1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26  * LLNL-CODE-403049.
27  * Rewritten for Linux by:
28  *   Rohan Puri <rohan.puri15@gmail.com>
29  *   Brian Behlendorf <behlendorf1@llnl.gov>
30  * Copyright (c) 2013 by Delphix. All rights reserved.
31  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32  * Copyright (c) 2018 George Melikov. All Rights Reserved.
33  * Copyright (c) 2019 Datto, Inc. All rights reserved.
34  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
35  */
36 
37 /*
38  * ZFS control directory (a.k.a. ".zfs")
39  *
40  * This directory provides a common location for all ZFS meta-objects.
41  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42  * expand in the future.  The elements are built dynamically, as the hierarchy
43  * does not actually exist on disk.
44  *
45  * For 'snapshot', we don't want to have all snapshots always mounted, because
46  * this would take up a huge amount of space in /etc/mnttab.  We have three
47  * types of objects:
48  *
49  *	ctldir ------> snapshotdir -------> snapshot
50  *                                             |
51  *                                             |
52  *                                             V
53  *                                         mounted fs
54  *
55  * The 'snapshot' node contains just enough information to lookup '..' and act
56  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
57  * perform an automount of the underlying filesystem and return the
58  * corresponding inode.
59  *
60  * All mounts are handled automatically by an user mode helper which invokes
61  * the mount procedure.  Unmounts are handled by allowing the mount
62  * point to expire so the kernel may automatically unmount it.
63  *
64  * The '.zfs', '.zfs/snapshot', and all directories created under
65  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
67  *
68  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69  * (ie: snapshots) are complete ZFS filesystems and have their own unique
70  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
71  * as that used by the parent zfsvfs_t to make NFS happy.
72  */
73 
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
92 
93 /*
94  * Two AVL trees are maintained which contain all currently automounted
95  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
96  * entry which MUST:
97  *
98  *   - be attached to both trees, and
99  *   - be unique, no duplicate entries are allowed.
100  *
101  * The zfs_snapshots_by_name tree is indexed by the full dataset name
102  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103  * objsetid.  This allows for fast lookups either by name or objsetid.
104  */
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
108 
109 /*
110  * Control Directory Tunables (.zfs)
111  */
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 int zfs_admin_snapshot = 0;
114 
115 typedef struct {
116 	char		*se_name;	/* full snapshot name */
117 	char		*se_path;	/* full mount path */
118 	spa_t		*se_spa;	/* pool spa */
119 	uint64_t	se_objsetid;	/* snapshot objset id */
120 	struct dentry   *se_root_dentry; /* snapshot root dentry */
121 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
122 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
123 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
124 	zfs_refcount_t	se_refcount;	/* reference count */
125 } zfs_snapentry_t;
126 
127 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
128 
129 /*
130  * Allocate a new zfs_snapentry_t being careful to make a copy of the
131  * the snapshot name and provided mount point.  No reference is taken.
132  */
133 static zfs_snapentry_t *
134 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
135     uint64_t objsetid, struct dentry *root_dentry)
136 {
137 	zfs_snapentry_t *se;
138 
139 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
140 
141 	se->se_name = kmem_strdup(full_name);
142 	se->se_path = kmem_strdup(full_path);
143 	se->se_spa = spa;
144 	se->se_objsetid = objsetid;
145 	se->se_root_dentry = root_dentry;
146 	se->se_taskqid = TASKQID_INVALID;
147 
148 	zfs_refcount_create(&se->se_refcount);
149 
150 	return (se);
151 }
152 
153 /*
154  * Free a zfs_snapentry_t the caller must ensure there are no active
155  * references.
156  */
157 static void
158 zfsctl_snapshot_free(zfs_snapentry_t *se)
159 {
160 	zfs_refcount_destroy(&se->se_refcount);
161 	kmem_strfree(se->se_name);
162 	kmem_strfree(se->se_path);
163 
164 	kmem_free(se, sizeof (zfs_snapentry_t));
165 }
166 
167 /*
168  * Hold a reference on the zfs_snapentry_t.
169  */
170 static void
171 zfsctl_snapshot_hold(zfs_snapentry_t *se)
172 {
173 	zfs_refcount_add(&se->se_refcount, NULL);
174 }
175 
176 /*
177  * Release a reference on the zfs_snapentry_t.  When the number of
178  * references drops to zero the structure will be freed.
