1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2023, 2024, Klara Inc.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_disk.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
35 #include <sys/abd.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zio.h>
38 #include <linux/blkpg.h>
39 #include <linux/msdos_fs.h>
40 #include <linux/vfs_compat.h>
41 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
42 #include <linux/blk-cgroup.h>
43 #endif
44 
45 /*
46  * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
47  * block_device. Since it carries the block_device inside, its convenient to
48  * just use the handle as a proxy.
49  *
50  * Linux 6.9.x uses a file for the same purpose.
51  *
52  * For pre-6.8, we just emulate this with a cast, since we don't need any of
53  * the other fields inside the handle.
54  */
55 #if defined(HAVE_BDEV_OPEN_BY_PATH)
56 typedef struct bdev_handle zfs_bdev_handle_t;
57 #define	BDH_BDEV(bdh)		((bdh)->bdev)
58 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
59 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
60 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
61 #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
62 typedef struct file zfs_bdev_handle_t;
63 #define	BDH_BDEV(bdh)		(file_bdev(bdh))
64 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
65 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
66 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
67 #else
68 typedef void zfs_bdev_handle_t;
69 #define	BDH_BDEV(bdh)		((struct block_device *)bdh)
70 #define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
71 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
72 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
73 #endif
74 
75 typedef struct vdev_disk {
76 	zfs_bdev_handle_t		*vd_bdh;
77 	krwlock_t			vd_lock;
78 } vdev_disk_t;
79 
80 /*
81  * Maximum number of segments to add to a bio (min 4). If this is higher than
82  * the maximum allowed by the device queue or the kernel itself, it will be
83  * clamped. Setting it to zero will cause the kernel's ideal size to be used.
84  */
85 uint_t zfs_vdev_disk_max_segs = 0;
86 
87 /*
88  * Unique identifier for the exclusive vdev holder.
89  */
90 static void *zfs_vdev_holder = VDEV_HOLDER;
91 
92 /*
93  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
94  * device is missing. The missing path may be transient since the links
95  * can be briefly removed and recreated in response to udev events.
96  */
97 static uint_t zfs_vdev_open_timeout_ms = 1000;
98 
99 /*
100  * Size of the "reserved" partition, in blocks.
101  */
102 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
103 
104 /*
105  * BIO request failfast mask.
106  */
107 
108 static unsigned int zfs_vdev_failfast_mask = 1;
109 
110 /*
111  * Convert SPA mode flags into bdev open mode flags.
112  */
113 #ifdef HAVE_BLK_MODE_T
114 typedef blk_mode_t vdev_bdev_mode_t;
115 #define	VDEV_BDEV_MODE_READ	BLK_OPEN_READ
116 #define	VDEV_BDEV_MODE_WRITE	BLK_OPEN_WRITE
117 #define	VDEV_BDEV_MODE_EXCL	BLK_OPEN_EXCL
118 #define	VDEV_BDEV_MODE_MASK	(BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
119 #else
120 typedef fmode_t vdev_bdev_mode_t;
121 #define	VDEV_BDEV_MODE_READ	FMODE_READ
122 #define	VDEV_BDEV_MODE_WRITE	FMODE_WRITE
123 #define	VDEV_BDEV_MODE_EXCL	FMODE_EXCL
124 #define	VDEV_BDEV_MODE_MASK	(FMODE_READ|FMODE_WRITE|FMODE_EXCL)
125 #endif
126 
127 static vdev_bdev_mode_t
128 vdev_bdev_mode(spa_mode_t smode)
129 {
130 	ASSERT3U(smode, !=, SPA_MODE_UNINIT);
131 	ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
132 
133 	vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
134 
135 	if (smode & SPA_MODE_READ)
136 		bmode |= VDEV_BDEV_MODE_READ;
137 
138 	if (smode & SPA_MODE_WRITE)
139 		bmode |= VDEV_BDEV_MODE_WRITE;
140 
141 	ASSERT(bmode & VDEV_BDEV_MODE_MASK);
142 	ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
143 
144 	return (bmode);
145 }
146 
147 /*
148  * Returns the usable capacity (in bytes) for the partition or disk.
149  */
150 static uint64_t
151 bdev_capacity(struct block_device *bdev)
152 {
153 	return (i_size_read(bdev->bd_inode));
154 }
155 
156 #if !defined(HAVE_BDEV_WHOLE)
157 static inline struct block_device *
158 bdev_whole(struct block_device *bdev)
159 {
160 	return (bdev->bd_contains);
161 }
162 #endif
163 
164 #if defined(HAVE_BDEVNAME)
165 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
166 #else
167 static inline void
168 vdev_bdevname(struct block_device *bdev, char *name)
169 {
170 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
171 }
172 #endif
173 
174 /*
175  * Returns the maximum expansion capacity of the block device (in bytes).
176  *
177  * It is possible to expand a vdev when it has been created as a wholedisk
178  * and the containing block device has increased in capacity.  Or when the
179  * partition containing the pool has been manually increased in size.
180  *
181  * This function is only responsible for calculating the potential expansion
182  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
183  * responsible for verifying the expected partition layout in the wholedisk
184  * case, and updating the partition table if appropriate.  Once the partition
185  * size has been increased the additional capacity will be visible using
186  * bdev_capacity().
187  *
188  * The returned maximum expansion capacity is always expected to be larger, or
189  * at the very least equal, to its usable capacity to prevent overestimating
190  * the pool expandsize.
191  */
192 static uint64_t
193 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
194 {
195 	uint64_t psize;
196 	int64_t available;
197 
198 	if (wholedisk && bdev != bdev_whole(bdev)) {
199 		/*
200 		 * When reporting maximum expansion capacity for a wholedisk
201 		 * deduct any capacity which is expected to be lost due to
202 		 * alignment restrictions.  Over reporting this value isn't
203 		 * harmful and would only result in slightly less capacity
204 		 * than expected post expansion.
205 		 * The estimated available space may be slightly smaller than
206 		 * bdev_capacity() for devices where the number of sectors is
207 		 * not a multiple of the alignment size and the partition layout
208 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
209 		 * "reserved" EFI partition: in such cases return the device
210 		 * usable capacity.
211 		 */
212 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
213 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
214 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
215 		psize = MAX(available, bdev_capacity(bdev));
216 	} else {
217 		psize = bdev_capacity(bdev);
218 	}
219 
220 	return (psize);
221 }
222 
223 static void
224 vdev_disk_error(zio_t *zio)
225 {
226 	/*
227 	 * This function can be called in interrupt context, for instance while
228 	 * handling IRQs coming from a misbehaving disk device; use printk()
229 	 * which is safe from any context.
