1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26  * LLNL-CODE-403049.
27  * Rewritten for Linux by:
28  *   Rohan Puri <rohan.puri15@gmail.com>
29  *   Brian Behlendorf <behlendorf1@llnl.gov>
30  * Copyright (c) 2013 by Delphix. All rights reserved.
31  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32  * Copyright (c) 2018 George Melikov. All Rights Reserved.
33  * Copyright (c) 2019 Datto, Inc. All rights reserved.
34  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
35  */
36 
37 /*
38  * ZFS control directory (a.k.a. ".zfs")
39  *
40  * This directory provides a common location for all ZFS meta-objects.
41  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42  * expand in the future.  The elements are built dynamically, as the hierarchy
43  * does not actually exist on disk.
44  *
45  * For 'snapshot', we don't want to have all snapshots always mounted, because
46  * this would take up a huge amount of space in /etc/mnttab.  We have three
47  * types of objects:
48  *
49  *	ctldir ------> snapshotdir -------> snapshot
50  *                                             |
51  *                                             |
52  *                                             V
53  *                                         mounted fs
54  *
55  * The 'snapshot' node contains just enough information to lookup '..' and act
56  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
57  * perform an automount of the underlying filesystem and return the
58  * corresponding inode.
59  *
60  * All mounts are handled automatically by an user mode helper which invokes
61  * the mount procedure.  Unmounts are handled by allowing the mount
62  * point to expire so the kernel may automatically unmount it.
63  *
64  * The '.zfs', '.zfs/snapshot', and all directories created under
65  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
67  *
68  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69  * (ie: snapshots) are complete ZFS filesystems and have their own unique
70  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
71  * as that used by the parent zfsvfs_t to make NFS happy.
72  */
73 
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
92 
93 /*
94  * Two AVL trees are maintained which contain all currently automounted
95  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
96  * entry which MUST:
97  *
98  *   - be attached to both trees, and
99  *   - be unique, no duplicate entries are allowed.
100  *
101  * The zfs_snapshots_by_name tree is indexed by the full dataset name
102  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103  * objsetid.  This allows for fast lookups either by name or objsetid.
104  */
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
108 
109 /*
110  * Control Directory Tunables (.zfs)
111  */
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 static int zfs_admin_snapshot = 0;
114 
115 typedef struct {
116 	char		*se_name;	/* full snapshot name */
117 	char		*se_path;	/* full mount path */
118 	spa_t		*se_spa;	/* pool spa */
119 	uint64_t	se_objsetid;	/* snapshot objset id */
120 	struct dentry   *se_root_dentry; /* snapshot root dentry */
121 	krwlock_t	se_taskqid_lock;  /* scheduled unmount taskqid lock */
122 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
123 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
124 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
125 	zfs_refcount_t	se_refcount;	/* reference count */
126 } zfs_snapentry_t;
127 
128 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
129 
130 /*
131  * Allocate a new zfs_snapentry_t being careful to make a copy of the
132  * the snapshot name and provided mount point.  No reference is taken.
133  */
134 static zfs_snapentry_t *
135 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
136     uint64_t objsetid, struct dentry *root_dentry)
137 {
138 	zfs_snapentry_t *se;
139 
140 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
141 
142 	se->se_name = kmem_strdup(full_name);
143 	se->se_path = kmem_strdup(full_path);
144 	se->se_spa = spa;
145 	se->se_objsetid = objsetid;
146 	se->se_root_dentry = root_dentry;
147 	se->se_taskqid = TASKQID_INVALID;
148 	rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
149 
150 	zfs_refcount_create(&se->se_refcount);
151 
152 	return (se);
153 }
154 
155 /*
156  * Free a zfs_snapentry_t the caller must ensure there are no active
157  * references.
158  */
159 static void
160 zfsctl_snapshot_free(zfs_snapentry_t *se)
161 {
162 	zfs_refcount_destroy(&se->se_refcount);
163 	kmem_strfree(se->se_name);
164 	kmem_strfree(se->se_path);
165 	rw_destroy(&se->se_taskqid_lock);
166 
167 	kmem_free(se, sizeof (zfs_snapentry_t));
168 }
169 
170 /*
171  * Hold a reference on the zfs_snapentry_t.
172  */
173 static void
174 zfsctl_snapshot_hold(zfs_snapentry_t *se)
175 {
176 	zfs_refcount_add(&se->se_refcount, NULL);
177 }
178 
179 /*
180  * Release a reference on the zfs_snapentry_t.  When the number of
181  * references drops to zero the structure will be freed.
