1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 
41 typedef struct vdev_disk {
42 	struct block_device		*vd_bdev;
43 	krwlock_t			vd_lock;
44 } vdev_disk_t;
45 
46 /*
47  * Unique identifier for the exclusive vdev holder.
48  */
49 static void *zfs_vdev_holder = VDEV_HOLDER;
50 
51 /*
52  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
53  * device is missing. The missing path may be transient since the links
54  * can be briefly removed and recreated in response to udev events.
55  */
56 static unsigned zfs_vdev_open_timeout_ms = 1000;
57 
58 /*
59  * Size of the "reserved" partition, in blocks.
60  */
61 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
62 
63 /*
64  * Virtual device vector for disks.
65  */
66 typedef struct dio_request {
67 	zio_t			*dr_zio;	/* Parent ZIO */
68 	atomic_t		dr_ref;		/* References */
69 	int			dr_error;	/* Bio error */
70 	int			dr_bio_count;	/* Count of bio's */
71 	struct bio		*dr_bio[0];	/* Attached bio's */
72 } dio_request_t;
73 
74 static fmode_t
75 vdev_bdev_mode(spa_mode_t spa_mode)
76 {
77 	fmode_t mode = 0;
78 
79 	if (spa_mode & SPA_MODE_READ)
80 		mode |= FMODE_READ;
81 
82 	if (spa_mode & SPA_MODE_WRITE)
83 		mode |= FMODE_WRITE;
84 
85 	return (mode);
86 }
87 
88 /*
89  * Returns the usable capacity (in bytes) for the partition or disk.
90  */
91 static uint64_t
92 bdev_capacity(struct block_device *bdev)
93 {
94 	return (i_size_read(bdev->bd_inode));
95 }
96 
97 #if !defined(HAVE_BDEV_WHOLE)
98 static inline struct block_device *
99 bdev_whole(struct block_device *bdev)
100 {
101 	return (bdev->bd_contains);
102 }
103 #endif
104 
105 /*
106  * Returns the maximum expansion capacity of the block device (in bytes).
107  *
108  * It is possible to expand a vdev when it has been created as a wholedisk
109  * and the containing block device has increased in capacity.  Or when the
110  * partition containing the pool has been manually increased in size.
111  *
112  * This function is only responsible for calculating the potential expansion
113  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
114  * responsible for verifying the expected partition layout in the wholedisk
115  * case, and updating the partition table if appropriate.  Once the partition
116  * size has been increased the additional capacity will be visible using
117  * bdev_capacity().
118  *
119  * The returned maximum expansion capacity is always expected to be larger, or
120  * at the very least equal, to its usable capacity to prevent overestimating
121  * the pool expandsize.
122  */
123 static uint64_t
124 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
125 {
126 	uint64_t psize;
127 	int64_t available;
128 
129 	if (wholedisk && bdev != bdev_whole(bdev)) {
130 		/*
131 		 * When reporting maximum expansion capacity for a wholedisk
132 		 * deduct any capacity which is expected to be lost due to
133 		 * alignment restrictions.  Over reporting this value isn't
134 		 * harmful and would only result in slightly less capacity
135 		 * than expected post expansion.
136 		 * The estimated available space may be slightly smaller than
137 		 * bdev_capacity() for devices where the number of sectors is
138 		 * not a multiple of the alignment size and the partition layout
139 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
140 		 * "reserved" EFI partition: in such cases return the device
141 		 * usable capacity.
142 		 */
143 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
144 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
145 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
146 		psize = MAX(available, bdev_capacity(bdev));
147 	} else {
148 		psize = bdev_capacity(bdev);
149 	}
150 
151 	return (psize);
152 }
153 
154 static void
155 vdev_disk_error(zio_t *zio)
156 {
157 	/*
158 	 * This function can be called in interrupt context, for instance while
159 	 * handling IRQs coming from a misbehaving disk device; use printk()
160 	 * which is safe from any context.
