590 #else
591 /*
592  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
593  */
594 static inline void
595 bio_set_dev(struct bio *bio, struct block_device *bdev)
596 {
597 	bio->bi_bdev = bdev;
598 }
599 #endif /* HAVE_BIO_SET_DEV */
600 #endif /* !HAVE_BIO_ALLOC_4ARG */
601 
602 static inline void
603 vdev_submit_bio(struct bio *bio)
604 {
605 	struct bio_list *bio_list = current->bio_list;
606 	current->bio_list = NULL;
607 	vdev_submit_bio_impl(bio);
608 	current->bio_list = bio_list;
609 }
610 
611 static inline struct bio *
612 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
613     unsigned short nr_vecs)
614 {
615 	struct bio *bio;
616 
617 #ifdef HAVE_BIO_ALLOC_4ARG
618 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
619 #else
620 	bio = bio_alloc(gfp_mask, nr_vecs);
621 	if (likely(bio != NULL))
622 		bio_set_dev(bio, bdev);
623 #endif
624 
625 	return (bio);
626 }
627 
628 static inline uint_t
629 vdev_bio_max_segs(struct block_device *bdev)
630 {
631 	/*
632 	 * Smallest of the device max segs and the tuneable max segs. Minimum
633 	 * 4, so there's room to finish split pages if they come up.
634 	 */
635 	const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
636 	const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
637 	    MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
638 	const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
639 
640 #ifdef HAVE_BIO_MAX_SEGS
641 	return (bio_max_segs(max_segs));
642 #else
643 	return (MIN(max_segs, BIO_MAX_PAGES));
644 #endif
645 }
646 
647 static inline uint_t
648 vdev_bio_max_bytes(struct block_device *bdev)
649 {
650 	return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
651 }
652 
653 
654 /*
655  * Virtual block IO object (VBIO)
656  *
657  * Linux block IO (BIO) objects have a limit on how many data segments (pages)
658  * they can hold. Depending on how they're allocated and structured, a large
659  * ZIO can require more than one BIO to be submitted to the kernel, which then
660  * all have to complete before we can return the completed ZIO back to ZFS.
661  *
662  * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
663  * translate a ZIO down into the kernel block layer and back again.
664  *
665  * Note that these are only used for data ZIOs (read/write). Meta-operations
666  * (flush/trim) don't need multiple BIOs and so can just make the call
667  * directly.
668  */
669 typedef struct {
670 	zio_t		*vbio_zio;	/* parent zio */
671 
672 	struct block_device *vbio_bdev;	/* blockdev to submit bios to */
673 
674 	abd_t		*vbio_abd;	/* abd carrying borrowed linear buf */
675 
676 	uint_t		vbio_max_segs;	/* max segs per bio */
677 
678 	uint_t		vbio_max_bytes;	/* max bytes per bio */
679 	uint_t		vbio_lbs_mask;	/* logical block size mask */
680 
681 	uint64_t	vbio_offset;	/* start offset of next bio */
682 
683 	struct bio	*vbio_bio;	/* pointer to the current bio */
684 	int		vbio_flags;	/* bio flags */
685 } vbio_t;
686 
687 static vbio_t *
688 vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
689 {
690 	vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
691 
692 	vbio->vbio_zio = zio;
693 	vbio->vbio_bdev = bdev;
694 	vbio->vbio_abd = NULL;
695 	vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
696 	vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
697 	vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
698 	vbio->vbio_offset = zio->io_offset;
699 	vbio->vbio_bio = NULL;
700 	vbio->vbio_flags = flags;
701 
702 	return (vbio);
703 }
704 
705 BIO_END_IO_PROTO(vbio_completion, bio, error);
706 
707 static int
708 vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
709 {
710 	struct bio *bio = vbio->vbio_bio;
711 	uint_t ssize;
712 
713 	while (size > 0) {
714 		if (bio == NULL) {
715 			/* New BIO, allocate and set up */
716 			bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
717 			    vbio->vbio_max_segs);
718 			VERIFY(bio);
719 
720 			BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
721 			bio_set_op_attrs(bio,
722 			    vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
723 			    WRITE : READ, vbio->vbio_flags);
724 
725 			if (vbio->vbio_bio) {
726 				bio_chain(vbio->vbio_bio, bio);
727 				vdev_submit_bio(vbio->vbio_bio);
728 			}
729 			vbio->vbio_bio = bio;
730 		}
731 
732 		/*
733 		 * Only load as much of the current page data as will fit in
734 		 * the space left in the BIO, respecting lbs alignment. Older
735 		 * kernels will error if we try to overfill the BIO, while
736 		 * newer ones will accept it and split the BIO. This ensures
737 		 * everything works on older kernels, and avoids an additional
738 		 * overhead on the new.