230 	 */
231 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
232 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
233 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
234 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
235 	    zio->io_flags);
236 }
237 
238 static void
239 vdev_disk_kobj_evt_post(vdev_t *v)
240 {
241 	vdev_disk_t *vd = v->vdev_tsd;
242 	if (vd && vd->vd_bdh) {
243 		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
244 	} else {
245 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
246 		    v->vdev_path);
247 	}
248 }
249 
250 static zfs_bdev_handle_t *
251 vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
252 {
253 	vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
254 
255 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
256 	return (bdev_file_open_by_path(path, bmode, holder, NULL));
257 #elif defined(HAVE_BDEV_OPEN_BY_PATH)
258 	return (bdev_open_by_path(path, bmode, holder, NULL));
259 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
260 	return (blkdev_get_by_path(path, bmode, holder, NULL));
261 #else
262 	return (blkdev_get_by_path(path, bmode, holder));
263 #endif
264 }
265 
266 static void
267 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
268 {
269 #if defined(HAVE_BDEV_RELEASE)
270 	return (bdev_release(bdh));
271 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
272 	return (blkdev_put(BDH_BDEV(bdh), holder));
273 #elif defined(HAVE_BLKDEV_PUT)
274 	return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
275 #else
276 	fput(bdh);
277 #endif
278 }
279 
280 static int
281 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
282     uint64_t *logical_ashift, uint64_t *physical_ashift)
283 {
284 	zfs_bdev_handle_t *bdh;
285 	spa_mode_t smode = spa_mode(v->vdev_spa);
286 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
287 	vdev_disk_t *vd;
288 
289 	/* Must have a pathname and it must be absolute. */
290 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
291 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
292 		vdev_dbgmsg(v, "invalid vdev_path");
293 		return (SET_ERROR(EINVAL));
294 	}
295 
296 	/*
297 	 * Reopen the device if it is currently open.  When expanding a
298 	 * partition force re-scanning the partition table if userland
299 	 * did not take care of this already. We need to do this while closed
300 	 * in order to get an accurate updated block device size.  Then
301 	 * since udev may need to recreate the device links increase the
302 	 * open retry timeout before reporting the device as unavailable.
303 	 */
304 	vd = v->vdev_tsd;
305 	if (vd) {
306 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
307 		boolean_t reread_part = B_FALSE;
308 
309 		rw_enter(&vd->vd_lock, RW_WRITER);
310 		bdh = vd->vd_bdh;
311 		vd->vd_bdh = NULL;
312 
313 		if (bdh) {
314 			struct block_device *bdev = BDH_BDEV(bdh);
315 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
316 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
317 				/*
318 				 * If userland has BLKPG_RESIZE_PARTITION,
319 				 * then it should have updated the partition
320 				 * table already. We can detect this by
321 				 * comparing our current physical size
322 				 * with that of the device. If they are
323 				 * the same, then we must not have
324 				 * BLKPG_RESIZE_PARTITION or it failed to
325 				 * update the partition table online. We
326 				 * fallback to rescanning the partition
327 				 * table from the kernel below. However,
328 				 * if the capacity already reflects the
329 				 * updated partition, then we skip
330 				 * rescanning the partition table here.
331 				 */
332 				if (v->vdev_psize == bdev_capacity(bdev))
333 					reread_part = B_TRUE;
334 			}
335 
336 			vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
337 		}
338 
339 		if (reread_part) {
340 			bdh = vdev_blkdev_get_by_path(disk_name, smode,
341 			    zfs_vdev_holder);
342 			if (!BDH_IS_ERR(bdh)) {
343 				int error =
344 				    vdev_bdev_reread_part(BDH_BDEV(bdh));
345 				vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
346 				if (error == 0) {
347 					timeout = MSEC2NSEC(
348 					    zfs_vdev_open_timeout_ms * 2);
349 				}
350 			}
351 		}
352 	} else {
353 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
354 
355 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
356 		rw_enter(&vd->vd_lock, RW_WRITER);
357 	}
358 
359 	/*
360 	 * Devices are always opened by the path provided at configuration
361 	 * time.  This means that if the provided path is a udev by-id path
362 	 * then drives may be re-cabled without an issue.  If the provided
363 	 * path is a udev by-path path, then the physical location information
364 	 * will be preserved.  This can be critical for more complicated
365 	 * configurations where drives are located in specific physical
366 	 * locations to maximize the systems tolerance to component failure.
367 	 *
368 	 * Alternatively, you can provide your own udev rule to flexibly map
369 	 * the drives as you see fit.  It is not advised that you use the
370 	 * /dev/[hd]d devices which may be reordered due to probing order.
371 	 * Devices in the wrong locations will be detected by the higher
372 	 * level vdev validation.
373 	 *
374 	 * The specified paths may be briefly removed and recreated in
375 	 * response to udev events.  This should be exceptionally unlikely
376 	 * because the zpool command makes every effort to verify these paths
377 	 * have already settled prior to reaching this point.  Therefore,
378 	 * a ENOENT failure at this point is highly likely to be transient
379 	 * and it is reasonable to sleep and retry before giving up.  In
380 	 * practice delays have been observed to be on the order of 100ms.
381 	 *
382 	 * When ERESTARTSYS is returned it indicates the block device is
383 	 * a zvol which could not be opened due to the deadlock detection
384 	 * logic in zvol_open().  Extend the timeout and retry the open
385 	 * subsequent attempts are expected to eventually succeed.
386 	 */
387 	hrtime_t start = gethrtime();
388 	bdh = BDH_ERR_PTR(-ENXIO);
389 	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
390 		bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
391 		    zfs_vdev_holder);
392 		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
393 			/*
394 			 * There is no point of waiting since device is removed
395 			 * explicitly
396 			 */
397 			if (v->vdev_removed)
398 				break;
399 
400 			schedule_timeout(MSEC_TO_TICK(10));
401 		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
402 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
403 			continue;
404 		} else if (BDH_IS_ERR(bdh)) {
405 			break;
406 		}
407 	}
408 
409 	if (BDH_IS_ERR(bdh)) {
410 		int error = -BDH_PTR_ERR(bdh);
411 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
412 		    (u_longlong_t)(gethrtime() - start),
413 		    (u_longlong_t)timeout);
414 		vd->vd_bdh = NULL;
415 		v->vdev_tsd = vd;
416 		rw_exit(&vd->vd_lock);
417 		return (SET_ERROR(error));
418 	} else {
419 		vd->vd_bdh = bdh;
420 		v->vdev_tsd = vd;
421 		rw_exit(&vd->vd_lock);
422 	}
423 
424 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
425 
426 	/*  Determine the physical block size */
427 	int physical_block_size = bdev_physical_block_size(bdev);
428 
429 	/*  Determine the logical block size */
430 	int logical_block_size = bdev_logical_block_size(bdev);
431 
432 	/*
433 	 * If the device has a write cache, clear the nowritecache flag,
434 	 * so that we start issuing flush requests again.