161 	 */
162 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
163 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
164 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
165 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
166 	    zio->io_flags);
167 }
168 
169 static int
170 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
171     uint64_t *logical_ashift, uint64_t *physical_ashift)
172 {
173 	struct block_device *bdev;
174 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
175 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
176 	vdev_disk_t *vd;
177 
178 	/* Must have a pathname and it must be absolute. */
179 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
180 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
181 		vdev_dbgmsg(v, "invalid vdev_path");
182 		return (SET_ERROR(EINVAL));
183 	}
184 
185 	/*
186 	 * Reopen the device if it is currently open.  When expanding a
187 	 * partition force re-scanning the partition table if userland
188 	 * did not take care of this already. We need to do this while closed
189 	 * in order to get an accurate updated block device size.  Then
190 	 * since udev may need to recreate the device links increase the
191 	 * open retry timeout before reporting the device as unavailable.
192 	 */
193 	vd = v->vdev_tsd;
194 	if (vd) {
195 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
196 		boolean_t reread_part = B_FALSE;
197 
198 		rw_enter(&vd->vd_lock, RW_WRITER);
199 		bdev = vd->vd_bdev;
200 		vd->vd_bdev = NULL;
201 
202 		if (bdev) {
203 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
204 				bdevname(bdev_whole(bdev), disk_name + 5);
205 				/*
206 				 * If userland has BLKPG_RESIZE_PARTITION,
207 				 * then it should have updated the partition
208 				 * table already. We can detect this by
209 				 * comparing our current physical size
210 				 * with that of the device. If they are
211 				 * the same, then we must not have
212 				 * BLKPG_RESIZE_PARTITION or it failed to
213 				 * update the partition table online. We
214 				 * fallback to rescanning the partition
215 				 * table from the kernel below. However,
216 				 * if the capacity already reflects the
217 				 * updated partition, then we skip
218 				 * rescanning the partition table here.
219 				 */
220 				if (v->vdev_psize == bdev_capacity(bdev))
221 					reread_part = B_TRUE;
222 			}
223 
224 			blkdev_put(bdev, mode | FMODE_EXCL);
225 		}
226 
227 		if (reread_part) {
228 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
229 			    zfs_vdev_holder);
230 			if (!IS_ERR(bdev)) {
231 				int error = vdev_bdev_reread_part(bdev);
232 				blkdev_put(bdev, mode | FMODE_EXCL);
233 				if (error == 0) {
234 					timeout = MSEC2NSEC(
235 					    zfs_vdev_open_timeout_ms * 2);
236 				}
237 			}
238 		}
239 	} else {
240 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
241 
242 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
243 		rw_enter(&vd->vd_lock, RW_WRITER);
244 	}
245 
246 	/*
247 	 * Devices are always opened by the path provided at configuration
248 	 * time.  This means that if the provided path is a udev by-id path
249 	 * then drives may be re-cabled without an issue.  If the provided
250 	 * path is a udev by-path path, then the physical location information
251 	 * will be preserved.  This can be critical for more complicated
252 	 * configurations where drives are located in specific physical
253 	 * locations to maximize the systems tolerance to component failure.
254 	 *
255 	 * Alternatively, you can provide your own udev rule to flexibly map
256 	 * the drives as you see fit.  It is not advised that you use the
257 	 * /dev/[hd]d devices which may be reordered due to probing order.
258 	 * Devices in the wrong locations will be detected by the higher
259 	 * level vdev validation.
260 	 *
261 	 * The specified paths may be briefly removed and recreated in
262 	 * response to udev events.  This should be exceptionally unlikely
263 	 * because the zpool command makes every effort to verify these paths
264 	 * have already settled prior to reaching this point.  Therefore,
265 	 * a ENOENT failure at this point is highly likely to be transient
266 	 * and it is reasonable to sleep and retry before giving up.  In
267 	 * practice delays have been observed to be on the order of 100ms.
