1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 
73 /*
74  * Programming rules.
75  *
76  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
77  * properly lock its in-core state, create a DMU transaction, do the work,
78  * record this work in the intent log (ZIL), commit the DMU transaction,
79  * and wait for the intent log to commit if it is a synchronous operation.
80  * Moreover, the vnode ops must work in both normal and log replay context.
81  * The ordering of events is important to avoid deadlocks and references
82  * to freed memory.  The example below illustrates the following Big Rules:
83  *
84  *  (1) A check must be made in each zfs thread for a mounted file system.
85  *	This is done avoiding races using zfs_enter(zfsvfs).
86  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
87  *      must be checked with zfs_verify_zp(zp).  Both of these macros
88  *      can return EIO from the calling function.
89  *
90  *  (2) zrele() should always be the last thing except for zil_commit() (if
91  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92  *	last reference, the vnode/znode can be freed, so the zp may point to
93  *	freed memory.  Second, the last reference will call zfs_zinactive(),
94  *	which may induce a lot of work -- pushing cached pages (which acquires
95  *	range locks) and syncing out cached atime changes.  Third,
96  *	zfs_zinactive() may require a new tx, which could deadlock the system
97  *	if you were already holding one. This deadlock occurs because the tx
98  *	currently being operated on prevents a txg from syncing, which
99  *	prevents the new tx from progressing, resulting in a deadlock.  If you
100  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101  *	is a synonym for zrele().
102  *
103  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
104  *	as they can span dmu_tx_assign() calls.
105  *
106  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107  *      dmu_tx_assign().  This is critical because we don't want to block
108  *      while holding locks.
109  *
110  *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
111  *	reduces lock contention and CPU usage when we must wait (note that if
112  *	throughput is constrained by the storage, nearly every transaction
113  *	must wait).
114  *
115  *      Note, in particular, that if a lock is sometimes acquired before
116  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
117  *      to use a non-blocking assign can deadlock the system.  The scenario:
118  *
119  *	Thread A has grabbed a lock before calling dmu_tx_assign().
120  *	Thread B is in an already-assigned tx, and blocks for this lock.
121  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122  *	forever, because the previous txg can't quiesce until B's tx commits.
123  *
124  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
126  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127  *	to indicate that this operation has already called dmu_tx_wait().
128  *	This will ensure that we don't retry forever, waiting a short bit
129  *	each time.
130  *
131  *  (5)	If the operation succeeded, generate the intent log entry for it
132  *	before dropping locks.  This ensures that the ordering of events
133  *	in the intent log matches the order in which they actually occurred.
134  *	During ZIL replay the zfs_log_* functions will update the sequence
135  *	number to indicate the zil transaction has replayed.
136  *
137  *  (6)	At the end of each vnode op, the DMU tx must always commit,
138  *	regardless of whether there were any errors.
139  *
140  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
141  *	to ensure that synchronous semantics are provided when necessary.
142  *
143  * In general, this is how things should be ordered in each vnode op:
144  *
145  *	zfs_enter(zfsvfs);		// exit if unmounted
146  * top:
147  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
148  *	rw_enter(...);			// grab any other locks you need
149  *	tx = dmu_tx_create(...);	// get DMU tx
150  *	dmu_tx_hold_*();		// hold each object you might modify
151  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152  *	if (error) {
153  *		rw_exit(...);		// drop locks
154  *		zfs_dirent_unlock(dl);	// unlock directory entry
155  *		zrele(...);		// release held znodes
156  *		if (error == ERESTART) {
157  *			waited = B_TRUE;
158  *			dmu_tx_wait(tx);
159  *			dmu_tx_abort(tx);
160  *			goto top;
161  *		}
162  *		dmu_tx_abort(tx);	// abort DMU tx
163  *		zfs_exit(zfsvfs);	// finished in zfs
164  *		return (error);		// really out of space
165  *	}
166  *	error = do_real_work();		// do whatever this VOP does
167  *	if (error == 0)
168  *		zfs_log_*(...);		// on success, make ZIL entry
169  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
170  *	rw_exit(...);			// drop locks
171  *	zfs_dirent_unlock(dl);		// unlock directory entry
172  *	zrele(...);			// release held znodes
173  *	zil_commit(zilog, foid);	// synchronous when necessary
174  *	zfs_exit(zfsvfs);		// finished in zfs
175  *	return (error);			// done, report error
176  */
177 int
178 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
179 {
180 	(void) cr;
181 	znode_t	*zp = ITOZ(ip);
182 	zfsvfs_t *zfsvfs = ITOZSB(ip);
183 	int error;
184 
185 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186 		return (error);
187 
188 	/* Honor ZFS_APPENDONLY file attribute */
189 	if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 	    ((flag & O_APPEND) == 0)) {
191 		zfs_exit(zfsvfs, FTAG);
192 		return (SET_ERROR(EPERM));
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & O_SYNC)
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	zfs_exit(zfsvfs, FTAG);
200 	return (0);
201 }
202 
203 int
204 zfs_close(struct inode *ip, int flag, cred_t *cr)
205 {
206 	(void) cr;
207 	znode_t	*zp = ITOZ(ip);
208 	zfsvfs_t *zfsvfs = ITOZSB(ip);
209 	int error;
210 
211 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 		return (error);
213 
214 	/* Decrement the synchronous opens in the znode */
215 	if (flag & O_SYNC)
216 		atomic_dec_32(&zp->z_sync_cnt);
217 
218 	zfs_exit(zfsvfs, FTAG);
219 	return (0);
220 }
221 
222 #if defined(_KERNEL)
223 
224 static int zfs_fillpage(struct inode *ip, struct page *pp);
225 
226 /*
227  * When a file is memory mapped, we must keep the IO data synchronized
228  * between the DMU cache and the memory mapped pages.  Update all mapped
229  * pages with the contents of the coresponding dmu buffer.
