1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static uint_t zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[];	/* Attached bio's */
75 } dio_request_t;
76 
77 /*
78  * BIO request failfast mask.
79  */
80 
81 static unsigned int zfs_vdev_failfast_mask = 1;
82 
83 static fmode_t
84 vdev_bdev_mode(spa_mode_t spa_mode)
85 {
86 	fmode_t mode = 0;
87 
88 	if (spa_mode & SPA_MODE_READ)
89 		mode |= FMODE_READ;
90 
91 	if (spa_mode & SPA_MODE_WRITE)
92 		mode |= FMODE_WRITE;
93 
94 	return (mode);
95 }
96 
97 /*
98  * Returns the usable capacity (in bytes) for the partition or disk.
99  */
100 static uint64_t
101 bdev_capacity(struct block_device *bdev)
102 {
103 	return (i_size_read(bdev->bd_inode));
104 }
105 
106 #if !defined(HAVE_BDEV_WHOLE)
107 static inline struct block_device *
108 bdev_whole(struct block_device *bdev)
109 {
110 	return (bdev->bd_contains);
111 }
112 #endif
113 
114 #if defined(HAVE_BDEVNAME)
115 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
116 #else
117 static inline void
118 vdev_bdevname(struct block_device *bdev, char *name)
119 {
120 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
121 }
122 #endif
123 
124 /*
125  * Returns the maximum expansion capacity of the block device (in bytes).
126  *
127  * It is possible to expand a vdev when it has been created as a wholedisk
128  * and the containing block device has increased in capacity.  Or when the
129  * partition containing the pool has been manually increased in size.
130  *
131  * This function is only responsible for calculating the potential expansion
132  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
133  * responsible for verifying the expected partition layout in the wholedisk
134  * case, and updating the partition table if appropriate.  Once the partition
135  * size has been increased the additional capacity will be visible using
136  * bdev_capacity().
137  *
138  * The returned maximum expansion capacity is always expected to be larger, or
139  * at the very least equal, to its usable capacity to prevent overestimating
140  * the pool expandsize.
141  */
142 static uint64_t
143 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
144 {
145 	uint64_t psize;
146 	int64_t available;
147 
148 	if (wholedisk && bdev != bdev_whole(bdev)) {
149 		/*
150 		 * When reporting maximum expansion capacity for a wholedisk
151 		 * deduct any capacity which is expected to be lost due to
152 		 * alignment restrictions.  Over reporting this value isn't
153 		 * harmful and would only result in slightly less capacity
154 		 * than expected post expansion.
155 		 * The estimated available space may be slightly smaller than
156 		 * bdev_capacity() for devices where the number of sectors is
157 		 * not a multiple of the alignment size and the partition layout
158 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
159 		 * "reserved" EFI partition: in such cases return the device
160 		 * usable capacity.
161 		 */
162 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
163 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
164 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
165 		psize = MAX(available, bdev_capacity(bdev));
166 	} else {
167 		psize = bdev_capacity(bdev);
168 	}
169 
170 	return (psize);
171 }
172 
173 static void
174 vdev_disk_error(zio_t *zio)
175 {
176 	/*
177 	 * This function can be called in interrupt context, for instance while
178 	 * handling IRQs coming from a misbehaving disk device; use printk()
179 	 * which is safe from any context.
180 	 */
181 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
182 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
183 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
184 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
185 	    zio->io_flags);
186 }
187 
188 static void
189 vdev_disk_kobj_evt_post(vdev_t *v)
190 {
191 	vdev_disk_t *vd = v->vdev_tsd;
192 	if (vd && vd->vd_bdev) {
193 		spl_signal_kobj_evt(vd->vd_bdev);
194 	} else {
195 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
196 		    v->vdev_path);
197 	}
198 }
199 
200 static int
201 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
202     uint64_t *logical_ashift, uint64_t *physical_ashift)
203 {
204 	struct block_device *bdev;
205 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
206 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
207 	vdev_disk_t *vd;
208 
209 	/* Must have a pathname and it must be absolute. */
210 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
211 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
212 		vdev_dbgmsg(v, "invalid vdev_path");
213 		return (SET_ERROR(EINVAL));
214 	}
215 
216 	/*
217 	 * Reopen the device if it is currently open.  When expanding a
218 	 * partition force re-scanning the partition table if userland
219 	 * did not take care of this already. We need to do this while closed
220 	 * in order to get an accurate updated block device size.  Then
221 	 * since udev may need to recreate the device links increase the
222 	 * open retry timeout before reporting the device as unavailable.
