1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static uint_t zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[];	/* Attached bio's */
75 } dio_request_t;
76 
77 /*
78  * BIO request failfast mask.
79  */
80 
81 static unsigned int zfs_vdev_failfast_mask = 1;
82 
83 #ifdef HAVE_BLK_MODE_T
84 static blk_mode_t
85 #else
86 static fmode_t
87 #endif
88 vdev_bdev_mode(spa_mode_t spa_mode)
89 {
90 #ifdef HAVE_BLK_MODE_T
91 	blk_mode_t mode = 0;
92 
93 	if (spa_mode & SPA_MODE_READ)
94 		mode |= BLK_OPEN_READ;
95 
96 	if (spa_mode & SPA_MODE_WRITE)
97 		mode |= BLK_OPEN_WRITE;
98 #else
99 	fmode_t mode = 0;
100 
101 	if (spa_mode & SPA_MODE_READ)
102 		mode |= FMODE_READ;
103 
104 	if (spa_mode & SPA_MODE_WRITE)
105 		mode |= FMODE_WRITE;
106 #endif
107 
108 	return (mode);
109 }
110 
111 /*
112  * Returns the usable capacity (in bytes) for the partition or disk.
113  */
114 static uint64_t
115 bdev_capacity(struct block_device *bdev)
116 {
117 	return (i_size_read(bdev->bd_inode));
118 }
119 
120 #if !defined(HAVE_BDEV_WHOLE)
121 static inline struct block_device *
122 bdev_whole(struct block_device *bdev)
123 {
124 	return (bdev->bd_contains);
125 }
126 #endif
127 
128 #if defined(HAVE_BDEVNAME)
129 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
130 #else
131 static inline void
132 vdev_bdevname(struct block_device *bdev, char *name)
133 {
134 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
135 }
136 #endif
137 
138 /*
139  * Returns the maximum expansion capacity of the block device (in bytes).
140  *
141  * It is possible to expand a vdev when it has been created as a wholedisk
142  * and the containing block device has increased in capacity.  Or when the
143  * partition containing the pool has been manually increased in size.
144  *
145  * This function is only responsible for calculating the potential expansion
146  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
147  * responsible for verifying the expected partition layout in the wholedisk
148  * case, and updating the partition table if appropriate.  Once the partition
149  * size has been increased the additional capacity will be visible using
150  * bdev_capacity().
151  *
152  * The returned maximum expansion capacity is always expected to be larger, or
153  * at the very least equal, to its usable capacity to prevent overestimating
154  * the pool expandsize.
155  */
156 static uint64_t
157 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
158 {
159 	uint64_t psize;
160 	int64_t available;
161 
162 	if (wholedisk && bdev != bdev_whole(bdev)) {
163 		/*
164 		 * When reporting maximum expansion capacity for a wholedisk
165 		 * deduct any capacity which is expected to be lost due to
166 		 * alignment restrictions.  Over reporting this value isn't
167 		 * harmful and would only result in slightly less capacity
168 		 * than expected post expansion.
169 		 * The estimated available space may be slightly smaller than
170 		 * bdev_capacity() for devices where the number of sectors is
171 		 * not a multiple of the alignment size and the partition layout
172 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
173 		 * "reserved" EFI partition: in such cases return the device
174 		 * usable capacity.
175 		 */
176 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
177 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
178 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
179 		psize = MAX(available, bdev_capacity(bdev));
180 	} else {
181 		psize = bdev_capacity(bdev);
182 	}
183 
184 	return (psize);
185 }
186 
187 static void
188 vdev_disk_error(zio_t *zio)
189 {
190 	/*
191 	 * This function can be called in interrupt context, for instance while
192 	 * handling IRQs coming from a misbehaving disk device; use printk()
193 	 * which is safe from any context.
