1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static unsigned zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[0];	/* Attached bio's */
75 } dio_request_t;
76 
77 static fmode_t
78 vdev_bdev_mode(spa_mode_t spa_mode)
79 {
80 	fmode_t mode = 0;
81 
82 	if (spa_mode & SPA_MODE_READ)
83 		mode |= FMODE_READ;
84 
85 	if (spa_mode & SPA_MODE_WRITE)
86 		mode |= FMODE_WRITE;
87 
88 	return (mode);
89 }
90 
91 /*
92  * Returns the usable capacity (in bytes) for the partition or disk.
93  */
94 static uint64_t
95 bdev_capacity(struct block_device *bdev)
96 {
97 	return (i_size_read(bdev->bd_inode));
98 }
99 
100 #if !defined(HAVE_BDEV_WHOLE)
101 static inline struct block_device *
102 bdev_whole(struct block_device *bdev)
103 {
104 	return (bdev->bd_contains);
105 }
106 #endif
107 
108 #if defined(HAVE_BDEVNAME)
109 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
110 #else
111 static inline void
112 vdev_bdevname(struct block_device *bdev, char *name)
113 {
114 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
115 }
116 #endif
117 
118 /*
119  * Returns the maximum expansion capacity of the block device (in bytes).
120  *
121  * It is possible to expand a vdev when it has been created as a wholedisk
122  * and the containing block device has increased in capacity.  Or when the
123  * partition containing the pool has been manually increased in size.
124  *
125  * This function is only responsible for calculating the potential expansion
126  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
127  * responsible for verifying the expected partition layout in the wholedisk
128  * case, and updating the partition table if appropriate.  Once the partition
129  * size has been increased the additional capacity will be visible using
130  * bdev_capacity().
131  *
132  * The returned maximum expansion capacity is always expected to be larger, or
133  * at the very least equal, to its usable capacity to prevent overestimating
134  * the pool expandsize.
135  */
136 static uint64_t
137 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
138 {
139 	uint64_t psize;
140 	int64_t available;
141 
142 	if (wholedisk && bdev != bdev_whole(bdev)) {
143 		/*
144 		 * When reporting maximum expansion capacity for a wholedisk
145 		 * deduct any capacity which is expected to be lost due to
146 		 * alignment restrictions.  Over reporting this value isn't
147 		 * harmful and would only result in slightly less capacity
148 		 * than expected post expansion.
149 		 * The estimated available space may be slightly smaller than
150 		 * bdev_capacity() for devices where the number of sectors is
151 		 * not a multiple of the alignment size and the partition layout
152 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
153 		 * "reserved" EFI partition: in such cases return the device
154 		 * usable capacity.
155 		 */
156 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
157 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
158 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
159 		psize = MAX(available, bdev_capacity(bdev));
160 	} else {
161 		psize = bdev_capacity(bdev);
162 	}
163 
164 	return (psize);
165 }
166 
167 static void
168 vdev_disk_error(zio_t *zio)
169 {
170 	/*
171 	 * This function can be called in interrupt context, for instance while
172 	 * handling IRQs coming from a misbehaving disk device; use printk()
173 	 * which is safe from any context.
174 	 */
175 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
176 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
177 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
178 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
179 	    zio->io_flags);
180 }
181 
182 static int
183 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
184     uint64_t *logical_ashift, uint64_t *physical_ashift)
185 {
186 	struct block_device *bdev;
187 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
188 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
189 	vdev_disk_t *vd;
190 
191 	/* Must have a pathname and it must be absolute. */
192 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
193 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
194 		vdev_dbgmsg(v, "invalid vdev_path");
195 		return (SET_ERROR(EINVAL));
196 	}
197 
198 	/*
199 	 * Reopen the device if it is currently open.  When expanding a
200 	 * partition force re-scanning the partition table if userland
201 	 * did not take care of this already. We need to do this while closed
202 	 * in order to get an accurate updated block device size.  Then
203 	 * since udev may need to recreate the device links increase the
204 	 * open retry timeout before reporting the device as unavailable.