739 		 */
740 		ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
741 		    vbio->vbio_lbs_mask);
742 		if (ssize > 0 &&
743 		    bio_add_page(bio, page, ssize, offset) == ssize) {
744 			/* Accepted, adjust and load any remaining. */
745 			size -= ssize;
746 			offset += ssize;
747 			continue;
748 		}
749 
750 		/* No room, set up for a new BIO and loop */
751 		vbio->vbio_offset += BIO_BI_SIZE(bio);
752 
753 		/* Signal new BIO allocation wanted */
754 		bio = NULL;
755 	}
756 
757 	return (0);
758 }
759 
760 /* Iterator callback to submit ABD pages to the vbio. */
761 static int
762 vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
763 {
764 	vbio_t *vbio = priv;
765 	return (vbio_add_page(vbio, page, len, off));
766 }
767 
768 /* Create some BIOs, fill them with data and submit them */
769 static void
770 vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
771 {
772 	/*
773 	 * We plug so we can submit the BIOs as we go and only unplug them when
774 	 * they are fully created and submitted. This is important; if we don't
775 	 * plug, then the kernel may start executing earlier BIOs while we're
776 	 * still creating and executing later ones, and if the device goes
777 	 * away while that's happening, older kernels can get confused and
778 	 * trample memory.
779 	 */
780 	struct blk_plug plug;
781 	blk_start_plug(&plug);
782 
783 	(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
784 	ASSERT(vbio->vbio_bio);
785 
786 	vbio->vbio_bio->bi_end_io = vbio_completion;
787 	vbio->vbio_bio->bi_private = vbio;
788 
789 	/*
790 	 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
791 	 * can't touch it again. The bio may complete and vbio_completion() be
792 	 * called and free the vbio before this task is run again, so we must
793 	 * consider it invalid from this point.
794 	 */
795 	vdev_submit_bio(vbio->vbio_bio);
796 
797 	blk_finish_plug(&plug);
798 }
799 
800 /* IO completion callback */
801 BIO_END_IO_PROTO(vbio_completion, bio, error)
802 {
803 	vbio_t *vbio = bio->bi_private;
804 	zio_t *zio = vbio->vbio_zio;
805 
806 	ASSERT(zio);
807 
808 	/* Capture and log any errors */
809 #ifdef HAVE_1ARG_BIO_END_IO_T
810 	zio->io_error = BIO_END_IO_ERROR(bio);
811 #else
812 	zio->io_error = 0;
813 	if (error)
814 		zio->io_error = -(error);
815 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
816 		zio->io_error = EIO;
817 #endif
818 	ASSERT3U(zio->io_error, >=, 0);
819 
820 	if (zio->io_error)
821 		vdev_disk_error(zio);
822 
823 	/* Return the BIO to the kernel */
824 	bio_put(bio);
825 
826 	/*
827 	 * If we copied the ABD before issuing it, clean up and return the copy
828 	 * to the ADB, with changes if appropriate.
829 	 */
830 	if (vbio->vbio_abd != NULL) {
831 		void *buf = abd_to_buf(vbio->vbio_abd);
832 		abd_free(vbio->vbio_abd);
833 		vbio->vbio_abd = NULL;
834 
835 		if (zio->io_type == ZIO_TYPE_READ)
836 			abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
837 		else
838 			abd_return_buf(zio->io_abd, buf, zio->io_size);
839 	}
840 
841 	/* Final cleanup */
842 	kmem_free(vbio, sizeof (vbio_t));
843 
844 	/* All done, submit for processing */
845 	zio_delay_interrupt(zio);
846 }
847 
848 /*
849  * Iterator callback to count ABD pages and check their size & alignment.
