1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/objlist.h>
60 #include <sys/zpl.h>
61 #include <linux/vfs_compat.h>
62 #include "zfs_comutil.h"
63 
64 enum {
65 	TOKEN_RO,
66 	TOKEN_RW,
67 	TOKEN_SETUID,
68 	TOKEN_NOSETUID,
69 	TOKEN_EXEC,
70 	TOKEN_NOEXEC,
71 	TOKEN_DEVICES,
72 	TOKEN_NODEVICES,
73 	TOKEN_DIRXATTR,
74 	TOKEN_SAXATTR,
75 	TOKEN_XATTR,
76 	TOKEN_NOXATTR,
77 	TOKEN_ATIME,
78 	TOKEN_NOATIME,
79 	TOKEN_RELATIME,
80 	TOKEN_NORELATIME,
81 	TOKEN_NBMAND,
82 	TOKEN_NONBMAND,
83 	TOKEN_MNTPOINT,
84 	TOKEN_LAST,
85 };
86 
87 static const match_table_t zpl_tokens = {
88 	{ TOKEN_RO,		MNTOPT_RO },
89 	{ TOKEN_RW,		MNTOPT_RW },
90 	{ TOKEN_SETUID,		MNTOPT_SETUID },
91 	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
92 	{ TOKEN_EXEC,		MNTOPT_EXEC },
93 	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
94 	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
95 	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
96 	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
97 	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
98 	{ TOKEN_XATTR,		MNTOPT_XATTR },
99 	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
100 	{ TOKEN_ATIME,		MNTOPT_ATIME },
101 	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
102 	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
103 	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
104 	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
105 	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
106 	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
107 	{ TOKEN_LAST,		NULL },
108 };
109 
110 static void
111 zfsvfs_vfs_free(vfs_t *vfsp)
112 {
113 	if (vfsp != NULL) {
114 		if (vfsp->vfs_mntpoint != NULL)
115 			kmem_strfree(vfsp->vfs_mntpoint);
116 
117 		kmem_free(vfsp, sizeof (vfs_t));
118 	}
119 }
120 
121 static int
122 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
123 {
124 	switch (token) {
125 	case TOKEN_RO:
126 		vfsp->vfs_readonly = B_TRUE;
127 		vfsp->vfs_do_readonly = B_TRUE;
128 		break;
129 	case TOKEN_RW:
130 		vfsp->vfs_readonly = B_FALSE;
131 		vfsp->vfs_do_readonly = B_TRUE;
132 		break;
133 	case TOKEN_SETUID:
134 		vfsp->vfs_setuid = B_TRUE;
135 		vfsp->vfs_do_setuid = B_TRUE;
136 		break;
137 	case TOKEN_NOSETUID:
138 		vfsp->vfs_setuid = B_FALSE;
139 		vfsp->vfs_do_setuid = B_TRUE;
140 		break;
141 	case TOKEN_EXEC:
142 		vfsp->vfs_exec = B_TRUE;
143 		vfsp->vfs_do_exec = B_TRUE;
144 		break;
145 	case TOKEN_NOEXEC:
146 		vfsp->vfs_exec = B_FALSE;
147 		vfsp->vfs_do_exec = B_TRUE;
148 		break;
149 	case TOKEN_DEVICES:
150 		vfsp->vfs_devices = B_TRUE;
151 		vfsp->vfs_do_devices = B_TRUE;
152 		break;
153 	case TOKEN_NODEVICES:
154 		vfsp->vfs_devices = B_FALSE;
155 		vfsp->vfs_do_devices = B_TRUE;
156 		break;
157 	case TOKEN_DIRXATTR:
158 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
159 		vfsp->vfs_do_xattr = B_TRUE;
160 		break;
161 	case TOKEN_SAXATTR:
162 		vfsp->vfs_xattr = ZFS_XATTR_SA;
163 		vfsp->vfs_do_xattr = B_TRUE;
164 		break;
165 	case TOKEN_XATTR:
166 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
167 		vfsp->vfs_do_xattr = B_TRUE;
168 		break;
169 	case TOKEN_NOXATTR:
170 		vfsp->vfs_xattr = ZFS_XATTR_OFF;
171 		vfsp->vfs_do_xattr = B_TRUE;
172 		break;
173 	case TOKEN_ATIME:
174 		vfsp->vfs_atime = B_TRUE;
175 		vfsp->vfs_do_atime = B_TRUE;
176 		break;
177 	case TOKEN_NOATIME:
178 		vfsp->vfs_atime = B_FALSE;
179 		vfsp->vfs_do_atime = B_TRUE;
180 		break;
181 	case TOKEN_RELATIME:
182 		vfsp->vfs_relatime = B_TRUE;
183 		vfsp->vfs_do_relatime = B_TRUE;
184 		break;
185 	case TOKEN_NORELATIME:
186 		vfsp->vfs_relatime = B_FALSE;
187 		vfsp->vfs_do_relatime = B_TRUE;
188 		break;
189 	case TOKEN_NBMAND:
190 		vfsp->vfs_nbmand = B_TRUE;
191 		vfsp->vfs_do_nbmand = B_TRUE;
192 		break;
193 	case TOKEN_NONBMAND:
194 		vfsp->vfs_nbmand = B_FALSE;
195 		vfsp->vfs_do_nbmand = B_TRUE;
196 		break;
197 	case TOKEN_MNTPOINT:
198 		vfsp->vfs_mntpoint = match_strdup(&args[0]);
199 		if (vfsp->vfs_mntpoint == NULL)
200 			return (SET_ERROR(ENOMEM));
201 
202 		break;
203 	default:
204 		break;
205 	}
206 
207 	return (0);
208 }
209 
210 /*
211  * Parse the raw mntopts and return a vfs_t describing the options.
212  */
213 static int
214 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
215 {
216 	vfs_t *tmp_vfsp;
217 	int error;
218 
219 	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
220 
221 	if (mntopts != NULL) {
222 		substring_t args[MAX_OPT_ARGS];
223 		char *tmp_mntopts, *p, *t;
224 		int token;
225 
226 		tmp_mntopts = t = kmem_strdup(mntopts);
227 		if (tmp_mntopts == NULL)
228 			return (SET_ERROR(ENOMEM));
229 
230 		while ((p = strsep(&t, ",")) != NULL) {
231 			if (!*p)
232 				continue;
233 
234 			args[0].to = args[0].from = NULL;
235 			token = match_token(p, zpl_tokens, args);
236 			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
237 			if (error) {
238 				kmem_strfree(tmp_mntopts);
239 				zfsvfs_vfs_free(tmp_vfsp);
240 				return (error);
241 			}
242 		}
243 
244 		kmem_strfree(tmp_mntopts);
245 	}
246 
247 	*vfsp = tmp_vfsp;
248 
249 	return (0);
250 }
251 
252 boolean_t
253 zfs_is_readonly(zfsvfs_t *zfsvfs)
254 {
255 	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
256 }
257 
258 int
259 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
260 {
261 	(void) cr;
262 	zfsvfs_t *zfsvfs = sb->s_fs_info;
263 
264 	/*
265 	 * Semantically, the only requirement is that the sync be initiated.
266 	 * The DMU syncs out txgs frequently, so there's nothing to do.
267 	 */
268 	if (!wait)
269 		return (0);
270 
271 	if (zfsvfs != NULL) {
272 		/*
273 		 * Sync a specific filesystem.
274 		 */
275 		dsl_pool_t *dp;
276 		int error;
277 
278 		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
279 			return (error);
280 		dp = dmu_objset_pool(zfsvfs->z_os);
281 
282 		/*
283 		 * If the system is shutting down, then skip any
284 		 * filesystems which may exist on a suspended pool.
285 		 */
286 		if (spa_suspended(dp->dp_spa)) {
287 			zfs_exit(zfsvfs, FTAG);
288 			return (0);
289 		}
290 
291 		if (zfsvfs->z_log != NULL)
292 			zil_commit(zfsvfs->z_log, 0);
293 
294 		zfs_exit(zfsvfs, FTAG);
295 	} else {
296 		/*
297 		 * Sync all ZFS filesystems.  This is what happens when you
298 		 * run sync(1).  Unlike other filesystems, ZFS honors the
299 		 * request by waiting for all pools to commit all dirty data.
