1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 
73 /*
74  * Programming rules.
75  *
76  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
77  * properly lock its in-core state, create a DMU transaction, do the work,
78  * record this work in the intent log (ZIL), commit the DMU transaction,
79  * and wait for the intent log to commit if it is a synchronous operation.
80  * Moreover, the vnode ops must work in both normal and log replay context.
81  * The ordering of events is important to avoid deadlocks and references
82  * to freed memory.  The example below illustrates the following Big Rules:
83  *
84  *  (1) A check must be made in each zfs thread for a mounted file system.
85  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
86  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
87  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
88  *      can return EIO from the calling function.
89  *
90  *  (2) zrele() should always be the last thing except for zil_commit() (if
91  *	necessary) and ZFS_EXIT(). This is for 3 reasons: First, if it's the
92  *	last reference, the vnode/znode can be freed, so the zp may point to
93  *	freed memory.  Second, the last reference will call zfs_zinactive(),
94  *	which may induce a lot of work -- pushing cached pages (which acquires
95  *	range locks) and syncing out cached atime changes.  Third,
96  *	zfs_zinactive() may require a new tx, which could deadlock the system
97  *	if you were already holding one. This deadlock occurs because the tx
98  *	currently being operated on prevents a txg from syncing, which
99  *	prevents the new tx from progressing, resulting in a deadlock.  If you
100  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101  *	is a synonym for zrele().
102  *
103  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
104  *	as they can span dmu_tx_assign() calls.
105  *
106  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107  *      dmu_tx_assign().  This is critical because we don't want to block
108  *      while holding locks.
109  *
110  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
111  *	reduces lock contention and CPU usage when we must wait (note that if
112  *	throughput is constrained by the storage, nearly every transaction
113  *	must wait).
114  *
115  *      Note, in particular, that if a lock is sometimes acquired before
116  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
117  *      to use a non-blocking assign can deadlock the system.  The scenario:
118  *
119  *	Thread A has grabbed a lock before calling dmu_tx_assign().
120  *	Thread B is in an already-assigned tx, and blocks for this lock.
121  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122  *	forever, because the previous txg can't quiesce until B's tx commits.
123  *
124  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
126  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127  *	to indicate that this operation has already called dmu_tx_wait().
128  *	This will ensure that we don't retry forever, waiting a short bit
129  *	each time.
130  *
131  *  (5)	If the operation succeeded, generate the intent log entry for it
132  *	before dropping locks.  This ensures that the ordering of events
133  *	in the intent log matches the order in which they actually occurred.
134  *	During ZIL replay the zfs_log_* functions will update the sequence
135  *	number to indicate the zil transaction has replayed.
136  *
137  *  (6)	At the end of each vnode op, the DMU tx must always commit,
138  *	regardless of whether there were any errors.
139  *
140  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
141  *	to ensure that synchronous semantics are provided when necessary.
142  *
143  * In general, this is how things should be ordered in each vnode op:
144  *
145  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
146  * top:
147  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
148  *	rw_enter(...);			// grab any other locks you need
149  *	tx = dmu_tx_create(...);	// get DMU tx
150  *	dmu_tx_hold_*();		// hold each object you might modify
151  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152  *	if (error) {
153  *		rw_exit(...);		// drop locks
154  *		zfs_dirent_unlock(dl);	// unlock directory entry
155  *		zrele(...);		// release held znodes
156  *		if (error == ERESTART) {
157  *			waited = B_TRUE;
158  *			dmu_tx_wait(tx);
159  *			dmu_tx_abort(tx);
160  *			goto top;
161  *		}
162  *		dmu_tx_abort(tx);	// abort DMU tx
163  *		ZFS_EXIT(zfsvfs);	// finished in zfs
164  *		return (error);		// really out of space
165  *	}
166  *	error = do_real_work();		// do whatever this VOP does
167  *	if (error == 0)
168  *		zfs_log_*(...);		// on success, make ZIL entry
169  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
170  *	rw_exit(...);			// drop locks
171  *	zfs_dirent_unlock(dl);		// unlock directory entry
172  *	zrele(...);			// release held znodes
173  *	zil_commit(zilog, foid);	// synchronous when necessary
174  *	ZFS_EXIT(zfsvfs);		// finished in zfs
175  *	return (error);			// done, report error
176  */
177 
178 /* ARGSUSED */
179 int
180 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
181 {
182 	znode_t	*zp = ITOZ(ip);
183 	zfsvfs_t *zfsvfs = ITOZSB(ip);
184 
185 	ZFS_ENTER(zfsvfs);
186 	ZFS_VERIFY_ZP(zp);
187 
188 	/* Honor ZFS_APPENDONLY file attribute */
189 	if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 	    ((flag & O_APPEND) == 0)) {
191 		ZFS_EXIT(zfsvfs);
192 		return (SET_ERROR(EPERM));
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & O_SYNC)
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	ZFS_EXIT(zfsvfs);
200 	return (0);
201 }
202 
203 /* ARGSUSED */
204 int
205 zfs_close(struct inode *ip, int flag, cred_t *cr)
206 {
207 	znode_t	*zp = ITOZ(ip);
208 	zfsvfs_t *zfsvfs = ITOZSB(ip);
209 
210 	ZFS_ENTER(zfsvfs);
211 	ZFS_VERIFY_ZP(zp);
212 
213 	/* Decrement the synchronous opens in the znode */
214 	if (flag & O_SYNC)
215 		atomic_dec_32(&zp->z_sync_cnt);
216 
217 	ZFS_EXIT(zfsvfs);
218 	return (0);
219 }
220 
221 #if defined(_KERNEL)
222 /*
223  * When a file is memory mapped, we must keep the IO data synchronized
224  * between the DMU cache and the memory mapped pages.  What this means:
225  *
226  * On Write:	If we find a memory mapped page, we write to *both*
227  *		the page and the dmu buffer.
228  */
229 void
230 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
231 {
232 	struct inode *ip = ZTOI(zp);
233 	struct address_space *mp = ip->i_mapping;
234 	struct page *pp;
235 	uint64_t nbytes;
236 	int64_t	off;
237 	void *pb;
238 
239 	off = start & (PAGE_SIZE-1);
240 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
241 		nbytes = MIN(PAGE_SIZE - off, len);
242 
243 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
244 		if (pp) {
245 			if (mapping_writably_mapped(mp))
246 				flush_dcache_page(pp);
247 
248 			pb = kmap(pp);
249 			(void) dmu_read(os, zp->z_id, start + off, nbytes,
250 			    pb + off, DMU_READ_PREFETCH);
251 			kunmap(pp);
252 
253 			if (mapping_writably_mapped(mp))
254 				flush_dcache_page(pp);
255 
256 			mark_page_accessed(pp);
257 			SetPageUptodate(pp);
258 			ClearPageError(pp);
259 			unlock_page(pp);
260 			put_page(pp);
261 		}
262 
263 		len -= nbytes;
264 		off = 0;
265 	}
266 }
267 
268 /*
269  * When a file is memory mapped, we must keep the IO data synchronized
270  * between the DMU cache and the memory mapped pages.  What this means:
271  *
272  * On Read:	We "read" preferentially from memory mapped pages,
273  *		else we default from the dmu buffer.
274  *
275  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
276  *	 the file is memory mapped.
277  */
278 int
279 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
280 {
281 	struct inode *ip = ZTOI(zp);
282 	struct address_space *mp = ip->i_mapping;
283 	struct page *pp;
284 	int64_t	start, off;
285 	uint64_t bytes;
286 	int len = nbytes;
287 	int error = 0;
288 	void *pb;
289 
290 	start = uio->uio_loffset;
291 	off = start & (PAGE_SIZE-1);
292 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
293 		bytes = MIN(PAGE_SIZE - off, len);
294 
295 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
296 		if (pp) {
297 			ASSERT(PageUptodate(pp));
298 			unlock_page(pp);
299 
300 			pb = kmap(pp);
301 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
302 			kunmap(pp);
303 
304 			if (mapping_writably_mapped(mp))
305 				flush_dcache_page(pp);
306 
307 			mark_page_accessed(pp);
308 			put_page(pp);
309 		} else {
310 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
311 			    uio, bytes);
312 		}
313 
314 		len -= bytes;
315 		off = 0;
316 		if (error)
317 			break;
318 	}
319 	return (error);
320 }
321 #endif /* _KERNEL */
322 
323 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
324 
325 /*
326  * Write the bytes to a file.
327  *
328  *	IN:	zp	- znode of file to be written to
329  *		data	- bytes to write
330  *		len	- number of bytes to write
331  *		pos	- offset to start writing at
332  *
333  *	OUT:	resid	- remaining bytes to write
334  *
335  *	RETURN:	0 if success
336  *		positive error code if failure.  EIO is	returned
337  *		for a short write when residp isn't provided.
338  *
339  * Timestamps:
340  *	zp - ctime|mtime updated if byte count > 0
341  */
342 int
343 zfs_write_simple(znode_t *zp, const void *data, size_t len,
344     loff_t pos, size_t *residp)
345 {
346 	fstrans_cookie_t cookie;
347 	int error;
348 
349 	struct iovec iov;
350 	iov.iov_base = (void *)data;
351 	iov.iov_len = len;
352 
353 	zfs_uio_t uio;
354 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
355 
356 	cookie = spl_fstrans_mark();
357 	error = zfs_write(zp, &uio, 0, kcred);
358 	spl_fstrans_unmark(cookie);
359 
360 	if (error == 0) {
361 		if (residp != NULL)
362 			*residp = zfs_uio_resid(&uio);
363 		else if (zfs_uio_resid(&uio) != 0)
364 			error = SET_ERROR(EIO);
365 	}
366 
367 	return (error);
368 }
369 
370 static void
371 zfs_rele_async_task(void *arg)
372 {
373 	iput(arg);
374 }
375 
376 void
377 zfs_zrele_async(znode_t *zp)
378 {
379 	struct inode *ip = ZTOI(zp);
380 	objset_t *os = ITOZSB(ip)->z_os;
381 
382 	ASSERT(atomic_read(&ip->i_count) > 0);
383 	ASSERT(os != NULL);
384 
385 	/*
386 	 * If decrementing the count would put us at 0, we can't do it inline
387 	 * here, because that would be synchronous. Instead, dispatch an iput
388 	 * to run later.
389 	 *
390 	 * For more information on the dangers of a synchronous iput, see the
391 	 * header comment of this file.
392 	 */
393 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
394 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
395 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
396 	}
397 }
398 
399 
400 /*
401  * Lookup an entry in a directory, or an extended attribute directory.
402  * If it exists, return a held inode reference for it.
403  *
404  *	IN:	zdp	- znode of directory to search.
405  *		nm	- name of entry to lookup.
406  *		flags	- LOOKUP_XATTR set if looking for an attribute.
407  *		cr	- credentials of caller.
408  *		direntflags - directory lookup flags
409  *		realpnp - returned pathname.
410  *
411  *	OUT:	zpp	- znode of located entry, NULL if not found.
412  *
413  *	RETURN:	0 on success, error code on failure.
414  *
415  * Timestamps:
416  *	NA
417  */
418 /* ARGSUSED */
419 int
420 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
421     int *direntflags, pathname_t *realpnp)
422 {
423 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
424 	int error = 0;
425 
426 	/*
427 	 * Fast path lookup, however we must skip DNLC lookup
428 	 * for case folding or normalizing lookups because the
429 	 * DNLC code only stores the passed in name.  This means
430 	 * creating 'a' and removing 'A' on a case insensitive
431 	 * file system would work, but DNLC still thinks 'a'
432 	 * exists and won't let you create it again on the next
433 	 * pass through fast path.
434 	 */
435 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
436 
437 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
438 			return (SET_ERROR(ENOTDIR));
439 		} else if (zdp->z_sa_hdl == NULL) {
440 			return (SET_ERROR(EIO));
441 		}
442 
443 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
444 			error = zfs_fastaccesschk_execute(zdp, cr);
445 			if (!error) {
446 				*zpp = zdp;
447 				zhold(*zpp);
448 				return (0);
449 			}
450 			return (error);
451 		}
452 	}
453 
454 	ZFS_ENTER(zfsvfs);
455 	ZFS_VERIFY_ZP(zdp);
456 
457 	*zpp = NULL;
458 
459 	if (flags & LOOKUP_XATTR) {
460 		/*
461 		 * We don't allow recursive attributes..
462 		 * Maybe someday we will.
463 		 */
464 		if (zdp->z_pflags & ZFS_XATTR) {
465 			ZFS_EXIT(zfsvfs);
466 			return (SET_ERROR(EINVAL));
467 		}
468 
469 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
470 			ZFS_EXIT(zfsvfs);
471 			return (error);
472 		}
473 
474 		/*
475 		 * Do we have permission to get into attribute directory?
476 		 */
477 
478 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
479 		    B_FALSE, cr))) {
480 			zrele(*zpp);
481 			*zpp = NULL;
482 		}
483 
484 		ZFS_EXIT(zfsvfs);
485 		return (error);
486 	}
487 
488 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
489 		ZFS_EXIT(zfsvfs);
490 		return (SET_ERROR(ENOTDIR));
491 	}
492 
493 	/*
494 	 * Check accessibility of directory.
495 	 */
496 
497 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
498 		ZFS_EXIT(zfsvfs);
499 		return (error);
500 	}
501 
502 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
503 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
504 		ZFS_EXIT(zfsvfs);
505 		return (SET_ERROR(EILSEQ));
506 	}
507 
508 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
509 	if ((error == 0) && (*zpp))
510 		zfs_znode_update_vfs(*zpp);
511 
512 	ZFS_EXIT(zfsvfs);
513 	return (error);
514 }
515 
516 /*
517  * Attempt to create a new entry in a directory.  If the entry
518  * already exists, truncate the file if permissible, else return
519  * an error.  Return the ip of the created or trunc'd file.
520  *
521  *	IN:	dzp	- znode of directory to put new file entry in.
522  *		name	- name of new file entry.
523  *		vap	- attributes of new file.
524  *		excl	- flag indicating exclusive or non-exclusive mode.
525  *		mode	- mode to open file with.
526  *		cr	- credentials of caller.
527  *		flag	- file flag.
528  *		vsecp	- ACL to be set
529  *
530  *	OUT:	zpp	- znode of created or trunc'd entry.
531  *
532  *	RETURN:	0 on success, error code on failure.