230  */
231 void
232 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
233 {
234 	struct address_space *mp = ZTOI(zp)->i_mapping;
235 	int64_t off = start & (PAGE_SIZE - 1);
236 
237 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
238 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
239 
240 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
241 		if (pp) {
242 			if (mapping_writably_mapped(mp))
243 				flush_dcache_page(pp);
244 
245 			void *pb = kmap(pp);
246 			int error = dmu_read(os, zp->z_id, start + off,
247 			    nbytes, pb + off, DMU_READ_PREFETCH);
248 			kunmap(pp);
249 
250 			if (error) {
251 				SetPageError(pp);
252 				ClearPageUptodate(pp);
253 			} else {
254 				ClearPageError(pp);
255 				SetPageUptodate(pp);
256 
257 				if (mapping_writably_mapped(mp))
258 					flush_dcache_page(pp);
259 
260 				mark_page_accessed(pp);
261 			}
262 
263 			unlock_page(pp);
264 			put_page(pp);
265 		}
266 
267 		len -= nbytes;
268 		off = 0;
269 	}
270 }
271 
272 /*
273  * When a file is memory mapped, we must keep the I/O data synchronized
274  * between the DMU cache and the memory mapped pages.  Preferentially read
275  * from memory mapped pages, otherwise fallback to reading through the dmu.
276  */
277 int
278 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
279 {
280 	struct inode *ip = ZTOI(zp);
281 	struct address_space *mp = ip->i_mapping;
282 	int64_t start = uio->uio_loffset;
283 	int64_t off = start & (PAGE_SIZE - 1);
284 	int len = nbytes;
285 	int error = 0;
286 
287 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
288 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
289 
290 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
291 		if (pp) {
292 			/*
293 			 * If filemap_fault() retries there exists a window
294 			 * where the page will be unlocked and not up to date.
295 			 * In this case we must try and fill the page.
296 			 */
297 			if (unlikely(!PageUptodate(pp))) {
298 				error = zfs_fillpage(ip, pp);
299 				if (error) {
300 					unlock_page(pp);
301 					put_page(pp);
302 					return (error);
303 				}
304 			}
305 
306 			ASSERT(PageUptodate(pp) || PageDirty(pp));
307 
308 			unlock_page(pp);
309 
310 			void *pb = kmap(pp);
311 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
312 			kunmap(pp);
313 
314 			if (mapping_writably_mapped(mp))
315 				flush_dcache_page(pp);
316 
317 			mark_page_accessed(pp);
318 			put_page(pp);
319 		} else {
320 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
321 			    uio, bytes);
322 		}
323 
324 		len -= bytes;
325 		off = 0;
326 
327 		if (error)
328 			break;
329 	}
330 
331 	return (error);
332 }
333 #endif /* _KERNEL */
334 
335 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
336 
337 /*
338  * Write the bytes to a file.
339  *
340  *	IN:	zp	- znode of file to be written to
341  *		data	- bytes to write
342  *		len	- number of bytes to write
343  *		pos	- offset to start writing at
344  *
345  *	OUT:	resid	- remaining bytes to write
346  *
347  *	RETURN:	0 if success
348  *		positive error code if failure.  EIO is	returned
349  *		for a short write when residp isn't provided.
350  *
351  * Timestamps:
352  *	zp - ctime|mtime updated if byte count > 0
353  */
354 int
355 zfs_write_simple(znode_t *zp, const void *data, size_t len,
356     loff_t pos, size_t *residp)
357 {
358 	fstrans_cookie_t cookie;
359 	int error;
360 
361 	struct iovec iov;
362 	iov.iov_base = (void *)data;
363 	iov.iov_len = len;
364 
365 	zfs_uio_t uio;
366 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
367 
368 	cookie = spl_fstrans_mark();
369 	error = zfs_write(zp, &uio, 0, kcred);
370 	spl_fstrans_unmark(cookie);
371 
372 	if (error == 0) {
373 		if (residp != NULL)
374 			*residp = zfs_uio_resid(&uio);
375 		else if (zfs_uio_resid(&uio) != 0)
376 			error = SET_ERROR(EIO);
377 	}
378 
379 	return (error);
380 }
381 
382 static void
383 zfs_rele_async_task(void *arg)
384 {
385 	iput(arg);
386 }
387 
388 void
389 zfs_zrele_async(znode_t *zp)
390 {
391 	struct inode *ip = ZTOI(zp);
392 	objset_t *os = ITOZSB(ip)->z_os;
393 
394 	ASSERT(atomic_read(&ip->i_count) > 0);
395 	ASSERT(os != NULL);
396 
397 	/*
398 	 * If decrementing the count would put us at 0, we can't do it inline
399 	 * here, because that would be synchronous. Instead, dispatch an iput
400 	 * to run later.
401 	 *
402 	 * For more information on the dangers of a synchronous iput, see the
403 	 * header comment of this file.