268 	 */
269 	hrtime_t start = gethrtime();
270 	bdev = ERR_PTR(-ENXIO);
271 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
272 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
273 		    zfs_vdev_holder);
274 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
275 			schedule_timeout(MSEC_TO_TICK(10));
276 		} else if (IS_ERR(bdev)) {
277 			break;
278 		}
279 	}
280 
281 	if (IS_ERR(bdev)) {
282 		int error = -PTR_ERR(bdev);
283 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
284 		    (u_longlong_t)(gethrtime() - start),
285 		    (u_longlong_t)timeout);
286 		vd->vd_bdev = NULL;
287 		v->vdev_tsd = vd;
288 		rw_exit(&vd->vd_lock);
289 		return (SET_ERROR(error));
290 	} else {
291 		vd->vd_bdev = bdev;
292 		v->vdev_tsd = vd;
293 		rw_exit(&vd->vd_lock);
294 	}
295 
296 	struct request_queue *q = bdev_get_queue(vd->vd_bdev);
297 
298 	/*  Determine the physical block size */
299 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
300 
301 	/*  Determine the logical block size */
302 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
303 
304 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
305 	v->vdev_nowritecache = B_FALSE;
306 
307 	/* Set when device reports it supports TRIM. */
308 	v->vdev_has_trim = !!blk_queue_discard(q);
309 
310 	/* Set when device reports it supports secure TRIM. */
311 	v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
312 
313 	/* Inform the ZIO pipeline that we are non-rotational */
314 	v->vdev_nonrot = blk_queue_nonrot(q);
315 
316 	/* Physical volume size in bytes for the partition */
317 	*psize = bdev_capacity(vd->vd_bdev);
318 
319 	/* Physical volume size in bytes including possible expansion space */
320 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
321 
322 	/* Based on the minimum sector size set the block size */
323 	*physical_ashift = highbit64(MAX(physical_block_size,
324 	    SPA_MINBLOCKSIZE)) - 1;
325 
326 	*logical_ashift = highbit64(MAX(logical_block_size,
327 	    SPA_MINBLOCKSIZE)) - 1;
328 
329 	return (0);
330 }
331 
332 static void
333 vdev_disk_close(vdev_t *v)
334 {
335 	vdev_disk_t *vd = v->vdev_tsd;
336 
337 	if (v->vdev_reopening || vd == NULL)
338 		return;
339 
340 	if (vd->vd_bdev != NULL) {
341 		blkdev_put(vd->vd_bdev,
342 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
343 	}
344 
345 	rw_destroy(&vd->vd_lock);
346 	kmem_free(vd, sizeof (vdev_disk_t));
347 	v->vdev_tsd = NULL;
348 }
349 
350 static dio_request_t *
351 vdev_disk_dio_alloc(int bio_count)
352 {
353 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
354 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
355 	atomic_set(&dr->dr_ref, 0);
356 	dr->dr_bio_count = bio_count;
357 	dr->dr_error = 0;
358 
359 	for (int i = 0; i < dr->dr_bio_count; i++)
360 		dr->dr_bio[i] = NULL;
361 
362 	return (dr);
363 }
364 
365 static void
366 vdev_disk_dio_free(dio_request_t *dr)
367 {
368 	int i;
369 
370 	for (i = 0; i < dr->dr_bio_count; i++)
371 		if (dr->dr_bio[i])
372 			bio_put(dr->dr_bio[i]);
373 
374 	kmem_free(dr, sizeof (dio_request_t) +
375 	    sizeof (struct bio *) * dr->dr_bio_count);
376 }
377 
378 static void
379 vdev_disk_dio_get(dio_request_t *dr)
380 {
381 	atomic_inc(&dr->dr_ref);
382 }
383 
384 static int
385 vdev_disk_dio_put(dio_request_t *dr)
386 {
387 	int rc = atomic_dec_return(&dr->dr_ref);
388 
389 	/*
390 	 * Free the dio_request when the last reference is dropped and
391 	 * ensure zio_interpret is called only once with the correct zio
392 	 */
393 	if (rc == 0) {
394 		zio_t *zio = dr->dr_zio;
395 		int error = dr->dr_error;
396 
397 		vdev_disk_dio_free(dr);
398 
399 		if (zio) {
400 			zio->io_error = error;
401 			ASSERT3S(zio->io_error, >=, 0);
402 			if (zio->io_error)
403 				vdev_disk_error(zio);
404 