300 		 */
301 		spa_sync_allpools();
302 	}
303 
304 	return (0);
305 }
306 
307 static void
308 atime_changed_cb(void *arg, uint64_t newval)
309 {
310 	zfsvfs_t *zfsvfs = arg;
311 	struct super_block *sb = zfsvfs->z_sb;
312 
313 	if (sb == NULL)
314 		return;
315 	/*
316 	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
317 	 * determined by atime_needs_update(), atime_needs_update() needs to
318 	 * return false if atime is turned off, and not unconditionally return
319 	 * false if atime is turned on.
320 	 */
321 	if (newval)
322 		sb->s_flags &= ~SB_NOATIME;
323 	else
324 		sb->s_flags |= SB_NOATIME;
325 }
326 
327 static void
328 relatime_changed_cb(void *arg, uint64_t newval)
329 {
330 	((zfsvfs_t *)arg)->z_relatime = newval;
331 }
332 
333 static void
334 xattr_changed_cb(void *arg, uint64_t newval)
335 {
336 	zfsvfs_t *zfsvfs = arg;
337 
338 	if (newval == ZFS_XATTR_OFF) {
339 		zfsvfs->z_flags &= ~ZSB_XATTR;
340 	} else {
341 		zfsvfs->z_flags |= ZSB_XATTR;
342 
343 		if (newval == ZFS_XATTR_SA)
344 			zfsvfs->z_xattr_sa = B_TRUE;
345 		else
346 			zfsvfs->z_xattr_sa = B_FALSE;
347 	}
348 }
349 
350 static void
351 acltype_changed_cb(void *arg, uint64_t newval)
352 {
353 	zfsvfs_t *zfsvfs = arg;
354 
355 	switch (newval) {
356 	case ZFS_ACLTYPE_NFSV4:
357 	case ZFS_ACLTYPE_OFF:
358 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
359 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
360 		break;
361 	case ZFS_ACLTYPE_POSIX:
362 #ifdef CONFIG_FS_POSIX_ACL
363 		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
364 		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
365 #else
366 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
367 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
368 #endif /* CONFIG_FS_POSIX_ACL */
369 		break;
370 	default:
371 		break;
372 	}
373 }
374 
375 static void
376 blksz_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
380 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
381 	ASSERT(ISP2(newval));
382 
383 	zfsvfs->z_max_blksz = newval;
384 }
385 
386 static void
387 readonly_changed_cb(void *arg, uint64_t newval)
388 {
389 	zfsvfs_t *zfsvfs = arg;
390 	struct super_block *sb = zfsvfs->z_sb;
391 
392 	if (sb == NULL)
393 		return;
394 
395 	if (newval)
396 		sb->s_flags |= SB_RDONLY;
397 	else
398 		sb->s_flags &= ~SB_RDONLY;
399 }
400 
401 static void
402 devices_changed_cb(void *arg, uint64_t newval)
403 {
404 }
405 
406 static void
407 setuid_changed_cb(void *arg, uint64_t newval)
408 {
409 }
410 
411 static void
412 exec_changed_cb(void *arg, uint64_t newval)
413 {
414 }
415 
416 static void
417 nbmand_changed_cb(void *arg, uint64_t newval)
418 {
419 	zfsvfs_t *zfsvfs = arg;
420 	struct super_block *sb = zfsvfs->z_sb;
421 
422 	if (sb == NULL)
423 		return;
424 
425 	if (newval == TRUE)
426 		sb->s_flags |= SB_MANDLOCK;
427 	else
428 		sb->s_flags &= ~SB_MANDLOCK;
429 }
430 
431 static void
432 snapdir_changed_cb(void *arg, uint64_t newval)
433 {
434 	((zfsvfs_t *)arg)->z_show_ctldir = newval;
435 }
436 
437 static void
438 acl_mode_changed_cb(void *arg, uint64_t newval)
439 {
440 	zfsvfs_t *zfsvfs = arg;
441 
442 	zfsvfs->z_acl_mode = newval;
443 }
444 
445 static void
446 acl_inherit_changed_cb(void *arg, uint64_t newval)
447 {
448 	((zfsvfs_t *)arg)->z_acl_inherit = newval;
449 }
450 
451 static int
452 zfs_register_callbacks(vfs_t *vfsp)
453 {
454 	struct dsl_dataset *ds = NULL;
455 	objset_t *os = NULL;
456 	zfsvfs_t *zfsvfs = NULL;
457 	int error = 0;
458 
459 	ASSERT(vfsp);
460 	zfsvfs = vfsp->vfs_data;
461 	ASSERT(zfsvfs);
462 	os = zfsvfs->z_os;
463 
464 	/*
465 	 * The act of registering our callbacks will destroy any mount
466 	 * options we may have.  In order to enable temporary overrides
467 	 * of mount options, we stash away the current values and
468 	 * restore them after we register the callbacks.
469 	 */
470 	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
471 		vfsp->vfs_do_readonly = B_TRUE;
472 		vfsp->vfs_readonly = B_TRUE;
473 	}
474 
475 	/*
476 	 * Register property callbacks.
477 	 *
478 	 * It would probably be fine to just check for i/o error from
479 	 * the first prop_register(), but I guess I like to go
480 	 * overboard...
481 	 */
482 	ds = dmu_objset_ds(os);
483 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
484 	error = dsl_prop_register(ds,
485 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
486 	error = error ? error : dsl_prop_register(ds,
487 	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
488 	error = error ? error : dsl_prop_register(ds,
489 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
490 	error = error ? error : dsl_prop_register(ds,
491 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
492 	error = error ? error : dsl_prop_register(ds,
493 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
494 	error = error ? error : dsl_prop_register(ds,
495 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
496 	error = error ? error : dsl_prop_register(ds,
497 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
498 	error = error ? error : dsl_prop_register(ds,
499 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
500 	error = error ? error : dsl_prop_register(ds,
501 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
502 	error = error ? error : dsl_prop_register(ds,
503 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
504 	error = error ? error : dsl_prop_register(ds,
505 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
508 	    zfsvfs);
509 	error = error ? error : dsl_prop_register(ds,
510 	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
511 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
512 	if (error)
513 		goto unregister;
514 
515 	/*
516 	 * Invoke our callbacks to restore temporary mount options.
517 	 */
518 	if (vfsp->vfs_do_readonly)
519 		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
520 	if (vfsp->vfs_do_setuid)
521 		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
522 	if (vfsp->vfs_do_exec)
523 		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
524 	if (vfsp->vfs_do_devices)
525 		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
526 	if (vfsp->vfs_do_xattr)
527 		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
528 	if (vfsp->vfs_do_atime)
529 		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
530 	if (vfsp->vfs_do_relatime)
531 		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
532 	if (vfsp->vfs_do_nbmand)
533 		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
534 
535 	return (0);
536 
537 unregister:
538 	dsl_prop_unregister_all(ds, zfsvfs);
539 	return (error);
540 }
541 
542 /*
543  * Takes a dataset, a property, a value and that value's setpoint as
544  * found in the ZAP. Checks if the property has been changed in the vfs.
545  * If so, val and setpoint will be overwritten with updated content.
546  * Otherwise, they are left unchanged.