179  */
180 static void
181 zfsctl_snapshot_rele(zfs_snapentry_t *se)
182 {
183 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
184 		zfsctl_snapshot_free(se);
185 }
186 
187 /*
188  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
189  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
190  * of the trees a reference is held.
191  */
192 static void
193 zfsctl_snapshot_add(zfs_snapentry_t *se)
194 {
195 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
196 	zfsctl_snapshot_hold(se);
197 	avl_add(&zfs_snapshots_by_name, se);
198 	avl_add(&zfs_snapshots_by_objsetid, se);
199 }
200 
201 /*
202  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
203  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
204  * this can result in the structure being freed if that was the last
205  * remaining reference.
206  */
207 static void
208 zfsctl_snapshot_remove(zfs_snapentry_t *se)
209 {
210 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
211 	avl_remove(&zfs_snapshots_by_name, se);
212 	avl_remove(&zfs_snapshots_by_objsetid, se);
213 	zfsctl_snapshot_rele(se);
214 }
215 
216 /*
217  * Snapshot name comparison function for the zfs_snapshots_by_name.
218  */
219 static int
220 snapentry_compare_by_name(const void *a, const void *b)
221 {
222 	const zfs_snapentry_t *se_a = a;
223 	const zfs_snapentry_t *se_b = b;
224 	int ret;
225 
226 	ret = strcmp(se_a->se_name, se_b->se_name);
227 
228 	if (ret < 0)
229 		return (-1);
230 	else if (ret > 0)
231 		return (1);
232 	else
233 		return (0);
234 }
235 
236 /*
237  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
238  */
239 static int
240 snapentry_compare_by_objsetid(const void *a, const void *b)
241 {
242 	const zfs_snapentry_t *se_a = a;
243 	const zfs_snapentry_t *se_b = b;
244 
245 	if (se_a->se_spa != se_b->se_spa)
246 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
247 
248 	if (se_a->se_objsetid < se_b->se_objsetid)
249 		return (-1);
250 	else if (se_a->se_objsetid > se_b->se_objsetid)
251 		return (1);
252 	else
253 		return (0);
254 }
255 
256 /*
257  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
258  * is found a pointer to the zfs_snapentry_t is returned and a reference
259  * taken on the structure.  The caller is responsible for dropping the
260  * reference with zfsctl_snapshot_rele().  If the snapname is not found
261  * NULL will be returned.
262  */
263 static zfs_snapentry_t *
264 zfsctl_snapshot_find_by_name(const char *snapname)
265 {
266 	zfs_snapentry_t *se, search;
267 
268 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
269 
270 	search.se_name = (char *)snapname;
271 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
272 	if (se)
273 		zfsctl_snapshot_hold(se);
274 
275 	return (se);
276 }
277 
278 /*
279  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
280  * rather than the snapname.  In all other respects it behaves the same
281  * as zfsctl_snapshot_find_by_name().
282  */
283 static zfs_snapentry_t *
284 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
285 {
286 	zfs_snapentry_t *se, search;
287 
288 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
289 
290 	search.se_spa = spa;
291 	search.se_objsetid = objsetid;
292 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
293 	if (se)
294 		zfsctl_snapshot_hold(se);
295 
296 	return (se);
297 }
298 
299 /*
300  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
301  * removed, renamed, and added back to the new correct location in the tree.
302  */
303 static int
304 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
305 {
306 	zfs_snapentry_t *se;
307 
308 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
309 
310 	se = zfsctl_snapshot_find_by_name(old_snapname);
311 	if (se == NULL)
312 		return (SET_ERROR(ENOENT));
313 
314 	zfsctl_snapshot_remove(se);
315 	kmem_strfree(se->se_name);
316 	se->se_name = kmem_strdup(new_snapname);
317 	zfsctl_snapshot_add(se);
318 	zfsctl_snapshot_rele(se);
319 
320 	return (0);
321 }
322 
323 /*
324  * Delayed task responsible for unmounting an expired automounted snapshot.
325  */
326 static void
327 snapentry_expire(void *data)
328 {
329 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
330 	spa_t *spa = se->se_spa;
331 	uint64_t objsetid = se->se_objsetid;
332 
333 	if (zfs_expire_snapshot <= 0) {
334 		zfsctl_snapshot_rele(se);
335 		return;
336 	}
337 
338 	se->se_taskqid = TASKQID_INVALID;
339 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
340 	zfsctl_snapshot_rele(se);
341 
342 	/*
343 	 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
344 	 * This can occur when the snapshot is busy.