435 	 */
436 	v->vdev_nowritecache = !zfs_bdev_has_write_cache(bdev);
437 
438 	/* Set when device reports it supports TRIM. */
439 	v->vdev_has_trim = bdev_discard_supported(bdev);
440 
441 	/* Set when device reports it supports secure TRIM. */
442 	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
443 
444 	/* Inform the ZIO pipeline that we are non-rotational */
445 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
446 
447 	/* Physical volume size in bytes for the partition */
448 	*psize = bdev_capacity(bdev);
449 
450 	/* Physical volume size in bytes including possible expansion space */
451 	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
452 
453 	/* Based on the minimum sector size set the block size */
454 	*physical_ashift = highbit64(MAX(physical_block_size,
455 	    SPA_MINBLOCKSIZE)) - 1;
456 
457 	*logical_ashift = highbit64(MAX(logical_block_size,
458 	    SPA_MINBLOCKSIZE)) - 1;
459 
460 	return (0);
461 }
462 
463 static void
464 vdev_disk_close(vdev_t *v)
465 {
466 	vdev_disk_t *vd = v->vdev_tsd;
467 
468 	if (v->vdev_reopening || vd == NULL)
469 		return;
470 
471 	if (vd->vd_bdh != NULL)
472 		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
473 		    zfs_vdev_holder);
474 
475 	rw_destroy(&vd->vd_lock);
476 	kmem_free(vd, sizeof (vdev_disk_t));
477 	v->vdev_tsd = NULL;
478 }
479 
480 static inline void
481 vdev_submit_bio_impl(struct bio *bio)
482 {
483 #ifdef HAVE_1ARG_SUBMIT_BIO
484 	(void) submit_bio(bio);
485 #else
486 	(void) submit_bio(bio_data_dir(bio), bio);
487 #endif
488 }
489 
490 /*
491  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
492  * replace it with preempt_schedule under the following condition:
493  */
494 #if defined(CONFIG_ARM64) && \
495     defined(CONFIG_PREEMPTION) && \
496     defined(CONFIG_BLK_CGROUP)
497 #define	preempt_schedule_notrace(x) preempt_schedule(x)
498 #endif
499 
500 /*
501  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
502  * as an argument removing the need to set it with bio_set_dev().  This
503  * removes the need for all of the following compatibility code.
504  */
505 #if !defined(HAVE_BIO_ALLOC_4ARG)
506 
507 #ifdef HAVE_BIO_SET_DEV
508 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
509 /*
510  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
511  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
512  * As a side effect the function was converted to GPL-only.  Define our
513  * own version when needed which uses rcu_read_lock_sched().
514  *
515  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
516  * part, moving blkg_tryget into the private one. Define our own version.
517  */
518 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
519 static inline bool
520 vdev_blkg_tryget(struct blkcg_gq *blkg)
521 {
522 	struct percpu_ref *ref = &blkg->refcnt;
523 	unsigned long __percpu *count;
524 	bool rc;
525 
526 	rcu_read_lock_sched();
527 
528 	if (__ref_is_percpu(ref, &count)) {
529 		this_cpu_inc(*count);
530 		rc = true;
531 	} else {
532 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
533 		rc = atomic_long_inc_not_zero(&ref->data->count);
534 #else
535 		rc = atomic_long_inc_not_zero(&ref->count);
536 #endif
537 	}
538 
539 	rcu_read_unlock_sched();
540 
541 	return (rc);
542 }
543 #else
544 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
545 #endif
546 #ifdef HAVE_BIO_SET_DEV_MACRO
547 /*
548  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
549  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
550  * the entire macro.  Provide a minimal version which always assigns the
551  * request queue's root_blkg to the bio.
552  */
553 static inline void
554 vdev_bio_associate_blkg(struct bio *bio)
555 {
556 #if defined(HAVE_BIO_BDEV_DISK)
557 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
558 #else
559 	struct request_queue *q = bio->bi_disk->queue;
560 #endif
561 
562 	ASSERT3P(q, !=, NULL);
563 	ASSERT3P(bio->bi_blkg, ==, NULL);
564 
565 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
566 		bio->bi_blkg = q->root_blkg;
567 }
568 
569 #define	bio_associate_blkg vdev_bio_associate_blkg
570 #else
571 static inline void
572 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
573 {
574 #if defined(HAVE_BIO_BDEV_DISK)
575 	struct request_queue *q = bdev->bd_disk->queue;
576 #else
577 	struct request_queue *q = bio->bi_disk->queue;
578 #endif
579 	bio_clear_flag(bio, BIO_REMAPPED);
580 	if (bio->bi_bdev != bdev)
581 		bio_clear_flag(bio, BIO_THROTTLED);
582 	bio->bi_bdev = bdev;
583 
584 	ASSERT3P(q, !=, NULL);
585 	ASSERT3P(bio->bi_blkg, ==, NULL);
586 
587 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
588 		bio->bi_blkg = q->root_blkg;
589 }
590 #define	bio_set_dev		vdev_bio_set_dev
591 #endif
592 #endif
593 #else
594 /*
595  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
596  */
597 static inline void
598 bio_set_dev(struct bio *bio, struct block_device *bdev)
599 {
600 	bio->bi_bdev = bdev;
601 }
602 #endif /* HAVE_BIO_SET_DEV */
603 #endif /* !HAVE_BIO_ALLOC_4ARG */
604 
605 static inline void
606 vdev_submit_bio(struct bio *bio)
607 {
608 	struct bio_list *bio_list = current->bio_list;
609 	current->bio_list = NULL;
610 	vdev_submit_bio_impl(bio);
611 	current->bio_list = bio_list;
612 }
613 
614 static inline struct bio *
615 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
616     unsigned short nr_vecs)
617 {
618 	struct bio *bio;
619 
620 #ifdef HAVE_BIO_ALLOC_4ARG
621 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
622 #else
623 	bio = bio_alloc(gfp_mask, nr_vecs);
624 	if (likely(bio != NULL))
625 		bio_set_dev(bio, bdev);
626 #endif
627 
628 	return (bio);
629 }
630 
631 static inline uint_t
632 vdev_bio_max_segs(struct block_device *bdev)
633 {
634 	/*
635 	 * Smallest of the device max segs and the tuneable max segs. Minimum
636 	 * 4, so there's room to finish split pages if they come up.