223 	 */
224 	vd = v->vdev_tsd;
225 	if (vd) {
226 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
227 		boolean_t reread_part = B_FALSE;
228 
229 		rw_enter(&vd->vd_lock, RW_WRITER);
230 		bdev = vd->vd_bdev;
231 		vd->vd_bdev = NULL;
232 
233 		if (bdev) {
234 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
235 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
236 				/*
237 				 * If userland has BLKPG_RESIZE_PARTITION,
238 				 * then it should have updated the partition
239 				 * table already. We can detect this by
240 				 * comparing our current physical size
241 				 * with that of the device. If they are
242 				 * the same, then we must not have
243 				 * BLKPG_RESIZE_PARTITION or it failed to
244 				 * update the partition table online. We
245 				 * fallback to rescanning the partition
246 				 * table from the kernel below. However,
247 				 * if the capacity already reflects the
248 				 * updated partition, then we skip
249 				 * rescanning the partition table here.
250 				 */
251 				if (v->vdev_psize == bdev_capacity(bdev))
252 					reread_part = B_TRUE;
253 			}
254 
255 			blkdev_put(bdev, mode | FMODE_EXCL);
256 		}
257 
258 		if (reread_part) {
259 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
260 			    zfs_vdev_holder);
261 			if (!IS_ERR(bdev)) {
262 				int error = vdev_bdev_reread_part(bdev);
263 				blkdev_put(bdev, mode | FMODE_EXCL);
264 				if (error == 0) {
265 					timeout = MSEC2NSEC(
266 					    zfs_vdev_open_timeout_ms * 2);
267 				}
268 			}
269 		}
270 	} else {
271 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
272 
273 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
274 		rw_enter(&vd->vd_lock, RW_WRITER);
275 	}
276 
277 	/*
278 	 * Devices are always opened by the path provided at configuration
279 	 * time.  This means that if the provided path is a udev by-id path
280 	 * then drives may be re-cabled without an issue.  If the provided
281 	 * path is a udev by-path path, then the physical location information
282 	 * will be preserved.  This can be critical for more complicated
283 	 * configurations where drives are located in specific physical
284 	 * locations to maximize the systems tolerance to component failure.
285 	 *
286 	 * Alternatively, you can provide your own udev rule to flexibly map
287 	 * the drives as you see fit.  It is not advised that you use the
288 	 * /dev/[hd]d devices which may be reordered due to probing order.
289 	 * Devices in the wrong locations will be detected by the higher
290 	 * level vdev validation.
291 	 *
292 	 * The specified paths may be briefly removed and recreated in
293 	 * response to udev events.  This should be exceptionally unlikely
294 	 * because the zpool command makes every effort to verify these paths
295 	 * have already settled prior to reaching this point.  Therefore,
296 	 * a ENOENT failure at this point is highly likely to be transient
297 	 * and it is reasonable to sleep and retry before giving up.  In
298 	 * practice delays have been observed to be on the order of 100ms.
299 	 *
300 	 * When ERESTARTSYS is returned it indicates the block device is
301 	 * a zvol which could not be opened due to the deadlock detection
302 	 * logic in zvol_open().  Extend the timeout and retry the open
303 	 * subsequent attempts are expected to eventually succeed.