404 	 */
405 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
406 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
407 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
408 	}
409 }
410 
411 
412 /*
413  * Lookup an entry in a directory, or an extended attribute directory.
414  * If it exists, return a held inode reference for it.
415  *
416  *	IN:	zdp	- znode of directory to search.
417  *		nm	- name of entry to lookup.
418  *		flags	- LOOKUP_XATTR set if looking for an attribute.
419  *		cr	- credentials of caller.
420  *		direntflags - directory lookup flags
421  *		realpnp - returned pathname.
422  *
423  *	OUT:	zpp	- znode of located entry, NULL if not found.
424  *
425  *	RETURN:	0 on success, error code on failure.
426  *
427  * Timestamps:
428  *	NA
429  */
430 int
431 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
432     int *direntflags, pathname_t *realpnp)
433 {
434 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
435 	int error = 0;
436 
437 	/*
438 	 * Fast path lookup, however we must skip DNLC lookup
439 	 * for case folding or normalizing lookups because the
440 	 * DNLC code only stores the passed in name.  This means
441 	 * creating 'a' and removing 'A' on a case insensitive
442 	 * file system would work, but DNLC still thinks 'a'
443 	 * exists and won't let you create it again on the next
444 	 * pass through fast path.
445 	 */
446 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
447 
448 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
449 			return (SET_ERROR(ENOTDIR));
450 		} else if (zdp->z_sa_hdl == NULL) {
451 			return (SET_ERROR(EIO));
452 		}
453 
454 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
455 			error = zfs_fastaccesschk_execute(zdp, cr);
456 			if (!error) {
457 				*zpp = zdp;
458 				zhold(*zpp);
459 				return (0);
460 			}
461 			return (error);
462 		}
463 	}
464 
465 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
466 		return (error);
467 
468 	*zpp = NULL;
469 
470 	if (flags & LOOKUP_XATTR) {
471 		/*
472 		 * We don't allow recursive attributes..
473 		 * Maybe someday we will.
474 		 */
475 		if (zdp->z_pflags & ZFS_XATTR) {
476 			zfs_exit(zfsvfs, FTAG);
477 			return (SET_ERROR(EINVAL));
478 		}
479 
480 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
481 			zfs_exit(zfsvfs, FTAG);
482 			return (error);
483 		}
484 
485 		/*
486 		 * Do we have permission to get into attribute directory?
487 		 */
488 
489 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
490 		    B_TRUE, cr, zfs_init_idmap))) {
491 			zrele(*zpp);
492 			*zpp = NULL;
493 		}
494 
495 		zfs_exit(zfsvfs, FTAG);
496 		return (error);
497 	}
498 
499 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
500 		zfs_exit(zfsvfs, FTAG);
501 		return (SET_ERROR(ENOTDIR));
502 	}
503 
504 	/*
505 	 * Check accessibility of directory.
506 	 */
507 
508 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
509 	    zfs_init_idmap))) {
510 		zfs_exit(zfsvfs, FTAG);
511 		return (error);
512 	}
513 
514 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
515 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
516 		zfs_exit(zfsvfs, FTAG);
517 		return (SET_ERROR(EILSEQ));
518 	}
519 
520 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
521 	if ((error == 0) && (*zpp))
522 		zfs_znode_update_vfs(*zpp);
523 
524 	zfs_exit(zfsvfs, FTAG);
525 	return (error);
526 }
527 
528 /*
529  * Attempt to create a new entry in a directory.  If the entry
530  * already exists, truncate the file if permissible, else return
531  * an error.  Return the ip of the created or trunc'd file.
532  *
533  *	IN:	dzp	- znode of directory to put new file entry in.
534  *		name	- name of new file entry.
535  *		vap	- attributes of new file.
536  *		excl	- flag indicating exclusive or non-exclusive mode.
537  *		mode	- mode to open file with.
538  *		cr	- credentials of caller.
539  *		flag	- file flag.
540  *		vsecp	- ACL to be set
541  *		mnt_ns	- user namespace of the mount
542  *
543  *	OUT:	zpp	- znode of created or trunc'd entry.
544  *
545  *	RETURN:	0 on success, error code on failure.
546  *
547  * Timestamps:
548  *	dzp - ctime|mtime updated if new entry created
549  *	 zp - ctime|mtime always, atime if new
550  */
551 int
552 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
553     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
554     zidmap_t *mnt_ns)
555 {
556 	znode_t		*zp;
557 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
558 	zilog_t		*zilog;
559 	objset_t	*os;
560 	zfs_dirlock_t	*dl;
561 	dmu_tx_t	*tx;
562 	int		error;
563 	uid_t		uid;
564 	gid_t		gid;
565 	zfs_acl_ids_t   acl_ids;
566 	boolean_t	fuid_dirtied;
567 	boolean_t	have_acl = B_FALSE;
568 	boolean_t	waited = B_FALSE;
569 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
570 
571 	/*
572 	 * If we have an ephemeral id, ACL, or XVATTR then
573 	 * make sure file system is at proper version
574 	 */
575 
576 	gid = crgetgid(cr);
577 	uid = crgetuid(cr);
578 
579 	if (zfsvfs->z_use_fuids == B_FALSE &&
580 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
581 		return (SET_ERROR(EINVAL));
582 
583 	if (name == NULL)
584 		return (SET_ERROR(EINVAL));
585 
586 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
587 		return (error);
588 	os = zfsvfs->z_os;
589 	zilog = zfsvfs->z_log;
590 
591 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
592 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
593 		zfs_exit(zfsvfs, FTAG);
594 		return (SET_ERROR(EILSEQ));
595 	}
596 
597 	if (vap->va_mask & ATTR_XVATTR) {
598 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
599 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
600 			zfs_exit(zfsvfs, FTAG);
601 			return (error);
602 		}
603 	}
604 
605 top:
606 	*zpp = NULL;
607 	if (*name == '\0') {
608 		/*
609 		 * Null component name refers to the directory itself.