182  */
183 static void
184 zfsctl_snapshot_rele(zfs_snapentry_t *se)
185 {
186 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
187 		zfsctl_snapshot_free(se);
188 }
189 
190 /*
191  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
192  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
193  * of the trees a reference is held.
194  */
195 static void
196 zfsctl_snapshot_add(zfs_snapentry_t *se)
197 {
198 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
199 	zfsctl_snapshot_hold(se);
200 	avl_add(&zfs_snapshots_by_name, se);
201 	avl_add(&zfs_snapshots_by_objsetid, se);
202 }
203 
204 /*
205  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
206  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
207  * this can result in the structure being freed if that was the last
208  * remaining reference.
209  */
210 static void
211 zfsctl_snapshot_remove(zfs_snapentry_t *se)
212 {
213 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
214 	avl_remove(&zfs_snapshots_by_name, se);
215 	avl_remove(&zfs_snapshots_by_objsetid, se);
216 	zfsctl_snapshot_rele(se);
217 }
218 
219 /*
220  * Snapshot name comparison function for the zfs_snapshots_by_name.
221  */
222 static int
223 snapentry_compare_by_name(const void *a, const void *b)
224 {
225 	const zfs_snapentry_t *se_a = a;
226 	const zfs_snapentry_t *se_b = b;
227 	int ret;
228 
229 	ret = strcmp(se_a->se_name, se_b->se_name);
230 
231 	if (ret < 0)
232 		return (-1);
233 	else if (ret > 0)
234 		return (1);
235 	else
236 		return (0);
237 }
238 
239 /*
240  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
241  */
242 static int
243 snapentry_compare_by_objsetid(const void *a, const void *b)
244 {
245 	const zfs_snapentry_t *se_a = a;
246 	const zfs_snapentry_t *se_b = b;
247 
248 	if (se_a->se_spa != se_b->se_spa)
249 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
250 
251 	if (se_a->se_objsetid < se_b->se_objsetid)
252 		return (-1);
253 	else if (se_a->se_objsetid > se_b->se_objsetid)
254 		return (1);
255 	else
256 		return (0);
257 }
258 
259 /*
260  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
261  * is found a pointer to the zfs_snapentry_t is returned and a reference
262  * taken on the structure.  The caller is responsible for dropping the
263  * reference with zfsctl_snapshot_rele().  If the snapname is not found
264  * NULL will be returned.
265  */
266 static zfs_snapentry_t *
267 zfsctl_snapshot_find_by_name(const char *snapname)
268 {
269 	zfs_snapentry_t *se, search;
270 
271 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
272 
273 	search.se_name = (char *)snapname;
274 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
275 	if (se)
276 		zfsctl_snapshot_hold(se);
277 
278 	return (se);
279 }
280 
281 /*
282  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
283  * rather than the snapname.  In all other respects it behaves the same
284  * as zfsctl_snapshot_find_by_name().
285  */
286 static zfs_snapentry_t *
287 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
288 {
289 	zfs_snapentry_t *se, search;
290 
291 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
292 
293 	search.se_spa = spa;
294 	search.se_objsetid = objsetid;
295 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
296 	if (se)
297 		zfsctl_snapshot_hold(se);
298 
299 	return (se);
300 }
301 
302 /*
303  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
304  * removed, renamed, and added back to the new correct location in the tree.
305  */
306 static int
307 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
308 {
309 	zfs_snapentry_t *se;
310 
311 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
312 
313 	se = zfsctl_snapshot_find_by_name(old_snapname);
314 	if (se == NULL)
315 		return (SET_ERROR(ENOENT));
316 
317 	zfsctl_snapshot_remove(se);
318 	kmem_strfree(se->se_name);
319 	se->se_name = kmem_strdup(new_snapname);
320 	zfsctl_snapshot_add(se);
321 	zfsctl_snapshot_rele(se);
322 
323 	return (0);
324 }
325 
326 /*
327  * Delayed task responsible for unmounting an expired automounted snapshot.
328  */
329 static void
330 snapentry_expire(void *data)
331 {
332 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
333 	spa_t *spa = se->se_spa;
334 	uint64_t objsetid = se->se_objsetid;
335 
336 	if (zfs_expire_snapshot <= 0) {
337 		zfsctl_snapshot_rele(se);
338 		return;
339 	}
340 
341 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
342 	se->se_taskqid = TASKQID_INVALID;
343 	rw_exit(&se->se_taskqid_lock);
344 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
345 	zfsctl_snapshot_rele(se);
346 
347 	/*
348 	 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
349 	 * This can occur when the snapshot is busy.