533  *
534  * Timestamps:
535  *	dzp - ctime|mtime updated if new entry created
536  *	 zp - ctime|mtime always, atime if new
537  */
538 
539 /* ARGSUSED */
540 int
541 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
542     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp)
543 {
544 	znode_t		*zp;
545 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
546 	zilog_t		*zilog;
547 	objset_t	*os;
548 	zfs_dirlock_t	*dl;
549 	dmu_tx_t	*tx;
550 	int		error;
551 	uid_t		uid;
552 	gid_t		gid;
553 	zfs_acl_ids_t   acl_ids;
554 	boolean_t	fuid_dirtied;
555 	boolean_t	have_acl = B_FALSE;
556 	boolean_t	waited = B_FALSE;
557 
558 	/*
559 	 * If we have an ephemeral id, ACL, or XVATTR then
560 	 * make sure file system is at proper version
561 	 */
562 
563 	gid = crgetgid(cr);
564 	uid = crgetuid(cr);
565 
566 	if (zfsvfs->z_use_fuids == B_FALSE &&
567 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
568 		return (SET_ERROR(EINVAL));
569 
570 	if (name == NULL)
571 		return (SET_ERROR(EINVAL));
572 
573 	ZFS_ENTER(zfsvfs);
574 	ZFS_VERIFY_ZP(dzp);
575 	os = zfsvfs->z_os;
576 	zilog = zfsvfs->z_log;
577 
578 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
579 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
580 		ZFS_EXIT(zfsvfs);
581 		return (SET_ERROR(EILSEQ));
582 	}
583 
584 	if (vap->va_mask & ATTR_XVATTR) {
585 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
586 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
587 			ZFS_EXIT(zfsvfs);
588 			return (error);
589 		}
590 	}
591 
592 top:
593 	*zpp = NULL;
594 	if (*name == '\0') {
595 		/*
596 		 * Null component name refers to the directory itself.
597 		 */
598 		zhold(dzp);
599 		zp = dzp;
600 		dl = NULL;
601 		error = 0;
602 	} else {
603 		/* possible igrab(zp) */
604 		int zflg = 0;
605 
606 		if (flag & FIGNORECASE)
607 			zflg |= ZCILOOK;
608 
609 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
610 		    NULL, NULL);
611 		if (error) {
612 			if (have_acl)
613 				zfs_acl_ids_free(&acl_ids);
614 			if (strcmp(name, "..") == 0)
615 				error = SET_ERROR(EISDIR);
616 			ZFS_EXIT(zfsvfs);
617 			return (error);
618 		}
619 	}
620 
621 	if (zp == NULL) {
622 		uint64_t txtype;
623 		uint64_t projid = ZFS_DEFAULT_PROJID;
624 
625 		/*
626 		 * Create a new file object and update the directory
627 		 * to reference it.
628 		 */
629 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
630 			if (have_acl)
631 				zfs_acl_ids_free(&acl_ids);
632 			goto out;
633 		}
634 
635 		/*
636 		 * We only support the creation of regular files in
637 		 * extended attribute directories.
638 		 */
639 
640 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
641 			if (have_acl)
642 				zfs_acl_ids_free(&acl_ids);
643 			error = SET_ERROR(EINVAL);
644 			goto out;
645 		}
646 
647 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
648 		    cr, vsecp, &acl_ids)) != 0)
649 			goto out;
650 		have_acl = B_TRUE;
651 
652 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
653 			projid = zfs_inherit_projid(dzp);
654 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
655 			zfs_acl_ids_free(&acl_ids);
656 			error = SET_ERROR(EDQUOT);
657 			goto out;
658 		}
659 
660 		tx = dmu_tx_create(os);
661 
662 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
663 		    ZFS_SA_BASE_ATTR_SIZE);
664 
665 		fuid_dirtied = zfsvfs->z_fuid_dirty;
666 		if (fuid_dirtied)
667 			zfs_fuid_txhold(zfsvfs, tx);
668 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
669 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
670 		if (!zfsvfs->z_use_sa &&
671 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
672 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
673 			    0, acl_ids.z_aclp->z_acl_bytes);
674 		}
675 
676 		error = dmu_tx_assign(tx,
677 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
678 		if (error) {
679 			zfs_dirent_unlock(dl);
680 			if (error == ERESTART) {
681 				waited = B_TRUE;
682 				dmu_tx_wait(tx);
683 				dmu_tx_abort(tx);
684 				goto top;
685 			}
686 			zfs_acl_ids_free(&acl_ids);
687 			dmu_tx_abort(tx);
688 			ZFS_EXIT(zfsvfs);
689 			return (error);
690 		}
691 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
692 
693 		error = zfs_link_create(dl, zp, tx, ZNEW);
694 		if (error != 0) {
695 			/*
696 			 * Since, we failed to add the directory entry for it,
697 			 * delete the newly created dnode.
698 			 */
699 			zfs_znode_delete(zp, tx);
700 			remove_inode_hash(ZTOI(zp));
701 			zfs_acl_ids_free(&acl_ids);
702 			dmu_tx_commit(tx);
703 			goto out;
704 		}
705 
706 		if (fuid_dirtied)
707 			zfs_fuid_sync(zfsvfs, tx);
708 
709 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
710 		if (flag & FIGNORECASE)
711 			txtype |= TX_CI;
712 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
713 		    vsecp, acl_ids.z_fuidp, vap);
714 		zfs_acl_ids_free(&acl_ids);
715 		dmu_tx_commit(tx);
716 	} else {
717 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
718 
719 		if (have_acl)
720 			zfs_acl_ids_free(&acl_ids);
721 		have_acl = B_FALSE;
722 
723 		/*
724 		 * A directory entry already exists for this name.
725 		 */
726 		/*
727 		 * Can't truncate an existing file if in exclusive mode.
728 		 */
729 		if (excl) {
730 			error = SET_ERROR(EEXIST);
731 			goto out;
732 		}
733 		/*
734 		 * Can't open a directory for writing.
735 		 */
736 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
737 			error = SET_ERROR(EISDIR);
738 			goto out;
739 		}
740 		/*
741 		 * Verify requested access to file.
742 		 */
743 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
744 			goto out;
745 		}
746 
747 		mutex_enter(&dzp->z_lock);
748 		dzp->z_seq++;
749 		mutex_exit(&dzp->z_lock);
750 
751 		/*
752 		 * Truncate regular files if requested.
753 		 */
754 		if (S_ISREG(ZTOI(zp)->i_mode) &&
755 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
756 			/* we can't hold any locks when calling zfs_freesp() */
757 			if (dl) {
758 				zfs_dirent_unlock(dl);
759 				dl = NULL;
760 			}
761 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
762 		}
763 	}
764 out:
765 
766 	if (dl)
767 		zfs_dirent_unlock(dl);
768 
769 	if (error) {
770 		if (zp)
771 			zrele(zp);
772 	} else {
773 		zfs_znode_update_vfs(dzp);
774 		zfs_znode_update_vfs(zp);
775 		*zpp = zp;
776 	}
777 
778 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
779 		zil_commit(zilog, 0);
780 
781 	ZFS_EXIT(zfsvfs);
782 	return (error);
783 }
784 
785 /* ARGSUSED */
786 int
787 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
788     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
789 {
790 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
791 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
792 	objset_t	*os;
793 	dmu_tx_t	*tx;
794 	int		error;
795 	uid_t		uid;
796 	gid_t		gid;
797 	zfs_acl_ids_t   acl_ids;
798 	uint64_t	projid = ZFS_DEFAULT_PROJID;
799 	boolean_t	fuid_dirtied;
800 	boolean_t	have_acl = B_FALSE;
801 	boolean_t	waited = B_FALSE;
802 
803 	/*
804 	 * If we have an ephemeral id, ACL, or XVATTR then
805 	 * make sure file system is at proper version
806 	 */
807 
808 	gid = crgetgid(cr);
809 	uid = crgetuid(cr);
810 
811 	if (zfsvfs->z_use_fuids == B_FALSE &&
812 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
813 		return (SET_ERROR(EINVAL));
814 
815 	ZFS_ENTER(zfsvfs);
816 	ZFS_VERIFY_ZP(dzp);
817 	os = zfsvfs->z_os;
818 
819 	if (vap->va_mask & ATTR_XVATTR) {
820 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
821 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
822 			ZFS_EXIT(zfsvfs);
823 			return (error);
824 		}
825 	}
826 
827 top:
828 	*ipp = NULL;
829 
830 	/*
831 	 * Create a new file object and update the directory
832 	 * to reference it.
833 	 */
834 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
835 		if (have_acl)
836 			zfs_acl_ids_free(&acl_ids);
837 		goto out;
838 	}
839 
840 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
841 	    cr, vsecp, &acl_ids)) != 0)
842 		goto out;
843 	have_acl = B_TRUE;
844 
845 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
846 		projid = zfs_inherit_projid(dzp);
847 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
848 		zfs_acl_ids_free(&acl_ids);
849 		error = SET_ERROR(EDQUOT);
850 		goto out;
851 	}
852 
853 	tx = dmu_tx_create(os);
854 
855 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
856 	    ZFS_SA_BASE_ATTR_SIZE);
857 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
858 
859 	fuid_dirtied = zfsvfs->z_fuid_dirty;
860 	if (fuid_dirtied)
861 		zfs_fuid_txhold(zfsvfs, tx);
862 	if (!zfsvfs->z_use_sa &&
863 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
864 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
865 		    0, acl_ids.z_aclp->z_acl_bytes);
866 	}
867 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
868 	if (error) {
869 		if (error == ERESTART) {
870 			waited = B_TRUE;
871 			dmu_tx_wait(tx);
872 			dmu_tx_abort(tx);
873 			goto top;
874 		}
875 		zfs_acl_ids_free(&acl_ids);
876 		dmu_tx_abort(tx);
877 		ZFS_EXIT(zfsvfs);
878 		return (error);
879 	}
880 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
881 
882 	if (fuid_dirtied)
883 		zfs_fuid_sync(zfsvfs, tx);
884 
885 	/* Add to unlinked set */
886 	zp->z_unlinked = B_TRUE;
887 	zfs_unlinked_add(zp, tx);
888 	zfs_acl_ids_free(&acl_ids);
889 	dmu_tx_commit(tx);
890 out:
891 
892 	if (error) {
893 		if (zp)
894 			zrele(zp);
895 	} else {
896 		zfs_znode_update_vfs(dzp);
897 		zfs_znode_update_vfs(zp);
898 		*ipp = ZTOI(zp);
899 	}
900 
901 	ZFS_EXIT(zfsvfs);
902 	return (error);
903 }
904 
905 /*
906  * Remove an entry from a directory.
907  *
908  *	IN:	dzp	- znode of directory to remove entry from.
909  *		name	- name of entry to remove.
910  *		cr	- credentials of caller.
911  *		flags	- case flags.
912  *
913  *	RETURN:	0 if success
914  *		error code if failure
915  *
916  * Timestamps:
917  *	dzp - ctime|mtime
918  *	 ip - ctime (if nlink > 0)
919  */
920 
921 uint64_t null_xattr = 0;
922 
923 /*ARGSUSED*/
924 int
925 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
926 {
927 	znode_t		*zp;
928 	znode_t		*xzp;
929 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
930 	zilog_t		*zilog;
931 	uint64_t	acl_obj, xattr_obj;
932 	uint64_t	xattr_obj_unlinked = 0;
933 	uint64_t	obj = 0;
934 	uint64_t	links;
935 	zfs_dirlock_t	*dl;
936 	dmu_tx_t	*tx;
937 	boolean_t	may_delete_now, delete_now = FALSE;
938 	boolean_t	unlinked, toobig = FALSE;
939 	uint64_t	txtype;
940 	pathname_t	*realnmp = NULL;
941 	pathname_t	realnm;
942 	int		error;
943 	int		zflg = ZEXISTS;
944 	boolean_t	waited = B_FALSE;
945 
946 	if (name == NULL)
947 		return (SET_ERROR(EINVAL));
948 
949 	ZFS_ENTER(zfsvfs);
950 	ZFS_VERIFY_ZP(dzp);
951 	zilog = zfsvfs->z_log;
952 
953 	if (flags & FIGNORECASE) {
954 		zflg |= ZCILOOK;
955 		pn_alloc(&realnm);
956 		realnmp = &realnm;
957 	}
958 
959 top:
960 	xattr_obj = 0;
961 	xzp = NULL;
962 	/*
963 	 * Attempt to lock directory; fail if entry doesn't exist.
964 	 */
965 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
966 	    NULL, realnmp))) {
967 		if (realnmp)
968 			pn_free(realnmp);
969 		ZFS_EXIT(zfsvfs);
970 		return (error);
971 	}
972 
973 	if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
974 		goto out;
975 	}
976 
977 	/*
978 	 * Need to use rmdir for removing directories.
979 	 */
980 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
981 		error = SET_ERROR(EPERM);
982 		goto out;
983 	}
984 
985 	mutex_enter(&zp->z_lock);
986 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
987 	    !(zp->z_is_mapped);
988 	mutex_exit(&zp->z_lock);
989 
990 	/*
991 	 * We may delete the znode now, or we may put it in the unlinked set;
992 	 * it depends on whether we're the last link, and on whether there are
993 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
994 	 * allow for either case.
995 	 */
996 	obj = zp->z_id;
997 	tx = dmu_tx_create(zfsvfs->z_os);
998 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
999 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1000 	zfs_sa_upgrade_txholds(tx, zp);
1001 	zfs_sa_upgrade_txholds(tx, dzp);
1002 	if (may_delete_now) {
1003 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1004 		/* if the file is too big, only hold_free a token amount */
1005 		dmu_tx_hold_free(tx, zp->z_id, 0,
1006 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1007 	}
1008 
1009 	/* are there any extended attributes? */
1010 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1011 	    &xattr_obj, sizeof (xattr_obj));
1012 	if (error == 0 && xattr_obj) {
1013 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1014 		ASSERT0(error);
1015 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1016 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1017 	}
1018 
1019 	mutex_enter(&zp->z_lock);
1020 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1021 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1022 	mutex_exit(&zp->z_lock);
1023 
1024 	/* charge as an update -- would be nice not to charge at all */
1025 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1026 
1027 	/*
1028 	 * Mark this transaction as typically resulting in a net free of space
1029 	 */
1030 	dmu_tx_mark_netfree(tx);
1031 
1032 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1033 	if (error) {
1034 		zfs_dirent_unlock(dl);
1035 		if (error == ERESTART) {
1036 			waited = B_TRUE;
1037 			dmu_tx_wait(tx);
1038 			dmu_tx_abort(tx);
1039 			zrele(zp);
1040 			if (xzp)
1041 				zrele(xzp);
1042 			goto top;
1043 		}
1044 		if (realnmp)
1045 			pn_free(realnmp);
1046 		dmu_tx_abort(tx);
1047 		zrele(zp);
1048 		if (xzp)
1049 			zrele(xzp);
1050 		ZFS_EXIT(zfsvfs);
1051 		return (error);
1052 	}
1053 
1054 	/*
1055 	 * Remove the directory entry.
1056 	 */
1057 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1058 
1059 	if (error) {
1060 		dmu_tx_commit(tx);
1061 		goto out;
1062 	}
1063 
1064 	if (unlinked) {
1065 		/*
1066 		 * Hold z_lock so that we can make sure that the ACL obj
1067 		 * hasn't changed.  Could have been deleted due to
1068 		 * zfs_sa_upgrade().