405 			zio_delay_interrupt(zio);
406 		}
407 	}
408 
409 	return (rc);
410 }
411 
412 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
413 {
414 	dio_request_t *dr = bio->bi_private;
415 	int rc;
416 
417 	if (dr->dr_error == 0) {
418 #ifdef HAVE_1ARG_BIO_END_IO_T
419 		dr->dr_error = BIO_END_IO_ERROR(bio);
420 #else
421 		if (error)
422 			dr->dr_error = -(error);
423 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
424 			dr->dr_error = EIO;
425 #endif
426 	}
427 
428 	/* Drop reference acquired by __vdev_disk_physio */
429 	rc = vdev_disk_dio_put(dr);
430 }
431 
432 static inline void
433 vdev_submit_bio_impl(struct bio *bio)
434 {
435 #ifdef HAVE_1ARG_SUBMIT_BIO
436 	(void) submit_bio(bio);
437 #else
438 	(void) submit_bio(0, bio);
439 #endif
440 }
441 
442 /*
443  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
444  * replace it with preempt_schedule under the following condition:
445  */
446 #if defined(CONFIG_ARM64) && \
447     defined(CONFIG_PREEMPTION) && \
448     defined(CONFIG_BLK_CGROUP)
449 #define	preempt_schedule_notrace(x) preempt_schedule(x)
450 #endif
451 
452 #ifdef HAVE_BIO_SET_DEV
453 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
454 /*
455  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
456  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
457  * As a side effect the function was converted to GPL-only.  Define our
458  * own version when needed which uses rcu_read_lock_sched().
459  */
460 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
461 static inline bool
462 vdev_blkg_tryget(struct blkcg_gq *blkg)
463 {
464 	struct percpu_ref *ref = &blkg->refcnt;
465 	unsigned long __percpu *count;
466 	bool rc;
467 
468 	rcu_read_lock_sched();
469 
470 	if (__ref_is_percpu(ref, &count)) {
471 		this_cpu_inc(*count);
472 		rc = true;
473 	} else {
474 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
475 		rc = atomic_long_inc_not_zero(&ref->data->count);
476 #else
477 		rc = atomic_long_inc_not_zero(&ref->count);
478 #endif
479 	}
480 
481 	rcu_read_unlock_sched();
482 
483 	return (rc);
484 }
485 #elif defined(HAVE_BLKG_TRYGET)
486 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
487 #endif
488 /*
489  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
490  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
491  * the entire macro.  Provide a minimal version which always assigns the
492  * request queue's root_blkg to the bio.
493  */
494 static inline void
495 vdev_bio_associate_blkg(struct bio *bio)
496 {
497 #if defined(HAVE_BIO_BDEV_DISK)
498 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
499 #else
500 	struct request_queue *q = bio->bi_disk->queue;
501 #endif
502 
503 	ASSERT3P(q, !=, NULL);
504 	ASSERT3P(bio->bi_blkg, ==, NULL);
505 
506 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
507 		bio->bi_blkg = q->root_blkg;
508 }
509 #define	bio_associate_blkg vdev_bio_associate_blkg
510 #endif
511 #else
512 /*
513  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
514  */
515 static inline void
516 bio_set_dev(struct bio *bio, struct block_device *bdev)
517 {
518 	bio->bi_bdev = bdev;
519 }
520 #endif /* HAVE_BIO_SET_DEV */
521 
522 static inline void
523 vdev_submit_bio(struct bio *bio)
524 {
525 	struct bio_list *bio_list = current->bio_list;
526 	current->bio_list = NULL;
527 	vdev_submit_bio_impl(bio);
528 	current->bio_list = bio_list;
529 }
530 
531 static int
532 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
533     size_t io_size, uint64_t io_offset, int rw, int flags)
534 {
535 	dio_request_t *dr;
536 	uint64_t abd_offset;
537 	uint64_t bio_offset;
538 	int bio_size;
539 	int bio_count = 16;
540 	int error = 0;
541 	struct blk_plug plug;
542 
543 	/*
544 	 * Accessing outside the block device is never allowed.