304 	 */
305 	hrtime_t start = gethrtime();
306 	bdev = ERR_PTR(-ENXIO);
307 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
308 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
309 		    zfs_vdev_holder);
310 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
311 			/*
312 			 * There is no point of waiting since device is removed
313 			 * explicitly
314 			 */
315 			if (v->vdev_removed)
316 				break;
317 
318 			schedule_timeout(MSEC_TO_TICK(10));
319 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
320 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
321 			continue;
322 		} else if (IS_ERR(bdev)) {
323 			break;
324 		}
325 	}
326 
327 	if (IS_ERR(bdev)) {
328 		int error = -PTR_ERR(bdev);
329 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
330 		    (u_longlong_t)(gethrtime() - start),
331 		    (u_longlong_t)timeout);
332 		vd->vd_bdev = NULL;
333 		v->vdev_tsd = vd;
334 		rw_exit(&vd->vd_lock);
335 		return (SET_ERROR(error));
336 	} else {
337 		vd->vd_bdev = bdev;
338 		v->vdev_tsd = vd;
339 		rw_exit(&vd->vd_lock);
340 	}
341 
342 	/*  Determine the physical block size */
343 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
344 
345 	/*  Determine the logical block size */
346 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
347 
348 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
349 	v->vdev_nowritecache = B_FALSE;
350 
351 	/* Set when device reports it supports TRIM. */
352 	v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
353 
354 	/* Set when device reports it supports secure TRIM. */
355 	v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
356 
357 	/* Inform the ZIO pipeline that we are non-rotational */
358 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
359 
360 	/* Physical volume size in bytes for the partition */
361 	*psize = bdev_capacity(vd->vd_bdev);
362 
363 	/* Physical volume size in bytes including possible expansion space */
364 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
365 
366 	/* Based on the minimum sector size set the block size */
367 	*physical_ashift = highbit64(MAX(physical_block_size,
368 	    SPA_MINBLOCKSIZE)) - 1;
369 
370 	*logical_ashift = highbit64(MAX(logical_block_size,
371 	    SPA_MINBLOCKSIZE)) - 1;
372 
373 	return (0);
374 }
375 
376 static void
377 vdev_disk_close(vdev_t *v)
378 {
379 	vdev_disk_t *vd = v->vdev_tsd;
380 
381 	if (v->vdev_reopening || vd == NULL)
382 		return;
383 
384 	if (vd->vd_bdev != NULL) {
385 		blkdev_put(vd->vd_bdev,
386 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
387 	}
388 
389 	rw_destroy(&vd->vd_lock);
390 	kmem_free(vd, sizeof (vdev_disk_t));
391 	v->vdev_tsd = NULL;
392 }
393 
394 static dio_request_t *
395 vdev_disk_dio_alloc(int bio_count)
396 {
397 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
398 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
399 	atomic_set(&dr->dr_ref, 0);
400 	dr->dr_bio_count = bio_count;
401 	dr->dr_error = 0;
402 
403 	for (int i = 0; i < dr->dr_bio_count; i++)
404 		dr->dr_bio[i] = NULL;
405 
406 	return (dr);
407 }
408 
409 static void
410 vdev_disk_dio_free(dio_request_t *dr)
411 {
412 	int i;
413 
414 	for (i = 0; i < dr->dr_bio_count; i++)
415 		if (dr->dr_bio[i])
416 			bio_put(dr->dr_bio[i]);
417 
418 	kmem_free(dr, sizeof (dio_request_t) +
419 	    sizeof (struct bio *) * dr->dr_bio_count);
420 }
421 
422 static void
423 vdev_disk_dio_get(dio_request_t *dr)
424 {
425 	atomic_inc(&dr->dr_ref);
426 }
427 
428 static void
429 vdev_disk_dio_put(dio_request_t *dr)
430 {
431 	int rc = atomic_dec_return(&dr->dr_ref);
432 
433 	/*
434 	 * Free the dio_request when the last reference is dropped and
435 	 * ensure zio_interpret is called only once with the correct zio
436 	 */
437 	if (rc == 0) {
438 		zio_t *zio = dr->dr_zio;
439 		int error = dr->dr_error;
440 
441 		vdev_disk_dio_free(dr);
442 
443 		if (zio) {
444 			zio->io_error = error;
445 			ASSERT3S(zio->io_error, >=, 0);
446 			if (zio->io_error)
447 				vdev_disk_error(zio);
448 
449 			zio_delay_interrupt(zio);
450 		}
451 	}
452 }
453 
454 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
455 {
456 	dio_request_t *dr = bio->bi_private;
457 
458 	if (dr->dr_error == 0) {
459 #ifdef HAVE_1ARG_BIO_END_IO_T
460 		dr->dr_error = BIO_END_IO_ERROR(bio);
461 #else
462 		if (error)
463 			dr->dr_error = -(error);
464 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
465 			dr->dr_error = EIO;
466 #endif
467 	}
468 
469 	/* Drop reference acquired by __vdev_disk_physio */
470 	vdev_disk_dio_put(dr);
471 }
472 
473 static inline void
474 vdev_submit_bio_impl(struct bio *bio)
475 {
476 #ifdef HAVE_1ARG_SUBMIT_BIO
477 	(void) submit_bio(bio);
478 #else
479 	(void) submit_bio(bio_data_dir(bio), bio);
480 #endif
481 }
482 
483 /*
484  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
485  * replace it with preempt_schedule under the following condition:
486  */
487 #if defined(CONFIG_ARM64) && \
488     defined(CONFIG_PREEMPTION) && \
489     defined(CONFIG_BLK_CGROUP)
490 #define	preempt_schedule_notrace(x) preempt_schedule(x)
491 #endif
492 
493 /*
494  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
495  * as an argument removing the need to set it with bio_set_dev().  This
496  * removes the need for all of the following compatibility code.