1069 		 */
1070 		mutex_enter(&zp->z_lock);
1071 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1072 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1073 		delete_now = may_delete_now && !toobig &&
1074 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1075 		    !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
1076 		    zfs_external_acl(zp) == acl_obj;
1077 	}
1078 
1079 	if (delete_now) {
1080 		if (xattr_obj_unlinked) {
1081 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1082 			mutex_enter(&xzp->z_lock);
1083 			xzp->z_unlinked = B_TRUE;
1084 			clear_nlink(ZTOI(xzp));
1085 			links = 0;
1086 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1087 			    &links, sizeof (links), tx);
1088 			ASSERT3U(error,  ==,  0);
1089 			mutex_exit(&xzp->z_lock);
1090 			zfs_unlinked_add(xzp, tx);
1091 
1092 			if (zp->z_is_sa)
1093 				error = sa_remove(zp->z_sa_hdl,
1094 				    SA_ZPL_XATTR(zfsvfs), tx);
1095 			else
1096 				error = sa_update(zp->z_sa_hdl,
1097 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1098 				    sizeof (uint64_t), tx);
1099 			ASSERT0(error);
1100 		}
1101 		/*
1102 		 * Add to the unlinked set because a new reference could be
1103 		 * taken concurrently resulting in a deferred destruction.
1104 		 */
1105 		zfs_unlinked_add(zp, tx);
1106 		mutex_exit(&zp->z_lock);
1107 	} else if (unlinked) {
1108 		mutex_exit(&zp->z_lock);
1109 		zfs_unlinked_add(zp, tx);
1110 	}
1111 
1112 	txtype = TX_REMOVE;
1113 	if (flags & FIGNORECASE)
1114 		txtype |= TX_CI;
1115 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1116 
1117 	dmu_tx_commit(tx);
1118 out:
1119 	if (realnmp)
1120 		pn_free(realnmp);
1121 
1122 	zfs_dirent_unlock(dl);
1123 	zfs_znode_update_vfs(dzp);
1124 	zfs_znode_update_vfs(zp);
1125 
1126 	if (delete_now)
1127 		zrele(zp);
1128 	else
1129 		zfs_zrele_async(zp);
1130 
1131 	if (xzp) {
1132 		zfs_znode_update_vfs(xzp);
1133 		zfs_zrele_async(xzp);
1134 	}
1135 
1136 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1137 		zil_commit(zilog, 0);
1138 
1139 	ZFS_EXIT(zfsvfs);
1140 	return (error);
1141 }
1142 
1143 /*
1144  * Create a new directory and insert it into dzp using the name
1145  * provided.  Return a pointer to the inserted directory.
1146  *
1147  *	IN:	dzp	- znode of directory to add subdir to.
1148  *		dirname	- name of new directory.
1149  *		vap	- attributes of new directory.
1150  *		cr	- credentials of caller.
1151  *		flags	- case flags.
1152  *		vsecp	- ACL to be set
1153  *
1154  *	OUT:	zpp	- znode of created directory.
1155  *
1156  *	RETURN:	0 if success
1157  *		error code if failure
1158  *
1159  * Timestamps:
1160  *	dzp - ctime|mtime updated
1161  *	zpp - ctime|mtime|atime updated
1162  */
1163 /*ARGSUSED*/
1164 int
1165 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1166     cred_t *cr, int flags, vsecattr_t *vsecp)
1167 {
1168 	znode_t		*zp;
1169 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1170 	zilog_t		*zilog;
1171 	zfs_dirlock_t	*dl;
1172 	uint64_t	txtype;
1173 	dmu_tx_t	*tx;
1174 	int		error;
1175 	int		zf = ZNEW;
1176 	uid_t		uid;
1177 	gid_t		gid = crgetgid(cr);
1178 	zfs_acl_ids_t   acl_ids;
1179 	boolean_t	fuid_dirtied;
1180 	boolean_t	waited = B_FALSE;
1181 
1182 	ASSERT(S_ISDIR(vap->va_mode));
1183 
1184 	/*
1185 	 * If we have an ephemeral id, ACL, or XVATTR then
1186 	 * make sure file system is at proper version
1187 	 */
1188 
1189 	uid = crgetuid(cr);
1190 	if (zfsvfs->z_use_fuids == B_FALSE &&
1191 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1192 		return (SET_ERROR(EINVAL));
1193 
1194 	if (dirname == NULL)
1195 		return (SET_ERROR(EINVAL));
1196 
1197 	ZFS_ENTER(zfsvfs);
1198 	ZFS_VERIFY_ZP(dzp);
1199 	zilog = zfsvfs->z_log;
1200 
1201 	if (dzp->z_pflags & ZFS_XATTR) {
1202 		ZFS_EXIT(zfsvfs);
1203 		return (SET_ERROR(EINVAL));
1204 	}
1205 
1206 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1207 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1208 		ZFS_EXIT(zfsvfs);
1209 		return (SET_ERROR(EILSEQ));
1210 	}
1211 	if (flags & FIGNORECASE)
1212 		zf |= ZCILOOK;
1213 
1214 	if (vap->va_mask & ATTR_XVATTR) {
1215 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1216 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1217 			ZFS_EXIT(zfsvfs);
1218 			return (error);
1219 		}
1220 	}
1221 
1222 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1223 	    vsecp, &acl_ids)) != 0) {
1224 		ZFS_EXIT(zfsvfs);
1225 		return (error);
1226 	}
1227 	/*
1228 	 * First make sure the new directory doesn't exist.
1229 	 *
1230 	 * Existence is checked first to make sure we don't return
1231 	 * EACCES instead of EEXIST which can cause some applications
1232 	 * to fail.
1233 	 */
1234 top:
1235 	*zpp = NULL;
1236 
1237 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1238 	    NULL, NULL))) {
1239 		zfs_acl_ids_free(&acl_ids);
1240 		ZFS_EXIT(zfsvfs);
1241 		return (error);
1242 	}
1243 
1244 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1245 		zfs_acl_ids_free(&acl_ids);
1246 		zfs_dirent_unlock(dl);
1247 		ZFS_EXIT(zfsvfs);
1248 		return (error);
1249 	}
1250 
1251 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1252 		zfs_acl_ids_free(&acl_ids);
1253 		zfs_dirent_unlock(dl);
1254 		ZFS_EXIT(zfsvfs);
1255 		return (SET_ERROR(EDQUOT));
1256 	}
1257 
1258 	/*
1259 	 * Add a new entry to the directory.
1260 	 */
1261 	tx = dmu_tx_create(zfsvfs->z_os);
1262 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1263 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1264 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1265 	if (fuid_dirtied)
1266 		zfs_fuid_txhold(zfsvfs, tx);
1267 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1268 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1269 		    acl_ids.z_aclp->z_acl_bytes);
1270 	}
1271 
1272 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1273 	    ZFS_SA_BASE_ATTR_SIZE);
1274 
1275 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1276 	if (error) {
1277 		zfs_dirent_unlock(dl);
1278 		if (error == ERESTART) {
1279 			waited = B_TRUE;
1280 			dmu_tx_wait(tx);
1281 			dmu_tx_abort(tx);
1282 			goto top;
1283 		}
1284 		zfs_acl_ids_free(&acl_ids);
1285 		dmu_tx_abort(tx);
1286 		ZFS_EXIT(zfsvfs);
1287 		return (error);
1288 	}
1289 
1290 	/*
1291 	 * Create new node.
1292 	 */
1293 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1294 
1295 	/*
1296 	 * Now put new name in parent dir.
1297 	 */
1298 	error = zfs_link_create(dl, zp, tx, ZNEW);
1299 	if (error != 0) {
1300 		zfs_znode_delete(zp, tx);
1301 		remove_inode_hash(ZTOI(zp));
1302 		goto out;
1303 	}
1304 
1305 	if (fuid_dirtied)
1306 		zfs_fuid_sync(zfsvfs, tx);
1307 
1308 	*zpp = zp;
1309 
1310 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1311 	if (flags & FIGNORECASE)
1312 		txtype |= TX_CI;
1313 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1314 	    acl_ids.z_fuidp, vap);
1315 
1316 out:
1317 	zfs_acl_ids_free(&acl_ids);
1318 
1319 	dmu_tx_commit(tx);
1320 
1321 	zfs_dirent_unlock(dl);
1322 
1323 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1324 		zil_commit(zilog, 0);
1325 
1326 	if (error != 0) {
1327 		zrele(zp);
1328 	} else {
1329 		zfs_znode_update_vfs(dzp);
1330 		zfs_znode_update_vfs(zp);
1331 	}
1332 	ZFS_EXIT(zfsvfs);
1333 	return (error);
1334 }
1335 
1336 /*
1337  * Remove a directory subdir entry.  If the current working
1338  * directory is the same as the subdir to be removed, the
1339  * remove will fail.
1340  *
1341  *	IN:	dzp	- znode of directory to remove from.
1342  *		name	- name of directory to be removed.
1343  *		cwd	- inode of current working directory.
1344  *		cr	- credentials of caller.
1345  *		flags	- case flags
1346  *
1347  *	RETURN:	0 on success, error code on failure.
1348  *
1349  * Timestamps:
1350  *	dzp - ctime|mtime updated
1351  */
1352 /*ARGSUSED*/
1353 int
1354 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1355     int flags)
1356 {
1357 	znode_t		*zp;
1358 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1359 	zilog_t		*zilog;
1360 	zfs_dirlock_t	*dl;
1361 	dmu_tx_t	*tx;
1362 	int		error;
1363 	int		zflg = ZEXISTS;
1364 	boolean_t	waited = B_FALSE;
1365 
1366 	if (name == NULL)
1367 		return (SET_ERROR(EINVAL));
1368 
1369 	ZFS_ENTER(zfsvfs);
1370 	ZFS_VERIFY_ZP(dzp);
1371 	zilog = zfsvfs->z_log;
1372 
1373 	if (flags & FIGNORECASE)
1374 		zflg |= ZCILOOK;
1375 top:
1376 	zp = NULL;
1377 
1378 	/*
1379 	 * Attempt to lock directory; fail if entry doesn't exist.
1380 	 */
1381 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1382 	    NULL, NULL))) {
1383 		ZFS_EXIT(zfsvfs);
1384 		return (error);
1385 	}
1386 
1387 	if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1388 		goto out;
1389 	}
1390 
1391 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1392 		error = SET_ERROR(ENOTDIR);
1393 		goto out;
1394 	}
1395 
1396 	if (zp == cwd) {
1397 		error = SET_ERROR(EINVAL);
1398 		goto out;
1399 	}
1400 
1401 	/*
1402 	 * Grab a lock on the directory to make sure that no one is
1403 	 * trying to add (or lookup) entries while we are removing it.
1404 	 */
1405 	rw_enter(&zp->z_name_lock, RW_WRITER);
1406 
1407 	/*
1408 	 * Grab a lock on the parent pointer to make sure we play well
1409 	 * with the treewalk and directory rename code.
1410 	 */
1411 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1412 
1413 	tx = dmu_tx_create(zfsvfs->z_os);
1414 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1415 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1416 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1417 	zfs_sa_upgrade_txholds(tx, zp);
1418 	zfs_sa_upgrade_txholds(tx, dzp);
1419 	dmu_tx_mark_netfree(tx);
1420 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1421 	if (error) {
1422 		rw_exit(&zp->z_parent_lock);
1423 		rw_exit(&zp->z_name_lock);
1424 		zfs_dirent_unlock(dl);
1425 		if (error == ERESTART) {
1426 			waited = B_TRUE;
1427 			dmu_tx_wait(tx);
1428 			dmu_tx_abort(tx);
1429 			zrele(zp);
1430 			goto top;
1431 		}
1432 		dmu_tx_abort(tx);
1433 		zrele(zp);
1434 		ZFS_EXIT(zfsvfs);
1435 		return (error);
1436 	}
1437 
1438 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1439 
1440 	if (error == 0) {
1441 		uint64_t txtype = TX_RMDIR;
1442 		if (flags & FIGNORECASE)
1443 			txtype |= TX_CI;
1444 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1445 		    B_FALSE);
1446 	}
1447 
1448 	dmu_tx_commit(tx);
1449 
1450 	rw_exit(&zp->z_parent_lock);
1451 	rw_exit(&zp->z_name_lock);
1452 out:
1453 	zfs_dirent_unlock(dl);
1454 
1455 	zfs_znode_update_vfs(dzp);
1456 	zfs_znode_update_vfs(zp);
1457 	zrele(zp);
1458 
1459 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1460 		zil_commit(zilog, 0);
1461 
1462 	ZFS_EXIT(zfsvfs);
1463 	return (error);
1464 }
1465 
1466 /*
1467  * Read directory entries from the given directory cursor position and emit
1468  * name and position for each entry.
1469  *
1470  *	IN:	ip	- inode of directory to read.
1471  *		ctx	- directory entry context.
1472  *		cr	- credentials of caller.
1473  *
1474  *	RETURN:	0 if success
1475  *		error code if failure
1476  *
1477  * Timestamps:
1478  *	ip - atime updated
1479  *
1480  * Note that the low 4 bits of the cookie returned by zap is always zero.
1481  * This allows us to use the low range for "special" directory entries:
1482  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1483  * we use the offset 2 for the '.zfs' directory.
1484  */
1485 /* ARGSUSED */
1486 int
1487 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1488 {
1489 	znode_t		*zp = ITOZ(ip);
1490 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1491 	objset_t	*os;
1492 	zap_cursor_t	zc;
1493 	zap_attribute_t	zap;
1494 	int		error;
1495 	uint8_t		prefetch;
1496 	uint8_t		type;
1497 	int		done = 0;
1498 	uint64_t	parent;
1499 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1500 
1501 	ZFS_ENTER(zfsvfs);
1502 	ZFS_VERIFY_ZP(zp);
1503 
1504 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1505 	    &parent, sizeof (parent))) != 0)
1506 		goto out;
1507 
1508 	/*
1509 	 * Quit if directory has been removed (posix)
1510 	 */
1511 	if (zp->z_unlinked)
1512 		goto out;
1513 
1514 	error = 0;
1515 	os = zfsvfs->z_os;
1516 	offset = ctx->pos;
1517 	prefetch = zp->z_zn_prefetch;
1518 
1519 	/*
1520 	 * Initialize the iterator cursor.
1521 	 */
1522 	if (offset <= 3) {
1523 		/*
1524 		 * Start iteration from the beginning of the directory.
1525 		 */
1526 		zap_cursor_init(&zc, os, zp->z_id);
1527 	} else {
1528 		/*
1529 		 * The offset is a serialized cursor.
1530 		 */
1531 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1532 	}
1533 
1534 	/*
1535 	 * Transform to file-system independent format
1536 	 */
1537 	while (!done) {
1538 		uint64_t objnum;
1539 		/*
1540 		 * Special case `.', `..', and `.zfs'.
1541 		 */
1542 		if (offset == 0) {
1543 			(void) strcpy(zap.za_name, ".");
1544 			zap.za_normalization_conflict = 0;
1545 			objnum = zp->z_id;
1546 			type = DT_DIR;
1547 		} else if (offset == 1) {
1548 			(void) strcpy(zap.za_name, "..");
1549 			zap.za_normalization_conflict = 0;
1550 			objnum = parent;
1551 			type = DT_DIR;
1552 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1553 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1554 			zap.za_normalization_conflict = 0;
1555 			objnum = ZFSCTL_INO_ROOT;
1556 			type = DT_DIR;
1557 		} else {
1558 			/*
1559 			 * Grab next entry.