205 	 */
206 	vd = v->vdev_tsd;
207 	if (vd) {
208 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
209 		boolean_t reread_part = B_FALSE;
210 
211 		rw_enter(&vd->vd_lock, RW_WRITER);
212 		bdev = vd->vd_bdev;
213 		vd->vd_bdev = NULL;
214 
215 		if (bdev) {
216 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
217 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
218 				/*
219 				 * If userland has BLKPG_RESIZE_PARTITION,
220 				 * then it should have updated the partition
221 				 * table already. We can detect this by
222 				 * comparing our current physical size
223 				 * with that of the device. If they are
224 				 * the same, then we must not have
225 				 * BLKPG_RESIZE_PARTITION or it failed to
226 				 * update the partition table online. We
227 				 * fallback to rescanning the partition
228 				 * table from the kernel below. However,
229 				 * if the capacity already reflects the
230 				 * updated partition, then we skip
231 				 * rescanning the partition table here.
232 				 */
233 				if (v->vdev_psize == bdev_capacity(bdev))
234 					reread_part = B_TRUE;
235 			}
236 
237 			blkdev_put(bdev, mode | FMODE_EXCL);
238 		}
239 
240 		if (reread_part) {
241 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
242 			    zfs_vdev_holder);
243 			if (!IS_ERR(bdev)) {
244 				int error = vdev_bdev_reread_part(bdev);
245 				blkdev_put(bdev, mode | FMODE_EXCL);
246 				if (error == 0) {
247 					timeout = MSEC2NSEC(
248 					    zfs_vdev_open_timeout_ms * 2);
249 				}
250 			}
251 		}
252 	} else {
253 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
254 
255 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
256 		rw_enter(&vd->vd_lock, RW_WRITER);
257 	}
258 
259 	/*
260 	 * Devices are always opened by the path provided at configuration
261 	 * time.  This means that if the provided path is a udev by-id path
262 	 * then drives may be re-cabled without an issue.  If the provided
263 	 * path is a udev by-path path, then the physical location information
264 	 * will be preserved.  This can be critical for more complicated
265 	 * configurations where drives are located in specific physical
266 	 * locations to maximize the systems tolerance to component failure.
267 	 *
268 	 * Alternatively, you can provide your own udev rule to flexibly map
269 	 * the drives as you see fit.  It is not advised that you use the
270 	 * /dev/[hd]d devices which may be reordered due to probing order.
271 	 * Devices in the wrong locations will be detected by the higher
272 	 * level vdev validation.
273 	 *
274 	 * The specified paths may be briefly removed and recreated in
275 	 * response to udev events.  This should be exceptionally unlikely
276 	 * because the zpool command makes every effort to verify these paths
277 	 * have already settled prior to reaching this point.  Therefore,
278 	 * a ENOENT failure at this point is highly likely to be transient
279 	 * and it is reasonable to sleep and retry before giving up.  In
280 	 * practice delays have been observed to be on the order of 100ms.
281 	 *
282 	 * When ERESTARTSYS is returned it indicates the block device is
283 	 * a zvol which could not be opened due to the deadlock detection
284 	 * logic in zvol_open().  Extend the timeout and retry the open
285 	 * subsequent attempts are expected to eventually succeed.