497  */
498 #if !defined(HAVE_BIO_ALLOC_4ARG)
499 
500 #ifdef HAVE_BIO_SET_DEV
501 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
502 /*
503  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
504  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
505  * As a side effect the function was converted to GPL-only.  Define our
506  * own version when needed which uses rcu_read_lock_sched().
507  *
508  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
509  * part, moving blkg_tryget into the private one. Define our own version.
510  */
511 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
512 static inline bool
513 vdev_blkg_tryget(struct blkcg_gq *blkg)
514 {
515 	struct percpu_ref *ref = &blkg->refcnt;
516 	unsigned long __percpu *count;
517 	bool rc;
518 
519 	rcu_read_lock_sched();
520 
521 	if (__ref_is_percpu(ref, &count)) {
522 		this_cpu_inc(*count);
523 		rc = true;
524 	} else {
525 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
526 		rc = atomic_long_inc_not_zero(&ref->data->count);
527 #else
528 		rc = atomic_long_inc_not_zero(&ref->count);
529 #endif
530 	}
531 
532 	rcu_read_unlock_sched();
533 
534 	return (rc);
535 }
536 #else
537 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
538 #endif
539 #ifdef HAVE_BIO_SET_DEV_MACRO
540 /*
541  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
542  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
543  * the entire macro.  Provide a minimal version which always assigns the
544  * request queue's root_blkg to the bio.
545  */
546 static inline void
547 vdev_bio_associate_blkg(struct bio *bio)
548 {
549 #if defined(HAVE_BIO_BDEV_DISK)
550 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
551 #else
552 	struct request_queue *q = bio->bi_disk->queue;
553 #endif
554 
555 	ASSERT3P(q, !=, NULL);
556 	ASSERT3P(bio->bi_blkg, ==, NULL);
557 
558 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
559 		bio->bi_blkg = q->root_blkg;
560 }
561 
562 #define	bio_associate_blkg vdev_bio_associate_blkg
563 #else
564 static inline void
565 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
566 {
567 #if defined(HAVE_BIO_BDEV_DISK)
568 	struct request_queue *q = bdev->bd_disk->queue;
569 #else
570 	struct request_queue *q = bio->bi_disk->queue;
571 #endif
572 	bio_clear_flag(bio, BIO_REMAPPED);
573 	if (bio->bi_bdev != bdev)
574 		bio_clear_flag(bio, BIO_THROTTLED);
575 	bio->bi_bdev = bdev;
576 
577 	ASSERT3P(q, !=, NULL);
578 	ASSERT3P(bio->bi_blkg, ==, NULL);
579 
580 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
581 		bio->bi_blkg = q->root_blkg;
582 }
583 #define	bio_set_dev		vdev_bio_set_dev
584 #endif
585 #endif
586 #else
587 /*
588  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
589  */
590 static inline void
591 bio_set_dev(struct bio *bio, struct block_device *bdev)
592 {
593 	bio->bi_bdev = bdev;
594 }
595 #endif /* HAVE_BIO_SET_DEV */
596 #endif /* !HAVE_BIO_ALLOC_4ARG */
597 
598 static inline void
599 vdev_submit_bio(struct bio *bio)
600 {
601 	struct bio_list *bio_list = current->bio_list;
602 	current->bio_list = NULL;
603 	vdev_submit_bio_impl(bio);
604 	current->bio_list = bio_list;
605 }
606 
607 static inline struct bio *
608 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
609     unsigned short nr_vecs)
610 {
611 	struct bio *bio;
612 
613 #ifdef HAVE_BIO_ALLOC_4ARG
614 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
615 #else
616 	bio = bio_alloc(gfp_mask, nr_vecs);
617 	if (likely(bio != NULL))
618 		bio_set_dev(bio, bdev);
619 #endif
620 
621 	return (bio);
622 }
623 
624 static inline unsigned int
625 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
626 {
627 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
628 	    bio_size, abd_offset);
629 
630 #ifdef HAVE_BIO_MAX_SEGS
631 	return (bio_max_segs(nr_segs));
632 #else
633 	return (MIN(nr_segs, BIO_MAX_PAGES));
634 #endif
635 }
636 
637 static int
638 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
639     size_t io_size, uint64_t io_offset, int rw, int flags)
640 {
641 	dio_request_t *dr;
642 	uint64_t abd_offset;
643 	uint64_t bio_offset;
644 	int bio_size;
645 	int bio_count = 16;
646 	int error = 0;
647 	struct blk_plug plug;
648 	unsigned short nr_vecs;
649 
650 	/*
651 	 * Accessing outside the block device is never allowed.