850  *
851  * On Linux, each BIO segment can take a page pointer, and an offset+length of
852  * the data within that page. A page can be arbitrarily large ("compound"
853  * pages) but we still have to ensure the data portion is correctly sized and
854  * aligned to the logical block size, to ensure that if the kernel wants to
855  * split the BIO, the two halves will still be properly aligned.
856  *
857  * NOTE: if you change this function, change the copy in
858  * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
859  * data there to validate the change you're making.
860  *
861  */
862 typedef struct {
863 	uint_t  bmask;
864 	uint_t  npages;
865 	uint_t  end;
866 } vdev_disk_check_pages_t;
867 
868 static int
869 vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
870 {
871 	(void) page;
872 	vdev_disk_check_pages_t *s = priv;
873 
874 	/*
875 	 * If we didn't finish on a block size boundary last time, then there
876 	 * would be a gap if we tried to use this ABD as-is, so abort.
877 	 */
878 	if (s->end != 0)
879 		return (1);
880 
881 	/*
882 	 * Note if we're taking less than a full block, so we can check it
883 	 * above on the next call.
884 	 */
885 	s->end = (off+len) & s->bmask;
886 
887 	/* All blocks after the first must start on a block size boundary. */
888 	if (s->npages != 0 && (off & s->bmask) != 0)
889 		return (1);
890 
891 	s->npages++;
892 	return (0);
893 }
894 
895 /*
896  * Check if we can submit the pages in this ABD to the kernel as-is. Returns
897  * the number of pages, or 0 if it can't be submitted like this.
898  */
899 static boolean_t
900 vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
901 {
902 	vdev_disk_check_pages_t s = {
903 	    .bmask = bdev_logical_block_size(bdev)-1,
904 	    .npages = 0,
905 	    .end = 0,
906 	};
907 
908 	if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
909 		return (B_FALSE);
910 
911 	return (B_TRUE);
912 }
913 
914 static int
915 vdev_disk_io_rw(zio_t *zio)
916 {
917 	vdev_t *v = zio->io_vd;
918 	vdev_disk_t *vd = v->vdev_tsd;
919 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
920 	int flags = 0;
921 
922 	/*
923 	 * Accessing outside the block device is never allowed.
924 	 */
925 	if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
926 		vdev_dbgmsg(zio->io_vd,
927 		    "Illegal access %llu size %llu, device size %llu",
928 		    (u_longlong_t)zio->io_offset,
929 		    (u_longlong_t)zio->io_size,
930 		    (u_longlong_t)i_size_read(bdev->bd_inode));
931 		return (SET_ERROR(EIO));
932 	}
933 
934 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
935 	    v->vdev_failfast == B_TRUE) {
936 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
937 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
938 	}
939 
940 	/*
941 	 * Check alignment of the incoming ABD. If any part of it would require
942 	 * submitting a page that is not aligned to the logical block size,
943 	 * then we take a copy into a linear buffer and submit that instead.
944 	 * This should be impossible on a 512b LBS, and fairly rare on 4K,
945 	 * usually requiring abnormally-small data blocks (eg gang blocks)
946 	 * mixed into the same ABD as larger ones (eg aggregated).
947 	 */
948 	abd_t *abd = zio->io_abd;
949 	if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
950 		void *buf;
951 		if (zio->io_type == ZIO_TYPE_READ)
952 			buf = abd_borrow_buf(zio->io_abd, zio->io_size);
953 		else
954 			buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
955 
956 		/*
957 		 * Wrap the copy in an abd_t, so we can use the same iterators
958 		 * to count and fill the vbio later.
959 		 */
960 		abd = abd_get_from_buf(buf, zio->io_size);
961 
962 		/*
963 		 * False here would mean the borrowed copy has an invalid
964 		 * alignment too, which would mean we've somehow been passed a
965 		 * linear ABD with an interior page that has a non-zero offset
966 		 * or a size not a multiple of PAGE_SIZE. This is not possible.
967 		 * It would mean either zio_buf_alloc() or its underlying
968 		 * allocators have done something extremely strange, or our
969 		 * math in vdev_disk_check_pages() is wrong. In either case,
970 		 * something in seriously wrong and its not safe to continue.
