1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26  * LLNL-CODE-403049.
27  * Rewritten for Linux by:
28  *   Rohan Puri <rohan.puri15@gmail.com>
29  *   Brian Behlendorf <behlendorf1@llnl.gov>
30  * Copyright (c) 2013 by Delphix. All rights reserved.
31  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32  * Copyright (c) 2018 George Melikov. All Rights Reserved.
33  * Copyright (c) 2019 Datto, Inc. All rights reserved.
34  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
35  */
36 
37 /*
38  * ZFS control directory (a.k.a. ".zfs")
39  *
40  * This directory provides a common location for all ZFS meta-objects.
41  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42  * expand in the future.  The elements are built dynamically, as the hierarchy
43  * does not actually exist on disk.
44  *
45  * For 'snapshot', we don't want to have all snapshots always mounted, because
46  * this would take up a huge amount of space in /etc/mnttab.  We have three
47  * types of objects:
48  *
49  *	ctldir ------> snapshotdir -------> snapshot
50  *                                             |
51  *                                             |
52  *                                             V
53  *                                         mounted fs
54  *
55  * The 'snapshot' node contains just enough information to lookup '..' and act
56  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
57  * perform an automount of the underlying filesystem and return the
58  * corresponding inode.
59  *
60  * All mounts are handled automatically by an user mode helper which invokes
61  * the mount procedure.  Unmounts are handled by allowing the mount
62  * point to expire so the kernel may automatically unmount it.
63  *
64  * The '.zfs', '.zfs/snapshot', and all directories created under
65  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
67  *
68  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69  * (ie: snapshots) are complete ZFS filesystems and have their own unique
70  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
71  * as that used by the parent zfsvfs_t to make NFS happy.
72  */
73 
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
92 
93 /*
94  * Two AVL trees are maintained which contain all currently automounted
95  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
96  * entry which MUST:
97  *
98  *   - be attached to both trees, and
99  *   - be unique, no duplicate entries are allowed.
100  *
101  * The zfs_snapshots_by_name tree is indexed by the full dataset name
102  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103  * objsetid.  This allows for fast lookups either by name or objsetid.
104  */
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
108 
109 /*
110  * Control Directory Tunables (.zfs)
111  */
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 int zfs_admin_snapshot = 0;
114 
115 typedef struct {
116 	char		*se_name;	/* full snapshot name */
117 	char		*se_path;	/* full mount path */
118 	spa_t		*se_spa;	/* pool spa */
119 	uint64_t	se_objsetid;	/* snapshot objset id */
120 	struct dentry   *se_root_dentry; /* snapshot root dentry */
121 	krwlock_t	se_taskqid_lock;  /* scheduled unmount taskqid lock */
122 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
123 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
124 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
125 	zfs_refcount_t	se_refcount;	/* reference count */
126 } zfs_snapentry_t;
127 
128 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
129 
130 /*
131  * Allocate a new zfs_snapentry_t being careful to make a copy of the
132  * the snapshot name and provided mount point.  No reference is taken.
133  */
134 static zfs_snapentry_t *
135 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
136     uint64_t objsetid, struct dentry *root_dentry)
137 {
138 	zfs_snapentry_t *se;
139 
140 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
141 
142 	se->se_name = kmem_strdup(full_name);
143 	se->se_path = kmem_strdup(full_path);
144 	se->se_spa = spa;
145 	se->se_objsetid = objsetid;
146 	se->se_root_dentry = root_dentry;
147 	se->se_taskqid = TASKQID_INVALID;
148 	rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
149 
150 	zfs_refcount_create(&se->se_refcount);
151 
152 	return (se);
153 }
154 
155 /*
156  * Free a zfs_snapentry_t the caller must ensure there are no active
157  * references.
158  */
159 static void
160 zfsctl_snapshot_free(zfs_snapentry_t *se)
161 {
162 	zfs_refcount_destroy(&se->se_refcount);
163 	kmem_strfree(se->se_name);
164 	kmem_strfree(se->se_path);
165 	rw_destroy(se->se_taskqid_lock);
166 
167 	kmem_free(se, sizeof (zfs_snapentry_t));
168 }
169 
170 /*
171  * Hold a reference on the zfs_snapentry_t.
172  */
173 static void
174 zfsctl_snapshot_hold(zfs_snapentry_t *se)
175 {
176 	zfs_refcount_add(&se->se_refcount, NULL);
177 }
178 
179 /*
180  * Release a reference on the zfs_snapentry_t.  When the number of
181  * references drops to zero the structure will be freed.