1560 			 */
1561 			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1562 				if (error == ENOENT)
1563 					break;
1564 				else
1565 					goto update;
1566 			}
1567 
1568 			/*
1569 			 * Allow multiple entries provided the first entry is
1570 			 * the object id.  Non-zpl consumers may safely make
1571 			 * use of the additional space.
1572 			 *
1573 			 * XXX: This should be a feature flag for compatibility
1574 			 */
1575 			if (zap.za_integer_length != 8 ||
1576 			    zap.za_num_integers == 0) {
1577 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1578 				    "entry, obj = %lld, offset = %lld, "
1579 				    "length = %d, num = %lld\n",
1580 				    (u_longlong_t)zp->z_id,
1581 				    (u_longlong_t)offset,
1582 				    zap.za_integer_length,
1583 				    (u_longlong_t)zap.za_num_integers);
1584 				error = SET_ERROR(ENXIO);
1585 				goto update;
1586 			}
1587 
1588 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1589 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1590 		}
1591 
1592 		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1593 		    objnum, type);
1594 		if (done)
1595 			break;
1596 
1597 		/* Prefetch znode */
1598 		if (prefetch) {
1599 			dmu_prefetch(os, objnum, 0, 0, 0,
1600 			    ZIO_PRIORITY_SYNC_READ);
1601 		}
1602 
1603 		/*
1604 		 * Move to the next entry, fill in the previous offset.
1605 		 */
1606 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1607 			zap_cursor_advance(&zc);
1608 			offset = zap_cursor_serialize(&zc);
1609 		} else {
1610 			offset += 1;
1611 		}
1612 		ctx->pos = offset;
1613 	}
1614 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1615 
1616 update:
1617 	zap_cursor_fini(&zc);
1618 	if (error == ENOENT)
1619 		error = 0;
1620 out:
1621 	ZFS_EXIT(zfsvfs);
1622 
1623 	return (error);
1624 }
1625 
1626 /*
1627  * Get the basic file attributes and place them in the provided kstat
1628  * structure.  The inode is assumed to be the authoritative source
1629  * for most of the attributes.  However, the znode currently has the
1630  * authoritative atime, blksize, and block count.
1631  *
1632  *	IN:	ip	- inode of file.
1633  *
1634  *	OUT:	sp	- kstat values.
1635  *
1636  *	RETURN:	0 (always succeeds)
1637  */
1638 /* ARGSUSED */
1639 int
1640 zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
1641     struct kstat *sp)
1642 {
1643 	znode_t *zp = ITOZ(ip);
1644 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1645 	uint32_t blksize;
1646 	u_longlong_t nblocks;
1647 
1648 	ZFS_ENTER(zfsvfs);
1649 	ZFS_VERIFY_ZP(zp);
1650 
1651 	mutex_enter(&zp->z_lock);
1652 
1653 	zpl_generic_fillattr(user_ns, ip, sp);
1654 	/*
1655 	 * +1 link count for root inode with visible '.zfs' directory.
1656 	 */
1657 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1658 		if (sp->nlink < ZFS_LINK_MAX)
1659 			sp->nlink++;
1660 
1661 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1662 	sp->blksize = blksize;
1663 	sp->blocks = nblocks;
1664 
1665 	if (unlikely(zp->z_blksz == 0)) {
1666 		/*
1667 		 * Block size hasn't been set; suggest maximal I/O transfers.
1668 		 */
1669 		sp->blksize = zfsvfs->z_max_blksz;
1670 	}
1671 
1672 	mutex_exit(&zp->z_lock);
1673 
1674 	/*
1675 	 * Required to prevent NFS client from detecting different inode
1676 	 * numbers of snapshot root dentry before and after snapshot mount.
1677 	 */
1678 	if (zfsvfs->z_issnap) {
1679 		if (ip->i_sb->s_root->d_inode == ip)
1680 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1681 			    dmu_objset_id(zfsvfs->z_os);
1682 	}
1683 
1684 	ZFS_EXIT(zfsvfs);
1685 
1686 	return (0);
1687 }
1688 
1689 /*
1690  * For the operation of changing file's user/group/project, we need to
1691  * handle not only the main object that is assigned to the file directly,
1692  * but also the ones that are used by the file via hidden xattr directory.
1693  *
1694  * Because the xattr directory may contains many EA entries, as to it may
1695  * be impossible to change all of them via the transaction of changing the
1696  * main object's user/group/project attributes. Then we have to change them
1697  * via other multiple independent transactions one by one. It may be not good
1698  * solution, but we have no better idea yet.
1699  */
1700 static int
1701 zfs_setattr_dir(znode_t *dzp)
1702 {
1703 	struct inode	*dxip = ZTOI(dzp);
1704 	struct inode	*xip = NULL;
1705 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1706 	objset_t	*os = zfsvfs->z_os;
1707 	zap_cursor_t	zc;
1708 	zap_attribute_t	zap;
1709 	zfs_dirlock_t	*dl;
1710 	znode_t		*zp = NULL;
1711 	dmu_tx_t	*tx = NULL;
1712 	uint64_t	uid, gid;
1713 	sa_bulk_attr_t	bulk[4];
1714 	int		count;
1715 	int		err;
1716 
1717 	zap_cursor_init(&zc, os, dzp->z_id);
1718 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1719 		count = 0;
1720 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1721 			err = ENXIO;
1722 			break;
1723 		}
1724 
1725 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1726 		    ZEXISTS, NULL, NULL);
1727 		if (err == ENOENT)
1728 			goto next;
1729 		if (err)
1730 			break;
1731 
1732 		xip = ZTOI(zp);
1733 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1734 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1735 		    zp->z_projid == dzp->z_projid)
1736 			goto next;
1737 
1738 		tx = dmu_tx_create(os);
1739 		if (!(zp->z_pflags & ZFS_PROJID))
1740 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1741 		else
1742 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1743 
1744 		err = dmu_tx_assign(tx, TXG_WAIT);
1745 		if (err)
1746 			break;
1747 
1748 		mutex_enter(&dzp->z_lock);
1749 
1750 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1751 			xip->i_uid = dxip->i_uid;
1752 			uid = zfs_uid_read(dxip);
1753 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1754 			    &uid, sizeof (uid));
1755 		}
1756 
1757 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1758 			xip->i_gid = dxip->i_gid;
1759 			gid = zfs_gid_read(dxip);
1760 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1761 			    &gid, sizeof (gid));
1762 		}
1763 
1764 		if (zp->z_projid != dzp->z_projid) {
1765 			if (!(zp->z_pflags & ZFS_PROJID)) {
1766 				zp->z_pflags |= ZFS_PROJID;
1767 				SA_ADD_BULK_ATTR(bulk, count,
1768 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1769 				    sizeof (zp->z_pflags));
1770 			}
1771 
1772 			zp->z_projid = dzp->z_projid;
1773 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1774 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
1775 		}
1776 
1777 		mutex_exit(&dzp->z_lock);
1778 
1779 		if (likely(count > 0)) {
1780 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1781 			dmu_tx_commit(tx);
1782 		} else {
1783 			dmu_tx_abort(tx);
1784 		}
1785 		tx = NULL;
1786 		if (err != 0 && err != ENOENT)
1787 			break;
1788 
1789 next:
1790 		if (zp) {
1791 			zrele(zp);
1792 			zp = NULL;
1793 			zfs_dirent_unlock(dl);
1794 		}
1795 		zap_cursor_advance(&zc);
1796 	}
1797 
1798 	if (tx)
1799 		dmu_tx_abort(tx);
1800 	if (zp) {
1801 		zrele(zp);
1802 		zfs_dirent_unlock(dl);
1803 	}
1804 	zap_cursor_fini(&zc);
1805 
1806 	return (err == ENOENT ? 0 : err);
1807 }
1808 
1809 /*
1810  * Set the file attributes to the values contained in the
1811  * vattr structure.
1812  *
1813  *	IN:	zp	- znode of file to be modified.
1814  *		vap	- new attribute values.
1815  *			  If ATTR_XVATTR set, then optional attrs are being set
1816  *		flags	- ATTR_UTIME set if non-default time values provided.
1817  *			- ATTR_NOACLCHECK (CIFS context only).
1818  *		cr	- credentials of caller.
1819  *
1820  *	RETURN:	0 if success
1821  *		error code if failure
1822  *
1823  * Timestamps:
1824  *	ip - ctime updated, mtime updated if size changed.
1825  */
1826 /* ARGSUSED */
1827 int
1828 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr)
1829 {
1830 	struct inode	*ip;
1831 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1832 	objset_t	*os = zfsvfs->z_os;
1833 	zilog_t		*zilog;
1834 	dmu_tx_t	*tx;
1835 	vattr_t		oldva;
1836 	xvattr_t	*tmpxvattr;
1837 	uint_t		mask = vap->va_mask;
1838 	uint_t		saved_mask = 0;
1839 	int		trim_mask = 0;
1840 	uint64_t	new_mode;
1841 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1842 	uint64_t	xattr_obj;
1843 	uint64_t	mtime[2], ctime[2], atime[2];
1844 	uint64_t	projid = ZFS_INVALID_PROJID;
1845 	znode_t		*attrzp;
1846 	int		need_policy = FALSE;
1847 	int		err, err2 = 0;
1848 	zfs_fuid_info_t *fuidp = NULL;
1849 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1850 	xoptattr_t	*xoap;
1851 	zfs_acl_t	*aclp;
1852 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1853 	boolean_t	fuid_dirtied = B_FALSE;
1854 	boolean_t	handle_eadir = B_FALSE;
1855 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1856 	int		count = 0, xattr_count = 0, bulks = 8;
1857 
1858 	if (mask == 0)
1859 		return (0);
1860 
1861 	ZFS_ENTER(zfsvfs);
1862 	ZFS_VERIFY_ZP(zp);
1863 	ip = ZTOI(zp);
1864 
1865 	/*
1866 	 * If this is a xvattr_t, then get a pointer to the structure of
1867 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1868 	 */
1869 	xoap = xva_getxoptattr(xvap);
1870 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1871 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1872 			if (!dmu_objset_projectquota_enabled(os) ||
1873 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1874 				ZFS_EXIT(zfsvfs);
1875 				return (SET_ERROR(ENOTSUP));
1876 			}
1877 
1878 			projid = xoap->xoa_projid;
1879 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1880 				ZFS_EXIT(zfsvfs);
1881 				return (SET_ERROR(EINVAL));
1882 			}
1883 
1884 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1885 				projid = ZFS_INVALID_PROJID;
1886 			else
1887 				need_policy = TRUE;
1888 		}
1889 
1890 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1891 		    (xoap->xoa_projinherit !=
1892 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1893 		    (!dmu_objset_projectquota_enabled(os) ||
1894 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1895 			ZFS_EXIT(zfsvfs);
1896 			return (SET_ERROR(ENOTSUP));
1897 		}
1898 	}
1899 
1900 	zilog = zfsvfs->z_log;
1901 
1902 	/*
1903 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1904 	 * that file system is at proper version level
1905 	 */
1906 
1907 	if (zfsvfs->z_use_fuids == B_FALSE &&
1908 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1909 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1910 	    (mask & ATTR_XVATTR))) {
1911 		ZFS_EXIT(zfsvfs);
1912 		return (SET_ERROR(EINVAL));
1913 	}
1914 
1915 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1916 		ZFS_EXIT(zfsvfs);
1917 		return (SET_ERROR(EISDIR));
1918 	}
1919 
1920 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1921 		ZFS_EXIT(zfsvfs);
1922 		return (SET_ERROR(EINVAL));
1923 	}
1924 
1925 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1926 	xva_init(tmpxvattr);
1927 
1928 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1929 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1930 
1931 	/*
1932 	 * Immutable files can only alter immutable bit and atime
1933 	 */
1934 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1935 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1936 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1937 		err = SET_ERROR(EPERM);
1938 		goto out3;
1939 	}
1940 
1941 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1942 		err = SET_ERROR(EPERM);
1943 		goto out3;
1944 	}
1945 
1946 	/*
1947 	 * Verify timestamps doesn't overflow 32 bits.
1948 	 * ZFS can handle large timestamps, but 32bit syscalls can't
1949 	 * handle times greater than 2039.  This check should be removed
1950 	 * once large timestamps are fully supported.
1951 	 */
1952 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1953 		if (((mask & ATTR_ATIME) &&
1954 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1955 		    ((mask & ATTR_MTIME) &&
1956 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1957 			err = SET_ERROR(EOVERFLOW);
1958 			goto out3;
1959 		}
1960 	}
1961 
1962 top:
1963 	attrzp = NULL;
1964 	aclp = NULL;
1965 
1966 	/* Can this be moved to before the top label? */
1967 	if (zfs_is_readonly(zfsvfs)) {
1968 		err = SET_ERROR(EROFS);
1969 		goto out3;
1970 	}
1971 
1972 	/*
1973 	 * First validate permissions
1974 	 */
1975 
1976 	if (mask & ATTR_SIZE) {
1977 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
1978 		if (err)
1979 			goto out3;
1980 
1981 		/*
1982 		 * XXX - Note, we are not providing any open
1983 		 * mode flags here (like FNDELAY), so we may
1984 		 * block if there are locks present... this
1985 		 * should be addressed in openat().
1986 		 */
1987 		/* XXX - would it be OK to generate a log record here? */
1988 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1989 		if (err)
1990 			goto out3;
1991 	}
1992 
1993 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
1994 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
1995 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
1996 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
1997 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
1998 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
1999 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2000 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2001 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2002 		    skipaclchk, cr);
2003 	}
2004 
2005 	if (mask & (ATTR_UID|ATTR_GID)) {
2006 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2007 		int	take_owner;
2008 		int	take_group;
2009 
2010 		/*
2011 		 * NOTE: even if a new mode is being set,
2012 		 * we may clear S_ISUID/S_ISGID bits.
2013 		 */
2014 
2015 		if (!(mask & ATTR_MODE))
2016 			vap->va_mode = zp->z_mode;
2017 
2018 		/*
2019 		 * Take ownership or chgrp to group we are a member of
2020 		 */
2021 
2022 		take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2023 		take_group = (mask & ATTR_GID) &&
2024 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2025 
2026 		/*
2027 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2028 		 * take_group must both be set in order to allow taking
2029 		 * ownership.
2030 		 *
2031 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2032 		 *
2033 		 */
2034 
2035 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2036 		    take_owner && take_group) ||
2037 		    ((idmask == ATTR_UID) && take_owner) ||
2038 		    ((idmask == ATTR_GID) && take_group)) {
2039 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2040 			    skipaclchk, cr) == 0) {
2041 				/*
2042 				 * Remove setuid/setgid for non-privileged users
2043 				 */
2044 				(void) secpolicy_setid_clear(vap, cr);
2045 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2046 			} else {
2047 				need_policy =  TRUE;
2048 			}
2049 		} else {
2050 			need_policy =  TRUE;
2051 		}
2052 	}
2053 
2054 	mutex_enter(&zp->z_lock);
2055 	oldva.va_mode = zp->z_mode;
2056 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2057 	if (mask & ATTR_XVATTR) {
2058 		/*
2059 		 * Update xvattr mask to include only those attributes
2060 		 * that are actually changing.