971 		 */
972 		VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
973 	}
974 
975 	/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
976 	vbio_t *vbio = vbio_alloc(zio, bdev, flags);
977 	if (abd != zio->io_abd)
978 		vbio->vbio_abd = abd;
979 
980 	/* Fill it with data pages and submit it to the kernel */
981 	vbio_submit(vbio, abd, zio->io_size);
982 	return (0);
983 }
984 
985 /* ========== */
986 
987 /*
988  * This is the classic, battle-tested BIO submission code. Until we're totally
989  * sure that the new code is safe and correct in all cases, this will remain
990  * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
991  * load time.
992  *
993  * These functions have been renamed to vdev_classic_* to make it clear what
994  * they belong to, but their implementations are unchanged.
995  */
996 
997 /*
998  * Virtual device vector for disks.
999  */
1000 typedef struct dio_request {
1001 	zio_t			*dr_zio;	/* Parent ZIO */
1002 	atomic_t		dr_ref;		/* References */
1003 	int			dr_error;	/* Bio error */
1004 	int			dr_bio_count;	/* Count of bio's */
1005 	struct bio		*dr_bio[];	/* Attached bio's */
1006 } dio_request_t;
1007 
1008 static dio_request_t *
1009 vdev_classic_dio_alloc(int bio_count)
1010 {
1011 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
1012 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
1013 	atomic_set(&dr->dr_ref, 0);
1014 	dr->dr_bio_count = bio_count;
1015 	dr->dr_error = 0;
1016 
1017 	for (int i = 0; i < dr->dr_bio_count; i++)
1018 		dr->dr_bio[i] = NULL;
1019 
1020 	return (dr);
1021 }
1022 
1023 static void
1024 vdev_classic_dio_free(dio_request_t *dr)
1025 {
1026 	int i;
1027 
1028 	for (i = 0; i < dr->dr_bio_count; i++)
1029 		if (dr->dr_bio[i])
1030 			bio_put(dr->dr_bio[i]);
1031 
1032 	kmem_free(dr, sizeof (dio_request_t) +
1033 	    sizeof (struct bio *) * dr->dr_bio_count);
1034 }
1035 
1036 static void
1037 vdev_classic_dio_get(dio_request_t *dr)
1038 {
1039 	atomic_inc(&dr->dr_ref);
1040 }
1041 
1042 static void
1043 vdev_classic_dio_put(dio_request_t *dr)
1044 {
1045 	int rc = atomic_dec_return(&dr->dr_ref);
1046 
1047 	/*
1048 	 * Free the dio_request when the last reference is dropped and
1049 	 * ensure zio_interpret is called only once with the correct zio
1050 	 */
1051 	if (rc == 0) {
1052 		zio_t *zio = dr->dr_zio;
1053 		int error = dr->dr_error;
1054 
1055 		vdev_classic_dio_free(dr);
1056 
1057 		if (zio) {
1058 			zio->io_error = error;
1059 			ASSERT3S(zio->io_error, >=, 0);
1060 			if (zio->io_error)
1061 				vdev_disk_error(zio);
1062 
1063 			zio_delay_interrupt(zio);
1064 		}
1065 	}
1066 }
1067 
1068 BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
1069 {
1070 	dio_request_t *dr = bio->bi_private;
1071 
1072 	if (dr->dr_error == 0) {
1073 #ifdef HAVE_1ARG_BIO_END_IO_T
1074 		dr->dr_error = BIO_END_IO_ERROR(bio);
1075 #else
1076 		if (error)
1077 			dr->dr_error = -(error);
1078 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1079 			dr->dr_error = EIO;
1080 #endif
1081 	}
1082 
1083 	/* Drop reference acquired by vdev_classic_physio */
1084 	vdev_classic_dio_put(dr);
1085 }
1086 
1087 static inline unsigned int
1088 vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
1089 {
1090 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1091 	    bio_size, abd_offset);
1092 
1093 #ifdef HAVE_BIO_MAX_SEGS
1094 	return (bio_max_segs(nr_segs));
1095 #else
1096 	return (MIN(nr_segs, BIO_MAX_PAGES));
1097 #endif
1098 }
1099 
1100 static int
1101 vdev_classic_physio(zio_t *zio)
1102 {
1103 	vdev_t *v = zio->io_vd;
1104 	vdev_disk_t *vd = v->vdev_tsd;
1105 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1106 	size_t io_size = zio->io_size;
1107 	uint64_t io_offset = zio->io_offset;
1108 	int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1109 	int flags = 0;
1110 
1111 	dio_request_t *dr;
1112 	uint64_t abd_offset;
1113 	uint64_t bio_offset;
1114 	int bio_size;
1115 	int bio_count = 16;
1116 	int error = 0;
1117 	struct blk_plug plug;
1118 	unsigned short nr_vecs;
1119 
1120 	/*
1121 	 * Accessing outside the block device is never allowed.