182  */
183 static void
184 zfsctl_snapshot_rele(zfs_snapentry_t *se)
185 {
186 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
187 		zfsctl_snapshot_free(se);
188 }
189 
190 /*
191  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
192  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
193  * of the trees a reference is held.
194  */
195 static void
196 zfsctl_snapshot_add(zfs_snapentry_t *se)
197 {
198 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
199 	zfsctl_snapshot_hold(se);
200 	avl_add(&zfs_snapshots_by_name, se);
201 	avl_add(&zfs_snapshots_by_objsetid, se);
202 }
203 
204 /*
205  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
206  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
207  * this can result in the structure being freed if that was the last
208  * remaining reference.
209  */
210 static void
211 zfsctl_snapshot_remove(zfs_snapentry_t *se)
212 {
213 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
214 	avl_remove(&zfs_snapshots_by_name, se);
215 	avl_remove(&zfs_snapshots_by_objsetid, se);
216 	zfsctl_snapshot_rele(se);
217 }
218 
219 /*
220  * Snapshot name comparison function for the zfs_snapshots_by_name.
221  */
222 static int
223 snapentry_compare_by_name(const void *a, const void *b)
224 {
225 	const zfs_snapentry_t *se_a = a;
226 	const zfs_snapentry_t *se_b = b;
227 	int ret;
228 
229 	ret = strcmp(se_a->se_name, se_b->se_name);
230 
231 	if (ret < 0)
232 		return (-1);
233 	else if (ret > 0)
234 		return (1);
235 	else
236 		return (0);
237 }
238 
239 /*
240  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
241  */
242 static int
243 snapentry_compare_by_objsetid(const void *a, const void *b)
244 {
245 	const zfs_snapentry_t *se_a = a;
246 	const zfs_snapentry_t *se_b = b;
247 
248 	if (se_a->se_spa != se_b->se_spa)
249 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
250 
251 	if (se_a->se_objsetid < se_b->se_objsetid)
252 		return (-1);
253 	else if (se_a->se_objsetid > se_b->se_objsetid)
254 		return (1);
255 	else
256 		return (0);
257 }
258 
259 /*
260  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
261  * is found a pointer to the zfs_snapentry_t is returned and a reference
262  * taken on the structure.  The caller is responsible for dropping the
263  * reference with zfsctl_snapshot_rele().  If the snapname is not found
264  * NULL will be returned.
265  */
266 static zfs_snapentry_t *
267 zfsctl_snapshot_find_by_name(const char *snapname)
268 {
269 	zfs_snapentry_t *se, search;
270 
271 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
272 
273 	search.se_name = (char *)snapname;
274 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
275 	if (se)
276 		zfsctl_snapshot_hold(se);
277 
278 	return (se);
279 }
280 
281 /*
282  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
283  * rather than the snapname.  In all other respects it behaves the same
284  * as zfsctl_snapshot_find_by_name().
285  */
286 static zfs_snapentry_t *
287 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
288 {
289 	zfs_snapentry_t *se, search;
290 
291 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
292 
293 	search.se_spa = spa;
294 	search.se_objsetid = objsetid;
295 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
296 	if (se)
297 		zfsctl_snapshot_hold(se);
298 
299 	return (se);
300 }
301 
302 /*
303  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
304  * removed, renamed, and added back to the new correct location in the tree.
305  */
306 static int
307 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
308 {
309 	zfs_snapentry_t *se;
310 
311 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
312 
313 	se = zfsctl_snapshot_find_by_name(old_snapname);
314 	if (se == NULL)
315 		return (SET_ERROR(ENOENT));
316 
317 	zfsctl_snapshot_remove(se);
318 	kmem_strfree(se->se_name);
319 	se->se_name = kmem_strdup(new_snapname);
320 	zfsctl_snapshot_add(se);
321 	zfsctl_snapshot_rele(se);
322 
323 	return (0);
324 }
325 
326 /*
327  * Delayed task responsible for unmounting an expired automounted snapshot.
328  */
329 static void
330 snapentry_expire(void *data)
331 {
332 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
333 	spa_t *spa = se->se_spa;
334 	uint64_t objsetid = se->se_objsetid;
335 
336 	if (zfs_expire_snapshot <= 0) {
337 		zfsctl_snapshot_rele(se);
338 		return;
339 	}
340 
341 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
342 	se->se_taskqid = TASKQID_INVALID;
343 	rw_exit(&se->se_taskqid_lock);
344 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
345 	zfsctl_snapshot_rele(se);
346 
347 	/*
348 	 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
349 	 * This can occur when the snapshot is busy.