2061 		 *
2062 		 * the bits will be restored prior to actually setting
2063 		 * the attributes so the caller thinks they were set.
2064 		 */
2065 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2066 			if (xoap->xoa_appendonly !=
2067 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2068 				need_policy = TRUE;
2069 			} else {
2070 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2071 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2072 			}
2073 		}
2074 
2075 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2076 			if (xoap->xoa_projinherit !=
2077 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2078 				need_policy = TRUE;
2079 			} else {
2080 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2081 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2082 			}
2083 		}
2084 
2085 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2086 			if (xoap->xoa_nounlink !=
2087 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2088 				need_policy = TRUE;
2089 			} else {
2090 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2091 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2092 			}
2093 		}
2094 
2095 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2096 			if (xoap->xoa_immutable !=
2097 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2098 				need_policy = TRUE;
2099 			} else {
2100 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2101 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2102 			}
2103 		}
2104 
2105 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2106 			if (xoap->xoa_nodump !=
2107 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2108 				need_policy = TRUE;
2109 			} else {
2110 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2111 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2112 			}
2113 		}
2114 
2115 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2116 			if (xoap->xoa_av_modified !=
2117 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2118 				need_policy = TRUE;
2119 			} else {
2120 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2121 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2122 			}
2123 		}
2124 
2125 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2126 			if ((!S_ISREG(ip->i_mode) &&
2127 			    xoap->xoa_av_quarantined) ||
2128 			    xoap->xoa_av_quarantined !=
2129 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2130 				need_policy = TRUE;
2131 			} else {
2132 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2133 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2134 			}
2135 		}
2136 
2137 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2138 			mutex_exit(&zp->z_lock);
2139 			err = SET_ERROR(EPERM);
2140 			goto out3;
2141 		}
2142 
2143 		if (need_policy == FALSE &&
2144 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2145 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2146 			need_policy = TRUE;
2147 		}
2148 	}
2149 
2150 	mutex_exit(&zp->z_lock);
2151 
2152 	if (mask & ATTR_MODE) {
2153 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2154 			err = secpolicy_setid_setsticky_clear(ip, vap,
2155 			    &oldva, cr);
2156 			if (err)
2157 				goto out3;
2158 
2159 			trim_mask |= ATTR_MODE;
2160 		} else {
2161 			need_policy = TRUE;
2162 		}
2163 	}
2164 
2165 	if (need_policy) {
2166 		/*
2167 		 * If trim_mask is set then take ownership
2168 		 * has been granted or write_acl is present and user
2169 		 * has the ability to modify mode.  In that case remove
2170 		 * UID|GID and or MODE from mask so that
2171 		 * secpolicy_vnode_setattr() doesn't revoke it.
2172 		 */
2173 
2174 		if (trim_mask) {
2175 			saved_mask = vap->va_mask;
2176 			vap->va_mask &= ~trim_mask;
2177 		}
2178 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2179 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2180 		if (err)
2181 			goto out3;
2182 
2183 		if (trim_mask)
2184 			vap->va_mask |= saved_mask;
2185 	}
2186 
2187 	/*
2188 	 * secpolicy_vnode_setattr, or take ownership may have
2189 	 * changed va_mask
2190 	 */
2191 	mask = vap->va_mask;
2192 
2193 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2194 		handle_eadir = B_TRUE;
2195 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2196 		    &xattr_obj, sizeof (xattr_obj));
2197 
2198 		if (err == 0 && xattr_obj) {
2199 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2200 			if (err)
2201 				goto out2;
2202 		}
2203 		if (mask & ATTR_UID) {
2204 			new_kuid = zfs_fuid_create(zfsvfs,
2205 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2206 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2207 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2208 			    new_kuid)) {
2209 				if (attrzp)
2210 					zrele(attrzp);
2211 				err = SET_ERROR(EDQUOT);
2212 				goto out2;
2213 			}
2214 		}
2215 
2216 		if (mask & ATTR_GID) {
2217 			new_kgid = zfs_fuid_create(zfsvfs,
2218 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2219 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2220 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2221 			    new_kgid)) {
2222 				if (attrzp)
2223 					zrele(attrzp);
2224 				err = SET_ERROR(EDQUOT);
2225 				goto out2;
2226 			}
2227 		}
2228 
2229 		if (projid != ZFS_INVALID_PROJID &&
2230 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2231 			if (attrzp)
2232 				zrele(attrzp);
2233 			err = EDQUOT;
2234 			goto out2;
2235 		}
2236 	}
2237 	tx = dmu_tx_create(os);
2238 
2239 	if (mask & ATTR_MODE) {
2240 		uint64_t pmode = zp->z_mode;
2241 		uint64_t acl_obj;
2242 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2243 
2244 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2245 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2246 			err = EPERM;
2247 			goto out;
2248 		}
2249 
2250 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2251 			goto out;
2252 
2253 		mutex_enter(&zp->z_lock);
2254 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2255 			/*
2256 			 * Are we upgrading ACL from old V0 format
2257 			 * to V1 format?
2258 			 */
2259 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2260 			    zfs_znode_acl_version(zp) ==
2261 			    ZFS_ACL_VERSION_INITIAL) {
2262 				dmu_tx_hold_free(tx, acl_obj, 0,
2263 				    DMU_OBJECT_END);
2264 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2265 				    0, aclp->z_acl_bytes);
2266 			} else {
2267 				dmu_tx_hold_write(tx, acl_obj, 0,
2268 				    aclp->z_acl_bytes);
2269 			}
2270 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2271 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2272 			    0, aclp->z_acl_bytes);
2273 		}
2274 		mutex_exit(&zp->z_lock);
2275 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2276 	} else {
2277 		if (((mask & ATTR_XVATTR) &&
2278 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2279 		    (projid != ZFS_INVALID_PROJID &&
2280 		    !(zp->z_pflags & ZFS_PROJID)))
2281 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2282 		else
2283 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2284 	}
2285 
2286 	if (attrzp) {
2287 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2288 	}
2289 
2290 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2291 	if (fuid_dirtied)
2292 		zfs_fuid_txhold(zfsvfs, tx);
2293 
2294 	zfs_sa_upgrade_txholds(tx, zp);
2295 
2296 	err = dmu_tx_assign(tx, TXG_WAIT);
2297 	if (err)
2298 		goto out;
2299 
2300 	count = 0;
2301 	/*
2302 	 * Set each attribute requested.
2303 	 * We group settings according to the locks they need to acquire.
2304 	 *
2305 	 * Note: you cannot set ctime directly, although it will be
2306 	 * updated as a side-effect of calling this function.
2307 	 */
2308 
2309 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2310 		/*
2311 		 * For the existed object that is upgraded from old system,
2312 		 * its on-disk layout has no slot for the project ID attribute.
2313 		 * But quota accounting logic needs to access related slots by
2314 		 * offset directly. So we need to adjust old objects' layout
2315 		 * to make the project ID to some unified and fixed offset.
2316 		 */
2317 		if (attrzp)
2318 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2319 		if (err == 0)
2320 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2321 
2322 		if (unlikely(err == EEXIST))
2323 			err = 0;
2324 		else if (err != 0)
2325 			goto out;
2326 		else
2327 			projid = ZFS_INVALID_PROJID;
2328 	}
2329 
2330 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2331 		mutex_enter(&zp->z_acl_lock);
2332 	mutex_enter(&zp->z_lock);
2333 
2334 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2335 	    &zp->z_pflags, sizeof (zp->z_pflags));
2336 
2337 	if (attrzp) {
2338 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2339 			mutex_enter(&attrzp->z_acl_lock);
2340 		mutex_enter(&attrzp->z_lock);
2341 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2342 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2343 		    sizeof (attrzp->z_pflags));
2344 		if (projid != ZFS_INVALID_PROJID) {
2345 			attrzp->z_projid = projid;
2346 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2347 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2348 			    sizeof (attrzp->z_projid));
2349 		}
2350 	}
2351 
2352 	if (mask & (ATTR_UID|ATTR_GID)) {
2353 
2354 		if (mask & ATTR_UID) {
2355 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2356 			new_uid = zfs_uid_read(ZTOI(zp));
2357 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2358 			    &new_uid, sizeof (new_uid));
2359 			if (attrzp) {
2360 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2361 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2362 				    sizeof (new_uid));
2363 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2364 			}
2365 		}
2366 
2367 		if (mask & ATTR_GID) {
2368 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2369 			new_gid = zfs_gid_read(ZTOI(zp));
2370 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2371 			    NULL, &new_gid, sizeof (new_gid));
2372 			if (attrzp) {
2373 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2374 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2375 				    sizeof (new_gid));
2376 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2377 			}
2378 		}
2379 		if (!(mask & ATTR_MODE)) {
2380 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2381 			    NULL, &new_mode, sizeof (new_mode));
2382 			new_mode = zp->z_mode;
2383 		}
2384 		err = zfs_acl_chown_setattr(zp);
2385 		ASSERT(err == 0);
2386 		if (attrzp) {
2387 			err = zfs_acl_chown_setattr(attrzp);
2388 			ASSERT(err == 0);
2389 		}
2390 	}
2391 
2392 	if (mask & ATTR_MODE) {
2393 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2394 		    &new_mode, sizeof (new_mode));
2395 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2396 		ASSERT3P(aclp, !=, NULL);
2397 		err = zfs_aclset_common(zp, aclp, cr, tx);
2398 		ASSERT0(err);
2399 		if (zp->z_acl_cached)
2400 			zfs_acl_free(zp->z_acl_cached);
2401 		zp->z_acl_cached = aclp;
2402 		aclp = NULL;
2403 	}
2404 
2405 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2406 		zp->z_atime_dirty = B_FALSE;
2407 		ZFS_TIME_ENCODE(&ip->i_atime, atime);
2408 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2409 		    &atime, sizeof (atime));
2410 	}
2411 
2412 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2413 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2414 		ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2415 		    vap->va_mtime, ZTOI(zp));
2416 
2417 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2418 		    mtime, sizeof (mtime));
2419 	}
2420 
2421 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2422 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2423 		ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2424 		    ZTOI(zp));
2425 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2426 		    ctime, sizeof (ctime));
2427 	}
2428 
2429 	if (projid != ZFS_INVALID_PROJID) {
2430 		zp->z_projid = projid;
2431 		SA_ADD_BULK_ATTR(bulk, count,
2432 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2433 		    sizeof (zp->z_projid));
2434 	}
2435 
2436 	if (attrzp && mask) {
2437 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2438 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2439 		    sizeof (ctime));
2440 	}
2441 
2442 	/*
2443 	 * Do this after setting timestamps to prevent timestamp
2444 	 * update from toggling bit
2445 	 */
2446 
2447 	if (xoap && (mask & ATTR_XVATTR)) {
2448 
2449 		/*
2450 		 * restore trimmed off masks
2451 		 * so that return masks can be set for caller.
2452 		 */
2453 
2454 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2455 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2456 		}
2457 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2458 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2459 		}
2460 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2461 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2462 		}
2463 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2464 			XVA_SET_REQ(xvap, XAT_NODUMP);
2465 		}
2466 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2467 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2468 		}
2469 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2470 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2471 		}
2472 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2473 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2474 		}
2475 
2476 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2477 			ASSERT(S_ISREG(ip->i_mode));
2478 
2479 		zfs_xvattr_set(zp, xvap, tx);
2480 	}
2481 
2482 	if (fuid_dirtied)
2483 		zfs_fuid_sync(zfsvfs, tx);
2484 
2485 	if (mask != 0)
2486 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2487 
2488 	mutex_exit(&zp->z_lock);
2489 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2490 		mutex_exit(&zp->z_acl_lock);
2491 
2492 	if (attrzp) {
2493 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2494 			mutex_exit(&attrzp->z_acl_lock);
2495 		mutex_exit(&attrzp->z_lock);
2496 	}
2497 out:
2498 	if (err == 0 && xattr_count > 0) {
2499 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2500 		    xattr_count, tx);
2501 		ASSERT(err2 == 0);
2502 	}
2503 
2504 	if (aclp)
2505 		zfs_acl_free(aclp);
2506 
2507 	if (fuidp) {
2508 		zfs_fuid_info_free(fuidp);
2509 		fuidp = NULL;
2510 	}
2511 
2512 	if (err) {
2513 		dmu_tx_abort(tx);
2514 		if (attrzp)
2515 			zrele(attrzp);
2516 		if (err == ERESTART)
2517 			goto top;
2518 	} else {
2519 		if (count > 0)
2520 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2521 		dmu_tx_commit(tx);
2522 		if (attrzp) {
2523 			if (err2 == 0 && handle_eadir)
2524 				err2 = zfs_setattr_dir(attrzp);
2525 			zrele(attrzp);
2526 		}
2527 		zfs_znode_update_vfs(zp);
2528 	}
2529 
2530 out2:
2531 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2532 		zil_commit(zilog, 0);
2533 
2534 out3:
2535 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2536 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2537 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2538 	ZFS_EXIT(zfsvfs);
2539 	return (err);
2540 }
2541 
2542 typedef struct zfs_zlock {
2543 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2544 	znode_t		*zl_znode;	/* znode we held */
2545 	struct zfs_zlock *zl_next;	/* next in list */
2546 } zfs_zlock_t;
2547 
2548 /*
2549  * Drop locks and release vnodes that were held by zfs_rename_lock().
2550  */
2551 static void
2552 zfs_rename_unlock(zfs_zlock_t **zlpp)
2553 {
2554 	zfs_zlock_t *zl;
2555 
2556 	while ((zl = *zlpp) != NULL) {
2557 		if (zl->zl_znode != NULL)
2558 			zfs_zrele_async(zl->zl_znode);
2559 		rw_exit(zl->zl_rwlock);
2560 		*zlpp = zl->zl_next;
2561 		kmem_free(zl, sizeof (*zl));
2562 	}
2563 }
2564 
2565 /*
2566  * Search back through the directory tree, using the ".." entries.
2567  * Lock each directory in the chain to prevent concurrent renames.
2568  * Fail any attempt to move a directory into one of its own descendants.
2569  * XXX - z_parent_lock can overlap with map or grow locks
2570  */
2571 static int
2572 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2573 {
2574 	zfs_zlock_t	*zl;
2575 	znode_t		*zp = tdzp;
2576 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2577 	uint64_t	oidp = zp->z_id;
2578 	krwlock_t	*rwlp = &szp->z_parent_lock;
2579 	krw_t		rw = RW_WRITER;
2580 
2581 	/*
2582 	 * First pass write-locks szp and compares to zp->z_id.
2583 	 * Later passes read-lock zp and compare to zp->z_parent.
2584 	 */
2585 	do {
2586 		if (!rw_tryenter(rwlp, rw)) {
2587 			/*
2588 			 * Another thread is renaming in this path.
2589 			 * Note that if we are a WRITER, we don't have any
2590 			 * parent_locks held yet.