1122 	 */
1123 	if (io_offset + io_size > bdev->bd_inode->i_size) {
1124 		vdev_dbgmsg(zio->io_vd,
1125 		    "Illegal access %llu size %llu, device size %llu",
1126 		    (u_longlong_t)io_offset,
1127 		    (u_longlong_t)io_size,
1128 		    (u_longlong_t)i_size_read(bdev->bd_inode));
1129 		return (SET_ERROR(EIO));
1130 	}
1131 
1132 retry:
1133 	dr = vdev_classic_dio_alloc(bio_count);
1134 
1135 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
1136 	    zio->io_vd->vdev_failfast == B_TRUE) {
1137 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1138 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1139 	}
1140 
1141 	dr->dr_zio = zio;
1142 
1143 	/*
1144 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1145 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1146 	 * can cover at least 128KB and at most 1MB.  When the required number
1147 	 * of iovec's exceeds this, we are forced to break the IO in multiple
1148 	 * bio's and wait for them all to complete.  This is likely if the
1149 	 * recordsize property is increased beyond 1MB.  The default
1150 	 * bio_count=16 should typically accommodate the maximum-size zio of
1151 	 * 16MB.
1152 	 */
1153 
1154 	abd_offset = 0;
1155 	bio_offset = io_offset;
1156 	bio_size = io_size;
1157 	for (int i = 0; i <= dr->dr_bio_count; i++) {
1158 
1159 		/* Finished constructing bio's for given buffer */
1160 		if (bio_size <= 0)
1161 			break;
1162 
1163 		/*
1164 		 * If additional bio's are required, we have to retry, but
1165 		 * this should be rare - see the comment above.
1166 		 */
1167 		if (dr->dr_bio_count == i) {
1168 			vdev_classic_dio_free(dr);
1169 			bio_count *= 2;
1170 			goto retry;
1171 		}
1172 
1173 		nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
1174 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1175 		if (unlikely(dr->dr_bio[i] == NULL)) {
1176 			vdev_classic_dio_free(dr);
1177 			return (SET_ERROR(ENOMEM));
1178 		}
1179 
1180 		/* Matching put called by vdev_classic_physio_completion */
1181 		vdev_classic_dio_get(dr);
1182 
1183 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
1184 		dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
1185 		dr->dr_bio[i]->bi_private = dr;
1186 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
1187 
1188 		/* Remaining size is returned to become the new size */
1189 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
1190 		    bio_size, abd_offset);
1191 
1192 		/* Advance in buffer and construct another bio if needed */
1193 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1194 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1195 	}
1196 
1197 	/* Extra reference to protect dio_request during vdev_submit_bio */
1198 	vdev_classic_dio_get(dr);
1199 
1200 	if (dr->dr_bio_count > 1)
1201 		blk_start_plug(&plug);
1202 
1203 	/* Submit all bio's associated with this dio */
1204 	for (int i = 0; i < dr->dr_bio_count; i++) {
1205 		if (dr->dr_bio[i])
1206 			vdev_submit_bio(dr->dr_bio[i]);
1207 	}
1208 
1209 	if (dr->dr_bio_count > 1)
1210 		blk_finish_plug(&plug);
1211 
1212 	vdev_classic_dio_put(dr);
1213 
1214 	return (error);
1215 }
1216 
1217 /* ========== */
1218 
1219 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
1220 {
1221 	zio_t *zio = bio->bi_private;
1222 #ifdef HAVE_1ARG_BIO_END_IO_T
1223 	zio->io_error = BIO_END_IO_ERROR(bio);
1224 #else
1225 	zio->io_error = -error;
1226 #endif
1227 
1228 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
1229 		zio->io_vd->vdev_nowritecache = B_TRUE;
1230 
1231 	bio_put(bio);
1232 	ASSERT3S(zio->io_error, >=, 0);
1233 	if (zio->io_error)
1234 		vdev_disk_error(zio);
1235 	zio_interrupt(zio);
1236 }
1237 
1238 static int
1239 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1240 {
1241 	struct request_queue *q;
1242 	struct bio *bio;
1243 
1244 	q = bdev_get_queue(bdev);
1245 	if (!q)
1246 		return (SET_ERROR(ENXIO));
1247 
1248 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