545 	 */
546 	if (io_offset + io_size > bdev->bd_inode->i_size) {
547 		vdev_dbgmsg(zio->io_vd,
548 		    "Illegal access %llu size %llu, device size %llu",
549 		    (u_longlong_t)io_offset,
550 		    (u_longlong_t)io_size,
551 		    (u_longlong_t)i_size_read(bdev->bd_inode));
552 		return (SET_ERROR(EIO));
553 	}
554 
555 retry:
556 	dr = vdev_disk_dio_alloc(bio_count);
557 
558 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
559 		bio_set_flags_failfast(bdev, &flags);
560 
561 	dr->dr_zio = zio;
562 
563 	/*
564 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
565 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
566 	 * can cover at least 128KB and at most 1MB.  When the required number
567 	 * of iovec's exceeds this, we are forced to break the IO in multiple
568 	 * bio's and wait for them all to complete.  This is likely if the
569 	 * recordsize property is increased beyond 1MB.  The default
570 	 * bio_count=16 should typically accommodate the maximum-size zio of
571 	 * 16MB.
572 	 */
573 
574 	abd_offset = 0;
575 	bio_offset = io_offset;
576 	bio_size = io_size;
577 	for (int i = 0; i <= dr->dr_bio_count; i++) {
578 
579 		/* Finished constructing bio's for given buffer */
580 		if (bio_size <= 0)
581 			break;
582 
583 		/*
584 		 * If additional bio's are required, we have to retry, but
585 		 * this should be rare - see the comment above.
586 		 */
587 		if (dr->dr_bio_count == i) {
588 			vdev_disk_dio_free(dr);
589 			bio_count *= 2;
590 			goto retry;
591 		}
592 
593 		/* bio_alloc() with __GFP_WAIT never returns NULL */
594 #ifdef HAVE_BIO_MAX_SEGS
595 		dr->dr_bio[i] = bio_alloc(GFP_NOIO, bio_max_segs(
596 		    abd_nr_pages_off(zio->io_abd, bio_size, abd_offset)));
597 #else
598 		dr->dr_bio[i] = bio_alloc(GFP_NOIO,
599 		    MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
600 		    BIO_MAX_PAGES));
601 #endif
602 		if (unlikely(dr->dr_bio[i] == NULL)) {
603 			vdev_disk_dio_free(dr);
604 			return (SET_ERROR(ENOMEM));
605 		}
606 
607 		/* Matching put called by vdev_disk_physio_completion */
608 		vdev_disk_dio_get(dr);
609 
610 		bio_set_dev(dr->dr_bio[i], bdev);
611 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
612 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
613 		dr->dr_bio[i]->bi_private = dr;
614 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
615 
616 		/* Remaining size is returned to become the new size */
617 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
618 		    bio_size, abd_offset);
619 
620 		/* Advance in buffer and construct another bio if needed */
621 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
622 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
623 	}
624 
625 	/* Extra reference to protect dio_request during vdev_submit_bio */
626 	vdev_disk_dio_get(dr);
627 
628 	if (dr->dr_bio_count > 1)
629 		blk_start_plug(&plug);
630 
631 	/* Submit all bio's associated with this dio */
632 	for (int i = 0; i < dr->dr_bio_count; i++) {
633 		if (dr->dr_bio[i])
634 			vdev_submit_bio(dr->dr_bio[i]);
635 	}
636 
637 	if (dr->dr_bio_count > 1)
638 		blk_finish_plug(&plug);
639 
640 	(void) vdev_disk_dio_put(dr);
641 
642 	return (error);
643 }
644 
645 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
646 {
647 	zio_t *zio = bio->bi_private;
648 #ifdef HAVE_1ARG_BIO_END_IO_T
649 	zio->io_error = BIO_END_IO_ERROR(bio);
650 #else
651 	zio->io_error = -error;
652 #endif
653 
654 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