547  */
548 int
549 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
550     char *setpoint)
551 {
552 	int error;
553 	zfsvfs_t *zfvp;
554 	vfs_t *vfsp;
555 	objset_t *os;
556 	uint64_t tmp = *val;
557 
558 	error = dmu_objset_from_ds(ds, &os);
559 	if (error != 0)
560 		return (error);
561 
562 	if (dmu_objset_type(os) != DMU_OST_ZFS)
563 		return (EINVAL);
564 
565 	mutex_enter(&os->os_user_ptr_lock);
566 	zfvp = dmu_objset_get_user(os);
567 	mutex_exit(&os->os_user_ptr_lock);
568 	if (zfvp == NULL)
569 		return (ESRCH);
570 
571 	vfsp = zfvp->z_vfs;
572 
573 	switch (zfs_prop) {
574 	case ZFS_PROP_ATIME:
575 		if (vfsp->vfs_do_atime)
576 			tmp = vfsp->vfs_atime;
577 		break;
578 	case ZFS_PROP_RELATIME:
579 		if (vfsp->vfs_do_relatime)
580 			tmp = vfsp->vfs_relatime;
581 		break;
582 	case ZFS_PROP_DEVICES:
583 		if (vfsp->vfs_do_devices)
584 			tmp = vfsp->vfs_devices;
585 		break;
586 	case ZFS_PROP_EXEC:
587 		if (vfsp->vfs_do_exec)
588 			tmp = vfsp->vfs_exec;
589 		break;
590 	case ZFS_PROP_SETUID:
591 		if (vfsp->vfs_do_setuid)
592 			tmp = vfsp->vfs_setuid;
593 		break;
594 	case ZFS_PROP_READONLY:
595 		if (vfsp->vfs_do_readonly)
596 			tmp = vfsp->vfs_readonly;
597 		break;
598 	case ZFS_PROP_XATTR:
599 		if (vfsp->vfs_do_xattr)
600 			tmp = vfsp->vfs_xattr;
601 		break;
602 	case ZFS_PROP_NBMAND:
603 		if (vfsp->vfs_do_nbmand)
604 			tmp = vfsp->vfs_nbmand;
605 		break;
606 	default:
607 		return (ENOENT);
608 	}
609 
610 	if (tmp != *val) {
611 		if (setpoint)
612 			(void) strcpy(setpoint, "temporary");
613 		*val = tmp;
614 	}
615 	return (0);
616 }
617 
618 /*
619  * Associate this zfsvfs with the given objset, which must be owned.
620  * This will cache a bunch of on-disk state from the objset in the
621  * zfsvfs.
622  */
623 static int
624 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
625 {
626 	int error;
627 	uint64_t val;
628 
629 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
630 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
631 	zfsvfs->z_os = os;
632 
633 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
634 	if (error != 0)
635 		return (error);
636 	if (zfsvfs->z_version >
637 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
638 		(void) printk("Can't mount a version %lld file system "
639 		    "on a version %lld pool\n. Pool must be upgraded to mount "
640 		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
641 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
642 		return (SET_ERROR(ENOTSUP));
643 	}
644 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
645 	if (error != 0)
646 		return (error);
647 	zfsvfs->z_norm = (int)val;
648 
649 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
650 	if (error != 0)
651 		return (error);
652 	zfsvfs->z_utf8 = (val != 0);
653 
654 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
655 	if (error != 0)
656 		return (error);
657 	zfsvfs->z_case = (uint_t)val;
658 
659 	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
660 		return (error);
661 	zfsvfs->z_acl_type = (uint_t)val;
662 
663 	/*
664 	 * Fold case on file systems that are always or sometimes case
665 	 * insensitive.
666 	 */
667 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
668 	    zfsvfs->z_case == ZFS_CASE_MIXED)
669 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
670 
671 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
672 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
673 
674 	uint64_t sa_obj = 0;
675 	if (zfsvfs->z_use_sa) {
676 		/* should either have both of these objects or none */
677 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
678 		    &sa_obj);
679 		if (error != 0)
680 			return (error);
681 
682 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
683 		if ((error == 0) && (val == ZFS_XATTR_SA))
684 			zfsvfs->z_xattr_sa = B_TRUE;
685 	}
686 
687 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
688 	    &zfsvfs->z_root);
689 	if (error != 0)
690 		return (error);
691 	ASSERT(zfsvfs->z_root != 0);
692 
693 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
694 	    &zfsvfs->z_unlinkedobj);
695 	if (error != 0)
696 		return (error);
697 
698 	error = zap_lookup(os, MASTER_NODE_OBJ,
699 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
700 	    8, 1, &zfsvfs->z_userquota_obj);
701 	if (error == ENOENT)
702 		zfsvfs->z_userquota_obj = 0;
703 	else if (error != 0)
704 		return (error);
705 
706 	error = zap_lookup(os, MASTER_NODE_OBJ,
707 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
708 	    8, 1, &zfsvfs->z_groupquota_obj);
709 	if (error == ENOENT)
710 		zfsvfs->z_groupquota_obj = 0;
711 	else if (error != 0)
712 		return (error);
713 
714 	error = zap_lookup(os, MASTER_NODE_OBJ,
715 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
716 	    8, 1, &zfsvfs->z_projectquota_obj);
717 	if (error == ENOENT)
718 		zfsvfs->z_projectquota_obj = 0;
719 	else if (error != 0)
720 		return (error);
721 
722 	error = zap_lookup(os, MASTER_NODE_OBJ,
723 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
724 	    8, 1, &zfsvfs->z_userobjquota_obj);
725 	if (error == ENOENT)
726 		zfsvfs->z_userobjquota_obj = 0;
727 	else if (error != 0)
728 		return (error);
729 
730 	error = zap_lookup(os, MASTER_NODE_OBJ,
731 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
732 	    8, 1, &zfsvfs->z_groupobjquota_obj);
733 	if (error == ENOENT)
734 		zfsvfs->z_groupobjquota_obj = 0;
735 	else if (error != 0)
736 		return (error);
737 
738 	error = zap_lookup(os, MASTER_NODE_OBJ,
739 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
740 	    8, 1, &zfsvfs->z_projectobjquota_obj);
741 	if (error == ENOENT)
742 		zfsvfs->z_projectobjquota_obj = 0;
743 	else if (error != 0)
744 		return (error);
745 
746 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
747 	    &zfsvfs->z_fuid_obj);
748 	if (error == ENOENT)
749 		zfsvfs->z_fuid_obj = 0;
750 	else if (error != 0)
751 		return (error);
752 
753 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
754 	    &zfsvfs->z_shares_dir);
755 	if (error == ENOENT)
756 		zfsvfs->z_shares_dir = 0;
757 	else if (error != 0)
758 		return (error);
759 
760 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
761 	    &zfsvfs->z_attr_table);
762 	if (error != 0)
763 		return (error);
764 
765 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
766 		sa_register_update_callback(os, zfs_sa_upgrade);
767 
768 	return (0);
769 }
770 
771 int
772 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
773 {
774 	objset_t *os;
775 	zfsvfs_t *zfsvfs;
776 	int error;
777 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
778 
779 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
780 
781 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
782 	if (error != 0) {
783 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
784 		return (error);
785 	}
786 
787 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
788 
789 	return (error);
790 }
791 
792 
793 /*
794  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
795  * on a failure.  Do not pass in a statically allocated zfsvfs.
796  */
797 int
798 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
799 {
800 	int error;
801 
802 	zfsvfs->z_vfs = NULL;
803 	zfsvfs->z_sb = NULL;
804 	zfsvfs->z_parent = zfsvfs;
805 
806 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
807 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
808 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
809 	    offsetof(znode_t, z_link_node));
810 	ZFS_TEARDOWN_INIT(zfsvfs);
811 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
812 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
813 
814 	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
815 	    ZFS_OBJ_MTX_MAX);
816 	zfsvfs->z_hold_size = size;
817 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
818 	    KM_SLEEP);
819 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
820 	for (int i = 0; i != size; i++) {
821 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
822 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
823 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
824 	}
825 
826 	error = zfsvfs_init(zfsvfs, os);
827 	if (error != 0) {
828 		dmu_objset_disown(os, B_TRUE, zfsvfs);
829 		*zfvp = NULL;
830 		zfsvfs_free(zfsvfs);
831 		return (error);
832 	}
833 
834 	zfsvfs->z_drain_task = TASKQID_INVALID;
835 	zfsvfs->z_draining = B_FALSE;
836 	zfsvfs->z_drain_cancel = B_TRUE;
837 
838 	*zfvp = zfsvfs;
839 	return (0);
840 }
841 
842 static int
843 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
844 {
845 	int error;
846 	boolean_t readonly = zfs_is_readonly(zfsvfs);
847 
848 	error = zfs_register_callbacks(zfsvfs->z_vfs);
849 	if (error)
850 		return (error);
851 
852 	/*
853 	 * If we are not mounting (ie: online recv), then we don't
854 	 * have to worry about replaying the log as we blocked all
855 	 * operations out since we closed the ZIL.