350 	 */
351 	rw_enter(&zfs_snapshot_lock, RW_READER);
352 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
353 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
354 		zfsctl_snapshot_rele(se);
355 	}
356 	rw_exit(&zfs_snapshot_lock);
357 }
358 
359 /*
360  * Cancel an automatic unmount of a snapname.  This callback is responsible
361  * for dropping the reference on the zfs_snapentry_t which was taken when
362  * during dispatch.
363  */
364 static void
365 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
366 {
367 	int err = 0;
368 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
369 	err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
370 	/*
371 	 * if we get ENOENT, the taskq couldn't be found to be
372 	 * canceled, so we can just mark it as invalid because
373 	 * it's already gone. If we got EBUSY, then we already
374 	 * blocked until it was gone _anyway_, so we don't care.
375 	 */
376 	se->se_taskqid = TASKQID_INVALID;
377 	rw_exit(&se->se_taskqid_lock);
378 	if (err == 0) {
379 		zfsctl_snapshot_rele(se);
380 	}
381 }
382 
383 /*
384  * Dispatch the unmount task for delayed handling with a hold protecting it.
385  */
386 static void
387 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
388 {
389 
390 	if (delay <= 0)
391 		return;
392 
393 	zfsctl_snapshot_hold(se);
394 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
395 	ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
396 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
397 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
398 	rw_exit(&se->se_taskqid_lock);
399 }
400 
401 /*
402  * Schedule an automatic unmount of objset id to occur in delay seconds from
403  * now.  Any previous delayed unmount will be cancelled in favor of the
404  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
405  * and held until the outstanding task is handled or cancelled.
406  */
407 int
408 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
409 {
410 	zfs_snapentry_t *se;
411 	int error = ENOENT;
412 
413 	rw_enter(&zfs_snapshot_lock, RW_READER);
414 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
415 		zfsctl_snapshot_unmount_cancel(se);
416 		zfsctl_snapshot_unmount_delay_impl(se, delay);
417 		zfsctl_snapshot_rele(se);
418 		error = 0;
419 	}
420 	rw_exit(&zfs_snapshot_lock);
421 
422 	return (error);
423 }
424 
425 /*
426  * Check if snapname is currently mounted.  Returned non-zero when mounted
427  * and zero when unmounted.
428  */
429 static boolean_t
430 zfsctl_snapshot_ismounted(const char *snapname)
431 {
432 	zfs_snapentry_t *se;
433 	boolean_t ismounted = B_FALSE;
434 
435 	rw_enter(&zfs_snapshot_lock, RW_READER);
436 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
437 		zfsctl_snapshot_rele(se);
438 		ismounted = B_TRUE;
439 	}
440 	rw_exit(&zfs_snapshot_lock);
441 
442 	return (ismounted);
443 }
444 
445 /*
446  * Check if the given inode is a part of the virtual .zfs directory.
447  */
448 boolean_t
449 zfsctl_is_node(struct inode *ip)
450 {
451 	return (ITOZ(ip)->z_is_ctldir);
452 }
453 
454 /*
455  * Check if the given inode is a .zfs/snapshots/snapname directory.
456  */
457 boolean_t
458 zfsctl_is_snapdir(struct inode *ip)
459 {
460 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
461 }
462 
463 /*
464  * Allocate a new inode with the passed id and ops.