345 	 */
346 	rw_enter(&zfs_snapshot_lock, RW_READER);
347 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
348 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
349 		zfsctl_snapshot_rele(se);
350 	}
351 	rw_exit(&zfs_snapshot_lock);
352 }
353 
354 /*
355  * Cancel an automatic unmount of a snapname.  This callback is responsible
356  * for dropping the reference on the zfs_snapentry_t which was taken when
357  * during dispatch.
358  */
359 static void
360 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
361 {
362 	if (taskq_cancel_id(system_delay_taskq, se->se_taskqid) == 0) {
363 		se->se_taskqid = TASKQID_INVALID;
364 		zfsctl_snapshot_rele(se);
365 	}
366 }
367 
368 /*
369  * Dispatch the unmount task for delayed handling with a hold protecting it.
370  */
371 static void
372 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
373 {
374 	ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
375 
376 	if (delay <= 0)
377 		return;
378 
379 	zfsctl_snapshot_hold(se);
380 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
381 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
382 }
383 
384 /*
385  * Schedule an automatic unmount of objset id to occur in delay seconds from
386  * now.  Any previous delayed unmount will be cancelled in favor of the
387  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
388  * and held until the outstanding task is handled or cancelled.
389  */
390 int
391 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
392 {
393 	zfs_snapentry_t *se;
394 	int error = ENOENT;
395 
396 	rw_enter(&zfs_snapshot_lock, RW_READER);
397 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
398 		zfsctl_snapshot_unmount_cancel(se);
399 		zfsctl_snapshot_unmount_delay_impl(se, delay);
400 		zfsctl_snapshot_rele(se);
401 		error = 0;
402 	}
403 	rw_exit(&zfs_snapshot_lock);
404 
405 	return (error);
406 }
407 
408 /*
409  * Check if snapname is currently mounted.  Returned non-zero when mounted
410  * and zero when unmounted.
411  */
412 static boolean_t
413 zfsctl_snapshot_ismounted(const char *snapname)
414 {
415 	zfs_snapentry_t *se;
416 	boolean_t ismounted = B_FALSE;
417 
418 	rw_enter(&zfs_snapshot_lock, RW_READER);
419 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
420 		zfsctl_snapshot_rele(se);
421 		ismounted = B_TRUE;
422 	}
423 	rw_exit(&zfs_snapshot_lock);
424 
425 	return (ismounted);
426 }
427 
428 /*
429  * Check if the given inode is a part of the virtual .zfs directory.
430  */
431 boolean_t
432 zfsctl_is_node(struct inode *ip)
433 {
434 	return (ITOZ(ip)->z_is_ctldir);
435 }
436 
437 /*
438  * Check if the given inode is a .zfs/snapshots/snapname directory.
439  */
440 boolean_t
441 zfsctl_is_snapdir(struct inode *ip)
442 {
443 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
444 }
445 
446 /*
447  * Allocate a new inode with the passed id and ops.
448  */
449 static struct inode *
450 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
451     const struct file_operations *fops, const struct inode_operations *ops)
452 {
453 	inode_timespec_t now;
454 	struct inode *ip;
455 	znode_t *zp;
456 
457 	ip = new_inode(zfsvfs->z_sb);
458 	if (ip == NULL)
459 		return (NULL);
460 
461 	now = current_time(ip);
462 	zp = ITOZ(ip);
463 	ASSERT3P(zp->z_dirlocks, ==, NULL);
464 	ASSERT3P(zp->z_acl_cached, ==, NULL);
465 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
466 	zp->z_id = id;
467 	zp->z_unlinked = B_FALSE;
468 	zp->z_atime_dirty = B_FALSE;
469 	zp->z_zn_prefetch = B_FALSE;
470 	zp->z_is_sa = B_FALSE;
471 	zp->z_is_mapped = B_FALSE;
472 	zp->z_is_ctldir = B_TRUE;
473 	zp->z_is_stale = B_FALSE;
474 	zp->z_sa_hdl = NULL;
475 	zp->z_blksz = 0;
476 	zp->z_seq = 0;
477 	zp->z_mapcnt = 0;
478 	zp->z_size = 0;
479 	zp->z_pflags = 0;
480 	zp->z_mode = 0;
481 	zp->z_sync_cnt = 0;
482 	ip->i_generation = 0;
483 	ip->i_ino = id;
484 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
485 	ip->i_uid = SUID_TO_KUID(0);
486 	ip->i_gid = SGID_TO_KGID(0);
487 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
488 	ip->i_atime = now;
489 	ip->i_mtime = now;
490 	ip->i_ctime = now;
491 	ip->i_fop = fops;
492 	ip->i_op = ops;
493 #if defined(IOP_XATTR)
494 	ip->i_opflags &= ~IOP_XATTR;
495 #endif
496 
497 	if (insert_inode_locked(ip)) {
498 		unlock_new_inode(ip);
499 		iput(ip);
500 		return (NULL);
501 	}
502 
503 	mutex_enter(&zfsvfs->z_znodes_lock);
504 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
505 	zfsvfs->z_nr_znodes++;
506 	membar_producer();
507 	mutex_exit(&zfsvfs->z_znodes_lock);
508 
509 	unlock_new_inode(ip);
510 
511 	return (ip);
512 }
513 
514 /*
515  * Lookup the inode with given id, it will be allocated if needed.