2591 			 */
2592 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2593 				/*
2594 				 * Drop our locks and restart
2595 				 */
2596 				zfs_rename_unlock(&zl);
2597 				*zlpp = NULL;
2598 				zp = tdzp;
2599 				oidp = zp->z_id;
2600 				rwlp = &szp->z_parent_lock;
2601 				rw = RW_WRITER;
2602 				continue;
2603 			} else {
2604 				/*
2605 				 * Wait for other thread to drop its locks
2606 				 */
2607 				rw_enter(rwlp, rw);
2608 			}
2609 		}
2610 
2611 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2612 		zl->zl_rwlock = rwlp;
2613 		zl->zl_znode = NULL;
2614 		zl->zl_next = *zlpp;
2615 		*zlpp = zl;
2616 
2617 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2618 			return (SET_ERROR(EINVAL));
2619 
2620 		if (oidp == rootid)		/* We've hit the top */
2621 			return (0);
2622 
2623 		if (rw == RW_READER) {		/* i.e. not the first pass */
2624 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2625 			if (error)
2626 				return (error);
2627 			zl->zl_znode = zp;
2628 		}
2629 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2630 		    &oidp, sizeof (oidp));
2631 		rwlp = &zp->z_parent_lock;
2632 		rw = RW_READER;
2633 
2634 	} while (zp->z_id != sdzp->z_id);
2635 
2636 	return (0);
2637 }
2638 
2639 /*
2640  * Move an entry from the provided source directory to the target
2641  * directory.  Change the entry name as indicated.
2642  *
2643  *	IN:	sdzp	- Source directory containing the "old entry".
2644  *		snm	- Old entry name.
2645  *		tdzp	- Target directory to contain the "new entry".
2646  *		tnm	- New entry name.
2647  *		cr	- credentials of caller.
2648  *		flags	- case flags
2649  *
2650  *	RETURN:	0 on success, error code on failure.
2651  *
2652  * Timestamps:
2653  *	sdzp,tdzp - ctime|mtime updated
2654  */
2655 /*ARGSUSED*/
2656 int
2657 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2658     cred_t *cr, int flags)
2659 {
2660 	znode_t		*szp, *tzp;
2661 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2662 	zilog_t		*zilog;
2663 	zfs_dirlock_t	*sdl, *tdl;
2664 	dmu_tx_t	*tx;
2665 	zfs_zlock_t	*zl;
2666 	int		cmp, serr, terr;
2667 	int		error = 0;
2668 	int		zflg = 0;
2669 	boolean_t	waited = B_FALSE;
2670 
2671 	if (snm == NULL || tnm == NULL)
2672 		return (SET_ERROR(EINVAL));
2673 
2674 	ZFS_ENTER(zfsvfs);
2675 	ZFS_VERIFY_ZP(sdzp);
2676 	zilog = zfsvfs->z_log;
2677 
2678 	ZFS_VERIFY_ZP(tdzp);
2679 
2680 	/*
2681 	 * We check i_sb because snapshots and the ctldir must have different
2682 	 * super blocks.
2683 	 */
2684 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2685 	    zfsctl_is_node(ZTOI(tdzp))) {
2686 		ZFS_EXIT(zfsvfs);
2687 		return (SET_ERROR(EXDEV));
2688 	}
2689 
2690 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2691 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2692 		ZFS_EXIT(zfsvfs);
2693 		return (SET_ERROR(EILSEQ));
2694 	}
2695 
2696 	if (flags & FIGNORECASE)
2697 		zflg |= ZCILOOK;
2698 
2699 top:
2700 	szp = NULL;
2701 	tzp = NULL;
2702 	zl = NULL;
2703 
2704 	/*
2705 	 * This is to prevent the creation of links into attribute space
2706 	 * by renaming a linked file into/outof an attribute directory.
2707 	 * See the comment in zfs_link() for why this is considered bad.
2708 	 */
2709 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2710 		ZFS_EXIT(zfsvfs);
2711 		return (SET_ERROR(EINVAL));
2712 	}
2713 
2714 	/*
2715 	 * Lock source and target directory entries.  To prevent deadlock,
2716 	 * a lock ordering must be defined.  We lock the directory with
2717 	 * the smallest object id first, or if it's a tie, the one with
2718 	 * the lexically first name.
2719 	 */
2720 	if (sdzp->z_id < tdzp->z_id) {
2721 		cmp = -1;
2722 	} else if (sdzp->z_id > tdzp->z_id) {
2723 		cmp = 1;
2724 	} else {
2725 		/*
2726 		 * First compare the two name arguments without
2727 		 * considering any case folding.
2728 		 */
2729 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2730 
2731 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2732 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2733 		if (cmp == 0) {
2734 			/*
2735 			 * POSIX: "If the old argument and the new argument
2736 			 * both refer to links to the same existing file,
2737 			 * the rename() function shall return successfully
2738 			 * and perform no other action."
2739 			 */
2740 			ZFS_EXIT(zfsvfs);
2741 			return (0);
2742 		}
2743 		/*
2744 		 * If the file system is case-folding, then we may
2745 		 * have some more checking to do.  A case-folding file
2746 		 * system is either supporting mixed case sensitivity
2747 		 * access or is completely case-insensitive.  Note
2748 		 * that the file system is always case preserving.
2749 		 *
2750 		 * In mixed sensitivity mode case sensitive behavior
2751 		 * is the default.  FIGNORECASE must be used to
2752 		 * explicitly request case insensitive behavior.
2753 		 *
2754 		 * If the source and target names provided differ only
2755 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2756 		 * we will treat this as a special case in the
2757 		 * case-insensitive mode: as long as the source name
2758 		 * is an exact match, we will allow this to proceed as
2759 		 * a name-change request.
2760 		 */
2761 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2762 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2763 		    flags & FIGNORECASE)) &&
2764 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2765 		    &error) == 0) {
2766 			/*
2767 			 * case preserving rename request, require exact
2768 			 * name matches
2769 			 */
2770 			zflg |= ZCIEXACT;
2771 			zflg &= ~ZCILOOK;
2772 		}
2773 	}
2774 
2775 	/*
2776 	 * If the source and destination directories are the same, we should
2777 	 * grab the z_name_lock of that directory only once.
2778 	 */
2779 	if (sdzp == tdzp) {
2780 		zflg |= ZHAVELOCK;
2781 		rw_enter(&sdzp->z_name_lock, RW_READER);
2782 	}
2783 
2784 	if (cmp < 0) {
2785 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2786 		    ZEXISTS | zflg, NULL, NULL);
2787 		terr = zfs_dirent_lock(&tdl,
2788 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2789 	} else {
2790 		terr = zfs_dirent_lock(&tdl,
2791 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2792 		serr = zfs_dirent_lock(&sdl,
2793 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2794 		    NULL, NULL);
2795 	}
2796 
2797 	if (serr) {
2798 		/*
2799 		 * Source entry invalid or not there.
2800 		 */
2801 		if (!terr) {
2802 			zfs_dirent_unlock(tdl);
2803 			if (tzp)
2804 				zrele(tzp);
2805 		}
2806 
2807 		if (sdzp == tdzp)
2808 			rw_exit(&sdzp->z_name_lock);
2809 
2810 		if (strcmp(snm, "..") == 0)
2811 			serr = EINVAL;
2812 		ZFS_EXIT(zfsvfs);
2813 		return (serr);
2814 	}
2815 	if (terr) {
2816 		zfs_dirent_unlock(sdl);
2817 		zrele(szp);
2818 
2819 		if (sdzp == tdzp)
2820 			rw_exit(&sdzp->z_name_lock);
2821 
2822 		if (strcmp(tnm, "..") == 0)
2823 			terr = EINVAL;
2824 		ZFS_EXIT(zfsvfs);
2825 		return (terr);
2826 	}
2827 
2828 	/*
2829 	 * If we are using project inheritance, means if the directory has
2830 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2831 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2832 	 * such case, we only allow renames into our tree when the project
2833 	 * IDs are the same.
2834 	 */
2835 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2836 	    tdzp->z_projid != szp->z_projid) {
2837 		error = SET_ERROR(EXDEV);
2838 		goto out;
2839 	}
2840 
2841 	/*
2842 	 * Must have write access at the source to remove the old entry
2843 	 * and write access at the target to create the new entry.
2844 	 * Note that if target and source are the same, this can be
2845 	 * done in a single check.
2846 	 */
2847 
2848 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
2849 		goto out;
2850 
2851 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2852 		/*
2853 		 * Check to make sure rename is valid.
2854 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2855 		 */
2856 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2857 			goto out;
2858 	}
2859 
2860 	/*
2861 	 * Does target exist?
2862 	 */
2863 	if (tzp) {
2864 		/*
2865 		 * Source and target must be the same type.
2866 		 */
2867 		if (S_ISDIR(ZTOI(szp)->i_mode)) {
2868 			if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
2869 				error = SET_ERROR(ENOTDIR);
2870 				goto out;
2871 			}
2872 		} else {
2873 			if (S_ISDIR(ZTOI(tzp)->i_mode)) {
2874 				error = SET_ERROR(EISDIR);
2875 				goto out;
2876 			}
2877 		}
2878 		/*
2879 		 * POSIX dictates that when the source and target
2880 		 * entries refer to the same file object, rename
2881 		 * must do nothing and exit without error.
2882 		 */
2883 		if (szp->z_id == tzp->z_id) {
2884 			error = 0;
2885 			goto out;
2886 		}
2887 	}
2888 
2889 	tx = dmu_tx_create(zfsvfs->z_os);
2890 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2891 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2892 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2893 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2894 	if (sdzp != tdzp) {
2895 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2896 		zfs_sa_upgrade_txholds(tx, tdzp);
2897 	}
2898 	if (tzp) {
2899 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2900 		zfs_sa_upgrade_txholds(tx, tzp);
2901 	}
2902 
2903 	zfs_sa_upgrade_txholds(tx, szp);
2904 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2905 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2906 	if (error) {
2907 		if (zl != NULL)
2908 			zfs_rename_unlock(&zl);
2909 		zfs_dirent_unlock(sdl);
2910 		zfs_dirent_unlock(tdl);
2911 
2912 		if (sdzp == tdzp)
2913 			rw_exit(&sdzp->z_name_lock);
2914 
2915 		if (error == ERESTART) {
2916 			waited = B_TRUE;
2917 			dmu_tx_wait(tx);
2918 			dmu_tx_abort(tx);
2919 			zrele(szp);
2920 			if (tzp)
2921 				zrele(tzp);
2922 			goto top;
2923 		}
2924 		dmu_tx_abort(tx);
2925 		zrele(szp);
2926 		if (tzp)
2927 			zrele(tzp);
2928 		ZFS_EXIT(zfsvfs);
2929 		return (error);
2930 	}
2931 
2932 	if (tzp)	/* Attempt to remove the existing target */
2933 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
2934 
2935 	if (error == 0) {
2936 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2937 		if (error == 0) {
2938 			szp->z_pflags |= ZFS_AV_MODIFIED;
2939 			if (tdzp->z_pflags & ZFS_PROJINHERIT)
2940 				szp->z_pflags |= ZFS_PROJINHERIT;
2941 
2942 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
2943 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
2944 			ASSERT0(error);
2945 
2946 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2947 			if (error == 0) {
2948 				zfs_log_rename(zilog, tx, TX_RENAME |
2949 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
2950 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
2951 			} else {
2952 				/*
2953 				 * At this point, we have successfully created
2954 				 * the target name, but have failed to remove
2955 				 * the source name.  Since the create was done
2956 				 * with the ZRENAMING flag, there are
2957 				 * complications; for one, the link count is
2958 				 * wrong.  The easiest way to deal with this
2959 				 * is to remove the newly created target, and
2960 				 * return the original error.  This must
2961 				 * succeed; fortunately, it is very unlikely to
2962 				 * fail, since we just created it.
2963 				 */
2964 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
2965 				    ZRENAMING, NULL), ==, 0);
2966 			}
2967 		} else {
2968 			/*
2969 			 * If we had removed the existing target, subsequent
2970 			 * call to zfs_link_create() to add back the same entry
2971 			 * but, the new dnode (szp) should not fail.
2972 			 */
2973 			ASSERT(tzp == NULL);
2974 		}
2975 	}
2976 
2977 	dmu_tx_commit(tx);
2978 out:
2979 	if (zl != NULL)
2980 		zfs_rename_unlock(&zl);
2981 
2982 	zfs_dirent_unlock(sdl);
2983 	zfs_dirent_unlock(tdl);
2984 
2985 	zfs_znode_update_vfs(sdzp);
2986 	if (sdzp == tdzp)
2987 		rw_exit(&sdzp->z_name_lock);
2988 
2989 	if (sdzp != tdzp)
2990 		zfs_znode_update_vfs(tdzp);
2991 
2992 	zfs_znode_update_vfs(szp);
2993 	zrele(szp);
2994 	if (tzp) {
2995 		zfs_znode_update_vfs(tzp);
2996 		zrele(tzp);
2997 	}
2998 
2999 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3000 		zil_commit(zilog, 0);
3001 
3002 	ZFS_EXIT(zfsvfs);
3003 	return (error);
3004 }
3005 
3006 /*
3007  * Insert the indicated symbolic reference entry into the directory.
3008  *
3009  *	IN:	dzp	- Directory to contain new symbolic link.
3010  *		name	- Name of directory entry in dip.
3011  *		vap	- Attributes of new entry.
3012  *		link	- Name for new symlink entry.
3013  *		cr	- credentials of caller.
3014  *		flags	- case flags
3015  *
3016  *	OUT:	zpp	- Znode for new symbolic link.
3017  *
3018  *	RETURN:	0 on success, error code on failure.
3019  *
3020  * Timestamps:
3021  *	dip - ctime|mtime updated
3022  */
3023 /*ARGSUSED*/
3024 int
3025 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3026     znode_t **zpp, cred_t *cr, int flags)
3027 {
3028 	znode_t		*zp;
3029 	zfs_dirlock_t	*dl;
3030 	dmu_tx_t	*tx;
3031 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3032 	zilog_t		*zilog;
3033 	uint64_t	len = strlen(link);
3034 	int		error;
3035 	int		zflg = ZNEW;
3036 	zfs_acl_ids_t	acl_ids;
3037 	boolean_t	fuid_dirtied;
3038 	uint64_t	txtype = TX_SYMLINK;
3039 	boolean_t	waited = B_FALSE;
3040 
3041 	ASSERT(S_ISLNK(vap->va_mode));
3042 
3043 	if (name == NULL)
3044 		return (SET_ERROR(EINVAL));
3045 
3046 	ZFS_ENTER(zfsvfs);
3047 	ZFS_VERIFY_ZP(dzp);
3048 	zilog = zfsvfs->z_log;
3049 
3050 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3051 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3052 		ZFS_EXIT(zfsvfs);
3053 		return (SET_ERROR(EILSEQ));
3054 	}
3055 	if (flags & FIGNORECASE)
3056 		zflg |= ZCILOOK;
3057 
3058 	if (len > MAXPATHLEN) {
3059 		ZFS_EXIT(zfsvfs);
3060 		return (SET_ERROR(ENAMETOOLONG));
3061 	}
3062 
3063 	if ((error = zfs_acl_ids_create(dzp, 0,
3064 	    vap, cr, NULL, &acl_ids)) != 0) {
3065 		ZFS_EXIT(zfsvfs);
3066 		return (error);
3067 	}
3068 top:
3069 	*zpp = NULL;
3070 
3071 	/*
3072 	 * Attempt to lock directory; fail if entry already exists.