652 	 */
653 	if (io_offset + io_size > bdev->bd_inode->i_size) {
654 		vdev_dbgmsg(zio->io_vd,
655 		    "Illegal access %llu size %llu, device size %llu",
656 		    (u_longlong_t)io_offset,
657 		    (u_longlong_t)io_size,
658 		    (u_longlong_t)i_size_read(bdev->bd_inode));
659 		return (SET_ERROR(EIO));
660 	}
661 
662 retry:
663 	dr = vdev_disk_dio_alloc(bio_count);
664 
665 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
666 	    zio->io_vd->vdev_failfast == B_TRUE) {
667 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
668 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
669 	}
670 
671 	dr->dr_zio = zio;
672 
673 	/*
674 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
675 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
676 	 * can cover at least 128KB and at most 1MB.  When the required number
677 	 * of iovec's exceeds this, we are forced to break the IO in multiple
678 	 * bio's and wait for them all to complete.  This is likely if the
679 	 * recordsize property is increased beyond 1MB.  The default
680 	 * bio_count=16 should typically accommodate the maximum-size zio of
681 	 * 16MB.
682 	 */
683 
684 	abd_offset = 0;
685 	bio_offset = io_offset;
686 	bio_size = io_size;
687 	for (int i = 0; i <= dr->dr_bio_count; i++) {
688 
689 		/* Finished constructing bio's for given buffer */
690 		if (bio_size <= 0)
691 			break;
692 
693 		/*
694 		 * If additional bio's are required, we have to retry, but
695 		 * this should be rare - see the comment above.
696 		 */
697 		if (dr->dr_bio_count == i) {
698 			vdev_disk_dio_free(dr);
699 			bio_count *= 2;
700 			goto retry;
701 		}
702 
703 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
704 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
705 		if (unlikely(dr->dr_bio[i] == NULL)) {
706 			vdev_disk_dio_free(dr);
707 			return (SET_ERROR(ENOMEM));
708 		}
709 
710 		/* Matching put called by vdev_disk_physio_completion */
711 		vdev_disk_dio_get(dr);
712 
713 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
714 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
715 		dr->dr_bio[i]->bi_private = dr;
716 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
717 
718 		/* Remaining size is returned to become the new size */
719 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
720 		    bio_size, abd_offset);
721 
722 		/* Advance in buffer and construct another bio if needed */
723 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
724 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
725 	}
726 
727 	/* Extra reference to protect dio_request during vdev_submit_bio */
728 	vdev_disk_dio_get(dr);
729 
730 	if (dr->dr_bio_count > 1)
731 		blk_start_plug(&plug);
732 
733 	/* Submit all bio's associated with this dio */
734 	for (int i = 0; i < dr->dr_bio_count; i++) {
735 		if (dr->dr_bio[i])
736 			vdev_submit_bio(dr->dr_bio[i]);
737 	}
738 
739 	if (dr->dr_bio_count > 1)
740 		blk_finish_plug(&plug);
741 
742 	vdev_disk_dio_put(dr);
743 
744 	return (error);
745 }
746 
747 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
748 {
749 	zio_t *zio = bio->bi_private;
750 #ifdef HAVE_1ARG_BIO_END_IO_T
751 	zio->io_error = BIO_END_IO_ERROR(bio);
752 #else
753 	zio->io_error = -error;
754 #endif
755 
756 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
757 		zio->io_vd->vdev_nowritecache = B_TRUE;
758 
759 	bio_put(bio);
760 	ASSERT3S(zio->io_error, >=, 0);
761 	if (zio->io_error)
762 		vdev_disk_error(zio);
763 	zio_interrupt(zio);
764 }
765 
766 static int
767 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
768 {
769 	struct request_queue *q;
770 	struct bio *bio;
771 
772 	q = bdev_get_queue(bdev);
773 	if (!q)