655 		zio->io_vd->vdev_nowritecache = B_TRUE;
656 
657 	bio_put(bio);
658 	ASSERT3S(zio->io_error, >=, 0);
659 	if (zio->io_error)
660 		vdev_disk_error(zio);
661 	zio_interrupt(zio);
662 }
663 
664 static int
665 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
666 {
667 	struct request_queue *q;
668 	struct bio *bio;
669 
670 	q = bdev_get_queue(bdev);
671 	if (!q)
672 		return (SET_ERROR(ENXIO));
673 
674 	bio = bio_alloc(GFP_NOIO, 0);
675 	/* bio_alloc() with __GFP_WAIT never returns NULL */
676 	if (unlikely(bio == NULL))
677 		return (SET_ERROR(ENOMEM));
678 
679 	bio->bi_end_io = vdev_disk_io_flush_completion;
680 	bio->bi_private = zio;
681 	bio_set_dev(bio, bdev);
682 	bio_set_flush(bio);
683 	vdev_submit_bio(bio);
684 	invalidate_bdev(bdev);
685 
686 	return (0);
687 }
688 
689 static void
690 vdev_disk_io_start(zio_t *zio)
691 {
692 	vdev_t *v = zio->io_vd;
693 	vdev_disk_t *vd = v->vdev_tsd;
694 	unsigned long trim_flags = 0;
695 	int rw, error;
696 
697 	/*
698 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
699 	 * Nothing to be done here but return failure.
700 	 */
701 	if (vd == NULL) {
702 		zio->io_error = ENXIO;
703 		zio_interrupt(zio);
704 		return;
705 	}
706 
707 	rw_enter(&vd->vd_lock, RW_READER);
708 
709 	/*
710 	 * If the vdev is closed, it's likely due to a failed reopen and is
711 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
712 	 */
713 	if (vd->vd_bdev == NULL) {
714 		rw_exit(&vd->vd_lock);
715 		zio->io_error = ENXIO;
716 		zio_interrupt(zio);
717 		return;
718 	}
719 
720 	switch (zio->io_type) {
721 	case ZIO_TYPE_IOCTL:
722 
723 		if (!vdev_readable(v)) {
724 			rw_exit(&vd->vd_lock);
725 			zio->io_error = SET_ERROR(ENXIO);
726 			zio_interrupt(zio);
727 			return;
728 		}
729 
730 		switch (zio->io_cmd) {
731 		case DKIOCFLUSHWRITECACHE:
732 
733 			if (zfs_nocacheflush)
734 				break;
735 
736 			if (v->vdev_nowritecache) {
737 				zio->io_error = SET_ERROR(ENOTSUP);
738 				break;
739 			}
740 
741 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
742 			if (error == 0) {
743 				rw_exit(&vd->vd_lock);
744 				return;
745 			}
746 
747 			zio->io_error = error;
748 
749 			break;
750 
751 		default:
752 			zio->io_error = SET_ERROR(ENOTSUP);
753 		}
754 
755 		rw_exit(&vd->vd_lock);
756 		zio_execute(zio);
757 		return;
758 	case ZIO_TYPE_WRITE:
759 		rw = WRITE;
760 		break;
761 
762 	case ZIO_TYPE_READ:
763 		rw = READ;
764 		break;
765 
766 	case ZIO_TYPE_TRIM:
767 #if defined(BLKDEV_DISCARD_SECURE)
768 		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
769 			trim_flags |= BLKDEV_DISCARD_SECURE;
770 #endif
771 		zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
772 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
773 		    trim_flags);
774 
775 		rw_exit(&vd->vd_lock);
776 		zio_interrupt(zio);
777 		return;
778 
779 	default:
780 		rw_exit(&vd->vd_lock);
781 		zio->io_error = SET_ERROR(ENOTSUP);
782 		zio_interrupt(zio);
783 		return;
784 	}
785 
786 	zio->io_target_timestamp = zio_handle_io_delay(zio);
787 	error = __vdev_disk_physio(vd->vd_bdev, zio,
788 	    zio->io_size, zio->io_offset, rw, 0);
789 	rw_exit(&vd->vd_lock);
790 
791 	if (error) {
792 		zio->io_error = error;
793 		zio_interrupt(zio);
794 		return;
795 	}
796 }
797 
798 static void
799 vdev_disk_io_done(zio_t *zio)
800 {
801 	/*
802 	 * If the device returned EIO, we revalidate the media.  If it is
803 	 * determined the media has changed this triggers the asynchronous
804 	 * removal of the device from the configuration.