350 	 */
351 	rw_enter(&zfs_snapshot_lock, RW_READER);
352 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
353 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
354 		zfsctl_snapshot_rele(se);
355 	}
356 	rw_exit(&zfs_snapshot_lock);
357 }
358 
359 /*
360  * Cancel an automatic unmount of a snapname.  This callback is responsible
361  * for dropping the reference on the zfs_snapentry_t which was taken when
362  * during dispatch.
363  */
364 static void
365 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
366 {
367 	int err = 0;
368 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
369 	err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
370 	/*
371 	 * if we get ENOENT, the taskq couldn't be found to be
372 	 * canceled, so we can just mark it as invalid because
373 	 * it's already gone. If we got EBUSY, then we already
374 	 * blocked until it was gone _anyway_, so we don't care.
375 	 */
376 	se->se_taskqid = TASKQID_INVALID;
377 	rw_exit(&se->se_taskqid_lock);
378 	if (err == 0) {
379 		zfsctl_snapshot_rele(se);
380 	}
381 }
382 
383 /*
384  * Dispatch the unmount task for delayed handling with a hold protecting it.
385  */
386 static void
387 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
388 {
389 
390 	if (delay <= 0)
391 		return;
392 
393 	zfsctl_snapshot_hold(se);
394 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
395 	ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
396 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
397 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
398 	rw_exit(&se->se_taskqid_lock);
399 }
400 
401 /*
402  * Schedule an automatic unmount of objset id to occur in delay seconds from
403  * now.  Any previous delayed unmount will be cancelled in favor of the
404  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
405  * and held until the outstanding task is handled or cancelled.
406  */
407 int
408 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
409 {
410 	zfs_snapentry_t *se;
411 	int error = ENOENT;
412 
413 	rw_enter(&zfs_snapshot_lock, RW_READER);
414 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
415 		zfsctl_snapshot_unmount_cancel(se);
416 		zfsctl_snapshot_unmount_delay_impl(se, delay);
417 		zfsctl_snapshot_rele(se);
418 		error = 0;
419 	}
420 	rw_exit(&zfs_snapshot_lock);
421 
422 	return (error);
423 }
424 
425 /*
426  * Check if snapname is currently mounted.  Returned non-zero when mounted
427  * and zero when unmounted.
428  */
429 static boolean_t
430 zfsctl_snapshot_ismounted(const char *snapname)
431 {
432 	zfs_snapentry_t *se;
433 	boolean_t ismounted = B_FALSE;
434 
435 	rw_enter(&zfs_snapshot_lock, RW_READER);
436 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
437 		zfsctl_snapshot_rele(se);
438 		ismounted = B_TRUE;
439 	}
440 	rw_exit(&zfs_snapshot_lock);
441 
442 	return (ismounted);
443 }
444 
445 /*
446  * Check if the given inode is a part of the virtual .zfs directory.
447  */
448 boolean_t
449 zfsctl_is_node(struct inode *ip)
450 {
451 	return (ITOZ(ip)->z_is_ctldir);
452 }
453 
454 /*
455  * Check if the given inode is a .zfs/snapshots/snapname directory.
456  */
457 boolean_t
458 zfsctl_is_snapdir(struct inode *ip)
459 {
460 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
461 }
462 
463 /*
464  * Allocate a new inode with the passed id and ops.