516  */
517 static struct inode *
518 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
519     const struct file_operations *fops, const struct inode_operations *ops)
520 {
521 	struct inode *ip = NULL;
522 
523 	while (ip == NULL) {
524 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
525 		if (ip)
526 			break;
527 
528 		/* May fail due to concurrent zfsctl_inode_alloc() */
529 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
530 	}
531 
532 	return (ip);
533 }
534 
535 /*
536  * Create the '.zfs' directory.  This directory is cached as part of the VFS
537  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
538  * therefore checks against a vfs_count of 2 instead of 1.  This reference
539  * is removed when the ctldir is destroyed in the unmount.  All other entities
540  * under the '.zfs' directory are created dynamically as needed.
541  *
542  * Because the dynamically created '.zfs' directory entries assume the use
543  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
544  */
545 int
546 zfsctl_create(zfsvfs_t *zfsvfs)
547 {
548 	ASSERT(zfsvfs->z_ctldir == NULL);
549 
550 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
551 	    &zpl_fops_root, &zpl_ops_root);
552 	if (zfsvfs->z_ctldir == NULL)
553 		return (SET_ERROR(ENOENT));
554 
555 	return (0);
556 }
557 
558 /*
559  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
560  * Only called when the filesystem is unmounted.
561  */
562 void
563 zfsctl_destroy(zfsvfs_t *zfsvfs)
564 {
565 	if (zfsvfs->z_issnap) {
566 		zfs_snapentry_t *se;
567 		spa_t *spa = zfsvfs->z_os->os_spa;
568 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
569 
570 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
571 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
572 		if (se != NULL)
573 			zfsctl_snapshot_remove(se);
574 		rw_exit(&zfs_snapshot_lock);
575 		if (se != NULL) {
576 			zfsctl_snapshot_unmount_cancel(se);
577 			zfsctl_snapshot_rele(se);
578 		}
579 	} else if (zfsvfs->z_ctldir) {
580 		iput(zfsvfs->z_ctldir);
581 		zfsvfs->z_ctldir = NULL;
582 	}
583 }
584 
585 /*
586  * Given a root znode, retrieve the associated .zfs directory.
587  * Add a hold to the vnode and return it.
588  */
589 struct inode *
590 zfsctl_root(znode_t *zp)
591 {
592 	ASSERT(zfs_has_ctldir(zp));
593 	/* Must have an existing ref, so igrab() cannot return NULL */
594 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
595 	return (ZTOZSB(zp)->z_ctldir);
596 }
597 
598 /*
599  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
600  * already mounted in gen field. We do this because nfsd lookup will not
601  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
602  * this and do automount and return ESTALE to force nfsd revalidate and follow
603  * mount.