856 	 */
857 	if (mounting) {
858 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
859 		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
860 		if (error)
861 			return (error);
862 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
863 		    &zfsvfs->z_kstat.dk_zil_sums);
864 
865 		/*
866 		 * During replay we remove the read only flag to
867 		 * allow replays to succeed.
868 		 */
869 		if (readonly != 0) {
870 			readonly_changed_cb(zfsvfs, B_FALSE);
871 		} else {
872 			zap_stats_t zs;
873 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
874 			    &zs) == 0) {
875 				dataset_kstats_update_nunlinks_kstat(
876 				    &zfsvfs->z_kstat, zs.zs_num_entries);
877 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
878 				    "num_entries in unlinked set: %llu",
879 				    zs.zs_num_entries);
880 			}
881 			zfs_unlinked_drain(zfsvfs);
882 			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
883 			dd->dd_activity_cancelled = B_FALSE;
884 		}
885 
886 		/*
887 		 * Parse and replay the intent log.
888 		 *
889 		 * Because of ziltest, this must be done after
890 		 * zfs_unlinked_drain().  (Further note: ziltest
891 		 * doesn't use readonly mounts, where
892 		 * zfs_unlinked_drain() isn't called.)  This is because
893 		 * ziltest causes spa_sync() to think it's committed,
894 		 * but actually it is not, so the intent log contains
895 		 * many txg's worth of changes.
896 		 *
897 		 * In particular, if object N is in the unlinked set in
898 		 * the last txg to actually sync, then it could be
899 		 * actually freed in a later txg and then reallocated
900 		 * in a yet later txg.  This would write a "create
901 		 * object N" record to the intent log.  Normally, this
902 		 * would be fine because the spa_sync() would have
903 		 * written out the fact that object N is free, before
904 		 * we could write the "create object N" intent log
905 		 * record.
906 		 *
907 		 * But when we are in ziltest mode, we advance the "open
908 		 * txg" without actually spa_sync()-ing the changes to
909 		 * disk.  So we would see that object N is still
910 		 * allocated and in the unlinked set, and there is an
911 		 * intent log record saying to allocate it.
912 		 */
913 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
914 			if (zil_replay_disable) {
915 				zil_destroy(zfsvfs->z_log, B_FALSE);
916 			} else {
917 				zfsvfs->z_replay = B_TRUE;
918 				zil_replay(zfsvfs->z_os, zfsvfs,
919 				    zfs_replay_vector);
920 				zfsvfs->z_replay = B_FALSE;
921 			}
922 		}
923 
924 		/* restore readonly bit */
925 		if (readonly != 0)
926 			readonly_changed_cb(zfsvfs, B_TRUE);
927 	} else {
928 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
929 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
930 		    &zfsvfs->z_kstat.dk_zil_sums);
931 	}
932 
933 	/*
934 	 * Set the objset user_ptr to track its zfsvfs.
935 	 */
936 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
937 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
938 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
939 
940 	return (0);
941 }
942 
943 void
944 zfsvfs_free(zfsvfs_t *zfsvfs)
945 {
946 	int i, size = zfsvfs->z_hold_size;
947 
948 	zfs_fuid_destroy(zfsvfs);
949 
950 	mutex_destroy(&zfsvfs->z_znodes_lock);
951 	mutex_destroy(&zfsvfs->z_lock);
952 	list_destroy(&zfsvfs->z_all_znodes);
953 	ZFS_TEARDOWN_DESTROY(zfsvfs);
954 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
955 	rw_destroy(&zfsvfs->z_fuid_lock);
956 	for (i = 0; i != size; i++) {
957 		avl_destroy(&zfsvfs->z_hold_trees[i]);
958 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
959 	}
960 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
961 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
962 	zfsvfs_vfs_free(zfsvfs->z_vfs);
963 	dataset_kstats_destroy(&zfsvfs->z_kstat);
964 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
965 }
966 
967 static void
968 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
969 {
970 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
971 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
972 }
973 
974 static void
975 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
976 {
977 	objset_t *os = zfsvfs->z_os;
978 
979 	if (!dmu_objset_is_snapshot(os))
980 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
981 }
982 
983 #ifdef HAVE_MLSLABEL
984 /*
985  * Check that the hex label string is appropriate for the dataset being
986  * mounted into the global_zone proper.
987  *
988  * Return an error if the hex label string is not default or
989  * admin_low/admin_high.  For admin_low labels, the corresponding
990  * dataset must be readonly.
991  */
992 int
993 zfs_check_global_label(const char *dsname, const char *hexsl)
994 {
995 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
996 		return (0);
997 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
998 		return (0);
999 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1000 		/* must be readonly */
1001 		uint64_t rdonly;
1002 
1003 		if (dsl_prop_get_integer(dsname,
1004 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1005 			return (SET_ERROR(EACCES));
1006 		return (rdonly ? 0 : SET_ERROR(EACCES));
1007 	}
1008 	return (SET_ERROR(EACCES));
1009 }
1010 #endif /* HAVE_MLSLABEL */
1011 
1012 static int
1013 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1014     uint32_t bshift)
1015 {
1016 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1017 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1018 	uint64_t quota;
1019 	uint64_t used;
1020 	int err;
1021 
1022 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1023 	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1024 	    sizeof (buf) - offset, B_FALSE);
1025 	if (err)
1026 		return (err);
1027 
1028 	if (zfsvfs->z_projectquota_obj == 0)
1029 		goto objs;
1030 
1031 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1032 	    buf + offset, 8, 1, &quota);
1033 	if (err == ENOENT)
1034 		goto objs;
1035 	else if (err)
1036 		return (err);
1037 
1038 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1039 	    buf + offset, 8, 1, &used);
1040 	if (unlikely(err == ENOENT)) {
1041 		uint32_t blksize;
1042 		u_longlong_t nblocks;
1043 
1044 		/*
1045 		 * Quota accounting is async, so it is possible race case.
1046 		 * There is at least one object with the given project ID.
1047 		 */
1048 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1049 		if (unlikely(zp->z_blksz == 0))
1050 			blksize = zfsvfs->z_max_blksz;
1051 
1052 		used = blksize * nblocks;
1053 	} else if (err) {
1054 		return (err);
1055 	}
1056 
1057 	statp->f_blocks = quota >> bshift;
1058 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1059 	statp->f_bavail = statp->f_bfree;
1060 
1061 objs:
1062 	if (zfsvfs->z_projectobjquota_obj == 0)
1063 		return (0);
1064 
1065 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1066 	    buf + offset, 8, 1, &quota);
1067 	if (err == ENOENT)
1068 		return (0);
1069 	else if (err)
1070 		return (err);
1071 
1072 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1073 	    buf, 8, 1, &used);
1074 	if (unlikely(err == ENOENT)) {
1075 		/*
1076 		 * Quota accounting is async, so it is possible race case.
1077 		 * There is at least one object with the given project ID.
1078 		 */
1079 		used = 1;
1080 	} else if (err) {
1081 		return (err);
1082 	}
1083 
1084 	statp->f_files = quota;
1085 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1086 
1087 	return (0);
1088 }
1089 
1090 int
1091 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1092 {
1093 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1094 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1095 	int err = 0;
1096 
1097 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1098 		return (err);
1099 
1100 	dmu_objset_space(zfsvfs->z_os,
1101 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1102 
1103 	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1104 	/*
1105 	 * The underlying storage pool actually uses multiple block
1106 	 * size.  Under Solaris frsize (fragment size) is reported as
1107 	 * the smallest block size we support, and bsize (block size)
1108 	 * as the filesystem's maximum block size.  Unfortunately,
1109 	 * under Linux the fragment size and block size are often used
1110 	 * interchangeably.  Thus we are forced to report both of them
1111 	 * as the filesystem's maximum block size.
1112 	 */
1113 	statp->f_frsize = zfsvfs->z_max_blksz;
1114 	statp->f_bsize = zfsvfs->z_max_blksz;
1115 	uint32_t bshift = fls(statp->f_bsize) - 1;
1116 
1117 	/*
1118 	 * The following report "total" blocks of various kinds in
1119 	 * the file system, but reported in terms of f_bsize - the
1120 	 * "preferred" size.