465  */
466 static struct inode *
467 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
468     const struct file_operations *fops, const struct inode_operations *ops)
469 {
470 	inode_timespec_t now;
471 	struct inode *ip;
472 	znode_t *zp;
473 
474 	ip = new_inode(zfsvfs->z_sb);
475 	if (ip == NULL)
476 		return (NULL);
477 
478 	now = current_time(ip);
479 	zp = ITOZ(ip);
480 	ASSERT3P(zp->z_dirlocks, ==, NULL);
481 	ASSERT3P(zp->z_acl_cached, ==, NULL);
482 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
483 	zp->z_id = id;
484 	zp->z_unlinked = B_FALSE;
485 	zp->z_atime_dirty = B_FALSE;
486 	zp->z_zn_prefetch = B_FALSE;
487 	zp->z_is_sa = B_FALSE;
488 	zp->z_is_mapped = B_FALSE;
489 	zp->z_is_ctldir = B_TRUE;
490 	zp->z_sa_hdl = NULL;
491 	zp->z_blksz = 0;
492 	zp->z_seq = 0;
493 	zp->z_mapcnt = 0;
494 	zp->z_size = 0;
495 	zp->z_pflags = 0;
496 	zp->z_mode = 0;
497 	zp->z_sync_cnt = 0;
498 	zp->z_sync_writes_cnt = 0;
499 	zp->z_async_writes_cnt = 0;
500 	ip->i_generation = 0;
501 	ip->i_ino = id;
502 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
503 	ip->i_uid = SUID_TO_KUID(0);
504 	ip->i_gid = SGID_TO_KGID(0);
505 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
506 	ip->i_atime = now;
507 	ip->i_mtime = now;
508 	ip->i_ctime = now;
509 	ip->i_fop = fops;
510 	ip->i_op = ops;
511 #if defined(IOP_XATTR)
512 	ip->i_opflags &= ~IOP_XATTR;
513 #endif
514 
515 	if (insert_inode_locked(ip)) {
516 		unlock_new_inode(ip);
517 		iput(ip);
518 		return (NULL);
519 	}
520 
521 	mutex_enter(&zfsvfs->z_znodes_lock);
522 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
523 	zfsvfs->z_nr_znodes++;
524 	membar_producer();
525 	mutex_exit(&zfsvfs->z_znodes_lock);
526 
527 	unlock_new_inode(ip);
528 
529 	return (ip);
530 }
531 
532 /*
533  * Lookup the inode with given id, it will be allocated if needed.
534  */
535 static struct inode *
536 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
537     const struct file_operations *fops, const struct inode_operations *ops)
538 {
539 	struct inode *ip = NULL;
540 
541 	while (ip == NULL) {
542 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
543 		if (ip)
544 			break;
545 
546 		/* May fail due to concurrent zfsctl_inode_alloc() */
547 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
548 	}
549 
550 	return (ip);
551 }
552 
553 /*
554  * Create the '.zfs' directory.  This directory is cached as part of the VFS
555  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
556  * therefore checks against a vfs_count of 2 instead of 1.  This reference
557  * is removed when the ctldir is destroyed in the unmount.  All other entities
558  * under the '.zfs' directory are created dynamically as needed.
559  *
560  * Because the dynamically created '.zfs' directory entries assume the use
561  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
562  */
563 int
564 zfsctl_create(zfsvfs_t *zfsvfs)
565 {
566 	ASSERT(zfsvfs->z_ctldir == NULL);
567 
568 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
569 	    &zpl_fops_root, &zpl_ops_root);
570 	if (zfsvfs->z_ctldir == NULL)
571 		return (SET_ERROR(ENOENT));
572 
573 	return (0);
574 }
575 
576 /*
577  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
578  * Only called when the filesystem is unmounted.
579  */
580 void
581 zfsctl_destroy(zfsvfs_t *zfsvfs)
582 {
583 	if (zfsvfs->z_issnap) {
584 		zfs_snapentry_t *se;
585 		spa_t *spa = zfsvfs->z_os->os_spa;
586 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
587 
588 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
589 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
590 		if (se != NULL)
591 			zfsctl_snapshot_remove(se);
592 		rw_exit(&zfs_snapshot_lock);
593 		if (se != NULL) {
594 			zfsctl_snapshot_unmount_cancel(se);
595 			zfsctl_snapshot_rele(se);
596 		}
597 	} else if (zfsvfs->z_ctldir) {
598 		iput(zfsvfs->z_ctldir);
599 		zfsvfs->z_ctldir = NULL;
600 	}
601 }
602 
603 /*
604  * Given a root znode, retrieve the associated .zfs directory.
605  * Add a hold to the vnode and return it.
606  */
607 struct inode *
608 zfsctl_root(znode_t *zp)
609 {
610 	ASSERT(zfs_has_ctldir(zp));
611 	/* Must have an existing ref, so igrab() cannot return NULL */
612 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
613 	return (ZTOZSB(zp)->z_ctldir);
614 }
615 
616 /*
617  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
618  * already mounted in gen field. We do this because nfsd lookup will not
619  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
620  * this and do automount and return ESTALE to force nfsd revalidate and follow
621  * mount.