286 	 */
287 	hrtime_t start = gethrtime();
288 	bdev = ERR_PTR(-ENXIO);
289 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
290 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
291 		    zfs_vdev_holder);
292 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
293 			schedule_timeout(MSEC_TO_TICK(10));
294 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
295 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
296 			continue;
297 		} else if (IS_ERR(bdev)) {
298 			break;
299 		}
300 	}
301 
302 	if (IS_ERR(bdev)) {
303 		int error = -PTR_ERR(bdev);
304 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
305 		    (u_longlong_t)(gethrtime() - start),
306 		    (u_longlong_t)timeout);
307 		vd->vd_bdev = NULL;
308 		v->vdev_tsd = vd;
309 		rw_exit(&vd->vd_lock);
310 		return (SET_ERROR(error));
311 	} else {
312 		vd->vd_bdev = bdev;
313 		v->vdev_tsd = vd;
314 		rw_exit(&vd->vd_lock);
315 	}
316 
317 	/*  Determine the physical block size */
318 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
319 
320 	/*  Determine the logical block size */
321 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
322 
323 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
324 	v->vdev_nowritecache = B_FALSE;
325 
326 	/* Set when device reports it supports TRIM. */
327 	v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
328 
329 	/* Set when device reports it supports secure TRIM. */
330 	v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
331 
332 	/* Inform the ZIO pipeline that we are non-rotational */
333 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
334 
335 	/* Physical volume size in bytes for the partition */
336 	*psize = bdev_capacity(vd->vd_bdev);
337 
338 	/* Physical volume size in bytes including possible expansion space */
339 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
340 
341 	/* Based on the minimum sector size set the block size */
342 	*physical_ashift = highbit64(MAX(physical_block_size,
343 	    SPA_MINBLOCKSIZE)) - 1;
344 
345 	*logical_ashift = highbit64(MAX(logical_block_size,
346 	    SPA_MINBLOCKSIZE)) - 1;
347 
348 	return (0);
349 }
350 
351 static void
352 vdev_disk_close(vdev_t *v)
353 {
354 	vdev_disk_t *vd = v->vdev_tsd;
355 
356 	if (v->vdev_reopening || vd == NULL)
357 		return;
358 
359 	if (vd->vd_bdev != NULL) {
360 		blkdev_put(vd->vd_bdev,
361 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
362 	}
363 
364 	rw_destroy(&vd->vd_lock);
365 	kmem_free(vd, sizeof (vdev_disk_t));
366 	v->vdev_tsd = NULL;
367 }
368 
369 static dio_request_t *
370 vdev_disk_dio_alloc(int bio_count)
371 {
372 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
373 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
374 	atomic_set(&dr->dr_ref, 0);
375 	dr->dr_bio_count = bio_count;
376 	dr->dr_error = 0;
377 
378 	for (int i = 0; i < dr->dr_bio_count; i++)
379 		dr->dr_bio[i] = NULL;
380 
381 	return (dr);
382 }
383 
384 static void
385 vdev_disk_dio_free(dio_request_t *dr)
386 {
387 	int i;
388 
389 	for (i = 0; i < dr->dr_bio_count; i++)
390 		if (dr->dr_bio[i])
391 			bio_put(dr->dr_bio[i]);
392 
393 	kmem_free(dr, sizeof (dio_request_t) +
394 	    sizeof (struct bio *) * dr->dr_bio_count);
395 }
396 
397 static void
398 vdev_disk_dio_get(dio_request_t *dr)
399 {
400 	atomic_inc(&dr->dr_ref);
401 }
402 
403 static int
404 vdev_disk_dio_put(dio_request_t *dr)
405 {
406 	int rc = atomic_dec_return(&dr->dr_ref);
407 
408 	/*
409 	 * Free the dio_request when the last reference is dropped and
410 	 * ensure zio_interpret is called only once with the correct zio
411 	 */
412 	if (rc == 0) {
413 		zio_t *zio = dr->dr_zio;
414 		int error = dr->dr_error;
415 
416 		vdev_disk_dio_free(dr);
417 
418 		if (zio) {
419 			zio->io_error = error;
420 			ASSERT3S(zio->io_error, >=, 0);
421 			if (zio->io_error)
422 				vdev_disk_error(zio);
423 
424 			zio_delay_interrupt(zio);
425 		}
426 	}
427 
428 	return (rc);
429 }
430 
431 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
432 {
433 	dio_request_t *dr = bio->bi_private;
434 	int rc;
435 
436 	if (dr->dr_error == 0) {
437 #ifdef HAVE_1ARG_BIO_END_IO_T
438 		dr->dr_error = BIO_END_IO_ERROR(bio);
439 #else
440 		if (error)
441 			dr->dr_error = -(error);
442 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
443 			dr->dr_error = EIO;
444 #endif
445 	}
446 
447 	/* Drop reference acquired by __vdev_disk_physio */
448 	rc = vdev_disk_dio_put(dr);
449 }
450 
451 static inline void
452 vdev_submit_bio_impl(struct bio *bio)
453 {
454 #ifdef HAVE_1ARG_SUBMIT_BIO
455 	(void) submit_bio(bio);
456 #else
457 	(void) submit_bio(bio_data_dir(bio), bio);
458 #endif
459 }
460 
461 /*
462  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
463  * replace it with preempt_schedule under the following condition:
464  */
465 #if defined(CONFIG_ARM64) && \
466     defined(CONFIG_PREEMPTION) && \
467     defined(CONFIG_BLK_CGROUP)
468 #define	preempt_schedule_notrace(x) preempt_schedule(x)
469 #endif
470 
471 /*
472  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
473  * as an argument removing the need to set it with bio_set_dev().  This
474  * removes the need for all of the following compatibility code.