1249 	if (unlikely(bio == NULL))
1250 		return (SET_ERROR(ENOMEM));
1251 
1252 	bio->bi_end_io = vdev_disk_io_flush_completion;
1253 	bio->bi_private = zio;
1254 	bio_set_flush(bio);
1255 	vdev_submit_bio(bio);
1256 	invalidate_bdev(bdev);
1257 
1258 	return (0);
1259 }
1260 
1261 BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
1262 {
1263 	zio_t *zio = bio->bi_private;
1264 #ifdef HAVE_1ARG_BIO_END_IO_T
1265 	zio->io_error = BIO_END_IO_ERROR(bio);
1266 #else
1267 	zio->io_error = -error;
1268 #endif
1269 	bio_put(bio);
1270 	if (zio->io_error)
1271 		vdev_disk_error(zio);
1272 	zio_interrupt(zio);
1273 }
1274 
1275 /*
1276  * Wrappers for the different secure erase and discard APIs. We use async
1277  * when available; in this case, *biop is set to the last bio in the chain.
1278  */
1279 static int
1280 vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1281     sector_t nsect, struct bio **biop)
1282 {
1283 	*biop = NULL;
1284 	int error;
1285 
1286 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1287 	error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1288 	    sector, nsect, GFP_NOFS);
1289 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1290 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1291 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1292 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1293 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1294 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
1295 #else
1296 #error "unsupported kernel"
1297 #endif
1298 
1299 	return (error);
1300 }
1301 
1302 static int
1303 vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1304     sector_t nsect, struct bio **biop)
1305 {
1306 	*biop = NULL;
1307 	int error;
1308 
1309 #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1310 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1311 	    sector, nsect, GFP_NOFS, 0, biop);
1312 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1313 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1314 	    sector, nsect, GFP_NOFS, biop);
1315 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1316 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1317 	    sector, nsect, GFP_NOFS, 0);
1318 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1319 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1320 	    sector, nsect, GFP_NOFS);
1321 #else
1322 #error "unsupported kernel"
1323 #endif
1324 
1325 	return (error);
1326 }
1327 
1328 /*
1329  * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1330  * discard, and then does the appropriate finishing work for error vs success
1331  * and async vs sync.
1332  */
1333 static int
1334 vdev_disk_io_trim(zio_t *zio)
1335 {
1336 	int error;
1337 	struct bio *bio;
1338 
1339 	zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1340 	sector_t sector = zio->io_offset >> 9;
1341 	sector_t nsects = zio->io_size >> 9;
1342 
1343 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1344 		error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1345 	else
1346 		error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1347 
1348 	if (error != 0)
1349 		return (SET_ERROR(-error));
1350 
1351 	if (bio == NULL) {
1352 		/*
1353 		 * This was a synchronous op that completed successfully, so
1354 		 * return it to ZFS immediately.
1355 		 */
1356 		zio_interrupt(zio);
1357 	} else {
1358 		/*
1359 		 * This was an asynchronous op; set up completion callback and
1360 		 * issue it.
1361 		 */
1362 		bio->bi_private = zio;
1363 		bio->bi_end_io = vdev_disk_discard_end_io;
1364 		vdev_submit_bio(bio);
1365 	}
1366 
1367 	return (0);
1368 }
1369 
1370 int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1371 
1372 static void
1373 vdev_disk_io_start(zio_t *zio)
1374 {
1375 	vdev_t *v = zio->io_vd;
1376 	vdev_disk_t *vd = v->vdev_tsd;
1377 	int error;
1378 
1379 	/*
1380 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1381 	 * Nothing to be done here but return failure.