637 	 */
638 	const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
639 	const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
640 	    MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
641 	const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
642 
643 #ifdef HAVE_BIO_MAX_SEGS
644 	return (bio_max_segs(max_segs));
645 #else
646 	return (MIN(max_segs, BIO_MAX_PAGES));
647 #endif
648 }
649 
650 static inline uint_t
651 vdev_bio_max_bytes(struct block_device *bdev)
652 {
653 	return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
654 }
655 
656 
657 /*
658  * Virtual block IO object (VBIO)
659  *
660  * Linux block IO (BIO) objects have a limit on how many data segments (pages)
661  * they can hold. Depending on how they're allocated and structured, a large
662  * ZIO can require more than one BIO to be submitted to the kernel, which then
663  * all have to complete before we can return the completed ZIO back to ZFS.
664  *
665  * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
666  * translate a ZIO down into the kernel block layer and back again.
667  *
668  * Note that these are only used for data ZIOs (read/write). Meta-operations
669  * (flush/trim) don't need multiple BIOs and so can just make the call
670  * directly.
671  */
672 typedef struct {
673 	zio_t		*vbio_zio;	/* parent zio */
674 
675 	struct block_device *vbio_bdev;	/* blockdev to submit bios to */
676 
677 	abd_t		*vbio_abd;	/* abd carrying borrowed linear buf */
678 
679 	uint_t		vbio_max_segs;	/* max segs per bio */
680 
681 	uint_t		vbio_max_bytes;	/* max bytes per bio */
682 	uint_t		vbio_lbs_mask;	/* logical block size mask */
683 
684 	uint64_t	vbio_offset;	/* start offset of next bio */
685 
686 	struct bio	*vbio_bio;	/* pointer to the current bio */
687 	int		vbio_flags;	/* bio flags */
688 } vbio_t;
689 
690 static vbio_t *
691 vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
692 {
693 	vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
694 
695 	vbio->vbio_zio = zio;
696 	vbio->vbio_bdev = bdev;
697 	vbio->vbio_abd = NULL;
698 	vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
699 	vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
700 	vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
701 	vbio->vbio_offset = zio->io_offset;
702 	vbio->vbio_bio = NULL;
703 	vbio->vbio_flags = flags;
704 
705 	return (vbio);
706 }
707 
708 BIO_END_IO_PROTO(vbio_completion, bio, error);
709 
710 static int
711 vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
712 {
713 	struct bio *bio = vbio->vbio_bio;
714 	uint_t ssize;
715 
716 	while (size > 0) {
717 		if (bio == NULL) {
718 			/* New BIO, allocate and set up */
719 			bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
720 			    vbio->vbio_max_segs);
721 			VERIFY(bio);
722 
723 			BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
724 			bio_set_op_attrs(bio,
725 			    vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
726 			    WRITE : READ, vbio->vbio_flags);
727 
728 			if (vbio->vbio_bio) {
729 				bio_chain(vbio->vbio_bio, bio);
730 				vdev_submit_bio(vbio->vbio_bio);
731 			}
732 			vbio->vbio_bio = bio;
733 		}
734 
735 		/*
736 		 * Only load as much of the current page data as will fit in
737 		 * the space left in the BIO, respecting lbs alignment. Older
738 		 * kernels will error if we try to overfill the BIO, while
739 		 * newer ones will accept it and split the BIO. This ensures
740 		 * everything works on older kernels, and avoids an additional
741 		 * overhead on the new.
742 		 */
743 		ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
744 		    vbio->vbio_lbs_mask);
745 		if (ssize > 0 &&
746 		    bio_add_page(bio, page, ssize, offset) == ssize) {
747 			/* Accepted, adjust and load any remaining. */
748 			size -= ssize;
749 			offset += ssize;
750 			continue;
751 		}
752 
753 		/* No room, set up for a new BIO and loop */
754 		vbio->vbio_offset += BIO_BI_SIZE(bio);
755 
756 		/* Signal new BIO allocation wanted */
757 		bio = NULL;
758 	}
759 
760 	return (0);
761 }
762 
763 /* Iterator callback to submit ABD pages to the vbio. */
764 static int
765 vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
766 {
767 	vbio_t *vbio = priv;
768 	return (vbio_add_page(vbio, page, len, off));
769 }
770 
771 /* Create some BIOs, fill them with data and submit them */
772 static void
773 vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
774 {
775 	/*
776 	 * We plug so we can submit the BIOs as we go and only unplug them when
777 	 * they are fully created and submitted. This is important; if we don't
778 	 * plug, then the kernel may start executing earlier BIOs while we're
779 	 * still creating and executing later ones, and if the device goes
780 	 * away while that's happening, older kernels can get confused and
781 	 * trample memory.
782 	 */
783 	struct blk_plug plug;
784 	blk_start_plug(&plug);
785 
786 	(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
787 	ASSERT(vbio->vbio_bio);
788 
789 	vbio->vbio_bio->bi_end_io = vbio_completion;
790 	vbio->vbio_bio->bi_private = vbio;
791 
792 	/*
793 	 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
794 	 * can't touch it again. The bio may complete and vbio_completion() be
795 	 * called and free the vbio before this task is run again, so we must
796 	 * consider it invalid from this point.
797 	 */
798 	vdev_submit_bio(vbio->vbio_bio);
799 
800 	blk_finish_plug(&plug);
801 }
802 
803 /* IO completion callback */
804 BIO_END_IO_PROTO(vbio_completion, bio, error)
805 {
806 	vbio_t *vbio = bio->bi_private;
807 	zio_t *zio = vbio->vbio_zio;
808 
809 	ASSERT(zio);
810 
811 	/* Capture and log any errors */
812 #ifdef HAVE_1ARG_BIO_END_IO_T
813 	zio->io_error = BIO_END_IO_ERROR(bio);
814 #else
815 	zio->io_error = 0;
816 	if (error)
817 		zio->io_error = -(error);
818 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
819 		zio->io_error = EIO;
820 #endif
821 	ASSERT3U(zio->io_error, >=, 0);
822 
823 	if (zio->io_error)
824 		vdev_disk_error(zio);
825 
826 	/* Return the BIO to the kernel */
827 	bio_put(bio);
828 
829 	/*
830 	 * If we copied the ABD before issuing it, clean up and return the copy
831 	 * to the ADB, with changes if appropriate.