1121 	 */
1122 
1123 	/* Round up so we never have a filesystem using 0 blocks. */
1124 	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1125 	statp->f_blocks = (refdbytes + availbytes) >> bshift;
1126 	statp->f_bfree = availbytes >> bshift;
1127 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1128 
1129 	/*
1130 	 * statvfs() should really be called statufs(), because it assumes
1131 	 * static metadata.  ZFS doesn't preallocate files, so the best
1132 	 * we can do is report the max that could possibly fit in f_files,
1133 	 * and that minus the number actually used in f_ffree.
1134 	 * For f_ffree, report the smaller of the number of objects available
1135 	 * and the number of blocks (each object will take at least a block).
1136 	 */
1137 	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1138 	statp->f_files = statp->f_ffree + usedobjs;
1139 	statp->f_fsid.val[0] = (uint32_t)fsid;
1140 	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1141 	statp->f_type = ZFS_SUPER_MAGIC;
1142 	statp->f_namelen = MAXNAMELEN - 1;
1143 
1144 	/*
1145 	 * We have all of 40 characters to stuff a string here.
1146 	 * Is there anything useful we could/should provide?
1147 	 */
1148 	memset(statp->f_spare, 0, sizeof (statp->f_spare));
1149 
1150 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1151 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
1152 		znode_t *zp = ITOZ(ip);
1153 
1154 		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1155 		    zpl_is_valid_projid(zp->z_projid))
1156 			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1157 	}
1158 
1159 	zfs_exit(zfsvfs, FTAG);
1160 	return (err);
1161 }
1162 
1163 static int
1164 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1165 {
1166 	znode_t *rootzp;
1167 	int error;
1168 
1169 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1170 		return (error);
1171 
1172 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1173 	if (error == 0)
1174 		*ipp = ZTOI(rootzp);
1175 
1176 	zfs_exit(zfsvfs, FTAG);
1177 	return (error);
1178 }
1179 
1180 /*
1181  * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1182  * To accommodate this we must improvise and manually walk the list of znodes
1183  * attempting to prune dentries in order to be able to drop the inodes.
1184  *
1185  * To avoid scanning the same znodes multiple times they are always rotated
1186  * to the end of the z_all_znodes list.  New znodes are inserted at the
1187  * end of the list so we're always scanning the oldest znodes first.
1188  */
1189 static int
1190 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1191 {
1192 	znode_t **zp_array, *zp;
1193 	int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1194 	int objects = 0;
1195 	int i = 0, j = 0;
1196 
1197 	zp_array = vmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1198 
1199 	mutex_enter(&zfsvfs->z_znodes_lock);
1200 	while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1201 
1202 		if ((i++ > nr_to_scan) || (j >= max_array))
1203 			break;
1204 
1205 		ASSERT(list_link_active(&zp->z_link_node));
1206 		list_remove(&zfsvfs->z_all_znodes, zp);
1207 		list_insert_tail(&zfsvfs->z_all_znodes, zp);
1208 
1209 		/* Skip active znodes and .zfs entries */
1210 		if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1211 			continue;
1212 
1213 		if (igrab(ZTOI(zp)) == NULL)
1214 			continue;
1215 
1216 		zp_array[j] = zp;
1217 		j++;
1218 	}
1219 	mutex_exit(&zfsvfs->z_znodes_lock);
1220 
1221 	for (i = 0; i < j; i++) {
1222 		zp = zp_array[i];
1223 
1224 		ASSERT3P(zp, !=, NULL);
1225 		d_prune_aliases(ZTOI(zp));
1226 
1227 		if (atomic_read(&ZTOI(zp)->i_count) == 1)
1228 			objects++;
1229 
1230 		zrele(zp);
1231 	}
1232 
1233 	vmem_free(zp_array, max_array * sizeof (znode_t *));
1234 
1235 	return (objects);
1236 }
1237 
1238 /*
1239  * The ARC has requested that the filesystem drop entries from the dentry
1240  * and inode caches.  This can occur when the ARC needs to free meta data
1241  * blocks but can't because they are all pinned by entries in these caches.
1242  */
1243 #if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1244 #define	S_SHRINK(sb)	(&(sb)->s_shrink)
1245 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1246 #define	S_SHRINK(sb)	((sb)->s_shrink)
1247 #endif
1248 
1249 int
1250 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1251 {
1252 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1253 	int error = 0;
1254 	struct shrinker *shrinker = S_SHRINK(sb);
1255 	struct shrink_control sc = {
1256 		.nr_to_scan = nr_to_scan,
1257 		.gfp_mask = GFP_KERNEL,
1258 	};
1259 
1260 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1261 		return (error);
1262 
1263 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1264 	defined(SHRINK_CONTROL_HAS_NID) && \
1265 	defined(SHRINKER_NUMA_AWARE)
1266 	if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1267 		*objects = 0;
1268 		for_each_online_node(sc.nid) {
1269 			*objects += (*shrinker->scan_objects)(shrinker, &sc);
1270 			/*
1271 			 * reset sc.nr_to_scan, modified by
1272 			 * scan_objects == super_cache_scan
1273 			 */
1274 			sc.nr_to_scan = nr_to_scan;
1275 		}
1276 	} else {
1277 			*objects = (*shrinker->scan_objects)(shrinker, &sc);
1278 	}
1279 
1280 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1281 	*objects = (*shrinker->scan_objects)(shrinker, &sc);
1282 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1283 	*objects = (*shrinker->shrink)(shrinker, &sc);
1284 #elif defined(HAVE_D_PRUNE_ALIASES)
1285 #define	D_PRUNE_ALIASES_IS_DEFAULT
1286 	*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1287 #else
1288 #error "No available dentry and inode cache pruning mechanism."
1289 #endif
1290 
1291 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1292 #undef	D_PRUNE_ALIASES_IS_DEFAULT
1293 	/*
1294 	 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1295 	 * shrinker couldn't free anything, possibly due to the inodes being
1296 	 * allocated in a different memcg.
1297 	 */
1298 	if (*objects == 0)
1299 		*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1300 #endif
1301 
1302 	zfs_exit(zfsvfs, FTAG);
1303 
1304 	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1305 	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1306 	    nr_to_scan, *objects, error);
1307 
1308 	return (error);
1309 }
1310 
1311 /*
1312  * Teardown the zfsvfs_t.
1313  *
1314  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1315  * and 'z_teardown_inactive_lock' held.
1316  */
1317 static int
1318 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1319 {
1320 	znode_t	*zp;
1321 
1322 	zfs_unlinked_drain_stop_wait(zfsvfs);
1323 
1324 	/*
1325 	 * If someone has not already unmounted this file system,
1326 	 * drain the zrele_taskq to ensure all active references to the
1327 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1328 	 */
1329 	if (zfsvfs->z_os) {
1330 		/*
1331 		 * If we're unmounting we have to wait for the list to
1332 		 * drain completely.
1333 		 *
1334 		 * If we're not unmounting there's no guarantee the list
1335 		 * will drain completely, but iputs run from the taskq
1336 		 * may add the parents of dir-based xattrs to the taskq
1337 		 * so we want to wait for these.
1338 		 *
1339 		 * We can safely check z_all_znodes for being empty because the
1340 		 * VFS has already blocked operations which add to it.
1341 		 */
1342 		int round = 0;
1343 		while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1344 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1345 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1346 			if (++round > 1 && !unmounting)
1347 				break;
1348 		}
1349 	}
1350 
1351 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1352 
1353 	if (!unmounting) {
1354 		/*
1355 		 * We purge the parent filesystem's super block as the
1356 		 * parent filesystem and all of its snapshots have their
1357 		 * inode's super block set to the parent's filesystem's
1358 		 * super block.  Note,  'z_parent' is self referential
1359 		 * for non-snapshots.
1360 		 */
1361 		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1362 	}
1363 
1364 	/*
1365 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1366 	 * threads are blocked as zil_close can call zfs_inactive.
1367 	 */
1368 	if (zfsvfs->z_log) {
1369 		zil_close(zfsvfs->z_log);
1370 		zfsvfs->z_log = NULL;
1371 	}
1372 
1373 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1374 
1375 	/*
1376 	 * If we are not unmounting (ie: online recv) and someone already
1377 	 * unmounted this file system while we were doing the switcheroo,
1378 	 * or a reopen of z_os failed then just bail out now.