475  */
476 #if !defined(HAVE_BIO_ALLOC_4ARG)
477 
478 #ifdef HAVE_BIO_SET_DEV
479 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
480 /*
481  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
482  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
483  * As a side effect the function was converted to GPL-only.  Define our
484  * own version when needed which uses rcu_read_lock_sched().
485  *
486  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
487  * part, moving blkg_tryget into the private one. Define our own version.
488  */
489 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
490 static inline bool
491 vdev_blkg_tryget(struct blkcg_gq *blkg)
492 {
493 	struct percpu_ref *ref = &blkg->refcnt;
494 	unsigned long __percpu *count;
495 	bool rc;
496 
497 	rcu_read_lock_sched();
498 
499 	if (__ref_is_percpu(ref, &count)) {
500 		this_cpu_inc(*count);
501 		rc = true;
502 	} else {
503 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
504 		rc = atomic_long_inc_not_zero(&ref->data->count);
505 #else
506 		rc = atomic_long_inc_not_zero(&ref->count);
507 #endif
508 	}
509 
510 	rcu_read_unlock_sched();
511 
512 	return (rc);
513 }
514 #else
515 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
516 #endif
517 #ifdef HAVE_BIO_SET_DEV_MACRO
518 /*
519  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
520  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
521  * the entire macro.  Provide a minimal version which always assigns the
522  * request queue's root_blkg to the bio.
523  */
524 static inline void
525 vdev_bio_associate_blkg(struct bio *bio)
526 {
527 #if defined(HAVE_BIO_BDEV_DISK)
528 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
529 #else
530 	struct request_queue *q = bio->bi_disk->queue;
531 #endif
532 
533 	ASSERT3P(q, !=, NULL);
534 	ASSERT3P(bio->bi_blkg, ==, NULL);
535 
536 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
537 		bio->bi_blkg = q->root_blkg;
538 }
539 
540 #define	bio_associate_blkg vdev_bio_associate_blkg
541 #else
542 static inline void
543 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
544 {
545 #if defined(HAVE_BIO_BDEV_DISK)
546 	struct request_queue *q = bdev->bd_disk->queue;
547 #else
548 	struct request_queue *q = bio->bi_disk->queue;
549 #endif
550 	bio_clear_flag(bio, BIO_REMAPPED);
551 	if (bio->bi_bdev != bdev)
552 		bio_clear_flag(bio, BIO_THROTTLED);
553 	bio->bi_bdev = bdev;
554 
555 	ASSERT3P(q, !=, NULL);
556 	ASSERT3P(bio->bi_blkg, ==, NULL);
557 
558 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
559 		bio->bi_blkg = q->root_blkg;
560 }
561 #define	bio_set_dev		vdev_bio_set_dev
562 #endif
563 #endif
564 #else
565 /*
566  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
567  */
568 static inline void
569 bio_set_dev(struct bio *bio, struct block_device *bdev)
570 {
571 	bio->bi_bdev = bdev;
572 }
573 #endif /* HAVE_BIO_SET_DEV */
574 #endif /* !HAVE_BIO_ALLOC_4ARG */
575 
576 static inline void
577 vdev_submit_bio(struct bio *bio)
578 {
579 	struct bio_list *bio_list = current->bio_list;
580 	current->bio_list = NULL;
581 	vdev_submit_bio_impl(bio);
582 	current->bio_list = bio_list;
583 }
584 
585 static inline struct bio *
586 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
587     unsigned short nr_vecs)
588 {
589 	struct bio *bio;
590 
591 #ifdef HAVE_BIO_ALLOC_4ARG
592 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
593 #else
594 	bio = bio_alloc(gfp_mask, nr_vecs);
595 	if (likely(bio != NULL))
596 		bio_set_dev(bio, bdev);
597 #endif
598 
599 	return (bio);
600 }
601 
602 static inline unsigned int
603 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
604 {
605 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
606 	    bio_size, abd_offset);
607 
608 #ifdef HAVE_BIO_MAX_SEGS
609 	return (bio_max_segs(nr_segs));
610 #else
611 	return (MIN(nr_segs, BIO_MAX_PAGES));
612 #endif
613 }
614 
615 static int
616 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
617     size_t io_size, uint64_t io_offset, int rw, int flags)
618 {
619 	dio_request_t *dr;
620 	uint64_t abd_offset;
621 	uint64_t bio_offset;
622 	int bio_size;
623 	int bio_count = 16;
624 	int error = 0;
625 	struct blk_plug plug;
626 	unsigned short nr_vecs;
627 
628 	/*
629 	 * Accessing outside the block device is never allowed.