1382 	 */
1383 	if (vd == NULL) {
1384 		zio->io_error = ENXIO;
1385 		zio_interrupt(zio);
1386 		return;
1387 	}
1388 
1389 	rw_enter(&vd->vd_lock, RW_READER);
1390 
1391 	/*
1392 	 * If the vdev is closed, it's likely due to a failed reopen and is
1393 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
1394 	 */
1395 	if (vd->vd_bdh == NULL) {
1396 		rw_exit(&vd->vd_lock);
1397 		zio->io_error = ENXIO;
1398 		zio_interrupt(zio);
1399 		return;
1400 	}
1401 
1402 	switch (zio->io_type) {
1403 	case ZIO_TYPE_FLUSH:
1404 
1405 		if (!vdev_readable(v)) {
1406 			/* Drive not there, can't flush */
1407 			error = SET_ERROR(ENXIO);
1408 		} else if (zfs_nocacheflush) {
1409 			/* Flushing disabled by operator, declare success */
1410 			error = 0;
1411 		} else if (v->vdev_nowritecache) {
1412 			/* This vdev not capable of flushing */
1413 			error = SET_ERROR(ENOTSUP);
1414 		} else {
1415 			/*
1416 			 * Issue the flush. If successful, the response will
1417 			 * be handled in the completion callback, so we're done.
1418 			 */
1419 			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1420 			if (error == 0) {
1421 				rw_exit(&vd->vd_lock);
1422 				return;
1423 			}
1424 		}
1425 
1426 		/* Couldn't issue the flush, so set the error and return it */
1427 		rw_exit(&vd->vd_lock);
1428 		zio->io_error = error;
1429 		zio_execute(zio);
1430 		return;
1431 
1432 	case ZIO_TYPE_TRIM:
1433 		error = vdev_disk_io_trim(zio);
1434 		rw_exit(&vd->vd_lock);
1435 		if (error) {
1436 			zio->io_error = error;
1437 			zio_execute(zio);
1438 		}
1439 		return;
1440 
1441 	case ZIO_TYPE_READ:
1442 	case ZIO_TYPE_WRITE:
1443 		zio->io_target_timestamp = zio_handle_io_delay(zio);
1444 		error = vdev_disk_io_rw_fn(zio);
1445 		rw_exit(&vd->vd_lock);
1446 		if (error) {
1447 			zio->io_error = error;
1448 			zio_interrupt(zio);
1449 		}
1450 		return;
1451 
1452 	default:
1453 		/*
1454 		 * Getting here means our parent vdev has made a very strange
1455 		 * request of us, and shouldn't happen. Assert here to force a
1456 		 * crash in dev builds, but in production return the IO
1457 		 * unhandled. The pool will likely suspend anyway but that's
1458 		 * nicer than crashing the kernel.
1459 		 */
1460 		ASSERT3S(zio->io_type, ==, -1);
1461 
1462 		rw_exit(&vd->vd_lock);
1463 		zio->io_error = SET_ERROR(ENOTSUP);
1464 		zio_interrupt(zio);
1465 		return;
1466 	}
1467 
1468 	__builtin_unreachable();
1469 }
1470 
1471 static void
1472 vdev_disk_io_done(zio_t *zio)
1473 {
1474 	/*
1475 	 * If the device returned EIO, we revalidate the media.  If it is
1476 	 * determined the media has changed this triggers the asynchronous
1477 	 * removal of the device from the configuration.
1478 	 */
1479 	if (zio->io_error == EIO) {
1480 		vdev_t *v = zio->io_vd;
1481 		vdev_disk_t *vd = v->vdev_tsd;
1482 
1483 		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1484 			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1485 			v->vdev_remove_wanted = B_TRUE;
1486 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1487 		}
1488 	}
1489 }
1490 
1491 static void
1492 vdev_disk_hold(vdev_t *vd)
1493 {
1494 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1495 
1496 	/* We must have a pathname, and it must be absolute. */
1497 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1498 		return;
1499 
1500 	/*
1501 	 * Only prefetch path and devid info if the device has
1502 	 * never been opened.
1503 	 */
1504 	if (vd->vdev_tsd != NULL)
1505 		return;
1506 
1507 }
1508 
1509 static void
1510 vdev_disk_rele(vdev_t *vd)
1511 {
1512 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1513 
1514 	/* XXX: Implement me as a vnode rele for the device */
1515 }
1516 
1517 /*
1518  * BIO submission method. See comment above about vdev_classic.