832 	 */
833 	if (vbio->vbio_abd != NULL) {
834 		void *buf = abd_to_buf(vbio->vbio_abd);
835 		abd_free(vbio->vbio_abd);
836 		vbio->vbio_abd = NULL;
837 
838 		if (zio->io_type == ZIO_TYPE_READ)
839 			abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
840 		else
841 			abd_return_buf(zio->io_abd, buf, zio->io_size);
842 	}
843 
844 	/* Final cleanup */
845 	kmem_free(vbio, sizeof (vbio_t));
846 
847 	/* All done, submit for processing */
848 	zio_delay_interrupt(zio);
849 }
850 
851 /*
852  * Iterator callback to count ABD pages and check their size & alignment.
853  *
854  * On Linux, each BIO segment can take a page pointer, and an offset+length of
855  * the data within that page. A page can be arbitrarily large ("compound"
856  * pages) but we still have to ensure the data portion is correctly sized and
857  * aligned to the logical block size, to ensure that if the kernel wants to
858  * split the BIO, the two halves will still be properly aligned.
859  *
860  * NOTE: if you change this function, change the copy in
861  * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
862  * data there to validate the change you're making.
863  *
864  */
865 typedef struct {
866 	uint_t  bmask;
867 	uint_t  npages;
868 	uint_t  end;
869 } vdev_disk_check_pages_t;
870 
871 static int
872 vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
873 {
874 	(void) page;
875 	vdev_disk_check_pages_t *s = priv;
876 
877 	/*
878 	 * If we didn't finish on a block size boundary last time, then there
879 	 * would be a gap if we tried to use this ABD as-is, so abort.
880 	 */
881 	if (s->end != 0)
882 		return (1);
883 
884 	/*
885 	 * Note if we're taking less than a full block, so we can check it
886 	 * above on the next call.
887 	 */
888 	s->end = (off+len) & s->bmask;
889 
890 	/* All blocks after the first must start on a block size boundary. */
891 	if (s->npages != 0 && (off & s->bmask) != 0)
892 		return (1);
893 
894 	s->npages++;
895 	return (0);
896 }
897 
898 /*
899  * Check if we can submit the pages in this ABD to the kernel as-is. Returns
900  * the number of pages, or 0 if it can't be submitted like this.
901  */
902 static boolean_t
903 vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
904 {
905 	vdev_disk_check_pages_t s = {
906 	    .bmask = bdev_logical_block_size(bdev)-1,
907 	    .npages = 0,
908 	    .end = 0,
909 	};
910 
911 	if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
912 		return (B_FALSE);
913 
914 	return (B_TRUE);
915 }
916 
917 static int
918 vdev_disk_io_rw(zio_t *zio)
919 {
920 	vdev_t *v = zio->io_vd;
921 	vdev_disk_t *vd = v->vdev_tsd;
922 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
923 	int flags = 0;
924 
925 	/*
926 	 * Accessing outside the block device is never allowed.
927 	 */
928 	if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
929 		vdev_dbgmsg(zio->io_vd,
930 		    "Illegal access %llu size %llu, device size %llu",
931 		    (u_longlong_t)zio->io_offset,
932 		    (u_longlong_t)zio->io_size,
933 		    (u_longlong_t)i_size_read(bdev->bd_inode));
934 		return (SET_ERROR(EIO));
935 	}
936 
937 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
938 	    v->vdev_failfast == B_TRUE) {
939 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
940 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
941 	}
942 
943 	/*
944 	 * Check alignment of the incoming ABD. If any part of it would require
945 	 * submitting a page that is not aligned to the logical block size,
946 	 * then we take a copy into a linear buffer and submit that instead.
947 	 * This should be impossible on a 512b LBS, and fairly rare on 4K,
948 	 * usually requiring abnormally-small data blocks (eg gang blocks)
949 	 * mixed into the same ABD as larger ones (eg aggregated).
950 	 */
951 	abd_t *abd = zio->io_abd;
952 	if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
953 		void *buf;
954 		if (zio->io_type == ZIO_TYPE_READ)
955 			buf = abd_borrow_buf(zio->io_abd, zio->io_size);
956 		else
957 			buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
958 
959 		/*
960 		 * Wrap the copy in an abd_t, so we can use the same iterators
961 		 * to count and fill the vbio later.
962 		 */
963 		abd = abd_get_from_buf(buf, zio->io_size);
964 
965 		/*
966 		 * False here would mean the borrowed copy has an invalid
967 		 * alignment too, which would mean we've somehow been passed a
968 		 * linear ABD with an interior page that has a non-zero offset
969 		 * or a size not a multiple of PAGE_SIZE. This is not possible.
970 		 * It would mean either zio_buf_alloc() or its underlying
971 		 * allocators have done something extremely strange, or our
972 		 * math in vdev_disk_check_pages() is wrong. In either case,
973 		 * something in seriously wrong and its not safe to continue.
974 		 */
975 		VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
976 	}
977 
978 	/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
979 	vbio_t *vbio = vbio_alloc(zio, bdev, flags);
980 	if (abd != zio->io_abd)
981 		vbio->vbio_abd = abd;
982 
983 	/* Fill it with data pages and submit it to the kernel */
984 	vbio_submit(vbio, abd, zio->io_size);
985 	return (0);
986 }
987 
988 /* ========== */
989 
990 /*
991  * This is the classic, battle-tested BIO submission code. Until we're totally
992  * sure that the new code is safe and correct in all cases, this will remain
993  * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
994  * load time.
995  *
996  * These functions have been renamed to vdev_classic_* to make it clear what
997  * they belong to, but their implementations are unchanged.
998  */
999 
1000 /*
1001  * Virtual device vector for disks.