604  */
605 static int
606 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
607 {
608 	zfid_short_t *zfid = (zfid_short_t *)fidp;
609 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
610 	uint32_t gen = 0;
611 	uint64_t object;
612 	uint64_t objsetid;
613 	int i;
614 	struct dentry *dentry;
615 
616 	if (fidp->fid_len < LONG_FID_LEN) {
617 		fidp->fid_len = LONG_FID_LEN;
618 		return (SET_ERROR(ENOSPC));
619 	}
620 
621 	object = ip->i_ino;
622 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
623 	zfid->zf_len = LONG_FID_LEN;
624 
625 	dentry = d_obtain_alias(igrab(ip));
626 	if (!IS_ERR(dentry)) {
627 		gen = !!d_mountpoint(dentry);
628 		dput(dentry);
629 	}
630 
631 	for (i = 0; i < sizeof (zfid->zf_object); i++)
632 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
633 
634 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
635 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
636 
637 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
638 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
639 
640 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
641 		zlfid->zf_setgen[i] = 0;
642 
643 	return (0);
644 }
645 
646 /*
647  * Generate an appropriate fid for an entry in the .zfs directory.
648  */
649 int
650 zfsctl_fid(struct inode *ip, fid_t *fidp)
651 {
652 	znode_t		*zp = ITOZ(ip);
653 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
654 	uint64_t	object = zp->z_id;
655 	zfid_short_t	*zfid;
656 	int		i;
657 
658 	ZFS_ENTER(zfsvfs);
659 
660 	if (zfsctl_is_snapdir(ip)) {
661 		ZFS_EXIT(zfsvfs);
662 		return (zfsctl_snapdir_fid(ip, fidp));
663 	}
664 
665 	if (fidp->fid_len < SHORT_FID_LEN) {
666 		fidp->fid_len = SHORT_FID_LEN;
667 		ZFS_EXIT(zfsvfs);
668 		return (SET_ERROR(ENOSPC));
669 	}
670 
671 	zfid = (zfid_short_t *)fidp;
672 
673 	zfid->zf_len = SHORT_FID_LEN;
674 
675 	for (i = 0; i < sizeof (zfid->zf_object); i++)
676 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
677 
678 	/* .zfs znodes always have a generation number of 0 */
679 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
680 		zfid->zf_gen[i] = 0;
681 
682 	ZFS_EXIT(zfsvfs);
683 	return (0);
684 }
685 
686 /*
687  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
688  */
689 static int
690 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
691     char *full_name)
692 {
693 	objset_t *os = zfsvfs->z_os;
694 
695 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
696 		return (SET_ERROR(EILSEQ));
697 
698 	dmu_objset_name(os, full_name);
699 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
700 		return (SET_ERROR(ENAMETOOLONG));
701 
702 	(void) strcat(full_name, "@");
703 	(void) strcat(full_name, snap_name);
704 
705 	return (0);
706 }
707 
708 /*
709  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
710  */
711 static int
712 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
713     int path_len, char *full_path)
714 {
715 	objset_t *os = zfsvfs->z_os;
716 	fstrans_cookie_t cookie;
717 	char *snapname;
718 	boolean_t case_conflict;
719 	uint64_t id, pos = 0;
720 	int error = 0;
721 
722 	if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
723 		return (SET_ERROR(ENOENT));
724 
725 	cookie = spl_fstrans_mark();
726 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
727 
728 	while (error == 0) {
729 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
730 		error = dmu_snapshot_list_next(zfsvfs->z_os,
731 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
732 		    &case_conflict);
733 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
734 		if (error)
735 			goto out;
736 
737 		if (id == objsetid)
738 			break;
739 	}
740 
741 	snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
742 	    zfsvfs->z_vfs->vfs_mntpoint, snapname);
743 out:
744 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
745 	spl_fstrans_unmark(cookie);
746 
747 	return (error);
748 }
749 
750 /*
751  * Special case the handling of "..".