805 	 */
806 	if (zio->io_error == EIO) {
807 		vdev_t *v = zio->io_vd;
808 		vdev_disk_t *vd = v->vdev_tsd;
809 
810 		if (zfs_check_media_change(vd->vd_bdev)) {
811 			invalidate_bdev(vd->vd_bdev);
812 			v->vdev_remove_wanted = B_TRUE;
813 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
814 		}
815 	}
816 }
817 
818 static void
819 vdev_disk_hold(vdev_t *vd)
820 {
821 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
822 
823 	/* We must have a pathname, and it must be absolute. */
824 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
825 		return;
826 
827 	/*
828 	 * Only prefetch path and devid info if the device has
829 	 * never been opened.
830 	 */
831 	if (vd->vdev_tsd != NULL)
832 		return;
833 
834 }
835 
836 static void
837 vdev_disk_rele(vdev_t *vd)
838 {
839 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
840 
841 	/* XXX: Implement me as a vnode rele for the device */
842 }
843 
844 vdev_ops_t vdev_disk_ops = {
845 	.vdev_op_init = NULL,
846 	.vdev_op_fini = NULL,
847 	.vdev_op_open = vdev_disk_open,
848 	.vdev_op_close = vdev_disk_close,
849 	.vdev_op_asize = vdev_default_asize,
850 	.vdev_op_min_asize = vdev_default_min_asize,
851 	.vdev_op_min_alloc = NULL,
852 	.vdev_op_io_start = vdev_disk_io_start,
853 	.vdev_op_io_done = vdev_disk_io_done,
854 	.vdev_op_state_change = NULL,
855 	.vdev_op_need_resilver = NULL,
856 	.vdev_op_hold = vdev_disk_hold,
857 	.vdev_op_rele = vdev_disk_rele,
858 	.vdev_op_remap = NULL,
859 	.vdev_op_xlate = vdev_default_xlate,
860 	.vdev_op_rebuild_asize = NULL,
861 	.vdev_op_metaslab_init = NULL,
862 	.vdev_op_config_generate = NULL,
863 	.vdev_op_nparity = NULL,
864 	.vdev_op_ndisks = NULL,
865 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
866 	.vdev_op_leaf = B_TRUE			/* leaf vdev */
867 };
868 
869 /*
870  * The zfs_vdev_scheduler module option has been deprecated. Setting this
871  * value no longer has any effect.  It has not yet been entirely removed
872  * to allow the module to be loaded if this option is specified in the
873  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
874  */
875 static int
876 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
877 {
878 	int error = param_set_charp(val, kp);
879 	if (error == 0) {
880 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
881 		    "is not supported.\n");
882 	}
883 
884 	return (error);
885 }
886 
887 char *zfs_vdev_scheduler = "unused";
888 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
889     param_get_charp, &zfs_vdev_scheduler, 0644);
890 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
891 
892 int
893 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
894 {
895 	uint64_t val;
896 	int error;
897 
898 	error = kstrtoull(buf, 0, &val);
899 	if (error < 0)
900 		return (SET_ERROR(error));
901 
902 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
903 		return (SET_ERROR(-EINVAL));
904 
905 	error = param_set_ulong(buf, kp);
906 	if (error < 0)
907 		return (SET_ERROR(error));
908 
909 	return (0);
910 }
911 
912 int
913 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
914 {
915 	uint64_t val;
916 	int error;
917 
918 	error = kstrtoull(buf, 0, &val);
919 	if (error < 0)
920 		return (SET_ERROR(error));
921 
922 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
923 		return (SET_ERROR(-EINVAL));
924 
925 	error = param_set_ulong(buf, kp);
926 	if (error < 0)
927 		return (SET_ERROR(error));
928 
929 	return (0);
930 }
931