465  */
466 static struct inode *
467 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
468     const struct file_operations *fops, const struct inode_operations *ops)
469 {
470 	inode_timespec_t now;
471 	struct inode *ip;
472 	znode_t *zp;
473 
474 	ip = new_inode(zfsvfs->z_sb);
475 	if (ip == NULL)
476 		return (NULL);
477 
478 	now = current_time(ip);
479 	zp = ITOZ(ip);
480 	ASSERT3P(zp->z_dirlocks, ==, NULL);
481 	ASSERT3P(zp->z_acl_cached, ==, NULL);
482 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
483 	zp->z_id = id;
484 	zp->z_unlinked = B_FALSE;
485 	zp->z_atime_dirty = B_FALSE;
486 	zp->z_zn_prefetch = B_FALSE;
487 	zp->z_is_sa = B_FALSE;
488 	zp->z_is_mapped = B_FALSE;
489 	zp->z_is_ctldir = B_TRUE;
490 	zp->z_is_stale = B_FALSE;
491 	zp->z_sa_hdl = NULL;
492 	zp->z_blksz = 0;
493 	zp->z_seq = 0;
494 	zp->z_mapcnt = 0;
495 	zp->z_size = 0;
496 	zp->z_pflags = 0;
497 	zp->z_mode = 0;
498 	zp->z_sync_cnt = 0;
499 	ip->i_generation = 0;
500 	ip->i_ino = id;
501 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
502 	ip->i_uid = SUID_TO_KUID(0);
503 	ip->i_gid = SGID_TO_KGID(0);
504 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
505 	ip->i_atime = now;
506 	ip->i_mtime = now;
507 	ip->i_ctime = now;
508 	ip->i_fop = fops;
509 	ip->i_op = ops;
510 #if defined(IOP_XATTR)
511 	ip->i_opflags &= ~IOP_XATTR;
512 #endif
513 
514 	if (insert_inode_locked(ip)) {
515 		unlock_new_inode(ip);
516 		iput(ip);
517 		return (NULL);
518 	}
519 
520 	mutex_enter(&zfsvfs->z_znodes_lock);
521 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
522 	zfsvfs->z_nr_znodes++;
523 	membar_producer();
524 	mutex_exit(&zfsvfs->z_znodes_lock);
525 
526 	unlock_new_inode(ip);
527 
528 	return (ip);
529 }
530 
531 /*
532  * Lookup the inode with given id, it will be allocated if needed.
533  */
534 static struct inode *
535 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
536     const struct file_operations *fops, const struct inode_operations *ops)
537 {
538 	struct inode *ip = NULL;
539 
540 	while (ip == NULL) {
541 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
542 		if (ip)
543 			break;
544 
545 		/* May fail due to concurrent zfsctl_inode_alloc() */
546 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
547 	}
548 
549 	return (ip);
550 }
551 
552 /*
553  * Create the '.zfs' directory.  This directory is cached as part of the VFS
554  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
555  * therefore checks against a vfs_count of 2 instead of 1.  This reference
556  * is removed when the ctldir is destroyed in the unmount.  All other entities
557  * under the '.zfs' directory are created dynamically as needed.
558  *
559  * Because the dynamically created '.zfs' directory entries assume the use
560  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
561  */
562 int
563 zfsctl_create(zfsvfs_t *zfsvfs)
564 {
565 	ASSERT(zfsvfs->z_ctldir == NULL);
566 
567 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
568 	    &zpl_fops_root, &zpl_ops_root);
569 	if (zfsvfs->z_ctldir == NULL)
570 		return (SET_ERROR(ENOENT));
571 
572 	return (0);
573 }
574 
575 /*
576  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
577  * Only called when the filesystem is unmounted.
578  */
579 void
580 zfsctl_destroy(zfsvfs_t *zfsvfs)
581 {
582 	if (zfsvfs->z_issnap) {
583 		zfs_snapentry_t *se;
584 		spa_t *spa = zfsvfs->z_os->os_spa;
585 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
586 
587 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
588 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
589 		if (se != NULL)
590 			zfsctl_snapshot_remove(se);
591 		rw_exit(&zfs_snapshot_lock);
592 		if (se != NULL) {
593 			zfsctl_snapshot_unmount_cancel(se);
594 			zfsctl_snapshot_rele(se);
595 		}
596 	} else if (zfsvfs->z_ctldir) {
597 		iput(zfsvfs->z_ctldir);
598 		zfsvfs->z_ctldir = NULL;
599 	}
600 }
601 
602 /*
603  * Given a root znode, retrieve the associated .zfs directory.
604  * Add a hold to the vnode and return it.
605  */
606 struct inode *
607 zfsctl_root(znode_t *zp)
608 {
609 	ASSERT(zfs_has_ctldir(zp));
610 	/* Must have an existing ref, so igrab() cannot return NULL */
611 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
612 	return (ZTOZSB(zp)->z_ctldir);
613 }
614 
615 /*
616  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
617  * already mounted in gen field. We do this because nfsd lookup will not
618  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
619  * this and do automount and return ESTALE to force nfsd revalidate and follow
620  * mount.