610 		 */
611 		zhold(dzp);
612 		zp = dzp;
613 		dl = NULL;
614 		error = 0;
615 	} else {
616 		/* possible igrab(zp) */
617 		int zflg = 0;
618 
619 		if (flag & FIGNORECASE)
620 			zflg |= ZCILOOK;
621 
622 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
623 		    NULL, NULL);
624 		if (error) {
625 			if (have_acl)
626 				zfs_acl_ids_free(&acl_ids);
627 			if (strcmp(name, "..") == 0)
628 				error = SET_ERROR(EISDIR);
629 			zfs_exit(zfsvfs, FTAG);
630 			return (error);
631 		}
632 	}
633 
634 	if (zp == NULL) {
635 		uint64_t txtype;
636 		uint64_t projid = ZFS_DEFAULT_PROJID;
637 
638 		/*
639 		 * Create a new file object and update the directory
640 		 * to reference it.
641 		 */
642 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
643 		    mnt_ns))) {
644 			if (have_acl)
645 				zfs_acl_ids_free(&acl_ids);
646 			goto out;
647 		}
648 
649 		/*
650 		 * We only support the creation of regular files in
651 		 * extended attribute directories.
652 		 */
653 
654 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
655 			if (have_acl)
656 				zfs_acl_ids_free(&acl_ids);
657 			error = SET_ERROR(EINVAL);
658 			goto out;
659 		}
660 
661 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
662 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
663 			goto out;
664 		have_acl = B_TRUE;
665 
666 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
667 			projid = zfs_inherit_projid(dzp);
668 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
669 			zfs_acl_ids_free(&acl_ids);
670 			error = SET_ERROR(EDQUOT);
671 			goto out;
672 		}
673 
674 		tx = dmu_tx_create(os);
675 
676 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
677 		    ZFS_SA_BASE_ATTR_SIZE);
678 
679 		fuid_dirtied = zfsvfs->z_fuid_dirty;
680 		if (fuid_dirtied)
681 			zfs_fuid_txhold(zfsvfs, tx);
682 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
683 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
684 		if (!zfsvfs->z_use_sa &&
685 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
686 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
687 			    0, acl_ids.z_aclp->z_acl_bytes);
688 		}
689 
690 		error = dmu_tx_assign(tx,
691 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
692 		if (error) {
693 			zfs_dirent_unlock(dl);
694 			if (error == ERESTART) {
695 				waited = B_TRUE;
696 				dmu_tx_wait(tx);
697 				dmu_tx_abort(tx);
698 				goto top;
699 			}
700 			zfs_acl_ids_free(&acl_ids);
701 			dmu_tx_abort(tx);
702 			zfs_exit(zfsvfs, FTAG);
703 			return (error);
704 		}
705 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
706 
707 		error = zfs_link_create(dl, zp, tx, ZNEW);
708 		if (error != 0) {
709 			/*
710 			 * Since, we failed to add the directory entry for it,
711 			 * delete the newly created dnode.
712 			 */
713 			zfs_znode_delete(zp, tx);
714 			remove_inode_hash(ZTOI(zp));
715 			zfs_acl_ids_free(&acl_ids);
716 			dmu_tx_commit(tx);
717 			goto out;
718 		}
719 
720 		if (fuid_dirtied)
721 			zfs_fuid_sync(zfsvfs, tx);
722 
723 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
724 		if (flag & FIGNORECASE)
725 			txtype |= TX_CI;
726 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
727 		    vsecp, acl_ids.z_fuidp, vap);
728 		zfs_acl_ids_free(&acl_ids);
729 		dmu_tx_commit(tx);
730 	} else {
731 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
732 
733 		if (have_acl)
734 			zfs_acl_ids_free(&acl_ids);
735 
736 		/*
737 		 * A directory entry already exists for this name.
738 		 */
739 		/*
740 		 * Can't truncate an existing file if in exclusive mode.
741 		 */
742 		if (excl) {
743 			error = SET_ERROR(EEXIST);
744 			goto out;
745 		}
746 		/*
747 		 * Can't open a directory for writing.
748 		 */
749 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
750 			error = SET_ERROR(EISDIR);
751 			goto out;
752 		}
753 		/*
754 		 * Verify requested access to file.
755 		 */
756 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
757 		    mnt_ns))) {
758 			goto out;
759 		}
760 
761 		mutex_enter(&dzp->z_lock);
762 		dzp->z_seq++;
763 		mutex_exit(&dzp->z_lock);
764 
765 		/*
766 		 * Truncate regular files if requested.