194 	 */
195 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
196 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
197 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
198 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
199 	    zio->io_flags);
200 }
201 
202 static void
203 vdev_disk_kobj_evt_post(vdev_t *v)
204 {
205 	vdev_disk_t *vd = v->vdev_tsd;
206 	if (vd && vd->vd_bdev) {
207 		spl_signal_kobj_evt(vd->vd_bdev);
208 	} else {
209 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
210 		    v->vdev_path);
211 	}
212 }
213 
214 #if !defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
215 /*
216  * Define a dummy struct blk_holder_ops for kernel versions
217  * prior to 6.5.
218  */
219 struct blk_holder_ops {};
220 #endif
221 
222 static struct block_device *
223 vdev_blkdev_get_by_path(const char *path, spa_mode_t mode, void *holder,
224     const struct blk_holder_ops *hops)
225 {
226 #ifdef HAVE_BLKDEV_GET_BY_PATH_4ARG
227 	return (blkdev_get_by_path(path,
228 	    vdev_bdev_mode(mode) | BLK_OPEN_EXCL, holder, hops));
229 #else
230 	return (blkdev_get_by_path(path,
231 	    vdev_bdev_mode(mode) | FMODE_EXCL, holder));
232 #endif
233 }
234 
235 static void
236 vdev_blkdev_put(struct block_device *bdev, spa_mode_t mode, void *holder)
237 {
238 #ifdef HAVE_BLKDEV_PUT_HOLDER
239 	return (blkdev_put(bdev, holder));
240 #else
241 	return (blkdev_put(bdev, vdev_bdev_mode(mode) | FMODE_EXCL));
242 #endif
243 }
244 
245 static int
246 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
247     uint64_t *logical_ashift, uint64_t *physical_ashift)
248 {
249 	struct block_device *bdev;
250 #ifdef HAVE_BLK_MODE_T
251 	blk_mode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
252 #else
253 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
254 #endif
255 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
256 	vdev_disk_t *vd;
257 
258 	/* Must have a pathname and it must be absolute. */
259 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
260 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
261 		vdev_dbgmsg(v, "invalid vdev_path");
262 		return (SET_ERROR(EINVAL));
263 	}
264 
265 	/*
266 	 * Reopen the device if it is currently open.  When expanding a
267 	 * partition force re-scanning the partition table if userland
268 	 * did not take care of this already. We need to do this while closed
269 	 * in order to get an accurate updated block device size.  Then
270 	 * since udev may need to recreate the device links increase the
271 	 * open retry timeout before reporting the device as unavailable.
272 	 */
273 	vd = v->vdev_tsd;
274 	if (vd) {
275 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
276 		boolean_t reread_part = B_FALSE;
277 
278 		rw_enter(&vd->vd_lock, RW_WRITER);
279 		bdev = vd->vd_bdev;
280 		vd->vd_bdev = NULL;
281 
282 		if (bdev) {
283 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
284 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
285 				/*
286 				 * If userland has BLKPG_RESIZE_PARTITION,
287 				 * then it should have updated the partition
288 				 * table already. We can detect this by
289 				 * comparing our current physical size
290 				 * with that of the device. If they are
291 				 * the same, then we must not have
292 				 * BLKPG_RESIZE_PARTITION or it failed to
293 				 * update the partition table online. We
294 				 * fallback to rescanning the partition
295 				 * table from the kernel below. However,
296 				 * if the capacity already reflects the
297 				 * updated partition, then we skip
298 				 * rescanning the partition table here.
299 				 */
300 				if (v->vdev_psize == bdev_capacity(bdev))
301 					reread_part = B_TRUE;
302 			}
303 
304 			vdev_blkdev_put(bdev, mode, zfs_vdev_holder);
305 		}
306 
307 		if (reread_part) {
308 			bdev = vdev_blkdev_get_by_path(disk_name, mode,
309 			    zfs_vdev_holder, NULL);
310 			if (!IS_ERR(bdev)) {
311 				int error = vdev_bdev_reread_part(bdev);
312 				vdev_blkdev_put(bdev, mode, zfs_vdev_holder);
313 				if (error == 0) {
314 					timeout = MSEC2NSEC(
315 					    zfs_vdev_open_timeout_ms * 2);
316 				}
317 			}
318 		}
319 	} else {
320 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
321 
322 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
323 		rw_enter(&vd->vd_lock, RW_WRITER);
324 	}
325 
326 	/*
327 	 * Devices are always opened by the path provided at configuration
328 	 * time.  This means that if the provided path is a udev by-id path
329 	 * then drives may be re-cabled without an issue.  If the provided
330 	 * path is a udev by-path path, then the physical location information
331 	 * will be preserved.  This can be critical for more complicated
332 	 * configurations where drives are located in specific physical
333 	 * locations to maximize the systems tolerance to component failure.