621  */
622 static int
623 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
624 {
625 	zfid_short_t *zfid = (zfid_short_t *)fidp;
626 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
627 	uint32_t gen = 0;
628 	uint64_t object;
629 	uint64_t objsetid;
630 	int i;
631 	struct dentry *dentry;
632 
633 	if (fidp->fid_len < LONG_FID_LEN) {
634 		fidp->fid_len = LONG_FID_LEN;
635 		return (SET_ERROR(ENOSPC));
636 	}
637 
638 	object = ip->i_ino;
639 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
640 	zfid->zf_len = LONG_FID_LEN;
641 
642 	dentry = d_obtain_alias(igrab(ip));
643 	if (!IS_ERR(dentry)) {
644 		gen = !!d_mountpoint(dentry);
645 		dput(dentry);
646 	}
647 
648 	for (i = 0; i < sizeof (zfid->zf_object); i++)
649 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
650 
651 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
652 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
653 
654 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
655 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
656 
657 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
658 		zlfid->zf_setgen[i] = 0;
659 
660 	return (0);
661 }
662 
663 /*
664  * Generate an appropriate fid for an entry in the .zfs directory.
665  */
666 int
667 zfsctl_fid(struct inode *ip, fid_t *fidp)
668 {
669 	znode_t		*zp = ITOZ(ip);
670 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
671 	uint64_t	object = zp->z_id;
672 	zfid_short_t	*zfid;
673 	int		i;
674 
675 	ZFS_ENTER(zfsvfs);
676 
677 	if (zfsctl_is_snapdir(ip)) {
678 		ZFS_EXIT(zfsvfs);
679 		return (zfsctl_snapdir_fid(ip, fidp));
680 	}
681 
682 	if (fidp->fid_len < SHORT_FID_LEN) {
683 		fidp->fid_len = SHORT_FID_LEN;
684 		ZFS_EXIT(zfsvfs);
685 		return (SET_ERROR(ENOSPC));
686 	}
687 
688 	zfid = (zfid_short_t *)fidp;
689 
690 	zfid->zf_len = SHORT_FID_LEN;
691 
692 	for (i = 0; i < sizeof (zfid->zf_object); i++)
693 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
694 
695 	/* .zfs znodes always have a generation number of 0 */
696 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
697 		zfid->zf_gen[i] = 0;
698 
699 	ZFS_EXIT(zfsvfs);
700 	return (0);
701 }
702 
703 /*
704  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
705  */
706 static int
707 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
708     char *full_name)
709 {
710 	objset_t *os = zfsvfs->z_os;
711 
712 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
713 		return (SET_ERROR(EILSEQ));
714 
715 	dmu_objset_name(os, full_name);
716 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
717 		return (SET_ERROR(ENAMETOOLONG));
718 
719 	(void) strcat(full_name, "@");
720 	(void) strcat(full_name, snap_name);
721 
722 	return (0);
723 }
724 
725 /*
726  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
727  */
728 static int
729 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
730     int path_len, char *full_path)
731 {
732 	objset_t *os = zfsvfs->z_os;
733 	fstrans_cookie_t cookie;
734 	char *snapname;
735 	boolean_t case_conflict;
736 	uint64_t id, pos = 0;
737 	int error = 0;
738 
739 	if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
740 		return (SET_ERROR(ENOENT));
741 
742 	cookie = spl_fstrans_mark();
743 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
744 
745 	while (error == 0) {
746 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
747 		error = dmu_snapshot_list_next(zfsvfs->z_os,
748 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
749 		    &case_conflict);
750 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
751 		if (error)
752 			goto out;
753 
754 		if (id == objsetid)
755 			break;
756 	}
757 
758 	snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
759 	    zfsvfs->z_vfs->vfs_mntpoint, snapname);
760 out:
761 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
762 	spl_fstrans_unmark(cookie);
763 
764 	return (error);
765 }
766 
767 /*
768  * Special case the handling of "..".