1519  * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1520  */
1521 static uint_t zfs_vdev_disk_classic = 0;	/* default new */
1522 
1523 /* Set submission function from module parameter */
1524 static int
1525 vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1526 {
1527 	int err = param_set_uint(buf, kp);
1528 	if (err < 0)
1529 		return (SET_ERROR(err));
1530 
1531 	vdev_disk_io_rw_fn =
1532 	    zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1533 
1534 	printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1535 	    zfs_vdev_disk_classic ? "classic" : "new");
1536 
1537 	return (0);
1538 }
1539 
1540 /*
1541  * At first use vdev use, set the submission function from the default value if
1542  * it hasn't been set already.
1543  */
1544 static int
1545 vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1546 {
1547 	(void) spa;
1548 	(void) nv;
1549 	(void) tsd;
1550 
1551 	if (vdev_disk_io_rw_fn == NULL)
1552 		vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1553 		    vdev_classic_physio : vdev_disk_io_rw;
1554 
1555 	return (0);
1556 }
1557 
1558 vdev_ops_t vdev_disk_ops = {
1559 	.vdev_op_init = vdev_disk_init,
1560 	.vdev_op_fini = NULL,
1561 	.vdev_op_open = vdev_disk_open,
1562 	.vdev_op_close = vdev_disk_close,
1563 	.vdev_op_asize = vdev_default_asize,
1564 	.vdev_op_min_asize = vdev_default_min_asize,
1565 	.vdev_op_min_alloc = NULL,
1566 	.vdev_op_io_start = vdev_disk_io_start,
1567 	.vdev_op_io_done = vdev_disk_io_done,
1568 	.vdev_op_state_change = NULL,
1569 	.vdev_op_need_resilver = NULL,
1570 	.vdev_op_hold = vdev_disk_hold,
1571 	.vdev_op_rele = vdev_disk_rele,
1572 	.vdev_op_remap = NULL,
1573 	.vdev_op_xlate = vdev_default_xlate,
1574 	.vdev_op_rebuild_asize = NULL,
1575 	.vdev_op_metaslab_init = NULL,
1576 	.vdev_op_config_generate = NULL,
1577 	.vdev_op_nparity = NULL,
1578 	.vdev_op_ndisks = NULL,
1579 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1580 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1581 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1582 };
1583 
1584 /*
1585  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1586  * value no longer has any effect.  It has not yet been entirely removed
1587  * to allow the module to be loaded if this option is specified in the
1588  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1589  */
1590 static int
1591 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1592 {
1593 	int error = param_set_charp(val, kp);
1594 	if (error == 0) {
1595 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1596 		    "is not supported.\n");
1597 	}
1598 
1599 	return (error);
1600 }
1601 
1602 static const char *zfs_vdev_scheduler = "unused";
1603 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1604     param_get_charp, &zfs_vdev_scheduler, 0644);
1605 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1606 
1607 int
1608 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1609 {
1610 	uint_t val;
1611 	int error;
1612 
1613 	error = kstrtouint(buf, 0, &val);
1614 	if (error < 0)
1615 		return (SET_ERROR(error));
1616 
1617 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1618 		return (SET_ERROR(-EINVAL));
1619 
1620 	error = param_set_uint(buf, kp);
1621 	if (error < 0)
1622 		return (SET_ERROR(error));
1623 
1624 	return (0);
1625 }
1626 
1627 int
1628 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1629 {
1630 	uint_t val;
1631 	int error;
1632 
1633 	error = kstrtouint(buf, 0, &val);
1634 	if (error < 0)
1635 		return (SET_ERROR(error));
1636 
1637 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1638 		return (SET_ERROR(-EINVAL));
1639 
1640 	error = param_set_uint(buf, kp);
1641 	if (error < 0)
1642 		return (SET_ERROR(error));
1643 
1644 	return (0);
1645 }
1646 
1647 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1648 	"Timeout before determining that a device is missing");
1649 
1650 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1651 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1652 
1653 ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1654 	"Maximum number of data segments to add to an IO request (min 4)");
1655 
1656 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1657     vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1658 	"Use classic BIO submission method");
1659