334 	 *
335 	 * Alternatively, you can provide your own udev rule to flexibly map
336 	 * the drives as you see fit.  It is not advised that you use the
337 	 * /dev/[hd]d devices which may be reordered due to probing order.
338 	 * Devices in the wrong locations will be detected by the higher
339 	 * level vdev validation.
340 	 *
341 	 * The specified paths may be briefly removed and recreated in
342 	 * response to udev events.  This should be exceptionally unlikely
343 	 * because the zpool command makes every effort to verify these paths
344 	 * have already settled prior to reaching this point.  Therefore,
345 	 * a ENOENT failure at this point is highly likely to be transient
346 	 * and it is reasonable to sleep and retry before giving up.  In
347 	 * practice delays have been observed to be on the order of 100ms.
348 	 *
349 	 * When ERESTARTSYS is returned it indicates the block device is
350 	 * a zvol which could not be opened due to the deadlock detection
351 	 * logic in zvol_open().  Extend the timeout and retry the open
352 	 * subsequent attempts are expected to eventually succeed.
353 	 */
354 	hrtime_t start = gethrtime();
355 	bdev = ERR_PTR(-ENXIO);
356 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
357 		bdev = vdev_blkdev_get_by_path(v->vdev_path, mode,
358 		    zfs_vdev_holder, NULL);
359 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
360 			/*
361 			 * There is no point of waiting since device is removed
362 			 * explicitly
363 			 */
364 			if (v->vdev_removed)
365 				break;
366 
367 			schedule_timeout(MSEC_TO_TICK(10));
368 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
369 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
370 			continue;
371 		} else if (IS_ERR(bdev)) {
372 			break;
373 		}
374 	}
375 
376 	if (IS_ERR(bdev)) {
377 		int error = -PTR_ERR(bdev);
378 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
379 		    (u_longlong_t)(gethrtime() - start),
380 		    (u_longlong_t)timeout);
381 		vd->vd_bdev = NULL;
382 		v->vdev_tsd = vd;
383 		rw_exit(&vd->vd_lock);
384 		return (SET_ERROR(error));
385 	} else {
386 		vd->vd_bdev = bdev;
387 		v->vdev_tsd = vd;
388 		rw_exit(&vd->vd_lock);
389 	}
390 
391 	/*  Determine the physical block size */
392 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
393 
394 	/*  Determine the logical block size */
395 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
396 
397 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
398 	v->vdev_nowritecache = B_FALSE;
399 
400 	/* Set when device reports it supports TRIM. */
401 	v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
402 
403 	/* Set when device reports it supports secure TRIM. */
404 	v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
405 
406 	/* Inform the ZIO pipeline that we are non-rotational */
407 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
408 
409 	/* Physical volume size in bytes for the partition */
410 	*psize = bdev_capacity(vd->vd_bdev);
411 
412 	/* Physical volume size in bytes including possible expansion space */
413 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
414 
415 	/* Based on the minimum sector size set the block size */
416 	*physical_ashift = highbit64(MAX(physical_block_size,
417 	    SPA_MINBLOCKSIZE)) - 1;
418 
419 	*logical_ashift = highbit64(MAX(logical_block_size,
420 	    SPA_MINBLOCKSIZE)) - 1;
421 
422 	return (0);
423 }
424 
425 static void
426 vdev_disk_close(vdev_t *v)
427 {
428 	vdev_disk_t *vd = v->vdev_tsd;