769  */
770 int
771 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
772     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
773 {
774 	zfsvfs_t *zfsvfs = ITOZSB(dip);
775 	int error = 0;
776 
777 	ZFS_ENTER(zfsvfs);
778 
779 	if (strcmp(name, "..") == 0) {
780 		*ipp = dip->i_sb->s_root->d_inode;
781 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
782 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
783 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
784 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
785 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
786 		    &zpl_fops_shares, &zpl_ops_shares);
787 	} else {
788 		*ipp = NULL;
789 	}
790 
791 	if (*ipp == NULL)
792 		error = SET_ERROR(ENOENT);
793 
794 	ZFS_EXIT(zfsvfs);
795 
796 	return (error);
797 }
798 
799 /*
800  * Lookup entry point for the 'snapshot' directory.  Try to open the
801  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
802  */
803 int
804 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
805     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
806 {
807 	zfsvfs_t *zfsvfs = ITOZSB(dip);
808 	uint64_t id;
809 	int error;
810 
811 	ZFS_ENTER(zfsvfs);
812 
813 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
814 	if (error) {
815 		ZFS_EXIT(zfsvfs);
816 		return (error);
817 	}
818 
819 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
820 	    &simple_dir_operations, &simple_dir_inode_operations);
821 	if (*ipp == NULL)
822 		error = SET_ERROR(ENOENT);
823 
824 	ZFS_EXIT(zfsvfs);
825 
826 	return (error);
827 }
828 
829 /*
830  * Renaming a directory under '.zfs/snapshot' will automatically trigger
831  * a rename of the snapshot to the new given name.  The rename is confined
832  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
833  */
834 int
835 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
836     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
837 {
838 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
839 	char *to, *from, *real, *fsname;
840 	int error;
841 
842 	if (!zfs_admin_snapshot)
843 		return (SET_ERROR(EACCES));
844 
845 	ZFS_ENTER(zfsvfs);
846 
847 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
848 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
849 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
850 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
851 
852 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
853 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
854 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
855 		if (error == 0) {
856 			snm = real;
857 		} else if (error != ENOTSUP) {
858 			goto out;
859 		}
860 	}
861 
862 	dmu_objset_name(zfsvfs->z_os, fsname);
863 
864 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
865 	    ZFS_MAX_DATASET_NAME_LEN, from);
866 	if (error == 0)
867 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
868 		    ZFS_MAX_DATASET_NAME_LEN, to);
869 	if (error == 0)
870 		error = zfs_secpolicy_rename_perms(from, to, cr);
871 	if (error != 0)
872 		goto out;
873 
874 	/*
875 	 * Cannot move snapshots out of the snapdir.
876 	 */
877 	if (sdip != tdip) {
878 		error = SET_ERROR(EINVAL);
879 		goto out;
880 	}
881 
882 	/*
883 	 * No-op when names are identical.
884 	 */
885 	if (strcmp(snm, tnm) == 0) {
886 		error = 0;
887 		goto out;
888 	}
889 
890 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
891 
892 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
893 	if (error == 0)
894 		(void) zfsctl_snapshot_rename(snm, tnm);
895 
896 	rw_exit(&zfs_snapshot_lock);
897 out:
898 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
899 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
900 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
901 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
902 
903 	ZFS_EXIT(zfsvfs);
904 
905 	return (error);
906 }
907 
908 /*
909  * Removing a directory under '.zfs/snapshot' will automatically trigger
910  * the removal of the snapshot with the given name.
911  */
912 int
913 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
914     int flags)
915 {
916 	zfsvfs_t *zfsvfs = ITOZSB(dip);
917 	char *snapname, *real;
918 	int error;
919 
920 	if (!zfs_admin_snapshot)
921 		return (SET_ERROR(EACCES));
922 
923 	ZFS_ENTER(zfsvfs);
924 
925 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
926 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
927 
928 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
929 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
930 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
931 		if (error == 0) {
932 			name = real;
933 		} else if (error != ENOTSUP) {
934 			goto out;
935 		}
936 	}
937 
938 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
939 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
940 	if (error == 0)
941 		error = zfs_secpolicy_destroy_perms(snapname, cr);
942 	if (error != 0)
943 		goto out;
944 
945 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
946 	if ((error == 0) || (error == ENOENT))
947 		error = dsl_destroy_snapshot(snapname, B_FALSE);
948 out:
949 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
950 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
951 
952 	ZFS_EXIT(zfsvfs);
953 
954 	return (error);
955 }
956 
957 /*
958  * Creating a directory under '.zfs/snapshot' will automatically trigger
959  * the creation of a new snapshot with the given name.
960  */
961 int
962 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
963     struct inode **ipp, cred_t *cr, int flags)
964 {
965 	zfsvfs_t *zfsvfs = ITOZSB(dip);
966 	char *dsname;
967 	int error;
968 
969 	if (!zfs_admin_snapshot)
970 		return (SET_ERROR(EACCES));
971 
972 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
973 
974 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
975 		error = SET_ERROR(EILSEQ);
976 		goto out;
977 	}
978 
979 	dmu_objset_name(zfsvfs->z_os, dsname);
980 
981 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
982 	if (error != 0)
983 		goto out;
984 
985 	if (error == 0) {
986 		error = dmu_objset_snapshot_one(dsname, dirname);
987 		if (error != 0)
988 			goto out;
989 
990 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
991 		    0, cr, NULL, NULL);
992 	}
993 out:
994 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
995 
996 	return (error);
997 }
998 
999 /*
1000  * Flush everything out of the kernel's export table and such.