767 		 */
768 		if (S_ISREG(ZTOI(zp)->i_mode) &&
769 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
770 			/* we can't hold any locks when calling zfs_freesp() */
771 			if (dl) {
772 				zfs_dirent_unlock(dl);
773 				dl = NULL;
774 			}
775 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
776 		}
777 	}
778 out:
779 
780 	if (dl)
781 		zfs_dirent_unlock(dl);
782 
783 	if (error) {
784 		if (zp)
785 			zrele(zp);
786 	} else {
787 		zfs_znode_update_vfs(dzp);
788 		zfs_znode_update_vfs(zp);
789 		*zpp = zp;
790 	}
791 
792 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
793 		zil_commit(zilog, 0);
794 
795 	zfs_exit(zfsvfs, FTAG);
796 	return (error);
797 }
798 
799 int
800 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
801     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
802     zidmap_t *mnt_ns)
803 {
804 	(void) excl, (void) mode, (void) flag;
805 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
806 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
807 	objset_t	*os;
808 	dmu_tx_t	*tx;
809 	int		error;
810 	uid_t		uid;
811 	gid_t		gid;
812 	zfs_acl_ids_t   acl_ids;
813 	uint64_t	projid = ZFS_DEFAULT_PROJID;
814 	boolean_t	fuid_dirtied;
815 	boolean_t	have_acl = B_FALSE;
816 	boolean_t	waited = B_FALSE;
817 
818 	/*
819 	 * If we have an ephemeral id, ACL, or XVATTR then
820 	 * make sure file system is at proper version
821 	 */
822 
823 	gid = crgetgid(cr);
824 	uid = crgetuid(cr);
825 
826 	if (zfsvfs->z_use_fuids == B_FALSE &&
827 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
828 		return (SET_ERROR(EINVAL));
829 
830 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
831 		return (error);
832 	os = zfsvfs->z_os;
833 
834 	if (vap->va_mask & ATTR_XVATTR) {
835 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
836 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
837 			zfs_exit(zfsvfs, FTAG);
838 			return (error);
839 		}
840 	}
841 
842 top:
843 	*ipp = NULL;
844 
845 	/*
846 	 * Create a new file object and update the directory
847 	 * to reference it.
848 	 */
849 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
850 		if (have_acl)
851 			zfs_acl_ids_free(&acl_ids);
852 		goto out;
853 	}
854 
855 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
856 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
857 		goto out;
858 	have_acl = B_TRUE;
859 
860 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
861 		projid = zfs_inherit_projid(dzp);
862 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
863 		zfs_acl_ids_free(&acl_ids);
864 		error = SET_ERROR(EDQUOT);
865 		goto out;
866 	}
867 
868 	tx = dmu_tx_create(os);
869 
870 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
871 	    ZFS_SA_BASE_ATTR_SIZE);
872 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
873 
874 	fuid_dirtied = zfsvfs->z_fuid_dirty;
875 	if (fuid_dirtied)
876 		zfs_fuid_txhold(zfsvfs, tx);
877 	if (!zfsvfs->z_use_sa &&
878 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
879 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
880 		    0, acl_ids.z_aclp->z_acl_bytes);
881 	}
882 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
883 	if (error) {
884 		if (error == ERESTART) {
885 			waited = B_TRUE;
886 			dmu_tx_wait(tx);
887 			dmu_tx_abort(tx);
888 			goto top;
889 		}
890 		zfs_acl_ids_free(&acl_ids);
891 		dmu_tx_abort(tx);
892 		zfs_exit(zfsvfs, FTAG);
893 		return (error);
894 	}
895 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
896 
897 	if (fuid_dirtied)
898 		zfs_fuid_sync(zfsvfs, tx);
899 
900 	/* Add to unlinked set */
901 	zp->z_unlinked = B_TRUE;
902 	zfs_unlinked_add(zp, tx);
903 	zfs_acl_ids_free(&acl_ids);
904 	dmu_tx_commit(tx);
905 out:
906 
907 	if (error) {
908 		if (zp)
909 			zrele(zp);
910 	} else {
911 		zfs_znode_update_vfs(dzp);
912 		zfs_znode_update_vfs(zp);
913 		*ipp = ZTOI(zp);
914 	}
915 
916 	zfs_exit(zfsvfs, FTAG);
917 	return (error);
918 }
919 
920 /*
921  * Remove an entry from a directory.
922  *
923  *	IN:	dzp	- znode of directory to remove entry from.
924  *		name	- name of entry to remove.
925  *		cr	- credentials of caller.
926  *		flags	- case flags.
927  *
928  *	RETURN:	0 if success
929  *		error code if failure
930  *
931  * Timestamps:
932  *	dzp - ctime|mtime
933  *	 ip - ctime (if nlink > 0)
934  */
935 
936 static uint64_t null_xattr = 0;
937 
938 int
939 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
940 {
941 	znode_t		*zp;
942 	znode_t		*xzp;
943 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
944 	zilog_t		*zilog;
945 	uint64_t	acl_obj, xattr_obj;
946 	uint64_t	xattr_obj_unlinked = 0;
947 	uint64_t	obj = 0;
948 	uint64_t	links;
949 	zfs_dirlock_t	*dl;
950 	dmu_tx_t	*tx;
951 	boolean_t	may_delete_now, delete_now = FALSE;
952 	boolean_t	unlinked, toobig = FALSE;
953 	uint64_t	txtype;
954 	pathname_t	*realnmp = NULL;
955 	pathname_t	realnm;
956 	int		error;
957 	int		zflg = ZEXISTS;
958 	boolean_t	waited = B_FALSE;
959 
960 	if (name == NULL)
961 		return (SET_ERROR(EINVAL));
962 
963 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
964 		return (error);
965 	zilog = zfsvfs->z_log;
966 
967 	if (flags & FIGNORECASE) {
968 		zflg |= ZCILOOK;
969 		pn_alloc(&realnm);
970 		realnmp = &realnm;
971 	}
972 
973 top:
974 	xattr_obj = 0;
975 	xzp = NULL;
976 	/*
977 	 * Attempt to lock directory; fail if entry doesn't exist.