3073 	 */
3074 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3075 	if (error) {
3076 		zfs_acl_ids_free(&acl_ids);
3077 		ZFS_EXIT(zfsvfs);
3078 		return (error);
3079 	}
3080 
3081 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3082 		zfs_acl_ids_free(&acl_ids);
3083 		zfs_dirent_unlock(dl);
3084 		ZFS_EXIT(zfsvfs);
3085 		return (error);
3086 	}
3087 
3088 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3089 		zfs_acl_ids_free(&acl_ids);
3090 		zfs_dirent_unlock(dl);
3091 		ZFS_EXIT(zfsvfs);
3092 		return (SET_ERROR(EDQUOT));
3093 	}
3094 	tx = dmu_tx_create(zfsvfs->z_os);
3095 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3096 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3097 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3098 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3099 	    ZFS_SA_BASE_ATTR_SIZE + len);
3100 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3101 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3102 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3103 		    acl_ids.z_aclp->z_acl_bytes);
3104 	}
3105 	if (fuid_dirtied)
3106 		zfs_fuid_txhold(zfsvfs, tx);
3107 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3108 	if (error) {
3109 		zfs_dirent_unlock(dl);
3110 		if (error == ERESTART) {
3111 			waited = B_TRUE;
3112 			dmu_tx_wait(tx);
3113 			dmu_tx_abort(tx);
3114 			goto top;
3115 		}
3116 		zfs_acl_ids_free(&acl_ids);
3117 		dmu_tx_abort(tx);
3118 		ZFS_EXIT(zfsvfs);
3119 		return (error);
3120 	}
3121 
3122 	/*
3123 	 * Create a new object for the symlink.
3124 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3125 	 */
3126 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3127 
3128 	if (fuid_dirtied)
3129 		zfs_fuid_sync(zfsvfs, tx);
3130 
3131 	mutex_enter(&zp->z_lock);
3132 	if (zp->z_is_sa)
3133 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3134 		    link, len, tx);
3135 	else
3136 		zfs_sa_symlink(zp, link, len, tx);
3137 	mutex_exit(&zp->z_lock);
3138 
3139 	zp->z_size = len;
3140 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3141 	    &zp->z_size, sizeof (zp->z_size), tx);
3142 	/*
3143 	 * Insert the new object into the directory.
3144 	 */
3145 	error = zfs_link_create(dl, zp, tx, ZNEW);
3146 	if (error != 0) {
3147 		zfs_znode_delete(zp, tx);
3148 		remove_inode_hash(ZTOI(zp));
3149 	} else {
3150 		if (flags & FIGNORECASE)
3151 			txtype |= TX_CI;
3152 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3153 
3154 		zfs_znode_update_vfs(dzp);
3155 		zfs_znode_update_vfs(zp);
3156 	}
3157 
3158 	zfs_acl_ids_free(&acl_ids);
3159 
3160 	dmu_tx_commit(tx);
3161 
3162 	zfs_dirent_unlock(dl);
3163 
3164 	if (error == 0) {
3165 		*zpp = zp;
3166 
3167 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3168 			zil_commit(zilog, 0);
3169 	} else {
3170 		zrele(zp);
3171 	}
3172 
3173 	ZFS_EXIT(zfsvfs);
3174 	return (error);
3175 }
3176 
3177 /*
3178  * Return, in the buffer contained in the provided uio structure,
3179  * the symbolic path referred to by ip.
3180  *
3181  *	IN:	ip	- inode of symbolic link
3182  *		uio	- structure to contain the link path.
3183  *		cr	- credentials of caller.
3184  *
3185  *	RETURN:	0 if success
3186  *		error code if failure
3187  *
3188  * Timestamps:
3189  *	ip - atime updated
3190  */
3191 /* ARGSUSED */
3192 int
3193 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3194 {
3195 	znode_t		*zp = ITOZ(ip);
3196 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3197 	int		error;
3198 
3199 	ZFS_ENTER(zfsvfs);
3200 	ZFS_VERIFY_ZP(zp);
3201 
3202 	mutex_enter(&zp->z_lock);
3203 	if (zp->z_is_sa)
3204 		error = sa_lookup_uio(zp->z_sa_hdl,
3205 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3206 	else
3207 		error = zfs_sa_readlink(zp, uio);
3208 	mutex_exit(&zp->z_lock);
3209 
3210 	ZFS_EXIT(zfsvfs);
3211 	return (error);
3212 }
3213 
3214 /*
3215  * Insert a new entry into directory tdzp referencing szp.
3216  *
3217  *	IN:	tdzp	- Directory to contain new entry.
3218  *		szp	- znode of new entry.
3219  *		name	- name of new entry.
3220  *		cr	- credentials of caller.
3221  *		flags	- case flags.
3222  *
3223  *	RETURN:	0 if success
3224  *		error code if failure
3225  *
3226  * Timestamps:
3227  *	tdzp - ctime|mtime updated
3228  *	 szp - ctime updated
3229  */
3230 /* ARGSUSED */
3231 int
3232 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3233     int flags)
3234 {
3235 	struct inode *sip = ZTOI(szp);
3236 	znode_t		*tzp;
3237 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3238 	zilog_t		*zilog;
3239 	zfs_dirlock_t	*dl;
3240 	dmu_tx_t	*tx;
3241 	int		error;
3242 	int		zf = ZNEW;
3243 	uint64_t	parent;
3244 	uid_t		owner;
3245 	boolean_t	waited = B_FALSE;
3246 	boolean_t	is_tmpfile = 0;
3247 	uint64_t	txg;
3248 #ifdef HAVE_TMPFILE
3249 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3250 #endif
3251 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3252 
3253 	if (name == NULL)
3254 		return (SET_ERROR(EINVAL));
3255 
3256 	ZFS_ENTER(zfsvfs);
3257 	ZFS_VERIFY_ZP(tdzp);
3258 	zilog = zfsvfs->z_log;
3259 
3260 	/*
3261 	 * POSIX dictates that we return EPERM here.
3262 	 * Better choices include ENOTSUP or EISDIR.
3263 	 */
3264 	if (S_ISDIR(sip->i_mode)) {
3265 		ZFS_EXIT(zfsvfs);
3266 		return (SET_ERROR(EPERM));
3267 	}
3268 
3269 	ZFS_VERIFY_ZP(szp);
3270 
3271 	/*
3272 	 * If we are using project inheritance, means if the directory has
3273 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3274 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3275 	 * such case, we only allow hard link creation in our tree when the
3276 	 * project IDs are the same.
3277 	 */
3278 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3279 	    tdzp->z_projid != szp->z_projid) {
3280 		ZFS_EXIT(zfsvfs);
3281 		return (SET_ERROR(EXDEV));
3282 	}
3283 
3284 	/*
3285 	 * We check i_sb because snapshots and the ctldir must have different
3286 	 * super blocks.
3287 	 */
3288 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3289 		ZFS_EXIT(zfsvfs);
3290 		return (SET_ERROR(EXDEV));
3291 	}
3292 
3293 	/* Prevent links to .zfs/shares files */
3294 
3295 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3296 	    &parent, sizeof (uint64_t))) != 0) {
3297 		ZFS_EXIT(zfsvfs);
3298 		return (error);
3299 	}
3300 	if (parent == zfsvfs->z_shares_dir) {
3301 		ZFS_EXIT(zfsvfs);
3302 		return (SET_ERROR(EPERM));
3303 	}
3304 
3305 	if (zfsvfs->z_utf8 && u8_validate(name,
3306 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3307 		ZFS_EXIT(zfsvfs);
3308 		return (SET_ERROR(EILSEQ));
3309 	}
3310 	if (flags & FIGNORECASE)
3311 		zf |= ZCILOOK;
3312 
3313 	/*
3314 	 * We do not support links between attributes and non-attributes
3315 	 * because of the potential security risk of creating links
3316 	 * into "normal" file space in order to circumvent restrictions
3317 	 * imposed in attribute space.
3318 	 */
3319 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3320 		ZFS_EXIT(zfsvfs);
3321 		return (SET_ERROR(EINVAL));
3322 	}
3323 
3324 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3325 	    cr, ZFS_OWNER);
3326 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3327 		ZFS_EXIT(zfsvfs);
3328 		return (SET_ERROR(EPERM));
3329 	}
3330 
3331 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3332 		ZFS_EXIT(zfsvfs);
3333 		return (error);
3334 	}
3335 
3336 top:
3337 	/*
3338 	 * Attempt to lock directory; fail if entry already exists.
3339 	 */
3340 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3341 	if (error) {
3342 		ZFS_EXIT(zfsvfs);
3343 		return (error);
3344 	}
3345 
3346 	tx = dmu_tx_create(zfsvfs->z_os);
3347 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3348 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3349 	if (is_tmpfile)
3350 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3351 
3352 	zfs_sa_upgrade_txholds(tx, szp);
3353 	zfs_sa_upgrade_txholds(tx, tdzp);
3354 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3355 	if (error) {
3356 		zfs_dirent_unlock(dl);
3357 		if (error == ERESTART) {
3358 			waited = B_TRUE;
3359 			dmu_tx_wait(tx);
3360 			dmu_tx_abort(tx);
3361 			goto top;
3362 		}
3363 		dmu_tx_abort(tx);
3364 		ZFS_EXIT(zfsvfs);
3365 		return (error);
3366 	}
3367 	/* unmark z_unlinked so zfs_link_create will not reject */
3368 	if (is_tmpfile)
3369 		szp->z_unlinked = B_FALSE;
3370 	error = zfs_link_create(dl, szp, tx, 0);
3371 
3372 	if (error == 0) {
3373 		uint64_t txtype = TX_LINK;
3374 		/*
3375 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3376 		 * Also, we don't log in ZIL, because all previous file
3377 		 * operation on the tmpfile are ignored by ZIL. Instead we
3378 		 * always wait for txg to sync to make sure all previous
3379 		 * operation are sync safe.
3380 		 */
3381 		if (is_tmpfile) {
3382 			VERIFY(zap_remove_int(zfsvfs->z_os,
3383 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3384 		} else {
3385 			if (flags & FIGNORECASE)
3386 				txtype |= TX_CI;
3387 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3388 		}
3389 	} else if (is_tmpfile) {
3390 		/* restore z_unlinked since when linking failed */
3391 		szp->z_unlinked = B_TRUE;
3392 	}
3393 	txg = dmu_tx_get_txg(tx);
3394 	dmu_tx_commit(tx);
3395 
3396 	zfs_dirent_unlock(dl);
3397 
3398 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3399 		zil_commit(zilog, 0);
3400 
3401 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3402 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3403 
3404 	zfs_znode_update_vfs(tdzp);
3405 	zfs_znode_update_vfs(szp);
3406 	ZFS_EXIT(zfsvfs);
3407 	return (error);
3408 }
3409 
3410 static void
3411 zfs_putpage_commit_cb(void *arg)
3412 {
3413 	struct page *pp = arg;
3414 
3415 	ClearPageError(pp);
3416 	end_page_writeback(pp);
3417 }
3418 
3419 /*
3420  * Push a page out to disk, once the page is on stable storage the
3421  * registered commit callback will be run as notification of completion.
3422  *
3423  *	IN:	ip	- page mapped for inode.
3424  *		pp	- page to push (page is locked)
3425  *		wbc	- writeback control data
3426  *
3427  *	RETURN:	0 if success
3428  *		error code if failure
3429  *
3430  * Timestamps:
3431  *	ip - ctime|mtime updated
3432  */
3433 /* ARGSUSED */
3434 int
3435 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
3436 {
3437 	znode_t		*zp = ITOZ(ip);
3438 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3439 	loff_t		offset;
3440 	loff_t		pgoff;
3441 	unsigned int	pglen;
3442 	dmu_tx_t	*tx;
3443 	caddr_t		va;
3444 	int		err = 0;
3445 	uint64_t	mtime[2], ctime[2];
3446 	sa_bulk_attr_t	bulk[3];
3447 	int		cnt = 0;
3448 	struct address_space *mapping;
3449 
3450 	ZFS_ENTER(zfsvfs);
3451 	ZFS_VERIFY_ZP(zp);
3452 
3453 	ASSERT(PageLocked(pp));
3454 
3455 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3456 	offset = i_size_read(ip);	/* File length in bytes */
3457 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3458 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3459 
3460 	/* Page is beyond end of file */
3461 	if (pgoff >= offset) {
3462 		unlock_page(pp);
3463 		ZFS_EXIT(zfsvfs);
3464 		return (0);
3465 	}
3466 
3467 	/* Truncate page length to end of file */
3468 	if (pgoff + pglen > offset)
3469 		pglen = offset - pgoff;
3470 
3471 #if 0
3472 	/*
3473 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3474 	 * is to register a page_mkwrite() handler to count the page
3475 	 * against its quota when it is about to be dirtied.
3476 	 */
3477 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3478 	    KUID_TO_SUID(ip->i_uid)) ||
3479 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3480 	    KGID_TO_SGID(ip->i_gid)) ||
3481 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3482 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3483 	    zp->z_projid))) {
3484 		err = EDQUOT;
3485 	}
3486 #endif
3487 
3488 	/*
3489 	 * The ordering here is critical and must adhere to the following
3490 	 * rules in order to avoid deadlocking in either zfs_read() or
3491 	 * zfs_free_range() due to a lock inversion.
3492 	 *
3493 	 * 1) The page must be unlocked prior to acquiring the range lock.
3494 	 *    This is critical because zfs_read() calls find_lock_page()
3495 	 *    which may block on the page lock while holding the range lock.
3496 	 *
3497 	 * 2) Before setting or clearing write back on a page the range lock
3498 	 *    must be held in order to prevent a lock inversion with the
3499 	 *    zfs_free_range() function.
3500 	 *
3501 	 * This presents a problem because upon entering this function the
3502 	 * page lock is already held.  To safely acquire the range lock the
3503 	 * page lock must be dropped.  This creates a window where another
3504 	 * process could truncate, invalidate, dirty, or write out the page.
3505 	 *
3506 	 * Therefore, after successfully reacquiring the range and page locks
3507 	 * the current page state is checked.  In the common case everything
3508 	 * will be as is expected and it can be written out.  However, if
3509 	 * the page state has changed it must be handled accordingly.
3510 	 */
3511 	mapping = pp->mapping;
3512 	redirty_page_for_writepage(wbc, pp);
3513 	unlock_page(pp);
3514 
3515 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3516 	    pgoff, pglen, RL_WRITER);
3517 	lock_page(pp);
3518 
3519 	/* Page mapping changed or it was no longer dirty, we're done */
3520 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3521 		unlock_page(pp);
3522 		zfs_rangelock_exit(lr);
3523 		ZFS_EXIT(zfsvfs);
3524 		return (0);
3525 	}
3526 
3527 	/* Another process started write block if required */
3528 	if (PageWriteback(pp)) {
3529 		unlock_page(pp);
3530 		zfs_rangelock_exit(lr);
3531 
3532 		if (wbc->sync_mode != WB_SYNC_NONE) {
3533 			if (PageWriteback(pp))
3534 				wait_on_page_bit(pp, PG_writeback);
3535 		}
3536 
3537 		ZFS_EXIT(zfsvfs);
3538 		return (0);
3539 	}
3540 
3541 	/* Clear the dirty flag the required locks are held */
3542 	if (!clear_page_dirty_for_io(pp)) {
3543 		unlock_page(pp);
3544 		zfs_rangelock_exit(lr);
3545 		ZFS_EXIT(zfsvfs);
3546 		return (0);
3547 	}
3548 
3549 	/*
3550 	 * Counterpart for redirty_page_for_writepage() above.  This page
3551 	 * was in fact not skipped and should not be counted as if it were.