1001  * This is needed as once the snapshot is used over NFS, its
1002  * entries in svc_export and svc_expkey caches hold reference
1003  * to the snapshot mount point. There is no known way of flushing
1004  * only the entries related to the snapshot.
1005  */
1006 static void
1007 exportfs_flush(void)
1008 {
1009 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1010 	char *envp[] = { NULL };
1011 
1012 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1013 }
1014 
1015 /*
1016  * Attempt to unmount a snapshot by making a call to user space.
1017  * There is no assurance that this can or will succeed, is just a
1018  * best effort.  In the case where it does fail, perhaps because
1019  * it's in use, the unmount will fail harmlessly.
1020  */
1021 int
1022 zfsctl_snapshot_unmount(const char *snapname, int flags)
1023 {
1024 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1025 	    NULL };
1026 	char *envp[] = { NULL };
1027 	zfs_snapentry_t *se;
1028 	int error;
1029 
1030 	rw_enter(&zfs_snapshot_lock, RW_READER);
1031 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1032 		rw_exit(&zfs_snapshot_lock);
1033 		return (SET_ERROR(ENOENT));
1034 	}
1035 	rw_exit(&zfs_snapshot_lock);
1036 
1037 	exportfs_flush();
1038 
1039 	if (flags & MNT_FORCE)
1040 		argv[4] = "-fn";
1041 	argv[5] = se->se_path;
1042 	dprintf("unmount; path=%s\n", se->se_path);
1043 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1044 	zfsctl_snapshot_rele(se);
1045 
1046 
1047 	/*
1048 	 * The umount system utility will return 256 on error.  We must
1049 	 * assume this error is because the file system is busy so it is
1050 	 * converted to the more sensible EBUSY.
1051 	 */
1052 	if (error)
1053 		error = SET_ERROR(EBUSY);
1054 
1055 	return (error);
1056 }
1057 
1058 int
1059 zfsctl_snapshot_mount(struct path *path, int flags)
1060 {
1061 	struct dentry *dentry = path->dentry;
1062 	struct inode *ip = dentry->d_inode;
1063 	zfsvfs_t *zfsvfs;
1064 	zfsvfs_t *snap_zfsvfs;
1065 	zfs_snapentry_t *se;
1066 	char *full_name, *full_path;
1067 	char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1068 	    NULL };
1069 	char *envp[] = { NULL };
1070 	int error;
1071 	struct path spath;
1072 
1073 	if (ip == NULL)
1074 		return (SET_ERROR(EISDIR));
1075 
1076 	zfsvfs = ITOZSB(ip);
1077 	ZFS_ENTER(zfsvfs);
1078 
1079 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1080 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1081 
1082 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1083 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
1084 	if (error)
1085 		goto error;
1086 
1087 	/*
1088 	 * Construct a mount point path from sb of the ctldir inode and dirent
1089 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
1090 	 * on mount.zfs(8).
1091 	 */
1092 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1093 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1094 	    dname(dentry));
1095 
1096 	/*
1097 	 * Multiple concurrent automounts of a snapshot are never allowed.
1098 	 * The snapshot may be manually mounted as many times as desired.
1099 	 */
1100 	if (zfsctl_snapshot_ismounted(full_name)) {
1101 		error = 0;
1102 		goto error;
1103 	}
1104 
1105 	/*
1106 	 * Attempt to mount the snapshot from user space.  Normally this
1107 	 * would be done using the vfs_kern_mount() function, however that
1108 	 * function is marked GPL-only and cannot be used.  On error we
1109 	 * careful to log the real error to the console and return EISDIR
1110 	 * to safely abort the automount.  This should be very rare.
1111 	 *
1112 	 * If the user mode helper happens to return EBUSY, a concurrent
1113 	 * mount is already in progress in which case the error is ignored.