429 
430 	if (v->vdev_reopening || vd == NULL)
431 		return;
432 
433 	if (vd->vd_bdev != NULL) {
434 		vdev_blkdev_put(vd->vd_bdev, spa_mode(v->vdev_spa),
435 		    zfs_vdev_holder);
436 	}
437 
438 	rw_destroy(&vd->vd_lock);
439 	kmem_free(vd, sizeof (vdev_disk_t));
440 	v->vdev_tsd = NULL;
441 }
442 
443 static dio_request_t *
444 vdev_disk_dio_alloc(int bio_count)
445 {
446 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
447 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
448 	atomic_set(&dr->dr_ref, 0);
449 	dr->dr_bio_count = bio_count;
450 	dr->dr_error = 0;
451 
452 	for (int i = 0; i < dr->dr_bio_count; i++)
453 		dr->dr_bio[i] = NULL;
454 
455 	return (dr);
456 }
457 
458 static void
459 vdev_disk_dio_free(dio_request_t *dr)
460 {
461 	int i;
462 
463 	for (i = 0; i < dr->dr_bio_count; i++)
464 		if (dr->dr_bio[i])
465 			bio_put(dr->dr_bio[i]);
466 
467 	kmem_free(dr, sizeof (dio_request_t) +
468 	    sizeof (struct bio *) * dr->dr_bio_count);
469 }
470 
471 static void
472 vdev_disk_dio_get(dio_request_t *dr)
473 {
474 	atomic_inc(&dr->dr_ref);
475 }
476 
477 static void
478 vdev_disk_dio_put(dio_request_t *dr)
479 {
480 	int rc = atomic_dec_return(&dr->dr_ref);
481 
482 	/*
483 	 * Free the dio_request when the last reference is dropped and
484 	 * ensure zio_interpret is called only once with the correct zio
485 	 */
486 	if (rc == 0) {
487 		zio_t *zio = dr->dr_zio;
488 		int error = dr->dr_error;
489 
490 		vdev_disk_dio_free(dr);
491 
492 		if (zio) {
493 			zio->io_error = error;
494 			ASSERT3S(zio->io_error, >=, 0);
495 			if (zio->io_error)
496 				vdev_disk_error(zio);
497 
498 			zio_delay_interrupt(zio);
499 		}
500 	}
501 }
502 
503 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
504 {
505 	dio_request_t *dr = bio->bi_private;
506 
507 	if (dr->dr_error == 0) {
508 #ifdef HAVE_1ARG_BIO_END_IO_T
509 		dr->dr_error = BIO_END_IO_ERROR(bio);
510 #else
511 		if (error)
512 			dr->dr_error = -(error);
513 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
514 			dr->dr_error = EIO;
515 #endif
516 	}
517 
518 	/* Drop reference acquired by __vdev_disk_physio */
519 	vdev_disk_dio_put(dr);
520 }
521 
522 static inline void
523 vdev_submit_bio_impl(struct bio *bio)
524 {
525 #ifdef HAVE_1ARG_SUBMIT_BIO
526 	(void) submit_bio(bio);
527 #else
528 	(void) submit_bio(bio_data_dir(bio), bio);
529 #endif
530 }
531 
532 /*
533  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
534  * replace it with preempt_schedule under the following condition:
535  */
536 #if defined(CONFIG_ARM64) && \
537     defined(CONFIG_PREEMPTION) && \
538     defined(CONFIG_BLK_CGROUP)
539 #define	preempt_schedule_notrace(x) preempt_schedule(x)
540 #endif
541 
542 /*
543  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
544  * as an argument removing the need to set it with bio_set_dev().  This
545  * removes the need for all of the following compatibility code.
546  */
547 #if !defined(HAVE_BIO_ALLOC_4ARG)
548 
549 #ifdef HAVE_BIO_SET_DEV
550 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
551 /*
552  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
553  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
554  * As a side effect the function was converted to GPL-only.  Define our
555  * own version when needed which uses rcu_read_lock_sched().
556  *
557  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
558  * part, moving blkg_tryget into the private one. Define our own version.