752  */
753 int
754 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
755     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
756 {
757 	zfsvfs_t *zfsvfs = ITOZSB(dip);
758 	int error = 0;
759 
760 	ZFS_ENTER(zfsvfs);
761 
762 	if (strcmp(name, "..") == 0) {
763 		*ipp = dip->i_sb->s_root->d_inode;
764 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
765 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
766 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
767 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
768 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
769 		    &zpl_fops_shares, &zpl_ops_shares);
770 	} else {
771 		*ipp = NULL;
772 	}
773 
774 	if (*ipp == NULL)
775 		error = SET_ERROR(ENOENT);
776 
777 	ZFS_EXIT(zfsvfs);
778 
779 	return (error);
780 }
781 
782 /*
783  * Lookup entry point for the 'snapshot' directory.  Try to open the
784  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
785  */
786 int
787 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
788     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
789 {
790 	zfsvfs_t *zfsvfs = ITOZSB(dip);
791 	uint64_t id;
792 	int error;
793 
794 	ZFS_ENTER(zfsvfs);
795 
796 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
797 	if (error) {
798 		ZFS_EXIT(zfsvfs);
799 		return (error);
800 	}
801 
802 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
803 	    &simple_dir_operations, &simple_dir_inode_operations);
804 	if (*ipp == NULL)
805 		error = SET_ERROR(ENOENT);
806 
807 	ZFS_EXIT(zfsvfs);
808 
809 	return (error);
810 }
811 
812 /*
813  * Renaming a directory under '.zfs/snapshot' will automatically trigger
814  * a rename of the snapshot to the new given name.  The rename is confined
815  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
816  */
817 int
818 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
819     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
820 {
821 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
822 	char *to, *from, *real, *fsname;
823 	int error;
824 
825 	if (!zfs_admin_snapshot)
826 		return (SET_ERROR(EACCES));
827 
828 	ZFS_ENTER(zfsvfs);
829 
830 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
831 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
832 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
833 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
834 
835 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
836 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
837 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
838 		if (error == 0) {
839 			snm = real;
840 		} else if (error != ENOTSUP) {
841 			goto out;
842 		}
843 	}
844 
845 	dmu_objset_name(zfsvfs->z_os, fsname);
846 
847 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
848 	    ZFS_MAX_DATASET_NAME_LEN, from);
849 	if (error == 0)
850 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
851 		    ZFS_MAX_DATASET_NAME_LEN, to);
852 	if (error == 0)
853 		error = zfs_secpolicy_rename_perms(from, to, cr);
854 	if (error != 0)
855 		goto out;
856 
857 	/*
858 	 * Cannot move snapshots out of the snapdir.
859 	 */
860 	if (sdip != tdip) {
861 		error = SET_ERROR(EINVAL);
862 		goto out;
863 	}
864 
865 	/*
866 	 * No-op when names are identical.
867 	 */
868 	if (strcmp(snm, tnm) == 0) {
869 		error = 0;
870 		goto out;
871 	}
872 
873 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
874 
875 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
876 	if (error == 0)
877 		(void) zfsctl_snapshot_rename(snm, tnm);
878 
879 	rw_exit(&zfs_snapshot_lock);
880 out:
881 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
882 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
883 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
884 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
885 
886 	ZFS_EXIT(zfsvfs);
887 
888 	return (error);
889 }
890 
891 /*
892  * Removing a directory under '.zfs/snapshot' will automatically trigger
893  * the removal of the snapshot with the given name.
894  */
895 int
896 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
897     int flags)
898 {
899 	zfsvfs_t *zfsvfs = ITOZSB(dip);
900 	char *snapname, *real;
901 	int error;
902 
903 	if (!zfs_admin_snapshot)
904 		return (SET_ERROR(EACCES));
905 
906 	ZFS_ENTER(zfsvfs);
907 
908 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
909 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
910 
911 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
912 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
913 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
914 		if (error == 0) {
915 			name = real;
916 		} else if (error != ENOTSUP) {
917 			goto out;
918 		}
919 	}
920 
921 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
922 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
923 	if (error == 0)
924 		error = zfs_secpolicy_destroy_perms(snapname, cr);
925 	if (error != 0)
926 		goto out;
927 
928 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
929 	if ((error == 0) || (error == ENOENT))
930 		error = dsl_destroy_snapshot(snapname, B_FALSE);
931 out:
932 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
933 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
934 
935 	ZFS_EXIT(zfsvfs);
936 
937 	return (error);
938 }
939 
940 /*
941  * Creating a directory under '.zfs/snapshot' will automatically trigger
942  * the creation of a new snapshot with the given name.
943  */
944 int
945 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
946     struct inode **ipp, cred_t *cr, int flags)
947 {
948 	zfsvfs_t *zfsvfs = ITOZSB(dip);
949 	char *dsname;
950 	int error;
951 
952 	if (!zfs_admin_snapshot)
953 		return (SET_ERROR(EACCES));
954 
955 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
956 
957 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
958 		error = SET_ERROR(EILSEQ);
959 		goto out;
960 	}
961 
962 	dmu_objset_name(zfsvfs->z_os, dsname);
963 
964 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
965 	if (error != 0)
966 		goto out;
967 
968 	if (error == 0) {
969 		error = dmu_objset_snapshot_one(dsname, dirname);
970 		if (error != 0)
971 			goto out;
972 
973 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
974 		    0, cr, NULL, NULL);
975 	}
976 out:
977 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
978 
979 	return (error);
980 }
981 
982 /*
983  * Flush everything out of the kernel's export table and such.