622  */
623 static int
624 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
625 {
626 	zfid_short_t *zfid = (zfid_short_t *)fidp;
627 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
628 	uint32_t gen = 0;
629 	uint64_t object;
630 	uint64_t objsetid;
631 	int i;
632 	struct dentry *dentry;
633 
634 	if (fidp->fid_len < LONG_FID_LEN) {
635 		fidp->fid_len = LONG_FID_LEN;
636 		return (SET_ERROR(ENOSPC));
637 	}
638 
639 	object = ip->i_ino;
640 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
641 	zfid->zf_len = LONG_FID_LEN;
642 
643 	dentry = d_obtain_alias(igrab(ip));
644 	if (!IS_ERR(dentry)) {
645 		gen = !!d_mountpoint(dentry);
646 		dput(dentry);
647 	}
648 
649 	for (i = 0; i < sizeof (zfid->zf_object); i++)
650 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
651 
652 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
653 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
654 
655 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
656 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
657 
658 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
659 		zlfid->zf_setgen[i] = 0;
660 
661 	return (0);
662 }
663 
664 /*
665  * Generate an appropriate fid for an entry in the .zfs directory.
666  */
667 int
668 zfsctl_fid(struct inode *ip, fid_t *fidp)
669 {
670 	znode_t		*zp = ITOZ(ip);
671 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
672 	uint64_t	object = zp->z_id;
673 	zfid_short_t	*zfid;
674 	int		i;
675 	int		error;
676 
677 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
678 		return (error);
679 
680 	if (zfsctl_is_snapdir(ip)) {
681 		zfs_exit(zfsvfs, FTAG);
682 		return (zfsctl_snapdir_fid(ip, fidp));
683 	}
684 
685 	if (fidp->fid_len < SHORT_FID_LEN) {
686 		fidp->fid_len = SHORT_FID_LEN;
687 		zfs_exit(zfsvfs, FTAG);
688 		return (SET_ERROR(ENOSPC));
689 	}
690 
691 	zfid = (zfid_short_t *)fidp;
692 
693 	zfid->zf_len = SHORT_FID_LEN;
694 
695 	for (i = 0; i < sizeof (zfid->zf_object); i++)
696 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
697 
698 	/* .zfs znodes always have a generation number of 0 */
699 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
700 		zfid->zf_gen[i] = 0;
701 
702 	zfs_exit(zfsvfs, FTAG);
703 	return (0);
704 }
705 
706 /*
707  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
708  */
709 static int
710 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
711     char *full_name)
712 {
713 	objset_t *os = zfsvfs->z_os;
714 
715 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
716 		return (SET_ERROR(EILSEQ));
717 
718 	dmu_objset_name(os, full_name);
719 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
720 		return (SET_ERROR(ENAMETOOLONG));
721 
722 	(void) strcat(full_name, "@");
723 	(void) strcat(full_name, snap_name);
724 
725 	return (0);
726 }
727 
728 /*
729  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
730  */
731 static int
732 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
733     int path_len, char *full_path)
734 {
735 	objset_t *os = zfsvfs->z_os;
736 	fstrans_cookie_t cookie;
737 	char *snapname;
738 	boolean_t case_conflict;
739 	uint64_t id, pos = 0;
740 	int error = 0;
741 
742 	if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
743 		return (SET_ERROR(ENOENT));
744 
745 	cookie = spl_fstrans_mark();
746 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
747 
748 	while (error == 0) {
749 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
750 		error = dmu_snapshot_list_next(zfsvfs->z_os,
751 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
752 		    &case_conflict);
753 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
754 		if (error)
755 			goto out;
756 
757 		if (id == objsetid)
758 			break;
759 	}
760 
761 	snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
762 	    zfsvfs->z_vfs->vfs_mntpoint, snapname);
763 out:
764 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
765 	spl_fstrans_unmark(cookie);
766 
767 	return (error);
768 }
769 
770 /*
771  * Special case the handling of "..".