559  */
560 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
561 static inline bool
562 vdev_blkg_tryget(struct blkcg_gq *blkg)
563 {
564 	struct percpu_ref *ref = &blkg->refcnt;
565 	unsigned long __percpu *count;
566 	bool rc;
567 
568 	rcu_read_lock_sched();
569 
570 	if (__ref_is_percpu(ref, &count)) {
571 		this_cpu_inc(*count);
572 		rc = true;
573 	} else {
574 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
575 		rc = atomic_long_inc_not_zero(&ref->data->count);
576 #else
577 		rc = atomic_long_inc_not_zero(&ref->count);
578 #endif
579 	}
580 
581 	rcu_read_unlock_sched();
582 
583 	return (rc);
584 }
585 #else
586 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
587 #endif
588 #ifdef HAVE_BIO_SET_DEV_MACRO
589 /*
590  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
591  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
592  * the entire macro.  Provide a minimal version which always assigns the
593  * request queue's root_blkg to the bio.
594  */
595 static inline void
596 vdev_bio_associate_blkg(struct bio *bio)
597 {
598 #if defined(HAVE_BIO_BDEV_DISK)
599 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
600 #else
601 	struct request_queue *q = bio->bi_disk->queue;
602 #endif
603 
604 	ASSERT3P(q, !=, NULL);
605 	ASSERT3P(bio->bi_blkg, ==, NULL);
606 
607 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
608 		bio->bi_blkg = q->root_blkg;
609 }
610 
611 #define	bio_associate_blkg vdev_bio_associate_blkg
612 #else
613 static inline void
614 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
615 {
616 #if defined(HAVE_BIO_BDEV_DISK)
617 	struct request_queue *q = bdev->bd_disk->queue;
618 #else
619 	struct request_queue *q = bio->bi_disk->queue;
620 #endif
621 	bio_clear_flag(bio, BIO_REMAPPED);
622 	if (bio->bi_bdev != bdev)
623 		bio_clear_flag(bio, BIO_THROTTLED);
624 	bio->bi_bdev = bdev;
625 
626 	ASSERT3P(q, !=, NULL);
627 	ASSERT3P(bio->bi_blkg, ==, NULL);
628 
629 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
630 		bio->bi_blkg = q->root_blkg;
631 }
632 #define	bio_set_dev		vdev_bio_set_dev
633 #endif
634 #endif
635 #else
636 /*
637  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
638  */
639 static inline void
640 bio_set_dev(struct bio *bio, struct block_device *bdev)
641 {
642 	bio->bi_bdev = bdev;
643 }
644 #endif /* HAVE_BIO_SET_DEV */
645 #endif /* !HAVE_BIO_ALLOC_4ARG */
646 
647 static inline void
648 vdev_submit_bio(struct bio *bio)
649 {
650 	struct bio_list *bio_list = current->bio_list;
651 	current->bio_list = NULL;
652 	vdev_submit_bio_impl(bio);
653 	current->bio_list = bio_list;
654 }
655 
656 static inline struct bio *
657 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
658     unsigned short nr_vecs)
659 {
660 	struct bio *bio;
661 
662 #ifdef HAVE_BIO_ALLOC_4ARG
663 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
664 #else
665 	bio = bio_alloc(gfp_mask, nr_vecs);
666 	if (likely(bio != NULL))
667 		bio_set_dev(bio, bdev);
668 #endif
669 
670 	return (bio);
671 }
672 
673 static inline unsigned int
674 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
675 {
676 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
677 	    bio_size, abd_offset);
678 
679 #ifdef HAVE_BIO_MAX_SEGS
680 	return (bio_max_segs(nr_segs));
681 #else
682 	return (MIN(nr_segs, BIO_MAX_PAGES));
683 #endif
684 }
685 
686 static int
687 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
688     size_t io_size, uint64_t io_offset, int rw, int flags)
689 {
690 	dio_request_t *dr;
691 	uint64_t abd_offset;
692 	uint64_t bio_offset;
693 	int bio_size;
694 	int bio_count = 16;
695 	int error = 0;
696 	struct blk_plug plug;
697 	unsigned short nr_vecs;
698 
699 	/*
700 	 * Accessing outside the block device is never allowed.