1379 	 */
1380 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1381 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1382 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1383 		return (SET_ERROR(EIO));
1384 	}
1385 
1386 	/*
1387 	 * At this point there are no VFS ops active, and any new VFS ops
1388 	 * will fail with EIO since we have z_teardown_lock for writer (only
1389 	 * relevant for forced unmount).
1390 	 *
1391 	 * Release all holds on dbufs. We also grab an extra reference to all
1392 	 * the remaining inodes so that the kernel does not attempt to free
1393 	 * any inodes of a suspended fs. This can cause deadlocks since the
1394 	 * zfs_resume_fs() process may involve starting threads, which might
1395 	 * attempt to free unreferenced inodes to free up memory for the new
1396 	 * thread.
1397 	 */
1398 	if (!unmounting) {
1399 		mutex_enter(&zfsvfs->z_znodes_lock);
1400 		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1401 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1402 			if (zp->z_sa_hdl)
1403 				zfs_znode_dmu_fini(zp);
1404 			if (igrab(ZTOI(zp)) != NULL)
1405 				zp->z_suspended = B_TRUE;
1406 
1407 		}
1408 		mutex_exit(&zfsvfs->z_znodes_lock);
1409 	}
1410 
1411 	/*
1412 	 * If we are unmounting, set the unmounted flag and let new VFS ops
1413 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1414 	 * other VFS ops will fail with EIO.
1415 	 */
1416 	if (unmounting) {
1417 		zfsvfs->z_unmounted = B_TRUE;
1418 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1419 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1420 	}
1421 
1422 	/*
1423 	 * z_os will be NULL if there was an error in attempting to reopen
1424 	 * zfsvfs, so just return as the properties had already been
1425 	 *
1426 	 * unregistered and cached data had been evicted before.
1427 	 */
1428 	if (zfsvfs->z_os == NULL)
1429 		return (0);
1430 
1431 	/*
1432 	 * Unregister properties.
1433 	 */
1434 	zfs_unregister_callbacks(zfsvfs);
1435 
1436 	/*
1437 	 * Evict cached data. We must write out any dirty data before
1438 	 * disowning the dataset.
1439 	 */
1440 	objset_t *os = zfsvfs->z_os;
1441 	boolean_t os_dirty = B_FALSE;
1442 	for (int t = 0; t < TXG_SIZE; t++) {
1443 		if (dmu_objset_is_dirty(os, t)) {
1444 			os_dirty = B_TRUE;
1445 			break;
1446 		}
1447 	}
1448 	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1449 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1450 	}
1451 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1452 	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1453 	dsl_dir_cancel_waiters(dd);
1454 
1455 	return (0);
1456 }
1457 
1458 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1459 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1460 #endif
1461 
1462 int
1463 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1464 {
1465 	const char *osname = zm->mnt_osname;
1466 	struct inode *root_inode = NULL;
1467 	uint64_t recordsize;
1468 	int error = 0;
1469 	zfsvfs_t *zfsvfs = NULL;
1470 	vfs_t *vfs = NULL;
1471 	int canwrite;
1472 	int dataset_visible_zone;
1473 
1474 	ASSERT(zm);
1475 	ASSERT(osname);
1476 
1477 	dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1478 
1479 	/*
1480 	 * Refuse to mount a filesystem if we are in a namespace and the
1481 	 * dataset is not visible or writable in that namespace.
1482 	 */
1483 	if (!INGLOBALZONE(curproc) &&
1484 	    (!dataset_visible_zone || !canwrite)) {
1485 		return (SET_ERROR(EPERM));
1486 	}
1487 
1488 	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1489 	if (error)
1490 		return (error);
1491 
1492 	/*
1493 	 * If a non-writable filesystem is being mounted without the
1494 	 * read-only flag, pretend it was set, as done for snapshots.
1495 	 */
1496 	if (!canwrite)
1497 		vfs->vfs_readonly = B_TRUE;
1498 
1499 	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1500 	if (error) {
1501 		zfsvfs_vfs_free(vfs);
1502 		goto out;
1503 	}
1504 
1505 	if ((error = dsl_prop_get_integer(osname, "recordsize",
1506 	    &recordsize, NULL))) {
1507 		zfsvfs_vfs_free(vfs);
1508 		goto out;
1509 	}
1510 
1511 	vfs->vfs_data = zfsvfs;
1512 	zfsvfs->z_vfs = vfs;
1513 	zfsvfs->z_sb = sb;
1514 	sb->s_fs_info = zfsvfs;
1515 	sb->s_magic = ZFS_SUPER_MAGIC;
1516 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1517 	sb->s_time_gran = 1;
1518 	sb->s_blocksize = recordsize;
1519 	sb->s_blocksize_bits = ilog2(recordsize);
1520 
1521 	error = -zpl_bdi_setup(sb, "zfs");
1522 	if (error)
1523 		goto out;
1524 
1525 	sb->s_bdi->ra_pages = 0;
1526 
1527 	/* Set callback operations for the file system. */
1528 	sb->s_op = &zpl_super_operations;
1529 	sb->s_xattr = zpl_xattr_handlers;
1530 	sb->s_export_op = &zpl_export_operations;
1531 
1532 	/* Set features for file system. */
1533 	zfs_set_fuid_feature(zfsvfs);
1534 
1535 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1536 		uint64_t pval;
1537 
1538 		atime_changed_cb(zfsvfs, B_FALSE);
1539 		readonly_changed_cb(zfsvfs, B_TRUE);
1540 		if ((error = dsl_prop_get_integer(osname,
1541 		    "xattr", &pval, NULL)))
1542 			goto out;
1543 		xattr_changed_cb(zfsvfs, pval);
1544 		if ((error = dsl_prop_get_integer(osname,
1545 		    "acltype", &pval, NULL)))
1546 			goto out;
1547 		acltype_changed_cb(zfsvfs, pval);
1548 		zfsvfs->z_issnap = B_TRUE;
1549 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1550 		zfsvfs->z_snap_defer_time = jiffies;
1551 
1552 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1553 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1554 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1555 	} else {
1556 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1557 			goto out;
1558 	}
1559 
1560 	/* Allocate a root inode for the filesystem. */
1561 	error = zfs_root(zfsvfs, &root_inode);
1562 	if (error) {
1563 		(void) zfs_umount(sb);
1564 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1565 		goto out;
1566 	}
1567 
1568 	/* Allocate a root dentry for the filesystem */
1569 	sb->s_root = d_make_root(root_inode);
1570 	if (sb->s_root == NULL) {
1571 		(void) zfs_umount(sb);
1572 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1573 		error = SET_ERROR(ENOMEM);
1574 		goto out;
1575 	}
1576 
1577 	if (!zfsvfs->z_issnap)
1578 		zfsctl_create(zfsvfs);
1579 
1580 	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1581 out:
1582 	if (error) {
1583 		if (zfsvfs != NULL) {
1584 			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1585 			zfsvfs_free(zfsvfs);
1586 		}
1587 		/*
1588 		 * make sure we don't have dangling sb->s_fs_info which
1589 		 * zfs_preumount will use.
1590 		 */
1591 		sb->s_fs_info = NULL;
1592 	}
1593 
1594 	return (error);
1595 }
1596 
1597 /*
1598  * Called when an unmount is requested and certain sanity checks have
1599  * already passed.  At this point no dentries or inodes have been reclaimed
1600  * from their respective caches.  We drop the extra reference on the .zfs
1601  * control directory to allow everything to be reclaimed.  All snapshots
1602  * must already have been unmounted to reach this point.
1603  */
1604 void
1605 zfs_preumount(struct super_block *sb)
1606 {
1607 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1608 
1609 	/* zfsvfs is NULL when zfs_domount fails during mount */
1610 	if (zfsvfs) {
1611 		zfs_unlinked_drain_stop_wait(zfsvfs);
1612 		zfsctl_destroy(sb->s_fs_info);
1613 		/*
1614 		 * Wait for zrele_async before entering evict_inodes in
1615 		 * generic_shutdown_super. The reason we must finish before
1616 		 * evict_inodes is when lazytime is on, or when zfs_purgedir
1617 		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1618 		 * would race with the i_count check in evict_inodes. This means
1619 		 * it could destroy the inode while we are still using it.