978 	 */
979 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
980 	    NULL, realnmp))) {
981 		if (realnmp)
982 			pn_free(realnmp);
983 		zfs_exit(zfsvfs, FTAG);
984 		return (error);
985 	}
986 
987 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
988 		goto out;
989 	}
990 
991 	/*
992 	 * Need to use rmdir for removing directories.
993 	 */
994 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
995 		error = SET_ERROR(EPERM);
996 		goto out;
997 	}
998 
999 	mutex_enter(&zp->z_lock);
1000 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1001 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1002 	mutex_exit(&zp->z_lock);
1003 
1004 	/*
1005 	 * We may delete the znode now, or we may put it in the unlinked set;
1006 	 * it depends on whether we're the last link, and on whether there are
1007 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1008 	 * allow for either case.
1009 	 */
1010 	obj = zp->z_id;
1011 	tx = dmu_tx_create(zfsvfs->z_os);
1012 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1013 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1014 	zfs_sa_upgrade_txholds(tx, zp);
1015 	zfs_sa_upgrade_txholds(tx, dzp);
1016 	if (may_delete_now) {
1017 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1018 		/* if the file is too big, only hold_free a token amount */
1019 		dmu_tx_hold_free(tx, zp->z_id, 0,
1020 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1021 	}
1022 
1023 	/* are there any extended attributes? */
1024 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1025 	    &xattr_obj, sizeof (xattr_obj));
1026 	if (error == 0 && xattr_obj) {
1027 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1028 		ASSERT0(error);
1029 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1030 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1031 	}
1032 
1033 	mutex_enter(&zp->z_lock);
1034 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1035 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1036 	mutex_exit(&zp->z_lock);
1037 
1038 	/* charge as an update -- would be nice not to charge at all */
1039 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1040 
1041 	/*
1042 	 * Mark this transaction as typically resulting in a net free of space
1043 	 */
1044 	dmu_tx_mark_netfree(tx);
1045 
1046 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1047 	if (error) {
1048 		zfs_dirent_unlock(dl);
1049 		if (error == ERESTART) {
1050 			waited = B_TRUE;
1051 			dmu_tx_wait(tx);
1052 			dmu_tx_abort(tx);
1053 			zrele(zp);
1054 			if (xzp)
1055 				zrele(xzp);
1056 			goto top;
1057 		}
1058 		if (realnmp)
1059 			pn_free(realnmp);
1060 		dmu_tx_abort(tx);
1061 		zrele(zp);
1062 		if (xzp)
1063 			zrele(xzp);
1064 		zfs_exit(zfsvfs, FTAG);
1065 		return (error);
1066 	}
1067 
1068 	/*
1069 	 * Remove the directory entry.
1070 	 */
1071 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1072 
1073 	if (error) {
1074 		dmu_tx_commit(tx);
1075 		goto out;
1076 	}
1077 
1078 	if (unlinked) {
1079 		/*
1080 		 * Hold z_lock so that we can make sure that the ACL obj
1081 		 * hasn't changed.  Could have been deleted due to
1082 		 * zfs_sa_upgrade().
1083 		 */
1084 		mutex_enter(&zp->z_lock);
1085 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1086 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1087 		delete_now = may_delete_now && !toobig &&
1088 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1089 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1090 		    xattr_obj == xattr_obj_unlinked &&
1091 		    zfs_external_acl(zp) == acl_obj;
1092 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1093 	}
1094 
1095 	if (delete_now) {
1096 		if (xattr_obj_unlinked) {
1097 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1098 			mutex_enter(&xzp->z_lock);
1099 			xzp->z_unlinked = B_TRUE;
1100 			clear_nlink(ZTOI(xzp));
1101 			links = 0;
1102 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1103 			    &links, sizeof (links), tx);
1104 			ASSERT3U(error,  ==,  0);
1105 			mutex_exit(&xzp->z_lock);
1106 			zfs_unlinked_add(xzp, tx);
1107 
1108 			if (zp->z_is_sa)
1109 				error = sa_remove(zp->z_sa_hdl,
1110 				    SA_ZPL_XATTR(zfsvfs), tx);
1111 			else
1112 				error = sa_update(zp->z_sa_hdl,
1113 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1114 				    sizeof (uint64_t), tx);
1115 			ASSERT0(error);
1116 		}
1117 		/*
1118 		 * Add to the unlinked set because a new reference could be
1119 		 * taken concurrently resulting in a deferred destruction.