630 	 */
631 	if (io_offset + io_size > bdev->bd_inode->i_size) {
632 		vdev_dbgmsg(zio->io_vd,
633 		    "Illegal access %llu size %llu, device size %llu",
634 		    (u_longlong_t)io_offset,
635 		    (u_longlong_t)io_size,
636 		    (u_longlong_t)i_size_read(bdev->bd_inode));
637 		return (SET_ERROR(EIO));
638 	}
639 
640 retry:
641 	dr = vdev_disk_dio_alloc(bio_count);
642 
643 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
644 		bio_set_flags_failfast(bdev, &flags);
645 
646 	dr->dr_zio = zio;
647 
648 	/*
649 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
650 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
651 	 * can cover at least 128KB and at most 1MB.  When the required number
652 	 * of iovec's exceeds this, we are forced to break the IO in multiple
653 	 * bio's and wait for them all to complete.  This is likely if the
654 	 * recordsize property is increased beyond 1MB.  The default
655 	 * bio_count=16 should typically accommodate the maximum-size zio of
656 	 * 16MB.
657 	 */
658 
659 	abd_offset = 0;
660 	bio_offset = io_offset;
661 	bio_size = io_size;
662 	for (int i = 0; i <= dr->dr_bio_count; i++) {
663 
664 		/* Finished constructing bio's for given buffer */
665 		if (bio_size <= 0)
666 			break;
667 
668 		/*
669 		 * If additional bio's are required, we have to retry, but
670 		 * this should be rare - see the comment above.
671 		 */
672 		if (dr->dr_bio_count == i) {
673 			vdev_disk_dio_free(dr);
674 			bio_count *= 2;
675 			goto retry;
676 		}
677 
678 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
679 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
680 		if (unlikely(dr->dr_bio[i] == NULL)) {
681 			vdev_disk_dio_free(dr);
682 			return (SET_ERROR(ENOMEM));
683 		}
684 
685 		/* Matching put called by vdev_disk_physio_completion */
686 		vdev_disk_dio_get(dr);
687 
688 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
689 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
690 		dr->dr_bio[i]->bi_private = dr;
691 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
692 
693 		/* Remaining size is returned to become the new size */
694 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
695 		    bio_size, abd_offset);
696 
697 		/* Advance in buffer and construct another bio if needed */
698 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
699 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
700 	}
701 
702 	/* Extra reference to protect dio_request during vdev_submit_bio */
703 	vdev_disk_dio_get(dr);
704 
705 	if (dr->dr_bio_count > 1)
706 		blk_start_plug(&plug);
707 
708 	/* Submit all bio's associated with this dio */
709 	for (int i = 0; i < dr->dr_bio_count; i++) {
710 		if (dr->dr_bio[i])
711 			vdev_submit_bio(dr->dr_bio[i]);
712 	}
713 
714 	if (dr->dr_bio_count > 1)
715 		blk_finish_plug(&plug);
716 
717 	(void) vdev_disk_dio_put(dr);
718 
719 	return (error);
720 }
721 
722 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
723 {
724 	zio_t *zio = bio->bi_private;
725 #ifdef HAVE_1ARG_BIO_END_IO_T
726 	zio->io_error = BIO_END_IO_ERROR(bio);
727 #else
728 	zio->io_error = -error;
729 #endif
730 
731 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
732 		zio->io_vd->vdev_nowritecache = B_TRUE;
733 
734 	bio_put(bio);
735 	ASSERT3S(zio->io_error, >=, 0);
736 	if (zio->io_error)
737 		vdev_disk_error(zio);
738 	zio_interrupt(zio);
739 }
740 
741 static int
742 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
743 {
744 	struct request_queue *q;
745 	struct bio *bio;
746 
747 	q = bdev_get_queue(bdev);
748 	if (!q)
749 		return (SET_ERROR(ENXIO));
750 