772  */
773 int
774 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
775     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
776 {
777 	zfsvfs_t *zfsvfs = ITOZSB(dip);
778 	int error = 0;
779 
780 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
781 		return (error);
782 
783 	if (strcmp(name, "..") == 0) {
784 		*ipp = dip->i_sb->s_root->d_inode;
785 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
786 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
787 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
788 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
789 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
790 		    &zpl_fops_shares, &zpl_ops_shares);
791 	} else {
792 		*ipp = NULL;
793 	}
794 
795 	if (*ipp == NULL)
796 		error = SET_ERROR(ENOENT);
797 
798 	zfs_exit(zfsvfs, FTAG);
799 
800 	return (error);
801 }
802 
803 /*
804  * Lookup entry point for the 'snapshot' directory.  Try to open the
805  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
806  */
807 int
808 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
809     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
810 {
811 	zfsvfs_t *zfsvfs = ITOZSB(dip);
812 	uint64_t id;
813 	int error;
814 
815 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
816 		return (error);
817 
818 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
819 	if (error) {
820 		zfs_exit(zfsvfs, FTAG);
821 		return (error);
822 	}
823 
824 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
825 	    &simple_dir_operations, &simple_dir_inode_operations);
826 	if (*ipp == NULL)
827 		error = SET_ERROR(ENOENT);
828 
829 	zfs_exit(zfsvfs, FTAG);
830 
831 	return (error);
832 }
833 
834 /*
835  * Renaming a directory under '.zfs/snapshot' will automatically trigger
836  * a rename of the snapshot to the new given name.  The rename is confined
837  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
838  */
839 int
840 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
841     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
842 {
843 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
844 	char *to, *from, *real, *fsname;
845 	int error;
846 
847 	if (!zfs_admin_snapshot)
848 		return (SET_ERROR(EACCES));
849 
850 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
851 		return (error);
852 
853 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
854 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
855 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
856 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
857 
858 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
859 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
860 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
861 		if (error == 0) {
862 			snm = real;
863 		} else if (error != ENOTSUP) {
864 			goto out;
865 		}
866 	}
867 
868 	dmu_objset_name(zfsvfs->z_os, fsname);
869 
870 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
871 	    ZFS_MAX_DATASET_NAME_LEN, from);
872 	if (error == 0)
873 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
874 		    ZFS_MAX_DATASET_NAME_LEN, to);
875 	if (error == 0)
876 		error = zfs_secpolicy_rename_perms(from, to, cr);
877 	if (error != 0)
878 		goto out;
879 
880 	/*
881 	 * Cannot move snapshots out of the snapdir.
882 	 */
883 	if (sdip != tdip) {
884 		error = SET_ERROR(EINVAL);
885 		goto out;
886 	}
887 
888 	/*
889 	 * No-op when names are identical.
890 	 */
891 	if (strcmp(snm, tnm) == 0) {
892 		error = 0;
893 		goto out;
894 	}
895 
896 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
897 
898 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
899 	if (error == 0)
900 		(void) zfsctl_snapshot_rename(snm, tnm);
901 
902 	rw_exit(&zfs_snapshot_lock);
903 out:
904 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
905 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
906 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
907 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
908 
909 	zfs_exit(zfsvfs, FTAG);
910 
911 	return (error);
912 }
913 
914 /*
915  * Removing a directory under '.zfs/snapshot' will automatically trigger
916  * the removal of the snapshot with the given name.
917  */
918 int
919 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
920     int flags)
921 {
922 	zfsvfs_t *zfsvfs = ITOZSB(dip);
923 	char *snapname, *real;
924 	int error;
925 
926 	if (!zfs_admin_snapshot)
927 		return (SET_ERROR(EACCES));
928 
929 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
930 		return (error);
931 
932 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
933 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
934 
935 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
936 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
937 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
938 		if (error == 0) {
939 			name = real;
940 		} else if (error != ENOTSUP) {
941 			goto out;
942 		}
943 	}
944 
945 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
946 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
947 	if (error == 0)
948 		error = zfs_secpolicy_destroy_perms(snapname, cr);
949 	if (error != 0)
950 		goto out;
951 
952 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
953 	if ((error == 0) || (error == ENOENT))
954 		error = dsl_destroy_snapshot(snapname, B_FALSE);
955 out:
956 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
957 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
958 
959 	zfs_exit(zfsvfs, FTAG);
960 
961 	return (error);
962 }
963 
964 /*
965  * Creating a directory under '.zfs/snapshot' will automatically trigger
966  * the creation of a new snapshot with the given name.