701 	 */
702 	if (io_offset + io_size > bdev->bd_inode->i_size) {
703 		vdev_dbgmsg(zio->io_vd,
704 		    "Illegal access %llu size %llu, device size %llu",
705 		    (u_longlong_t)io_offset,
706 		    (u_longlong_t)io_size,
707 		    (u_longlong_t)i_size_read(bdev->bd_inode));
708 		return (SET_ERROR(EIO));
709 	}
710 
711 retry:
712 	dr = vdev_disk_dio_alloc(bio_count);
713 
714 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
715 	    zio->io_vd->vdev_failfast == B_TRUE) {
716 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
717 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
718 	}
719 
720 	dr->dr_zio = zio;
721 
722 	/*
723 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
724 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
725 	 * can cover at least 128KB and at most 1MB.  When the required number
726 	 * of iovec's exceeds this, we are forced to break the IO in multiple
727 	 * bio's and wait for them all to complete.  This is likely if the
728 	 * recordsize property is increased beyond 1MB.  The default
729 	 * bio_count=16 should typically accommodate the maximum-size zio of
730 	 * 16MB.
731 	 */
732 
733 	abd_offset = 0;
734 	bio_offset = io_offset;
735 	bio_size = io_size;
736 	for (int i = 0; i <= dr->dr_bio_count; i++) {
737 
738 		/* Finished constructing bio's for given buffer */
739 		if (bio_size <= 0)
740 			break;
741 
742 		/*
743 		 * If additional bio's are required, we have to retry, but
744 		 * this should be rare - see the comment above.
745 		 */
746 		if (dr->dr_bio_count == i) {
747 			vdev_disk_dio_free(dr);
748 			bio_count *= 2;
749 			goto retry;
750 		}
751 
752 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
753 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
754 		if (unlikely(dr->dr_bio[i] == NULL)) {
755 			vdev_disk_dio_free(dr);
756 			return (SET_ERROR(ENOMEM));
757 		}
758 
759 		/* Matching put called by vdev_disk_physio_completion */
760 		vdev_disk_dio_get(dr);
761 
762 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
763 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
764 		dr->dr_bio[i]->bi_private = dr;
765 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
766 
767 		/* Remaining size is returned to become the new size */
768 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
769 		    bio_size, abd_offset);
770 
771 		/* Advance in buffer and construct another bio if needed */
772 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
773 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
774 	}
775 
776 	/* Extra reference to protect dio_request during vdev_submit_bio */
777 	vdev_disk_dio_get(dr);
778 
779 	if (dr->dr_bio_count > 1)
780 		blk_start_plug(&plug);
781 
782 	/* Submit all bio's associated with this dio */
783 	for (int i = 0; i < dr->dr_bio_count; i++) {
784 		if (dr->dr_bio[i])
785 			vdev_submit_bio(dr->dr_bio[i]);
786 	}
787 
788 	if (dr->dr_bio_count > 1)
789 		blk_finish_plug(&plug);
790 
791 	vdev_disk_dio_put(dr);
792 
793 	return (error);
794 }
795 
796 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
797 {
798 	zio_t *zio = bio->bi_private;
799 #ifdef HAVE_1ARG_BIO_END_IO_T
800 	zio->io_error = BIO_END_IO_ERROR(bio);
801 #else
802 	zio->io_error = -error;
803 #endif
804 
805 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
806 		zio->io_vd->vdev_nowritecache = B_TRUE;
807 
808 	bio_put(bio);
809 	ASSERT3S(zio->io_error, >=, 0);
810 	if (zio->io_error)
811 		vdev_disk_error(zio);
812 	zio_interrupt(zio);
813 }
814 
815 static int
816 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
817 {
818 	struct request_queue *q;
819 	struct bio *bio;
820 
821 	q = bdev_get_queue(bdev);
822 	if (!q)