751 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
752 	if (unlikely(bio == NULL))
753 		return (SET_ERROR(ENOMEM));
754 
755 	bio->bi_end_io = vdev_disk_io_flush_completion;
756 	bio->bi_private = zio;
757 	bio_set_flush(bio);
758 	vdev_submit_bio(bio);
759 	invalidate_bdev(bdev);
760 
761 	return (0);
762 }
763 
764 static int
765 vdev_disk_io_trim(zio_t *zio)
766 {
767 	vdev_t *v = zio->io_vd;
768 	vdev_disk_t *vd = v->vdev_tsd;
769 
770 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
771 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
772 		return (-blkdev_issue_secure_erase(vd->vd_bdev,
773 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
774 	} else {
775 		return (-blkdev_issue_discard(vd->vd_bdev,
776 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
777 	}
778 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
779 	unsigned long trim_flags = 0;
780 #if defined(BLKDEV_DISCARD_SECURE)
781 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
782 		trim_flags |= BLKDEV_DISCARD_SECURE;
783 #endif
784 	return (-blkdev_issue_discard(vd->vd_bdev,
785 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
786 #else
787 #error "Unsupported kernel"
788 #endif
789 }
790 
791 static void
792 vdev_disk_io_start(zio_t *zio)
793 {
794 	vdev_t *v = zio->io_vd;
795 	vdev_disk_t *vd = v->vdev_tsd;
796 	int rw, error;
797 
798 	/*
799 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
800 	 * Nothing to be done here but return failure.
801 	 */
802 	if (vd == NULL) {
803 		zio->io_error = ENXIO;
804 		zio_interrupt(zio);
805 		return;
806 	}
807 
808 	rw_enter(&vd->vd_lock, RW_READER);
809 
810 	/*
811 	 * If the vdev is closed, it's likely due to a failed reopen and is
812 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
813 	 */
814 	if (vd->vd_bdev == NULL) {
815 		rw_exit(&vd->vd_lock);
816 		zio->io_error = ENXIO;
817 		zio_interrupt(zio);
818 		return;
819 	}
820 
821 	switch (zio->io_type) {
822 	case ZIO_TYPE_IOCTL:
823 
824 		if (!vdev_readable(v)) {
825 			rw_exit(&vd->vd_lock);
826 			zio->io_error = SET_ERROR(ENXIO);
827 			zio_interrupt(zio);
828 			return;
829 		}
830 
831 		switch (zio->io_cmd) {
832 		case DKIOCFLUSHWRITECACHE:
833 
834 			if (zfs_nocacheflush)
835 				break;
836 
837 			if (v->vdev_nowritecache) {
838 				zio->io_error = SET_ERROR(ENOTSUP);
839 				break;
840 			}
841 
842 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
843 			if (error == 0) {
844 				rw_exit(&vd->vd_lock);
845 				return;
846 			}
847 
848 			zio->io_error = error;
849 
850 			break;
851 
852 		default:
853 			zio->io_error = SET_ERROR(ENOTSUP);
854 		}
855 
856 		rw_exit(&vd->vd_lock);
857 		zio_execute(zio);
858 		return;
859 	case ZIO_TYPE_WRITE:
860 		rw = WRITE;
861 		break;
862 
863 	case ZIO_TYPE_READ:
864 		rw = READ;
865 		break;
866 
867 	case ZIO_TYPE_TRIM:
868 		zio->io_error = vdev_disk_io_trim(zio);
869 		rw_exit(&vd->vd_lock);
870 		zio_interrupt(zio);
871 		return;
872 
873 	default:
874 		rw_exit(&vd->vd_lock);
875 		zio->io_error = SET_ERROR(ENOTSUP);
876 		zio_interrupt(zio);
877 		return;
878 	}
879 
880 	zio->io_target_timestamp = zio_handle_io_delay(zio);
881 	error = __vdev_disk_physio(vd->vd_bdev, zio,
882 	    zio->io_size, zio->io_offset, rw, 0);
883 	rw_exit(&vd->vd_lock);
884 
885 	if (error) {
886 		zio->io_error = error;
887 		zio_interrupt(zio);
888 		return;
889 	}
890 }
891 
892 static void
893 vdev_disk_io_done(zio_t *zio)
894 {
895 	/*
896 	 * If the device returned EIO, we revalidate the media.  If it is
897 	 * determined the media has changed this triggers the asynchronous
898 	 * removal of the device from the configuration.