967  */
968 int
969 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
970     struct inode **ipp, cred_t *cr, int flags)
971 {
972 	zfsvfs_t *zfsvfs = ITOZSB(dip);
973 	char *dsname;
974 	int error;
975 
976 	if (!zfs_admin_snapshot)
977 		return (SET_ERROR(EACCES));
978 
979 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
980 
981 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
982 		error = SET_ERROR(EILSEQ);
983 		goto out;
984 	}
985 
986 	dmu_objset_name(zfsvfs->z_os, dsname);
987 
988 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
989 	if (error != 0)
990 		goto out;
991 
992 	if (error == 0) {
993 		error = dmu_objset_snapshot_one(dsname, dirname);
994 		if (error != 0)
995 			goto out;
996 
997 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
998 		    0, cr, NULL, NULL);
999 	}
1000 out:
1001 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1002 
1003 	return (error);
1004 }
1005 
1006 /*
1007  * Flush everything out of the kernel's export table and such.
1008  * This is needed as once the snapshot is used over NFS, its
1009  * entries in svc_export and svc_expkey caches hold reference
1010  * to the snapshot mount point. There is no known way of flushing
1011  * only the entries related to the snapshot.
1012  */
1013 static void
1014 exportfs_flush(void)
1015 {
1016 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1017 	char *envp[] = { NULL };
1018 
1019 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1020 }
1021 
1022 /*
1023  * Attempt to unmount a snapshot by making a call to user space.
1024  * There is no assurance that this can or will succeed, is just a
1025  * best effort.  In the case where it does fail, perhaps because
1026  * it's in use, the unmount will fail harmlessly.
1027  */
1028 int
1029 zfsctl_snapshot_unmount(const char *snapname, int flags)
1030 {
1031 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1032 	    NULL };
1033 	char *envp[] = { NULL };
1034 	zfs_snapentry_t *se;
1035 	int error;
1036 
1037 	rw_enter(&zfs_snapshot_lock, RW_READER);
1038 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1039 		rw_exit(&zfs_snapshot_lock);
1040 		return (SET_ERROR(ENOENT));
1041 	}
1042 	rw_exit(&zfs_snapshot_lock);
1043 
1044 	exportfs_flush();
1045 
1046 	if (flags & MNT_FORCE)
1047 		argv[4] = "-fn";
1048 	argv[5] = se->se_path;
1049 	dprintf("unmount; path=%s\n", se->se_path);
1050 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1051 	zfsctl_snapshot_rele(se);
1052 
1053 
1054 	/*
1055 	 * The umount system utility will return 256 on error.  We must
1056 	 * assume this error is because the file system is busy so it is
1057 	 * converted to the more sensible EBUSY.
1058 	 */
1059 	if (error)
1060 		error = SET_ERROR(EBUSY);
1061 
1062 	return (error);
1063 }
1064 
1065 int
1066 zfsctl_snapshot_mount(struct path *path, int flags)
1067 {
1068 	struct dentry *dentry = path->dentry;
1069 	struct inode *ip = dentry->d_inode;
1070 	zfsvfs_t *zfsvfs;
1071 	zfsvfs_t *snap_zfsvfs;
1072 	zfs_snapentry_t *se;
1073 	char *full_name, *full_path;
1074 	char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1075 	    NULL };
1076 	char *envp[] = { NULL };
1077 	int error;
1078 	struct path spath;
1079 
1080 	if (ip == NULL)
1081 		return (SET_ERROR(EISDIR));
1082 
1083 	zfsvfs = ITOZSB(ip);
1084 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1085 		return (error);
1086 
1087 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1088 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1089 
1090 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1091 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
1092 	if (error)
1093 		goto error;
1094 
1095 	/*
1096 	 * Construct a mount point path from sb of the ctldir inode and dirent
1097 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
1098 	 * on mount.zfs(8).
1099 	 */
1100 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1101 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1102 	    dname(dentry));
1103 
1104 	/*
1105 	 * Multiple concurrent automounts of a snapshot are never allowed.
1106 	 * The snapshot may be manually mounted as many times as desired.
1107 	 */
1108 	if (zfsctl_snapshot_ismounted(full_name)) {
1109 		error = 0;
1110 		goto error;
1111 	}
1112 
1113 	/*
1114 	 * Attempt to mount the snapshot from user space.  Normally this
1115 	 * would be done using the vfs_kern_mount() function, however that
1116 	 * function is marked GPL-only and cannot be used.  On error we
1117 	 * careful to log the real error to the console and return EISDIR
1118 	 * to safely abort the automount.  This should be very rare.
1119 	 *
1120 	 * If the user mode helper happens to return EBUSY, a concurrent
1121 	 * mount is already in progress in which case the error is ignored.