774 		return (SET_ERROR(ENXIO));
775 
776 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
777 	if (unlikely(bio == NULL))
778 		return (SET_ERROR(ENOMEM));
779 
780 	bio->bi_end_io = vdev_disk_io_flush_completion;
781 	bio->bi_private = zio;
782 	bio_set_flush(bio);
783 	vdev_submit_bio(bio);
784 	invalidate_bdev(bdev);
785 
786 	return (0);
787 }
788 
789 static int
790 vdev_disk_io_trim(zio_t *zio)
791 {
792 	vdev_t *v = zio->io_vd;
793 	vdev_disk_t *vd = v->vdev_tsd;
794 
795 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
796 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
797 		return (-blkdev_issue_secure_erase(vd->vd_bdev,
798 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
799 	} else {
800 		return (-blkdev_issue_discard(vd->vd_bdev,
801 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
802 	}
803 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
804 	unsigned long trim_flags = 0;
805 #if defined(BLKDEV_DISCARD_SECURE)
806 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
807 		trim_flags |= BLKDEV_DISCARD_SECURE;
808 #endif
809 	return (-blkdev_issue_discard(vd->vd_bdev,
810 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
811 #else
812 #error "Unsupported kernel"
813 #endif
814 }
815 
816 static void
817 vdev_disk_io_start(zio_t *zio)
818 {
819 	vdev_t *v = zio->io_vd;
820 	vdev_disk_t *vd = v->vdev_tsd;
821 	int rw, error;
822 
823 	/*
824 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
825 	 * Nothing to be done here but return failure.
826 	 */
827 	if (vd == NULL) {
828 		zio->io_error = ENXIO;
829 		zio_interrupt(zio);
830 		return;
831 	}
832 
833 	rw_enter(&vd->vd_lock, RW_READER);
834 
835 	/*
836 	 * If the vdev is closed, it's likely due to a failed reopen and is
837 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
838 	 */
839 	if (vd->vd_bdev == NULL) {
840 		rw_exit(&vd->vd_lock);
841 		zio->io_error = ENXIO;
842 		zio_interrupt(zio);
843 		return;
844 	}
845 
846 	switch (zio->io_type) {
847 	case ZIO_TYPE_IOCTL:
848 
849 		if (!vdev_readable(v)) {
850 			rw_exit(&vd->vd_lock);
851 			zio->io_error = SET_ERROR(ENXIO);
852 			zio_interrupt(zio);
853 			return;
854 		}
855 
856 		switch (zio->io_cmd) {
857 		case DKIOCFLUSHWRITECACHE:
858 
859 			if (zfs_nocacheflush)
860 				break;
861 
862 			if (v->vdev_nowritecache) {
863 				zio->io_error = SET_ERROR(ENOTSUP);
864 				break;
865 			}
866 
867 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
868 			if (error == 0) {
869 				rw_exit(&vd->vd_lock);
870 				return;
871 			}
872 
873 			zio->io_error = error;
874 
875 			break;
876 
877 		default:
878 			zio->io_error = SET_ERROR(ENOTSUP);
879 		}
880 
881 		rw_exit(&vd->vd_lock);
882 		zio_execute(zio);
883 		return;
884 	case ZIO_TYPE_WRITE:
885 		rw = WRITE;
886 		break;
887 
888 	case ZIO_TYPE_READ:
889 		rw = READ;
890 		break;
891 
892 	case ZIO_TYPE_TRIM:
893 		zio->io_error = vdev_disk_io_trim(zio);
894 		rw_exit(&vd->vd_lock);
895 		zio_interrupt(zio);
896 		return;
897 
898 	default:
899 		rw_exit(&vd->vd_lock);
900 		zio->io_error = SET_ERROR(ENOTSUP);
901 		zio_interrupt(zio);
902 		return;
903 	}
904 
905 	zio->io_target_timestamp = zio_handle_io_delay(zio);
906 	error = __vdev_disk_physio(vd->vd_bdev, zio,
907 	    zio->io_size, zio->io_offset, rw, 0);
908 	rw_exit(&vd->vd_lock);
909 
910 	if (error) {
911 		zio->io_error = error;
912 		zio_interrupt(zio);
913 		return;
914 	}
915 }
916 
917 static void
918 vdev_disk_io_done(zio_t *zio)
919 {
920 	/*
921 	 * If the device returned EIO, we revalidate the media.  If it is
922 	 * determined the media has changed this triggers the asynchronous
923 	 * removal of the device from the configuration.