1620 		 *
1621 		 * We wait for two passes. xattr directories in the first pass
1622 		 * may add xattr entries in zfs_purgedir, so in the second pass
1623 		 * we wait for them. We don't use taskq_wait here because it is
1624 		 * a pool wide taskq. Other mounted filesystems can constantly
1625 		 * do zrele_async and there's no guarantee when taskq will be
1626 		 * empty.
1627 		 */
1628 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1629 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1630 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1631 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1632 	}
1633 }
1634 
1635 /*
1636  * Called once all other unmount released tear down has occurred.
1637  * It is our responsibility to release any remaining infrastructure.
1638  */
1639 int
1640 zfs_umount(struct super_block *sb)
1641 {
1642 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1643 	objset_t *os;
1644 
1645 	if (zfsvfs->z_arc_prune != NULL)
1646 		arc_remove_prune_callback(zfsvfs->z_arc_prune);
1647 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1648 	os = zfsvfs->z_os;
1649 	zpl_bdi_destroy(sb);
1650 
1651 	/*
1652 	 * z_os will be NULL if there was an error in
1653 	 * attempting to reopen zfsvfs.
1654 	 */
1655 	if (os != NULL) {
1656 		/*
1657 		 * Unset the objset user_ptr.
1658 		 */
1659 		mutex_enter(&os->os_user_ptr_lock);
1660 		dmu_objset_set_user(os, NULL);
1661 		mutex_exit(&os->os_user_ptr_lock);
1662 
1663 		/*
1664 		 * Finally release the objset
1665 		 */
1666 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1667 	}
1668 
1669 	zfsvfs_free(zfsvfs);
1670 	sb->s_fs_info = NULL;
1671 	return (0);
1672 }
1673 
1674 int
1675 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1676 {
1677 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1678 	vfs_t *vfsp;
1679 	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1680 	int error;
1681 
1682 	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1683 	    !(*flags & SB_RDONLY)) {
1684 		*flags |= SB_RDONLY;
1685 		return (EROFS);
1686 	}
1687 
1688 	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1689 	if (error)
1690 		return (error);
1691 
1692 	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1693 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1694 
1695 	zfs_unregister_callbacks(zfsvfs);
1696 	zfsvfs_vfs_free(zfsvfs->z_vfs);
1697 
1698 	vfsp->vfs_data = zfsvfs;
1699 	zfsvfs->z_vfs = vfsp;
1700 	if (!issnap)
1701 		(void) zfs_register_callbacks(vfsp);
1702 
1703 	return (error);
1704 }
1705 
1706 int
1707 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1708 {
1709 	zfsvfs_t	*zfsvfs = sb->s_fs_info;
1710 	znode_t		*zp;
1711 	uint64_t	object = 0;
1712 	uint64_t	fid_gen = 0;
1713 	uint64_t	gen_mask;
1714 	uint64_t	zp_gen;
1715 	int		i, err;
1716 
1717 	*ipp = NULL;
1718 
1719 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1720 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1721 
1722 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1723 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1724 
1725 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1726 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1727 	} else {
1728 		return (SET_ERROR(EINVAL));
1729 	}
1730 
1731 	/* LONG_FID_LEN means snapdirs */
1732 	if (fidp->fid_len == LONG_FID_LEN) {
1733 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1734 		uint64_t	objsetid = 0;
1735 		uint64_t	setgen = 0;
1736 
1737 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1738 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1739 
1740 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1741 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1742 
1743 		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1744 			dprintf("snapdir fid: objsetid (%llu) != "
1745 			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1746 			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
1747 
1748 			return (SET_ERROR(EINVAL));
1749 		}
1750 
1751 		if (fid_gen > 1 || setgen != 0) {
1752 			dprintf("snapdir fid: fid_gen (%llu) and setgen "
1753 			    "(%llu)\n", fid_gen, setgen);
1754 			return (SET_ERROR(EINVAL));
1755 		}
1756 
1757 		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1758 	}
1759 
1760 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1761 		return (err);
1762 	/* A zero fid_gen means we are in the .zfs control directories */
1763 	if (fid_gen == 0 &&
1764 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1765 		*ipp = zfsvfs->z_ctldir;
1766 		ASSERT(*ipp != NULL);
1767 		if (object == ZFSCTL_INO_SNAPDIR) {
1768 			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1769 			    0, kcred, NULL, NULL) == 0);
1770 		} else {
1771 			/*
1772 			 * Must have an existing ref, so igrab()
1773 			 * cannot return NULL
1774 			 */
1775 			VERIFY3P(igrab(*ipp), !=, NULL);
1776 		}
1777 		zfs_exit(zfsvfs, FTAG);
1778 		return (0);
1779 	}
1780 
1781 	gen_mask = -1ULL >> (64 - 8 * i);
1782 
1783 	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1784 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1785 		zfs_exit(zfsvfs, FTAG);
1786 		return (err);
1787 	}
1788 
1789 	/* Don't export xattr stuff */
1790 	if (zp->z_pflags & ZFS_XATTR) {
1791 		zrele(zp);
1792 		zfs_exit(zfsvfs, FTAG);
1793 		return (SET_ERROR(ENOENT));
1794 	}
1795 
1796 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1797 	    sizeof (uint64_t));
1798 	zp_gen = zp_gen & gen_mask;
1799 	if (zp_gen == 0)
1800 		zp_gen = 1;
1801 	if ((fid_gen == 0) && (zfsvfs->z_root == object))
1802 		fid_gen = zp_gen;
1803 	if (zp->z_unlinked || zp_gen != fid_gen) {
1804 		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1805 		    fid_gen);
1806 		zrele(zp);
1807 		zfs_exit(zfsvfs, FTAG);
1808 		return (SET_ERROR(ENOENT));
1809 	}
1810 
1811 	*ipp = ZTOI(zp);
1812 	if (*ipp)
1813 		zfs_znode_update_vfs(ITOZ(*ipp));
1814 
1815 	zfs_exit(zfsvfs, FTAG);
1816 	return (0);
1817 }
1818 
1819 /*
1820  * Block out VFS ops and close zfsvfs_t
1821  *
1822  * Note, if successful, then we return with the 'z_teardown_lock' and
1823  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1824  * dataset and objset intact so that they can be atomically handed off during
1825  * a subsequent rollback or recv operation and the resume thereafter.
1826  */
1827 int
1828 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1829 {
1830 	int error;
1831 
1832 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1833 		return (error);
1834 
1835 	return (0);
1836 }
1837 
1838 /*
1839  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1840  * is an invariant across any of the operations that can be performed while the
1841  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1842  * are the same: the relevant objset and associated dataset are owned by
1843  * zfsvfs, held, and long held on entry.
1844  */
1845 int
1846 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1847 {
1848 	int err, err2;
1849 	znode_t *zp;
1850 
1851 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1852 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1853 
1854 	/*
1855 	 * We already own this, so just update the objset_t, as the one we
1856 	 * had before may have been evicted.
1857 	 */
1858 	objset_t *os;
1859 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1860 	VERIFY(dsl_dataset_long_held(ds));
1861 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1862 	dsl_pool_config_enter(dp, FTAG);
1863 	VERIFY0(dmu_objset_from_ds(ds, &os));
1864 	dsl_pool_config_exit(dp, FTAG);
1865 
1866 	err = zfsvfs_init(zfsvfs, os);
1867 	if (err != 0)
1868 		goto bail;
1869 
1870 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1871 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1872 
1873 	zfs_set_fuid_feature(zfsvfs);
1874 	zfsvfs->z_rollback_time = jiffies;
1875 
1876 	/*
1877 	 * Attempt to re-establish all the active inodes with their
1878 	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
1879 	 * and mark it stale.  This prevents a collision if a new
1880 	 * inode/object is created which must use the same inode
1881 	 * number.  The stale inode will be be released when the
1882 	 * VFS prunes the dentry holding the remaining references
1883 	 * on the stale inode.