1002  */
1003 typedef struct dio_request {
1004 	zio_t			*dr_zio;	/* Parent ZIO */
1005 	atomic_t		dr_ref;		/* References */
1006 	int			dr_error;	/* Bio error */
1007 	int			dr_bio_count;	/* Count of bio's */
1008 	struct bio		*dr_bio[];	/* Attached bio's */
1009 } dio_request_t;
1010 
1011 static dio_request_t *
1012 vdev_classic_dio_alloc(int bio_count)
1013 {
1014 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
1015 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
1016 	atomic_set(&dr->dr_ref, 0);
1017 	dr->dr_bio_count = bio_count;
1018 	dr->dr_error = 0;
1019 
1020 	for (int i = 0; i < dr->dr_bio_count; i++)
1021 		dr->dr_bio[i] = NULL;
1022 
1023 	return (dr);
1024 }
1025 
1026 static void
1027 vdev_classic_dio_free(dio_request_t *dr)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < dr->dr_bio_count; i++)
1032 		if (dr->dr_bio[i])
1033 			bio_put(dr->dr_bio[i]);
1034 
1035 	kmem_free(dr, sizeof (dio_request_t) +
1036 	    sizeof (struct bio *) * dr->dr_bio_count);
1037 }
1038 
1039 static void
1040 vdev_classic_dio_get(dio_request_t *dr)
1041 {
1042 	atomic_inc(&dr->dr_ref);
1043 }
1044 
1045 static void
1046 vdev_classic_dio_put(dio_request_t *dr)
1047 {
1048 	int rc = atomic_dec_return(&dr->dr_ref);
1049 
1050 	/*
1051 	 * Free the dio_request when the last reference is dropped and
1052 	 * ensure zio_interpret is called only once with the correct zio
1053 	 */
1054 	if (rc == 0) {
1055 		zio_t *zio = dr->dr_zio;
1056 		int error = dr->dr_error;
1057 
1058 		vdev_classic_dio_free(dr);
1059 
1060 		if (zio) {
1061 			zio->io_error = error;
1062 			ASSERT3S(zio->io_error, >=, 0);
1063 			if (zio->io_error)
1064 				vdev_disk_error(zio);
1065 
1066 			zio_delay_interrupt(zio);
1067 		}
1068 	}
1069 }
1070 
1071 BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
1072 {
1073 	dio_request_t *dr = bio->bi_private;
1074 
1075 	if (dr->dr_error == 0) {
1076 #ifdef HAVE_1ARG_BIO_END_IO_T
1077 		dr->dr_error = BIO_END_IO_ERROR(bio);
1078 #else
1079 		if (error)
1080 			dr->dr_error = -(error);
1081 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1082 			dr->dr_error = EIO;
1083 #endif
1084 	}
1085 
1086 	/* Drop reference acquired by vdev_classic_physio */
1087 	vdev_classic_dio_put(dr);
1088 }
1089 
1090 static inline unsigned int
1091 vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
1092 {
1093 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1094 	    bio_size, abd_offset);
1095 
1096 #ifdef HAVE_BIO_MAX_SEGS
1097 	return (bio_max_segs(nr_segs));
1098 #else
1099 	return (MIN(nr_segs, BIO_MAX_PAGES));
1100 #endif
1101 }
1102 
1103 static int
1104 vdev_classic_physio(zio_t *zio)
1105 {
1106 	vdev_t *v = zio->io_vd;
1107 	vdev_disk_t *vd = v->vdev_tsd;
1108 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1109 	size_t io_size = zio->io_size;
1110 	uint64_t io_offset = zio->io_offset;
1111 	int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1112 	int flags = 0;
1113 
1114 	dio_request_t *dr;
1115 	uint64_t abd_offset;
1116 	uint64_t bio_offset;
1117 	int bio_size;
1118 	int bio_count = 16;
1119 	int error = 0;
1120 	struct blk_plug plug;
1121 	unsigned short nr_vecs;
1122 
1123 	/*
1124 	 * Accessing outside the block device is never allowed.
1125 	 */
1126 	if (io_offset + io_size > bdev->bd_inode->i_size) {
1127 		vdev_dbgmsg(zio->io_vd,
1128 		    "Illegal access %llu size %llu, device size %llu",
1129 		    (u_longlong_t)io_offset,
1130 		    (u_longlong_t)io_size,
1131 		    (u_longlong_t)i_size_read(bdev->bd_inode));
1132 		return (SET_ERROR(EIO));
1133 	}
1134 
1135 retry:
1136 	dr = vdev_classic_dio_alloc(bio_count);
1137 
1138 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
1139 	    zio->io_vd->vdev_failfast == B_TRUE) {
1140 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1141 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1142 	}
1143 
1144 	dr->dr_zio = zio;
1145 
1146 	/*
1147 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1148 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1149 	 * can cover at least 128KB and at most 1MB.  When the required number
1150 	 * of iovec's exceeds this, we are forced to break the IO in multiple
1151 	 * bio's and wait for them all to complete.  This is likely if the
1152 	 * recordsize property is increased beyond 1MB.  The default
1153 	 * bio_count=16 should typically accommodate the maximum-size zio of
1154 	 * 16MB.
1155 	 */
1156 
1157 	abd_offset = 0;
1158 	bio_offset = io_offset;
1159 	bio_size = io_size;
1160 	for (int i = 0; i <= dr->dr_bio_count; i++) {
1161 
1162 		/* Finished constructing bio's for given buffer */
1163 		if (bio_size <= 0)
1164 			break;
1165 
1166 		/*
1167 		 * If additional bio's are required, we have to retry, but
1168 		 * this should be rare - see the comment above.