823 		return (SET_ERROR(ENXIO));
824 
825 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
826 	if (unlikely(bio == NULL))
827 		return (SET_ERROR(ENOMEM));
828 
829 	bio->bi_end_io = vdev_disk_io_flush_completion;
830 	bio->bi_private = zio;
831 	bio_set_flush(bio);
832 	vdev_submit_bio(bio);
833 	invalidate_bdev(bdev);
834 
835 	return (0);
836 }
837 
838 static int
839 vdev_disk_io_trim(zio_t *zio)
840 {
841 	vdev_t *v = zio->io_vd;
842 	vdev_disk_t *vd = v->vdev_tsd;
843 
844 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
845 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
846 		return (-blkdev_issue_secure_erase(vd->vd_bdev,
847 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
848 	} else {
849 		return (-blkdev_issue_discard(vd->vd_bdev,
850 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
851 	}
852 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
853 	unsigned long trim_flags = 0;
854 #if defined(BLKDEV_DISCARD_SECURE)
855 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
856 		trim_flags |= BLKDEV_DISCARD_SECURE;
857 #endif
858 	return (-blkdev_issue_discard(vd->vd_bdev,
859 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
860 #else
861 #error "Unsupported kernel"
862 #endif
863 }
864 
865 static void
866 vdev_disk_io_start(zio_t *zio)
867 {
868 	vdev_t *v = zio->io_vd;
869 	vdev_disk_t *vd = v->vdev_tsd;
870 	int rw, error;
871 
872 	/*
873 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
874 	 * Nothing to be done here but return failure.
875 	 */
876 	if (vd == NULL) {
877 		zio->io_error = ENXIO;
878 		zio_interrupt(zio);
879 		return;
880 	}
881 
882 	rw_enter(&vd->vd_lock, RW_READER);
883 
884 	/*
885 	 * If the vdev is closed, it's likely due to a failed reopen and is
886 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
887 	 */
888 	if (vd->vd_bdev == NULL) {
889 		rw_exit(&vd->vd_lock);
890 		zio->io_error = ENXIO;
891 		zio_interrupt(zio);
892 		return;
893 	}
894 
895 	switch (zio->io_type) {
896 	case ZIO_TYPE_IOCTL:
897 
898 		if (!vdev_readable(v)) {
899 			rw_exit(&vd->vd_lock);
900 			zio->io_error = SET_ERROR(ENXIO);
901 			zio_interrupt(zio);
902 			return;
903 		}
904 
905 		switch (zio->io_cmd) {
906 		case DKIOCFLUSHWRITECACHE:
907 
908 			if (zfs_nocacheflush)
909 				break;
910 
911 			if (v->vdev_nowritecache) {
912 				zio->io_error = SET_ERROR(ENOTSUP);
913 				break;
914 			}
915 
916 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
917 			if (error == 0) {
918 				rw_exit(&vd->vd_lock);
919 				return;
920 			}
921 
922 			zio->io_error = error;
923 
924 			break;
925 
926 		default:
927 			zio->io_error = SET_ERROR(ENOTSUP);
928 		}
929 
930 		rw_exit(&vd->vd_lock);
931 		zio_execute(zio);
932 		return;
933 	case ZIO_TYPE_WRITE:
934 		rw = WRITE;
935 		break;
936 
937 	case ZIO_TYPE_READ:
938 		rw = READ;
939 		break;
940 
941 	case ZIO_TYPE_TRIM:
942 		zio->io_error = vdev_disk_io_trim(zio);
943 		rw_exit(&vd->vd_lock);
944 		zio_interrupt(zio);
945 		return;
946 
947 	default:
948 		rw_exit(&vd->vd_lock);
949 		zio->io_error = SET_ERROR(ENOTSUP);
950 		zio_interrupt(zio);
951 		return;
952 	}
953 
954 	zio->io_target_timestamp = zio_handle_io_delay(zio);
955 	error = __vdev_disk_physio(vd->vd_bdev, zio,
956 	    zio->io_size, zio->io_offset, rw, 0);
957 	rw_exit(&vd->vd_lock);
958 
959 	if (error) {
960 		zio->io_error = error;
961 		zio_interrupt(zio);
962 		return;
963 	}
964 }
965 
966 static void
967 vdev_disk_io_done(zio_t *zio)
968 {
969 	/*
970 	 * If the device returned EIO, we revalidate the media.  If it is
971 	 * determined the media has changed this triggers the asynchronous
972 	 * removal of the device from the configuration.