924 	 */
925 	if (zio->io_error == EIO) {
926 		vdev_t *v = zio->io_vd;
927 		vdev_disk_t *vd = v->vdev_tsd;
928 
929 		if (!zfs_check_disk_status(vd->vd_bdev)) {
930 			invalidate_bdev(vd->vd_bdev);
931 			v->vdev_remove_wanted = B_TRUE;
932 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
933 		}
934 	}
935 }
936 
937 static void
938 vdev_disk_hold(vdev_t *vd)
939 {
940 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
941 
942 	/* We must have a pathname, and it must be absolute. */
943 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
944 		return;
945 
946 	/*
947 	 * Only prefetch path and devid info if the device has
948 	 * never been opened.
949 	 */
950 	if (vd->vdev_tsd != NULL)
951 		return;
952 
953 }
954 
955 static void
956 vdev_disk_rele(vdev_t *vd)
957 {
958 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
959 
960 	/* XXX: Implement me as a vnode rele for the device */
961 }
962 
963 vdev_ops_t vdev_disk_ops = {
964 	.vdev_op_init = NULL,
965 	.vdev_op_fini = NULL,
966 	.vdev_op_open = vdev_disk_open,
967 	.vdev_op_close = vdev_disk_close,
968 	.vdev_op_asize = vdev_default_asize,
969 	.vdev_op_min_asize = vdev_default_min_asize,
970 	.vdev_op_min_alloc = NULL,
971 	.vdev_op_io_start = vdev_disk_io_start,
972 	.vdev_op_io_done = vdev_disk_io_done,
973 	.vdev_op_state_change = NULL,
974 	.vdev_op_need_resilver = NULL,
975 	.vdev_op_hold = vdev_disk_hold,
976 	.vdev_op_rele = vdev_disk_rele,
977 	.vdev_op_remap = NULL,
978 	.vdev_op_xlate = vdev_default_xlate,
979 	.vdev_op_rebuild_asize = NULL,
980 	.vdev_op_metaslab_init = NULL,
981 	.vdev_op_config_generate = NULL,
982 	.vdev_op_nparity = NULL,
983 	.vdev_op_ndisks = NULL,
984 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
985 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
986 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
987 };
988 
989 /*
990  * The zfs_vdev_scheduler module option has been deprecated. Setting this
991  * value no longer has any effect.  It has not yet been entirely removed
992  * to allow the module to be loaded if this option is specified in the
993  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
994  */
995 static int
996 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
997 {
998 	int error = param_set_charp(val, kp);
999 	if (error == 0) {
1000 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1001 		    "is not supported.\n");
1002 	}
1003 
1004 	return (error);
1005 }
1006 
1007 static const char *zfs_vdev_scheduler = "unused";
1008 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1009     param_get_charp, &zfs_vdev_scheduler, 0644);
1010 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1011 
1012 int
1013 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1014 {
1015 	uint_t val;
1016 	int error;
1017 
1018 	error = kstrtouint(buf, 0, &val);
1019 	if (error < 0)
1020 		return (SET_ERROR(error));
1021 
1022 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1023 		return (SET_ERROR(-EINVAL));
1024 
1025 	error = param_set_uint(buf, kp);
1026 	if (error < 0)
1027 		return (SET_ERROR(error));
1028 
1029 	return (0);
1030 }
1031 
1032 int
1033 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1034 {
1035 	uint_t val;
1036 	int error;
1037 
1038 	error = kstrtouint(buf, 0, &val);
1039 	if (error < 0)
1040 		return (SET_ERROR(error));
1041 
1042 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1043 		return (SET_ERROR(-EINVAL));
1044 
1045 	error = param_set_uint(buf, kp);
1046 	if (error < 0)
1047 		return (SET_ERROR(error));
1048 
1049 	return (0);
1050 }
1051 
1052 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1053 	"Timeout before determining that a device is missing");
1054 
1055 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1056 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1057