1169 		 */
1170 		if (dr->dr_bio_count == i) {
1171 			vdev_classic_dio_free(dr);
1172 			bio_count *= 2;
1173 			goto retry;
1174 		}
1175 
1176 		nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
1177 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1178 		if (unlikely(dr->dr_bio[i] == NULL)) {
1179 			vdev_classic_dio_free(dr);
1180 			return (SET_ERROR(ENOMEM));
1181 		}
1182 
1183 		/* Matching put called by vdev_classic_physio_completion */
1184 		vdev_classic_dio_get(dr);
1185 
1186 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
1187 		dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
1188 		dr->dr_bio[i]->bi_private = dr;
1189 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
1190 
1191 		/* Remaining size is returned to become the new size */
1192 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
1193 		    bio_size, abd_offset);
1194 
1195 		/* Advance in buffer and construct another bio if needed */
1196 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1197 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1198 	}
1199 
1200 	/* Extra reference to protect dio_request during vdev_submit_bio */
1201 	vdev_classic_dio_get(dr);
1202 
1203 	if (dr->dr_bio_count > 1)
1204 		blk_start_plug(&plug);
1205 
1206 	/* Submit all bio's associated with this dio */
1207 	for (int i = 0; i < dr->dr_bio_count; i++) {
1208 		if (dr->dr_bio[i])
1209 			vdev_submit_bio(dr->dr_bio[i]);
1210 	}
1211 
1212 	if (dr->dr_bio_count > 1)
1213 		blk_finish_plug(&plug);
1214 
1215 	vdev_classic_dio_put(dr);
1216 
1217 	return (error);
1218 }
1219 
1220 /* ========== */
1221 
1222 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
1223 {
1224 	zio_t *zio = bio->bi_private;
1225 #ifdef HAVE_1ARG_BIO_END_IO_T
1226 	zio->io_error = BIO_END_IO_ERROR(bio);
1227 #else
1228 	zio->io_error = -error;
1229 #endif
1230 
1231 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
1232 		zio->io_vd->vdev_nowritecache = B_TRUE;
1233 
1234 	bio_put(bio);
1235 	ASSERT3S(zio->io_error, >=, 0);
1236 	if (zio->io_error)
1237 		vdev_disk_error(zio);
1238 	zio_interrupt(zio);
1239 }
1240 
1241 static int
1242 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1243 {
1244 	struct request_queue *q;
1245 	struct bio *bio;
1246 
1247 	q = bdev_get_queue(bdev);
1248 	if (!q)
1249 		return (SET_ERROR(ENXIO));
1250 
1251 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
1252 	if (unlikely(bio == NULL))
1253 		return (SET_ERROR(ENOMEM));
1254 
1255 	bio->bi_end_io = vdev_disk_io_flush_completion;
1256 	bio->bi_private = zio;
1257 	bio_set_flush(bio);
1258 	vdev_submit_bio(bio);
1259 	invalidate_bdev(bdev);
1260 
1261 	return (0);
1262 }
1263 
1264 BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
1265 {
1266 	zio_t *zio = bio->bi_private;
1267 #ifdef HAVE_1ARG_BIO_END_IO_T
1268 	zio->io_error = BIO_END_IO_ERROR(bio);
1269 #else
1270 	zio->io_error = -error;
1271 #endif
1272 	bio_put(bio);
1273 	if (zio->io_error)
1274 		vdev_disk_error(zio);
1275 	zio_interrupt(zio);
1276 }
1277 
1278 /*
1279  * Wrappers for the different secure erase and discard APIs. We use async
1280  * when available; in this case, *biop is set to the last bio in the chain.
1281  */
1282 static int
1283 vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1284     sector_t nsect, struct bio **biop)
1285 {
1286 	*biop = NULL;
1287 	int error;
1288 
1289 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1290 	error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1291 	    sector, nsect, GFP_NOFS);
1292 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1293 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1294 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1295 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1296 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1297 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
1298 #else
1299 #error "unsupported kernel"
1300 #endif
1301 
1302 	return (error);
1303 }
1304 
1305 static int
1306 vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1307     sector_t nsect, struct bio **biop)
1308 {
1309 	*biop = NULL;
1310 	int error;
1311 
1312 #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1313 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1314 	    sector, nsect, GFP_NOFS, 0, biop);
1315 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1316 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1317 	    sector, nsect, GFP_NOFS, biop);
1318 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1319 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1320 	    sector, nsect, GFP_NOFS, 0);
1321 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1322 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1323 	    sector, nsect, GFP_NOFS);
1324 #else
1325 #error "unsupported kernel"
1326 #endif
1327 
1328 	return (error);
1329 }
1330 
1331 /*
1332  * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1333  * discard, and then does the appropriate finishing work for error vs success
1334  * and async vs sync.
1335  */
1336 static int
1337 vdev_disk_io_trim(zio_t *zio)
1338 {
1339 	int error;
1340 	struct bio *bio;
1341 
1342 	zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1343 	sector_t sector = zio->io_offset >> 9;
1344 	sector_t nsects = zio->io_size >> 9;
1345 
1346 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1347 		error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1348 	else
1349 		error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1350 
1351 	if (error != 0)
1352 		return (SET_ERROR(-error));
1353 
1354 	if (bio == NULL) {
1355 		/*
1356 		 * This was a synchronous op that completed successfully, so
1357 		 * return it to ZFS immediately.
1358 		 */
1359 		zio_interrupt(zio);
1360 	} else {
1361 		/*
1362 		 * This was an asynchronous op; set up completion callback and
1363 		 * issue it.
1364 		 */
1365 		bio->bi_private = zio;
1366 		bio->bi_end_io = vdev_disk_discard_end_io;
1367 		vdev_submit_bio(bio);
1368 	}
1369 
1370 	return (0);
1371 }
1372 
1373 int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1374 
1375 static void
1376 vdev_disk_io_start(zio_t *zio)
1377 {
1378 	vdev_t *v = zio->io_vd;
1379 	vdev_disk_t *vd = v->vdev_tsd;
1380 	int error;
1381 
1382 	/*
1383 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1384 	 * Nothing to be done here but return failure.
1385 	 */
1386 	if (vd == NULL) {
1387 		zio->io_error = ENXIO;
1388 		zio_interrupt(zio);
1389 		return;
1390 	}
1391 
1392 	rw_enter(&vd->vd_lock, RW_READER);
1393 
1394 	/*
1395 	 * If the vdev is closed, it's likely due to a failed reopen and is
1396 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
1397 	 */
1398 	if (vd->vd_bdh == NULL) {
1399 		rw_exit(&vd->vd_lock);
1400 		zio->io_error = ENXIO;
1401 		zio_interrupt(zio);
1402 		return;
1403 	}
1404 
1405 	switch (zio->io_type) {
1406 	case ZIO_TYPE_FLUSH:
1407 
1408 		if (!vdev_readable(v)) {
1409 			/* Drive not there, can't flush */
1410 			error = SET_ERROR(ENXIO);
1411 		} else if (zfs_nocacheflush) {
1412 			/* Flushing disabled by operator, declare success */
1413 			error = 0;
1414 		} else if (v->vdev_nowritecache) {
1415 			/* This vdev not capable of flushing */
1416 			error = SET_ERROR(ENOTSUP);
1417 		} else {
1418 			/*
1419 			 * Issue the flush. If successful, the response will
1420 			 * be handled in the completion callback, so we're done.