984  * This is needed as once the snapshot is used over NFS, its
985  * entries in svc_export and svc_expkey caches hold reference
986  * to the snapshot mount point. There is no known way of flushing
987  * only the entries related to the snapshot.
988  */
989 static void
990 exportfs_flush(void)
991 {
992 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
993 	char *envp[] = { NULL };
994 
995 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
996 }
997 
998 /*
999  * Attempt to unmount a snapshot by making a call to user space.
1000  * There is no assurance that this can or will succeed, is just a
1001  * best effort.  In the case where it does fail, perhaps because
1002  * it's in use, the unmount will fail harmlessly.
1003  */
1004 int
1005 zfsctl_snapshot_unmount(const char *snapname, int flags)
1006 {
1007 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1008 	    NULL };
1009 	char *envp[] = { NULL };
1010 	zfs_snapentry_t *se;
1011 	int error;
1012 
1013 	rw_enter(&zfs_snapshot_lock, RW_READER);
1014 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1015 		rw_exit(&zfs_snapshot_lock);
1016 		return (SET_ERROR(ENOENT));
1017 	}
1018 	rw_exit(&zfs_snapshot_lock);
1019 
1020 	exportfs_flush();
1021 
1022 	if (flags & MNT_FORCE)
1023 		argv[4] = "-fn";
1024 	argv[5] = se->se_path;
1025 	dprintf("unmount; path=%s\n", se->se_path);
1026 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1027 	zfsctl_snapshot_rele(se);
1028 
1029 
1030 	/*
1031 	 * The umount system utility will return 256 on error.  We must
1032 	 * assume this error is because the file system is busy so it is
1033 	 * converted to the more sensible EBUSY.
1034 	 */
1035 	if (error)
1036 		error = SET_ERROR(EBUSY);
1037 
1038 	return (error);
1039 }
1040 
1041 int
1042 zfsctl_snapshot_mount(struct path *path, int flags)
1043 {
1044 	struct dentry *dentry = path->dentry;
1045 	struct inode *ip = dentry->d_inode;
1046 	zfsvfs_t *zfsvfs;
1047 	zfsvfs_t *snap_zfsvfs;
1048 	zfs_snapentry_t *se;
1049 	char *full_name, *full_path;
1050 	char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1051 	    NULL };
1052 	char *envp[] = { NULL };
1053 	int error;
1054 	struct path spath;
1055 
1056 	if (ip == NULL)
1057 		return (SET_ERROR(EISDIR));
1058 
1059 	zfsvfs = ITOZSB(ip);
1060 	ZFS_ENTER(zfsvfs);
1061 
1062 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1063 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1064 
1065 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1066 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
1067 	if (error)
1068 		goto error;
1069 
1070 	/*
1071 	 * Construct a mount point path from sb of the ctldir inode and dirent
1072 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
1073 	 * on mount.zfs(8).
1074 	 */
1075 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1076 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1077 	    dname(dentry));
1078 
1079 	/*
1080 	 * Multiple concurrent automounts of a snapshot are never allowed.
1081 	 * The snapshot may be manually mounted as many times as desired.
1082 	 */
1083 	if (zfsctl_snapshot_ismounted(full_name)) {
1084 		error = 0;
1085 		goto error;
1086 	}
1087 
1088 	/*
1089 	 * Attempt to mount the snapshot from user space.  Normally this
1090 	 * would be done using the vfs_kern_mount() function, however that
1091 	 * function is marked GPL-only and cannot be used.  On error we
1092 	 * careful to log the real error to the console and return EISDIR
1093 	 * to safely abort the automount.  This should be very rare.
1094 	 *
1095 	 * If the user mode helper happens to return EBUSY, a concurrent
1096 	 * mount is already in progress in which case the error is ignored.