1884 	 */
1885 	mutex_enter(&zfsvfs->z_znodes_lock);
1886 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1887 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1888 		err2 = zfs_rezget(zp);
1889 		if (err2) {
1890 			zpl_d_drop_aliases(ZTOI(zp));
1891 			remove_inode_hash(ZTOI(zp));
1892 		}
1893 
1894 		/* see comment in zfs_suspend_fs() */
1895 		if (zp->z_suspended) {
1896 			zfs_zrele_async(zp);
1897 			zp->z_suspended = B_FALSE;
1898 		}
1899 	}
1900 	mutex_exit(&zfsvfs->z_znodes_lock);
1901 
1902 	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1903 		/*
1904 		 * zfs_suspend_fs() could have interrupted freeing
1905 		 * of dnodes. We need to restart this freeing so
1906 		 * that we don't "leak" the space.
1907 		 */
1908 		zfs_unlinked_drain(zfsvfs);
1909 	}
1910 
1911 	/*
1912 	 * Most of the time zfs_suspend_fs is used for changing the contents
1913 	 * of the underlying dataset. ZFS rollback and receive operations
1914 	 * might create files for which negative dentries are present in
1915 	 * the cache. Since walking the dcache would require a lot of GPL-only
1916 	 * code duplication, it's much easier on these rather rare occasions
1917 	 * just to flush the whole dcache for the given dataset/filesystem.
1918 	 */
1919 	shrink_dcache_sb(zfsvfs->z_sb);
1920 
1921 bail:
1922 	if (err != 0)
1923 		zfsvfs->z_unmounted = B_TRUE;
1924 
1925 	/* release the VFS ops */
1926 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1927 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1928 
1929 	if (err != 0) {
1930 		/*
1931 		 * Since we couldn't setup the sa framework, try to force
1932 		 * unmount this file system.
1933 		 */
1934 		if (zfsvfs->z_os)
1935 			(void) zfs_umount(zfsvfs->z_sb);
1936 	}
1937 	return (err);
1938 }
1939 
1940 /*
1941  * Release VOPs and unmount a suspended filesystem.
1942  */
1943 int
1944 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1945 {
1946 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1947 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1948 
1949 	/*
1950 	 * We already own this, so just hold and rele it to update the
1951 	 * objset_t, as the one we had before may have been evicted.
1952 	 */
1953 	objset_t *os;
1954 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1955 	VERIFY(dsl_dataset_long_held(ds));
1956 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1957 	dsl_pool_config_enter(dp, FTAG);
1958 	VERIFY0(dmu_objset_from_ds(ds, &os));
1959 	dsl_pool_config_exit(dp, FTAG);
1960 	zfsvfs->z_os = os;
1961 
1962 	/* release the VOPs */
1963 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1964 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1965 
1966 	/*
1967 	 * Try to force unmount this file system.
1968 	 */
1969 	(void) zfs_umount(zfsvfs->z_sb);
1970 	zfsvfs->z_unmounted = B_TRUE;
1971 	return (0);
1972 }
1973 
1974 /*
1975  * Automounted snapshots rely on periodic revalidation
1976  * to defer snapshots from being automatically unmounted.
1977  */
1978 
1979 inline void
1980 zfs_exit_fs(zfsvfs_t *zfsvfs)
1981 {
1982 	if (!zfsvfs->z_issnap)
1983 		return;
1984 
1985 	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1986 	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1987 		zfsvfs->z_snap_defer_time = jiffies;
1988 		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1989 		    dmu_objset_id(zfsvfs->z_os),
1990 		    zfs_expire_snapshot);
1991 	}
1992 }
1993 
1994 int
1995 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1996 {
1997 	int error;
1998 	objset_t *os = zfsvfs->z_os;
1999 	dmu_tx_t *tx;
2000 
2001 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2002 		return (SET_ERROR(EINVAL));
2003 
2004 	if (newvers < zfsvfs->z_version)
2005 		return (SET_ERROR(EINVAL));
2006 
2007 	if (zfs_spa_version_map(newvers) >
2008 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2009 		return (SET_ERROR(ENOTSUP));
2010 
2011 	tx = dmu_tx_create(os);
2012 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2013 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2014 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2015 		    ZFS_SA_ATTRS);
2016 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2017 	}
2018 	error = dmu_tx_assign(tx, TXG_WAIT);
2019 	if (error) {
2020 		dmu_tx_abort(tx);
2021 		return (error);
2022 	}
2023 
2024 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2025 	    8, 1, &newvers, tx);
2026 
2027 	if (error) {
2028 		dmu_tx_commit(tx);
2029 		return (error);
2030 	}
2031 
2032 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2033 		uint64_t sa_obj;
2034 
2035 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2036 		    SPA_VERSION_SA);
2037 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2038 		    DMU_OT_NONE, 0, tx);
2039 
2040 		error = zap_add(os, MASTER_NODE_OBJ,
2041 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2042 		ASSERT0(error);
2043 
2044 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2045 		sa_register_update_callback(os, zfs_sa_upgrade);
2046 	}
2047 
2048 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2049 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2050 
2051 	dmu_tx_commit(tx);
2052 
2053 	zfsvfs->z_version = newvers;
2054 	os->os_version = newvers;
2055 
2056 	zfs_set_fuid_feature(zfsvfs);
2057 
2058 	return (0);
2059 }
2060 
2061 /*
2062  * Return true if the corresponding vfs's unmounted flag is set.
2063  * Otherwise return false.
2064  * If this function returns true we know VFS unmount has been initiated.
2065  */
2066 boolean_t
2067 zfs_get_vfs_flag_unmounted(objset_t *os)
2068 {
2069 	zfsvfs_t *zfvp;
2070 	boolean_t unmounted = B_FALSE;
2071 
2072 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2073 
2074 	mutex_enter(&os->os_user_ptr_lock);
2075 	zfvp = dmu_objset_get_user(os);
2076 	if (zfvp != NULL && zfvp->z_unmounted)
2077 		unmounted = B_TRUE;
2078 	mutex_exit(&os->os_user_ptr_lock);
2079 
2080 	return (unmounted);
2081 }
2082 
2083 void
2084 zfsvfs_update_fromname(const char *oldname, const char *newname)
2085 {
2086 	/*
2087 	 * We don't need to do anything here, the devname is always current by
2088 	 * virtue of zfsvfs->z_sb->s_op->show_devname.
2089 	 */
2090 	(void) oldname, (void) newname;
2091 }
2092 
2093 void
2094 zfs_init(void)
2095 {
2096 	zfsctl_init();
2097 	zfs_znode_init();
2098 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2099 	register_filesystem(&zpl_fs_type);
2100 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
2101 	register_fo_extend(&zpl_file_operations);
2102 #endif
2103 }
2104 
2105 void
2106 zfs_fini(void)
2107 {
2108 	/*
2109 	 * we don't use outstanding because zpl_posix_acl_free might add more.
2110 	 */
2111 	taskq_wait(system_delay_taskq);
2112 	taskq_wait(system_taskq);
2113 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
2114 	unregister_fo_extend(&zpl_file_operations);
2115 #endif
2116 	unregister_filesystem(&zpl_fs_type);
2117 	zfs_znode_fini();
2118 	zfsctl_fini();
2119 }
2120 
2121 #if defined(_KERNEL)
2122 EXPORT_SYMBOL(zfs_suspend_fs);
2123 EXPORT_SYMBOL(zfs_resume_fs);
2124 EXPORT_SYMBOL(zfs_set_version);
2125 EXPORT_SYMBOL(zfsvfs_create);
2126 EXPORT_SYMBOL(zfsvfs_free);
2127 EXPORT_SYMBOL(zfs_is_readonly);
2128 EXPORT_SYMBOL(zfs_domount);
2129 EXPORT_SYMBOL(zfs_preumount);
2130 EXPORT_SYMBOL(zfs_umount);
2131 EXPORT_SYMBOL(zfs_remount);
2132 EXPORT_SYMBOL(zfs_statvfs);
2133 EXPORT_SYMBOL(zfs_vget);
2134 EXPORT_SYMBOL(zfs_prune);
2135 #endif
2136