1421 			 */
1422 			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1423 			if (error == 0) {
1424 				rw_exit(&vd->vd_lock);
1425 				return;
1426 			}
1427 		}
1428 
1429 		/* Couldn't issue the flush, so set the error and return it */
1430 		rw_exit(&vd->vd_lock);
1431 		zio->io_error = error;
1432 		zio_execute(zio);
1433 		return;
1434 
1435 	case ZIO_TYPE_TRIM:
1436 		error = vdev_disk_io_trim(zio);
1437 		rw_exit(&vd->vd_lock);
1438 		if (error) {
1439 			zio->io_error = error;
1440 			zio_execute(zio);
1441 		}
1442 		return;
1443 
1444 	case ZIO_TYPE_READ:
1445 	case ZIO_TYPE_WRITE:
1446 		zio->io_target_timestamp = zio_handle_io_delay(zio);
1447 		error = vdev_disk_io_rw_fn(zio);
1448 		rw_exit(&vd->vd_lock);
1449 		if (error) {
1450 			zio->io_error = error;
1451 			zio_interrupt(zio);
1452 		}
1453 		return;
1454 
1455 	default:
1456 		/*
1457 		 * Getting here means our parent vdev has made a very strange
1458 		 * request of us, and shouldn't happen. Assert here to force a
1459 		 * crash in dev builds, but in production return the IO
1460 		 * unhandled. The pool will likely suspend anyway but that's
1461 		 * nicer than crashing the kernel.
1462 		 */
1463 		ASSERT3S(zio->io_type, ==, -1);
1464 
1465 		rw_exit(&vd->vd_lock);
1466 		zio->io_error = SET_ERROR(ENOTSUP);
1467 		zio_interrupt(zio);
1468 		return;
1469 	}
1470 
1471 	__builtin_unreachable();
1472 }
1473 
1474 static void
1475 vdev_disk_io_done(zio_t *zio)
1476 {
1477 	/*
1478 	 * If the device returned EIO, we revalidate the media.  If it is
1479 	 * determined the media has changed this triggers the asynchronous
1480 	 * removal of the device from the configuration.
1481 	 */
1482 	if (zio->io_error == EIO) {
1483 		vdev_t *v = zio->io_vd;
1484 		vdev_disk_t *vd = v->vdev_tsd;
1485 
1486 		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1487 			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1488 			v->vdev_remove_wanted = B_TRUE;
1489 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1490 		}
1491 	}
1492 }
1493 
1494 static void
1495 vdev_disk_hold(vdev_t *vd)
1496 {
1497 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1498 
1499 	/* We must have a pathname, and it must be absolute. */
1500 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1501 		return;
1502 
1503 	/*
1504 	 * Only prefetch path and devid info if the device has
1505 	 * never been opened.
1506 	 */
1507 	if (vd->vdev_tsd != NULL)
1508 		return;
1509 
1510 }
1511 
1512 static void
1513 vdev_disk_rele(vdev_t *vd)
1514 {
1515 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1516 
1517 	/* XXX: Implement me as a vnode rele for the device */
1518 }
1519 
1520 /*
1521  * BIO submission method. See comment above about vdev_classic.
1522  * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1523  */
1524 static uint_t zfs_vdev_disk_classic = 0;	/* default new */
1525 
1526 /* Set submission function from module parameter */
1527 static int
1528 vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1529 {
1530 	int err = param_set_uint(buf, kp);
1531 	if (err < 0)
1532 		return (SET_ERROR(err));
1533 
1534 	vdev_disk_io_rw_fn =
1535 	    zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1536 
1537 	printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1538 	    zfs_vdev_disk_classic ? "classic" : "new");
1539 
1540 	return (0);
1541 }
1542 
1543 /*
1544  * At first use vdev use, set the submission function from the default value if
1545  * it hasn't been set already.
1546  */
1547 static int
1548 vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1549 {
1550 	(void) spa;
1551 	(void) nv;
1552 	(void) tsd;
1553 
1554 	if (vdev_disk_io_rw_fn == NULL)
1555 		vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1556 		    vdev_classic_physio : vdev_disk_io_rw;
1557 
1558 	return (0);
1559 }
1560 
1561 vdev_ops_t vdev_disk_ops = {
1562 	.vdev_op_init = vdev_disk_init,
1563 	.vdev_op_fini = NULL,
1564 	.vdev_op_open = vdev_disk_open,
1565 	.vdev_op_close = vdev_disk_close,
1566 	.vdev_op_asize = vdev_default_asize,
1567 	.vdev_op_min_asize = vdev_default_min_asize,
1568 	.vdev_op_min_alloc = NULL,
1569 	.vdev_op_io_start = vdev_disk_io_start,
1570 	.vdev_op_io_done = vdev_disk_io_done,
1571 	.vdev_op_state_change = NULL,
1572 	.vdev_op_need_resilver = NULL,
1573 	.vdev_op_hold = vdev_disk_hold,
1574 	.vdev_op_rele = vdev_disk_rele,
1575 	.vdev_op_remap = NULL,
1576 	.vdev_op_xlate = vdev_default_xlate,
1577 	.vdev_op_rebuild_asize = NULL,
1578 	.vdev_op_metaslab_init = NULL,
1579 	.vdev_op_config_generate = NULL,
1580 	.vdev_op_nparity = NULL,
1581 	.vdev_op_ndisks = NULL,
1582 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1583 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1584 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1585 };
1586 
1587 /*
1588  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1589  * value no longer has any effect.  It has not yet been entirely removed
1590  * to allow the module to be loaded if this option is specified in the
1591  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1592  */
1593 static int
1594 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1595 {
1596 	int error = param_set_charp(val, kp);
1597 	if (error == 0) {
1598 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1599 		    "is not supported.\n");
1600 	}
1601 
1602 	return (error);
1603 }
1604 
1605 static const char *zfs_vdev_scheduler = "unused";
1606 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1607     param_get_charp, &zfs_vdev_scheduler, 0644);
1608 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1609 
1610 int
1611 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1612 {
1613 	uint_t val;
1614 	int error;
1615 
1616 	error = kstrtouint(buf, 0, &val);
1617 	if (error < 0)
1618 		return (SET_ERROR(error));
1619 
1620 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1621 		return (SET_ERROR(-EINVAL));
1622 
1623 	error = param_set_uint(buf, kp);
1624 	if (error < 0)
1625 		return (SET_ERROR(error));
1626 
1627 	return (0);
1628 }
1629 
1630 int
1631 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1632 {
1633 	uint_t val;
1634 	int error;
1635 
1636 	error = kstrtouint(buf, 0, &val);
1637 	if (error < 0)
1638 		return (SET_ERROR(error));
1639 
1640 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1641 		return (SET_ERROR(-EINVAL));
1642 
1643 	error = param_set_uint(buf, kp);
1644 	if (error < 0)
1645 		return (SET_ERROR(error));
1646 
1647 	return (0);
1648 }
1649 
1650 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1651 	"Timeout before determining that a device is missing");
1652 
1653 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1654 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1655 
1656 ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1657 	"Maximum number of data segments to add to an IO request (min 4)");
1658 
1659 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1660     vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1661 	"Use classic BIO submission method");
1662