973 	 */
974 	if (zio->io_error == EIO) {
975 		vdev_t *v = zio->io_vd;
976 		vdev_disk_t *vd = v->vdev_tsd;
977 
978 		if (!zfs_check_disk_status(vd->vd_bdev)) {
979 			invalidate_bdev(vd->vd_bdev);
980 			v->vdev_remove_wanted = B_TRUE;
981 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
982 		}
983 	}
984 }
985 
986 static void
987 vdev_disk_hold(vdev_t *vd)
988 {
989 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
990 
991 	/* We must have a pathname, and it must be absolute. */
992 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
993 		return;
994 
995 	/*
996 	 * Only prefetch path and devid info if the device has
997 	 * never been opened.
998 	 */
999 	if (vd->vdev_tsd != NULL)
1000 		return;
1001 
1002 }
1003 
1004 static void
1005 vdev_disk_rele(vdev_t *vd)
1006 {
1007 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1008 
1009 	/* XXX: Implement me as a vnode rele for the device */
1010 }
1011 
1012 vdev_ops_t vdev_disk_ops = {
1013 	.vdev_op_init = NULL,
1014 	.vdev_op_fini = NULL,
1015 	.vdev_op_open = vdev_disk_open,
1016 	.vdev_op_close = vdev_disk_close,
1017 	.vdev_op_asize = vdev_default_asize,
1018 	.vdev_op_min_asize = vdev_default_min_asize,
1019 	.vdev_op_min_alloc = NULL,
1020 	.vdev_op_io_start = vdev_disk_io_start,
1021 	.vdev_op_io_done = vdev_disk_io_done,
1022 	.vdev_op_state_change = NULL,
1023 	.vdev_op_need_resilver = NULL,
1024 	.vdev_op_hold = vdev_disk_hold,
1025 	.vdev_op_rele = vdev_disk_rele,
1026 	.vdev_op_remap = NULL,
1027 	.vdev_op_xlate = vdev_default_xlate,
1028 	.vdev_op_rebuild_asize = NULL,
1029 	.vdev_op_metaslab_init = NULL,
1030 	.vdev_op_config_generate = NULL,
1031 	.vdev_op_nparity = NULL,
1032 	.vdev_op_ndisks = NULL,
1033 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1034 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1035 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1036 };
1037 
1038 /*
1039  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1040  * value no longer has any effect.  It has not yet been entirely removed
1041  * to allow the module to be loaded if this option is specified in the
1042  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1043  */
1044 static int
1045 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1046 {
1047 	int error = param_set_charp(val, kp);
1048 	if (error == 0) {
1049 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1050 		    "is not supported.\n");
1051 	}
1052 
1053 	return (error);
1054 }
1055 
1056 static const char *zfs_vdev_scheduler = "unused";
1057 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1058     param_get_charp, &zfs_vdev_scheduler, 0644);
1059 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1060 
1061 int
1062 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1063 {
1064 	uint_t val;
1065 	int error;
1066 
1067 	error = kstrtouint(buf, 0, &val);
1068 	if (error < 0)
1069 		return (SET_ERROR(error));
1070 
1071 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1072 		return (SET_ERROR(-EINVAL));
1073 
1074 	error = param_set_uint(buf, kp);
1075 	if (error < 0)
1076 		return (SET_ERROR(error));
1077 
1078 	return (0);
1079 }
1080 
1081 int
1082 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1083 {
1084 	uint_t val;
1085 	int error;
1086 
1087 	error = kstrtouint(buf, 0, &val);
1088 	if (error < 0)
1089 		return (SET_ERROR(error));
1090 
1091 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1092 		return (SET_ERROR(-EINVAL));
1093 
1094 	error = param_set_uint(buf, kp);
1095 	if (error < 0)
1096 		return (SET_ERROR(error));
1097 
1098 	return (0);
1099 }
1100 
1101 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1102 	"Timeout before determining that a device is missing");
1103 
1104 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1105 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1106