1114 	 * Take note that if the program was executed successfully the return
1115 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1116 	 */
1117 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
1118 	argv[5] = full_name;
1119 	argv[6] = full_path;
1120 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1121 	if (error) {
1122 		if (!(error & MOUNT_BUSY << 8)) {
1123 			zfs_dbgmsg("Unable to automount %s error=%d",
1124 			    full_path, error);
1125 			error = SET_ERROR(EISDIR);
1126 		} else {
1127 			/*
1128 			 * EBUSY, this could mean a concurrent mount, or the
1129 			 * snapshot has already been mounted at completely
1130 			 * different place. We return 0 so VFS will retry. For
1131 			 * the latter case the VFS will retry several times
1132 			 * and return ELOOP, which is probably not a very good
1133 			 * behavior.
1134 			 */
1135 			error = 0;
1136 		}
1137 		goto error;
1138 	}
1139 
1140 	/*
1141 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1142 	 * to identify this as an automounted filesystem.
1143 	 */
1144 	spath = *path;
1145 	path_get(&spath);
1146 	if (follow_down_one(&spath)) {
1147 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1148 		snap_zfsvfs->z_parent = zfsvfs;
1149 		dentry = spath.dentry;
1150 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1151 
1152 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
1153 		se = zfsctl_snapshot_alloc(full_name, full_path,
1154 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1155 		    dentry);
1156 		zfsctl_snapshot_add(se);
1157 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1158 		rw_exit(&zfs_snapshot_lock);
1159 	}
1160 	path_put(&spath);
1161 error:
1162 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1163 	kmem_free(full_path, MAXPATHLEN);
1164 
1165 	ZFS_EXIT(zfsvfs);
1166 
1167 	return (error);
1168 }
1169 
1170 /*
1171  * Get the snapdir inode from fid
1172  */
1173 int
1174 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1175     struct inode **ipp)
1176 {
1177 	int error;
1178 	struct path path;
1179 	char *mnt;
1180 	struct dentry *dentry;
1181 
1182 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1183 
1184 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1185 	    MAXPATHLEN, mnt);
1186 	if (error)
1187 		goto out;
1188 
1189 	/* Trigger automount */
1190 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1191 	if (error)
1192 		goto out;
1193 
1194 	path_put(&path);
1195 	/*
1196 	 * Get the snapdir inode. Note, we don't want to use the above
1197 	 * path because it contains the root of the snapshot rather
1198 	 * than the snapdir.
1199 	 */
1200 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1201 	if (*ipp == NULL) {
1202 		error = SET_ERROR(ENOENT);
1203 		goto out;
1204 	}
1205 
1206 	/* check gen, see zfsctl_snapdir_fid */
1207 	dentry = d_obtain_alias(igrab(*ipp));
1208 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1209 		iput(*ipp);
1210 		*ipp = NULL;
1211 		error = SET_ERROR(ENOENT);
1212 	}
1213 	if (!IS_ERR(dentry))
1214 		dput(dentry);
1215 out:
1216 	kmem_free(mnt, MAXPATHLEN);
1217 	return (error);
1218 }
1219 
1220 int
1221 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1222     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1223 {
1224 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1225 	znode_t *zp;
1226 	znode_t *dzp;
1227 	int error;
1228 
1229 	ZFS_ENTER(zfsvfs);
1230 
1231 	if (zfsvfs->z_shares_dir == 0) {
1232 		ZFS_EXIT(zfsvfs);
1233 		return (SET_ERROR(ENOTSUP));
1234 	}
1235 
1236 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1237 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1238 		zrele(dzp);
1239 	}
1240 
1241 	ZFS_EXIT(zfsvfs);
1242 
1243 	return (error);
1244 }
1245 
1246 /*
1247  * Initialize the various pieces we'll need to create and manipulate .zfs
1248  * directories.  Currently this is unused but available.
1249  */
1250 void
1251 zfsctl_init(void)
1252 {
1253 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1254 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1255 	    se_node_name));
1256 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1257 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1258 	    se_node_objsetid));
1259 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1260 }
1261 
1262 /*
1263  * Cleanup the various pieces we needed for .zfs directories.  In particular
1264  * ensure the expiry timer is canceled safely.
1265  */
1266 void
1267 zfsctl_fini(void)
1268 {
1269 	avl_destroy(&zfs_snapshots_by_name);
1270 	avl_destroy(&zfs_snapshots_by_objsetid);
1271 	rw_destroy(&zfs_snapshot_lock);
1272 }
1273 
1274 module_param(zfs_admin_snapshot, int, 0644);
1275 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1276 
1277 module_param(zfs_expire_snapshot, int, 0644);
1278 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1279