1120 		 */
1121 		zfs_unlinked_add(zp, tx);
1122 		mutex_exit(&zp->z_lock);
1123 	} else if (unlinked) {
1124 		mutex_exit(&zp->z_lock);
1125 		zfs_unlinked_add(zp, tx);
1126 	}
1127 
1128 	txtype = TX_REMOVE;
1129 	if (flags & FIGNORECASE)
1130 		txtype |= TX_CI;
1131 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1132 
1133 	dmu_tx_commit(tx);
1134 out:
1135 	if (realnmp)
1136 		pn_free(realnmp);
1137 
1138 	zfs_dirent_unlock(dl);
1139 	zfs_znode_update_vfs(dzp);
1140 	zfs_znode_update_vfs(zp);
1141 
1142 	if (delete_now)
1143 		zrele(zp);
1144 	else
1145 		zfs_zrele_async(zp);
1146 
1147 	if (xzp) {
1148 		zfs_znode_update_vfs(xzp);
1149 		zfs_zrele_async(xzp);
1150 	}
1151 
1152 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1153 		zil_commit(zilog, 0);
1154 
1155 	zfs_exit(zfsvfs, FTAG);
1156 	return (error);
1157 }
1158 
1159 /*
1160  * Create a new directory and insert it into dzp using the name
1161  * provided.  Return a pointer to the inserted directory.
1162  *
1163  *	IN:	dzp	- znode of directory to add subdir to.
1164  *		dirname	- name of new directory.
1165  *		vap	- attributes of new directory.
1166  *		cr	- credentials of caller.
1167  *		flags	- case flags.
1168  *		vsecp	- ACL to be set
1169  *		mnt_ns	- user namespace of the mount
1170  *
1171  *	OUT:	zpp	- znode of created directory.
1172  *
1173  *	RETURN:	0 if success
1174  *		error code if failure
1175  *
1176  * Timestamps:
1177  *	dzp - ctime|mtime updated
1178  *	zpp - ctime|mtime|atime updated
1179  */
1180 int
1181 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1182     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1183 {
1184 	znode_t		*zp;
1185 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1186 	zilog_t		*zilog;
1187 	zfs_dirlock_t	*dl;
1188 	uint64_t	txtype;
1189 	dmu_tx_t	*tx;
1190 	int		error;
1191 	int		zf = ZNEW;
1192 	uid_t		uid;
1193 	gid_t		gid = crgetgid(cr);
1194 	zfs_acl_ids_t   acl_ids;
1195 	boolean_t	fuid_dirtied;
1196 	boolean_t	waited = B_FALSE;
1197 
1198 	ASSERT(S_ISDIR(vap->va_mode));
1199 
1200 	/*
1201 	 * If we have an ephemeral id, ACL, or XVATTR then
1202 	 * make sure file system is at proper version
1203 	 */
1204 
1205 	uid = crgetuid(cr);
1206 	if (zfsvfs->z_use_fuids == B_FALSE &&
1207 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1208 		return (SET_ERROR(EINVAL));
1209 
1210 	if (dirname == NULL)
1211 		return (SET_ERROR(EINVAL));
1212 
1213 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1214 		return (error);
1215 	zilog = zfsvfs->z_log;
1216 
1217 	if (dzp->z_pflags & ZFS_XATTR) {
1218 		zfs_exit(zfsvfs, FTAG);
1219 		return (SET_ERROR(EINVAL));
1220 	}
1221 
1222 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1223 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1224 		zfs_exit(zfsvfs, FTAG);
1225 		return (SET_ERROR(EILSEQ));
1226 	}
1227 	if (flags & FIGNORECASE)
1228 		zf |= ZCILOOK;
1229 
1230 	if (vap->va_mask & ATTR_XVATTR) {
1231 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1232 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1233 			zfs_exit(zfsvfs, FTAG);
1234 			return (error);
1235 		}
1236 	}
1237 
1238 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1239 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1240 		zfs_exit(zfsvfs, FTAG);
1241 		return (error);
1242 	}
1243 	/*
1244 	 * First make sure the new directory doesn't exist.
1245 	 *
1246 	 * Existence is checked first to make sure we don't return
1247 	 * EACCES instead of EEXIST which can cause some applications
1248 	 * to fail.
1249 	 */
1250 top:
1251 	*zpp = NULL;
1252 
1253 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1254 	    NULL, NULL))) {
1255 		zfs_acl_ids_free(&acl_ids);
1256 		zfs_exit(zfsvfs, FTAG);
1257 		return (error);
1258 	}
1259 
1260 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1261 	    mnt_ns))) {
1262 		zfs_acl_ids_free(&acl_ids);
1263 		zfs_dirent_unlock(dl);
1264 		zfs_exit(zfsvfs, FTAG);
1265 		return (error);
1266 	}
1267 
1268 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1269 		zfs_acl_ids_free(&acl_ids);
1270 		zfs_dirent_unlock(dl);
1271 		zfs_exit(zfsvfs, FTAG);
1272 		return (SET_ERROR(EDQUOT));
1273 	}
1274 
1275 	/*
1276 	 * Add a new entry to the directory.
1277 	 */
1278 	tx = dmu_tx_create(zfsvfs->z_os);
1279 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1280 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1281 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1282 	if (fuid_dirtied)
1283 		zfs_fuid_txhold(zfsvfs, tx);
1284 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1285 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1286 		    acl_ids.z_aclp->z_acl_bytes);
1287 	}
1288 
1289 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1290 	    ZFS_SA_BASE_ATTR_SIZE);
1291 
1292 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1293 	if (error) {
1294 		zfs_dirent_unlock(dl);
1295 		if (error == ERESTART) {
1296 			waited = B_TRUE;
1297 			dmu_tx_wait(tx);
1298 			dmu_tx_abort(tx);
1299 			goto top;
1300 		}
1301 		zfs_acl_ids_free(&acl_ids);
1302 		dmu_tx_abort(tx);
1303 		zfs_exit(zfsvfs, FTAG);
1304 		return (error);
1305 	}
1306 
1307 	/*
1308 	 * Create new node.