899 	 */
900 	if (zio->io_error == EIO) {
901 		vdev_t *v = zio->io_vd;
902 		vdev_disk_t *vd = v->vdev_tsd;
903 
904 		if (zfs_check_media_change(vd->vd_bdev)) {
905 			invalidate_bdev(vd->vd_bdev);
906 			v->vdev_remove_wanted = B_TRUE;
907 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
908 		}
909 	}
910 }
911 
912 static void
913 vdev_disk_hold(vdev_t *vd)
914 {
915 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
916 
917 	/* We must have a pathname, and it must be absolute. */
918 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
919 		return;
920 
921 	/*
922 	 * Only prefetch path and devid info if the device has
923 	 * never been opened.
924 	 */
925 	if (vd->vdev_tsd != NULL)
926 		return;
927 
928 }
929 
930 static void
931 vdev_disk_rele(vdev_t *vd)
932 {
933 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
934 
935 	/* XXX: Implement me as a vnode rele for the device */
936 }
937 
938 vdev_ops_t vdev_disk_ops = {
939 	.vdev_op_init = NULL,
940 	.vdev_op_fini = NULL,
941 	.vdev_op_open = vdev_disk_open,
942 	.vdev_op_close = vdev_disk_close,
943 	.vdev_op_asize = vdev_default_asize,
944 	.vdev_op_min_asize = vdev_default_min_asize,
945 	.vdev_op_min_alloc = NULL,
946 	.vdev_op_io_start = vdev_disk_io_start,
947 	.vdev_op_io_done = vdev_disk_io_done,
948 	.vdev_op_state_change = NULL,
949 	.vdev_op_need_resilver = NULL,
950 	.vdev_op_hold = vdev_disk_hold,
951 	.vdev_op_rele = vdev_disk_rele,
952 	.vdev_op_remap = NULL,
953 	.vdev_op_xlate = vdev_default_xlate,
954 	.vdev_op_rebuild_asize = NULL,
955 	.vdev_op_metaslab_init = NULL,
956 	.vdev_op_config_generate = NULL,
957 	.vdev_op_nparity = NULL,
958 	.vdev_op_ndisks = NULL,
959 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
960 	.vdev_op_leaf = B_TRUE			/* leaf vdev */
961 };
962 
963 /*
964  * The zfs_vdev_scheduler module option has been deprecated. Setting this
965  * value no longer has any effect.  It has not yet been entirely removed
966  * to allow the module to be loaded if this option is specified in the
967  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
968  */
969 static int
970 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
971 {
972 	int error = param_set_charp(val, kp);
973 	if (error == 0) {
974 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
975 		    "is not supported.\n");
976 	}
977 
978 	return (error);
979 }
980 
981 static const char *zfs_vdev_scheduler = "unused";
982 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
983     param_get_charp, &zfs_vdev_scheduler, 0644);
984 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
985 
986 int
987 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
988 {
989 	uint64_t val;
990 	int error;
991 
992 	error = kstrtoull(buf, 0, &val);
993 	if (error < 0)
994 		return (SET_ERROR(error));
995 
996 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
997 		return (SET_ERROR(-EINVAL));
998 
999 	error = param_set_ulong(buf, kp);
1000 	if (error < 0)
1001 		return (SET_ERROR(error));
1002 
1003 	return (0);
1004 }
1005 
1006 int
1007 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1008 {
1009 	uint64_t val;
1010 	int error;
1011 
1012 	error = kstrtoull(buf, 0, &val);
1013 	if (error < 0)
1014 		return (SET_ERROR(error));
1015 
1016 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1017 		return (SET_ERROR(-EINVAL));
1018 
1019 	error = param_set_ulong(buf, kp);
1020 	if (error < 0)
1021 		return (SET_ERROR(error));
1022 
1023 	return (0);
1024 }
1025