3552 	 */
3553 	wbc->pages_skipped--;
3554 	set_page_writeback(pp);
3555 	unlock_page(pp);
3556 
3557 	tx = dmu_tx_create(zfsvfs->z_os);
3558 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3559 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3560 	zfs_sa_upgrade_txholds(tx, zp);
3561 
3562 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3563 	if (err != 0) {
3564 		if (err == ERESTART)
3565 			dmu_tx_wait(tx);
3566 
3567 		dmu_tx_abort(tx);
3568 		__set_page_dirty_nobuffers(pp);
3569 		ClearPageError(pp);
3570 		end_page_writeback(pp);
3571 		zfs_rangelock_exit(lr);
3572 		ZFS_EXIT(zfsvfs);
3573 		return (err);
3574 	}
3575 
3576 	va = kmap(pp);
3577 	ASSERT3U(pglen, <=, PAGE_SIZE);
3578 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3579 	kunmap(pp);
3580 
3581 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3582 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3583 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3584 	    &zp->z_pflags, 8);
3585 
3586 	/* Preserve the mtime and ctime provided by the inode */
3587 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3588 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3589 	zp->z_atime_dirty = B_FALSE;
3590 	zp->z_seq++;
3591 
3592 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3593 
3594 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3595 	    zfs_putpage_commit_cb, pp);
3596 	dmu_tx_commit(tx);
3597 
3598 	zfs_rangelock_exit(lr);
3599 
3600 	if (wbc->sync_mode != WB_SYNC_NONE) {
3601 		/*
3602 		 * Note that this is rarely called under writepages(), because
3603 		 * writepages() normally handles the entire commit for
3604 		 * performance reasons.
3605 		 */
3606 		zil_commit(zfsvfs->z_log, zp->z_id);
3607 	}
3608 
3609 	ZFS_EXIT(zfsvfs);
3610 	return (err);
3611 }
3612 
3613 /*
3614  * Update the system attributes when the inode has been dirtied.  For the
3615  * moment we only update the mode, atime, mtime, and ctime.
3616  */
3617 int
3618 zfs_dirty_inode(struct inode *ip, int flags)
3619 {
3620 	znode_t		*zp = ITOZ(ip);
3621 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3622 	dmu_tx_t	*tx;
3623 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3624 	sa_bulk_attr_t	bulk[4];
3625 	int		error = 0;
3626 	int		cnt = 0;
3627 
3628 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3629 		return (0);
3630 
3631 	ZFS_ENTER(zfsvfs);
3632 	ZFS_VERIFY_ZP(zp);
3633 
3634 #ifdef I_DIRTY_TIME
3635 	/*
3636 	 * This is the lazytime semantic introduced in Linux 4.0
3637 	 * This flag will only be called from update_time when lazytime is set.
3638 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3639 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3640 	 * only need to dirty atime.
3641 	 */
3642 	if (flags == I_DIRTY_TIME) {
3643 		zp->z_atime_dirty = B_TRUE;
3644 		goto out;
3645 	}
3646 #endif
3647 
3648 	tx = dmu_tx_create(zfsvfs->z_os);
3649 
3650 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3651 	zfs_sa_upgrade_txholds(tx, zp);
3652 
3653 	error = dmu_tx_assign(tx, TXG_WAIT);
3654 	if (error) {
3655 		dmu_tx_abort(tx);
3656 		goto out;
3657 	}
3658 
3659 	mutex_enter(&zp->z_lock);
3660 	zp->z_atime_dirty = B_FALSE;
3661 
3662 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3663 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3664 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3665 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3666 
3667 	/* Preserve the mode, mtime and ctime provided by the inode */
3668 	ZFS_TIME_ENCODE(&ip->i_atime, atime);
3669 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3670 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3671 	mode = ip->i_mode;
3672 
3673 	zp->z_mode = mode;
3674 
3675 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3676 	mutex_exit(&zp->z_lock);
3677 
3678 	dmu_tx_commit(tx);
3679 out:
3680 	ZFS_EXIT(zfsvfs);
3681 	return (error);
3682 }
3683 
3684 /*ARGSUSED*/
3685 void
3686 zfs_inactive(struct inode *ip)
3687 {
3688 	znode_t	*zp = ITOZ(ip);
3689 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3690 	uint64_t atime[2];
3691 	int error;
3692 	int need_unlock = 0;
3693 
3694 	/* Only read lock if we haven't already write locked, e.g. rollback */
3695 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3696 		need_unlock = 1;
3697 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3698 	}
3699 	if (zp->z_sa_hdl == NULL) {
3700 		if (need_unlock)
3701 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3702 		return;
3703 	}
3704 
3705 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3706 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3707 
3708 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3709 		zfs_sa_upgrade_txholds(tx, zp);
3710 		error = dmu_tx_assign(tx, TXG_WAIT);
3711 		if (error) {
3712 			dmu_tx_abort(tx);
3713 		} else {
3714 			ZFS_TIME_ENCODE(&ip->i_atime, atime);
3715 			mutex_enter(&zp->z_lock);
3716 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3717 			    (void *)&atime, sizeof (atime), tx);
3718 			zp->z_atime_dirty = B_FALSE;
3719 			mutex_exit(&zp->z_lock);
3720 			dmu_tx_commit(tx);
3721 		}
3722 	}
3723 
3724 	zfs_zinactive(zp);
3725 	if (need_unlock)
3726 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3727 }
3728 
3729 /*
3730  * Fill pages with data from the disk.
3731  */
3732 static int
3733 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
3734 {
3735 	znode_t *zp = ITOZ(ip);
3736 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3737 	objset_t *os;
3738 	struct page *cur_pp;
3739 	u_offset_t io_off, total;
3740 	size_t io_len;
3741 	loff_t i_size;
3742 	unsigned page_idx;
3743 	int err;
3744 
3745 	os = zfsvfs->z_os;
3746 	io_len = nr_pages << PAGE_SHIFT;
3747 	i_size = i_size_read(ip);
3748 	io_off = page_offset(pl[0]);
3749 
3750 	if (io_off + io_len > i_size)
3751 		io_len = i_size - io_off;
3752 
3753 	/*
3754 	 * Iterate over list of pages and read each page individually.
3755 	 */
3756 	page_idx = 0;
3757 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3758 		caddr_t va;
3759 
3760 		cur_pp = pl[page_idx++];
3761 		va = kmap(cur_pp);
3762 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
3763 		    DMU_READ_PREFETCH);
3764 		kunmap(cur_pp);
3765 		if (err) {
3766 			/* convert checksum errors into IO errors */
3767 			if (err == ECKSUM)
3768 				err = SET_ERROR(EIO);
3769 			return (err);
3770 		}
3771 	}
3772 
3773 	return (0);
3774 }
3775 
3776 /*
3777  * Uses zfs_fillpage to read data from the file and fill the pages.
3778  *
3779  *	IN:	ip	 - inode of file to get data from.
3780  *		pl	 - list of pages to read
3781  *		nr_pages - number of pages to read
3782  *
3783  *	RETURN:	0 on success, error code on failure.
3784  *
3785  * Timestamps:
3786  *	vp - atime updated
3787  */
3788 /* ARGSUSED */
3789 int
3790 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
3791 {
3792 	znode_t	 *zp  = ITOZ(ip);
3793 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3794 	int	 err;
3795 
3796 	if (pl == NULL)
3797 		return (0);
3798 
3799 	ZFS_ENTER(zfsvfs);
3800 	ZFS_VERIFY_ZP(zp);
3801 
3802 	err = zfs_fillpage(ip, pl, nr_pages);
3803 
3804 	ZFS_EXIT(zfsvfs);
3805 	return (err);
3806 }
3807 
3808 /*
3809  * Check ZFS specific permissions to memory map a section of a file.
3810  *
3811  *	IN:	ip	- inode of the file to mmap
3812  *		off	- file offset
3813  *		addrp	- start address in memory region
3814  *		len	- length of memory region
3815  *		vm_flags- address flags
3816  *
3817  *	RETURN:	0 if success
3818  *		error code if failure
3819  */
3820 /*ARGSUSED*/
3821 int
3822 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
3823     unsigned long vm_flags)
3824 {
3825 	znode_t  *zp = ITOZ(ip);
3826 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3827 
3828 	ZFS_ENTER(zfsvfs);
3829 	ZFS_VERIFY_ZP(zp);
3830 
3831 	if ((vm_flags & VM_WRITE) && (zp->z_pflags &
3832 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
3833 		ZFS_EXIT(zfsvfs);
3834 		return (SET_ERROR(EPERM));
3835 	}
3836 
3837 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
3838 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
3839 		ZFS_EXIT(zfsvfs);
3840 		return (SET_ERROR(EACCES));
3841 	}
3842 
3843 	if (off < 0 || len > MAXOFFSET_T - off) {
3844 		ZFS_EXIT(zfsvfs);
3845 		return (SET_ERROR(ENXIO));
3846 	}
3847 
3848 	ZFS_EXIT(zfsvfs);
3849 	return (0);
3850 }
3851 
3852 /*
3853  * Free or allocate space in a file.  Currently, this function only
3854  * supports the `F_FREESP' command.  However, this command is somewhat
3855  * misnamed, as its functionality includes the ability to allocate as
3856  * well as free space.
3857  *
3858  *	IN:	zp	- znode of file to free data in.
3859  *		cmd	- action to take (only F_FREESP supported).
3860  *		bfp	- section of file to free/alloc.
3861  *		flag	- current file open mode flags.
3862  *		offset	- current file offset.
3863  *		cr	- credentials of caller.
3864  *
3865  *	RETURN:	0 on success, error code on failure.
3866  *
3867  * Timestamps:
3868  *	zp - ctime|mtime updated
3869  */
3870 /* ARGSUSED */
3871 int
3872 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
3873     offset_t offset, cred_t *cr)
3874 {
3875 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
3876 	uint64_t	off, len;
3877 	int		error;
3878 
3879 	ZFS_ENTER(zfsvfs);
3880 	ZFS_VERIFY_ZP(zp);
3881 
3882 	if (cmd != F_FREESP) {
3883 		ZFS_EXIT(zfsvfs);
3884 		return (SET_ERROR(EINVAL));
3885 	}
3886 
3887 	/*
3888 	 * Callers might not be able to detect properly that we are read-only,
3889 	 * so check it explicitly here.
3890 	 */
3891 	if (zfs_is_readonly(zfsvfs)) {
3892 		ZFS_EXIT(zfsvfs);
3893 		return (SET_ERROR(EROFS));
3894 	}
3895 
3896 	if (bfp->l_len < 0) {
3897 		ZFS_EXIT(zfsvfs);
3898 		return (SET_ERROR(EINVAL));
3899 	}
3900 
3901 	/*
3902 	 * Permissions aren't checked on Solaris because on this OS
3903 	 * zfs_space() can only be called with an opened file handle.
3904 	 * On Linux we can get here through truncate_range() which
3905 	 * operates directly on inodes, so we need to check access rights.
3906 	 */
3907 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
3908 		ZFS_EXIT(zfsvfs);
3909 		return (error);
3910 	}
3911 
3912 	off = bfp->l_start;
3913 	len = bfp->l_len; /* 0 means from off to end of file */
3914 
3915 	error = zfs_freesp(zp, off, len, flag, TRUE);
3916 
3917 	ZFS_EXIT(zfsvfs);
3918 	return (error);
3919 }
3920 
3921 /*ARGSUSED*/
3922 int
3923 zfs_fid(struct inode *ip, fid_t *fidp)
3924 {
3925 	znode_t		*zp = ITOZ(ip);
3926 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3927 	uint32_t	gen;
3928 	uint64_t	gen64;
3929 	uint64_t	object = zp->z_id;
3930 	zfid_short_t	*zfid;
3931 	int		size, i, error;
3932 
3933 	ZFS_ENTER(zfsvfs);
3934 
3935 	if (fidp->fid_len < SHORT_FID_LEN) {
3936 		fidp->fid_len = SHORT_FID_LEN;
3937 		ZFS_EXIT(zfsvfs);
3938 		return (SET_ERROR(ENOSPC));
3939 	}
3940 
3941 	ZFS_VERIFY_ZP(zp);
3942 
3943 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
3944 	    &gen64, sizeof (uint64_t))) != 0) {
3945 		ZFS_EXIT(zfsvfs);
3946 		return (error);
3947 	}
3948 
3949 	gen = (uint32_t)gen64;
3950 
3951 	size = SHORT_FID_LEN;
3952 
3953 	zfid = (zfid_short_t *)fidp;
3954 
3955 	zfid->zf_len = size;
3956 
3957 	for (i = 0; i < sizeof (zfid->zf_object); i++)
3958 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3959 
3960 	/* Must have a non-zero generation number to distinguish from .zfs */
3961 	if (gen == 0)
3962 		gen = 1;
3963 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
3964 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3965 
3966 	ZFS_EXIT(zfsvfs);
3967 	return (0);
3968 }
3969 
3970 #if defined(_KERNEL)
3971 EXPORT_SYMBOL(zfs_open);
3972 EXPORT_SYMBOL(zfs_close);
3973 EXPORT_SYMBOL(zfs_lookup);
3974 EXPORT_SYMBOL(zfs_create);
3975 EXPORT_SYMBOL(zfs_tmpfile);
3976 EXPORT_SYMBOL(zfs_remove);
3977 EXPORT_SYMBOL(zfs_mkdir);
3978 EXPORT_SYMBOL(zfs_rmdir);
3979 EXPORT_SYMBOL(zfs_readdir);
3980 EXPORT_SYMBOL(zfs_getattr_fast);
3981 EXPORT_SYMBOL(zfs_setattr);
3982 EXPORT_SYMBOL(zfs_rename);
3983 EXPORT_SYMBOL(zfs_symlink);
3984 EXPORT_SYMBOL(zfs_readlink);
3985 EXPORT_SYMBOL(zfs_link);
3986 EXPORT_SYMBOL(zfs_inactive);
3987 EXPORT_SYMBOL(zfs_space);
3988 EXPORT_SYMBOL(zfs_fid);
3989 EXPORT_SYMBOL(zfs_getpage);
3990 EXPORT_SYMBOL(zfs_putpage);
3991 EXPORT_SYMBOL(zfs_dirty_inode);
3992 EXPORT_SYMBOL(zfs_map);
3993 
3994 /* BEGIN CSTYLED */
3995 module_param(zfs_delete_blocks, ulong, 0644);
3996 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
3997 /* END CSTYLED */
3998 
3999 #endif
4000