1122 	 * Take note that if the program was executed successfully the return
1123 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1124 	 */
1125 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
1126 	argv[5] = full_name;
1127 	argv[6] = full_path;
1128 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1129 	if (error) {
1130 		if (!(error & MOUNT_BUSY << 8)) {
1131 			zfs_dbgmsg("Unable to automount %s error=%d",
1132 			    full_path, error);
1133 			error = SET_ERROR(EISDIR);
1134 		} else {
1135 			/*
1136 			 * EBUSY, this could mean a concurrent mount, or the
1137 			 * snapshot has already been mounted at completely
1138 			 * different place. We return 0 so VFS will retry. For
1139 			 * the latter case the VFS will retry several times
1140 			 * and return ELOOP, which is probably not a very good
1141 			 * behavior.
1142 			 */
1143 			error = 0;
1144 		}
1145 		goto error;
1146 	}
1147 
1148 	/*
1149 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1150 	 * to identify this as an automounted filesystem.
1151 	 */
1152 	spath = *path;
1153 	path_get(&spath);
1154 	if (follow_down_one(&spath)) {
1155 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1156 		snap_zfsvfs->z_parent = zfsvfs;
1157 		dentry = spath.dentry;
1158 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1159 
1160 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
1161 		se = zfsctl_snapshot_alloc(full_name, full_path,
1162 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1163 		    dentry);
1164 		zfsctl_snapshot_add(se);
1165 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1166 		rw_exit(&zfs_snapshot_lock);
1167 	}
1168 	path_put(&spath);
1169 error:
1170 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1171 	kmem_free(full_path, MAXPATHLEN);
1172 
1173 	zfs_exit(zfsvfs, FTAG);
1174 
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Get the snapdir inode from fid
1180  */
1181 int
1182 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1183     struct inode **ipp)
1184 {
1185 	int error;
1186 	struct path path;
1187 	char *mnt;
1188 	struct dentry *dentry;
1189 
1190 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1191 
1192 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1193 	    MAXPATHLEN, mnt);
1194 	if (error)
1195 		goto out;
1196 
1197 	/* Trigger automount */
1198 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1199 	if (error)
1200 		goto out;
1201 
1202 	path_put(&path);
1203 	/*
1204 	 * Get the snapdir inode. Note, we don't want to use the above
1205 	 * path because it contains the root of the snapshot rather
1206 	 * than the snapdir.
1207 	 */
1208 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1209 	if (*ipp == NULL) {
1210 		error = SET_ERROR(ENOENT);
1211 		goto out;
1212 	}
1213 
1214 	/* check gen, see zfsctl_snapdir_fid */
1215 	dentry = d_obtain_alias(igrab(*ipp));
1216 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1217 		iput(*ipp);
1218 		*ipp = NULL;
1219 		error = SET_ERROR(ENOENT);
1220 	}
1221 	if (!IS_ERR(dentry))
1222 		dput(dentry);
1223 out:
1224 	kmem_free(mnt, MAXPATHLEN);
1225 	return (error);
1226 }
1227 
1228 int
1229 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1230     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1231 {
1232 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1233 	znode_t *zp;
1234 	znode_t *dzp;
1235 	int error;
1236 
1237 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1238 		return (error);
1239 
1240 	if (zfsvfs->z_shares_dir == 0) {
1241 		zfs_exit(zfsvfs, FTAG);
1242 		return (SET_ERROR(ENOTSUP));
1243 	}
1244 
1245 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1246 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1247 		zrele(dzp);
1248 	}
1249 
1250 	zfs_exit(zfsvfs, FTAG);
1251 
1252 	return (error);
1253 }
1254 
1255 /*
1256  * Initialize the various pieces we'll need to create and manipulate .zfs
1257  * directories.  Currently this is unused but available.
1258  */
1259 void
1260 zfsctl_init(void)
1261 {
1262 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1263 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1264 	    se_node_name));
1265 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1266 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1267 	    se_node_objsetid));
1268 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1269 }
1270 
1271 /*
1272  * Cleanup the various pieces we needed for .zfs directories.  In particular
1273  * ensure the expiry timer is canceled safely.
1274  */
1275 void
1276 zfsctl_fini(void)
1277 {
1278 	avl_destroy(&zfs_snapshots_by_name);
1279 	avl_destroy(&zfs_snapshots_by_objsetid);
1280 	rw_destroy(&zfs_snapshot_lock);
1281 }
1282 
1283 module_param(zfs_admin_snapshot, int, 0644);
1284 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1285 
1286 module_param(zfs_expire_snapshot, int, 0644);
1287 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1288