1097 	 * Take note that if the program was executed successfully the return
1098 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1099 	 */
1100 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
1101 	argv[5] = full_name;
1102 	argv[6] = full_path;
1103 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1104 	if (error) {
1105 		if (!(error & MOUNT_BUSY << 8)) {
1106 			zfs_dbgmsg("Unable to automount %s error=%d",
1107 			    full_path, error);
1108 			error = SET_ERROR(EISDIR);
1109 		} else {
1110 			/*
1111 			 * EBUSY, this could mean a concurrent mount, or the
1112 			 * snapshot has already been mounted at completely
1113 			 * different place. We return 0 so VFS will retry. For
1114 			 * the latter case the VFS will retry several times
1115 			 * and return ELOOP, which is probably not a very good
1116 			 * behavior.
1117 			 */
1118 			error = 0;
1119 		}
1120 		goto error;
1121 	}
1122 
1123 	/*
1124 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1125 	 * to identify this as an automounted filesystem.
1126 	 */
1127 	spath = *path;
1128 	path_get(&spath);
1129 	if (follow_down_one(&spath)) {
1130 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1131 		snap_zfsvfs->z_parent = zfsvfs;
1132 		dentry = spath.dentry;
1133 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1134 
1135 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
1136 		se = zfsctl_snapshot_alloc(full_name, full_path,
1137 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1138 		    dentry);
1139 		zfsctl_snapshot_add(se);
1140 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1141 		rw_exit(&zfs_snapshot_lock);
1142 	}
1143 	path_put(&spath);
1144 error:
1145 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1146 	kmem_free(full_path, MAXPATHLEN);
1147 
1148 	ZFS_EXIT(zfsvfs);
1149 
1150 	return (error);
1151 }
1152 
1153 /*
1154  * Get the snapdir inode from fid
1155  */
1156 int
1157 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1158     struct inode **ipp)
1159 {
1160 	int error;
1161 	struct path path;
1162 	char *mnt;
1163 	struct dentry *dentry;
1164 
1165 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1166 
1167 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1168 	    MAXPATHLEN, mnt);
1169 	if (error)
1170 		goto out;
1171 
1172 	/* Trigger automount */
1173 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1174 	if (error)
1175 		goto out;
1176 
1177 	path_put(&path);
1178 	/*
1179 	 * Get the snapdir inode. Note, we don't want to use the above
1180 	 * path because it contains the root of the snapshot rather
1181 	 * than the snapdir.
1182 	 */
1183 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1184 	if (*ipp == NULL) {
1185 		error = SET_ERROR(ENOENT);
1186 		goto out;
1187 	}
1188 
1189 	/* check gen, see zfsctl_snapdir_fid */
1190 	dentry = d_obtain_alias(igrab(*ipp));
1191 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1192 		iput(*ipp);
1193 		*ipp = NULL;
1194 		error = SET_ERROR(ENOENT);
1195 	}
1196 	if (!IS_ERR(dentry))
1197 		dput(dentry);
1198 out:
1199 	kmem_free(mnt, MAXPATHLEN);
1200 	return (error);
1201 }
1202 
1203 int
1204 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1205     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1206 {
1207 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1208 	znode_t *zp;
1209 	znode_t *dzp;
1210 	int error;
1211 
1212 	ZFS_ENTER(zfsvfs);
1213 
1214 	if (zfsvfs->z_shares_dir == 0) {
1215 		ZFS_EXIT(zfsvfs);
1216 		return (SET_ERROR(ENOTSUP));
1217 	}
1218 
1219 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1220 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1221 		zrele(dzp);
1222 	}
1223 
1224 	ZFS_EXIT(zfsvfs);
1225 
1226 	return (error);
1227 }
1228 
1229 /*
1230  * Initialize the various pieces we'll need to create and manipulate .zfs
1231  * directories.  Currently this is unused but available.
1232  */
1233 void
1234 zfsctl_init(void)
1235 {
1236 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1237 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1238 	    se_node_name));
1239 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1240 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1241 	    se_node_objsetid));
1242 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1243 }
1244 
1245 /*
1246  * Cleanup the various pieces we needed for .zfs directories.  In particular
1247  * ensure the expiry timer is canceled safely.
1248  */
1249 void
1250 zfsctl_fini(void)
1251 {
1252 	avl_destroy(&zfs_snapshots_by_name);
1253 	avl_destroy(&zfs_snapshots_by_objsetid);
1254 	rw_destroy(&zfs_snapshot_lock);
1255 }
1256 
1257 module_param(zfs_admin_snapshot, int, 0644);
1258 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1259 
1260 module_param(zfs_expire_snapshot, int, 0644);
1261 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1262