1309 	 */
1310 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1311 
1312 	/*
1313 	 * Now put new name in parent dir.
1314 	 */
1315 	error = zfs_link_create(dl, zp, tx, ZNEW);
1316 	if (error != 0) {
1317 		zfs_znode_delete(zp, tx);
1318 		remove_inode_hash(ZTOI(zp));
1319 		goto out;
1320 	}
1321 
1322 	if (fuid_dirtied)
1323 		zfs_fuid_sync(zfsvfs, tx);
1324 
1325 	*zpp = zp;
1326 
1327 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1328 	if (flags & FIGNORECASE)
1329 		txtype |= TX_CI;
1330 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1331 	    acl_ids.z_fuidp, vap);
1332 
1333 out:
1334 	zfs_acl_ids_free(&acl_ids);
1335 
1336 	dmu_tx_commit(tx);
1337 
1338 	zfs_dirent_unlock(dl);
1339 
1340 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1341 		zil_commit(zilog, 0);
1342 
1343 	if (error != 0) {
1344 		zrele(zp);
1345 	} else {
1346 		zfs_znode_update_vfs(dzp);
1347 		zfs_znode_update_vfs(zp);
1348 	}
1349 	zfs_exit(zfsvfs, FTAG);
1350 	return (error);
1351 }
1352 
1353 /*
1354  * Remove a directory subdir entry.  If the current working
1355  * directory is the same as the subdir to be removed, the
1356  * remove will fail.
1357  *
1358  *	IN:	dzp	- znode of directory to remove from.
1359  *		name	- name of directory to be removed.
1360  *		cwd	- inode of current working directory.
1361  *		cr	- credentials of caller.
1362  *		flags	- case flags
1363  *
1364  *	RETURN:	0 on success, error code on failure.
1365  *
1366  * Timestamps:
1367  *	dzp - ctime|mtime updated
1368  */
1369 int
1370 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1371     int flags)
1372 {
1373 	znode_t		*zp;
1374 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1375 	zilog_t		*zilog;
1376 	zfs_dirlock_t	*dl;
1377 	dmu_tx_t	*tx;
1378 	int		error;
1379 	int		zflg = ZEXISTS;
1380 	boolean_t	waited = B_FALSE;
1381 
1382 	if (name == NULL)
1383 		return (SET_ERROR(EINVAL));
1384 
1385 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1386 		return (error);
1387 	zilog = zfsvfs->z_log;
1388 
1389 	if (flags & FIGNORECASE)
1390 		zflg |= ZCILOOK;
1391 top:
1392 	zp = NULL;
1393 
1394 	/*
1395 	 * Attempt to lock directory; fail if entry doesn't exist.
1396 	 */
1397 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1398 	    NULL, NULL))) {
1399 		zfs_exit(zfsvfs, FTAG);
1400 		return (error);
1401 	}
1402 
1403 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1404 		goto out;
1405 	}
1406 
1407 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1408 		error = SET_ERROR(ENOTDIR);
1409 		goto out;
1410 	}
1411 
1412 	if (zp == cwd) {
1413 		error = SET_ERROR(EINVAL);
1414 		goto out;
1415 	}
1416 
1417 	/*
1418 	 * Grab a lock on the directory to make sure that no one is
1419 	 * trying to add (or lookup) entries while we are removing it.
1420 	 */
1421 	rw_enter(&zp->z_name_lock, RW_WRITER);
1422 
1423 	/*
1424 	 * Grab a lock on the parent pointer to make sure we play well
1425 	 * with the treewalk and directory rename code.
1426 	 */
1427 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1428 
1429 	tx = dmu_tx_create(zfsvfs->z_os);
1430 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1431 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1432 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1433 	zfs_sa_upgrade_txholds(tx, zp);
1434 	zfs_sa_upgrade_txholds(tx, dzp);
1435 	dmu_tx_mark_netfree(tx);
1436 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1437 	if (error) {
1438 		rw_exit(&zp->z_parent_lock);
1439 		rw_exit(&zp->z_name_lock);
1440 		zfs_dirent_unlock(dl);
1441 		if (error == ERESTART) {
1442 			waited = B_TRUE;
1443 			dmu_tx_wait(tx);
1444 			dmu_tx_abort(tx);
1445 			zrele(zp);
1446 			goto top;
1447 		}
1448 		dmu_tx_abort(tx);
1449 		zrele(zp);
1450 		zfs_exit(zfsvfs, FTAG);
1451 		return (error);
1452 	}
1453 
1454 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1455 
1456 	if (error == 0) {
1457 		uint64_t txtype = TX_RMDIR;
1458 		if (flags & FIGNORECASE)
1459 			txtype |= TX_CI;
1460 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1461 		    B_FALSE);
1462 	}
1463 
1464 	dmu_tx_commit(tx);
1465 
1466 	rw_exit(&zp->z_parent_lock);
1467 	rw_exit(&zp->z_name_lock);
1468 out:
1469 	zfs_dirent_unlock(dl);
1470 
1471 	zfs_znode_update_vfs(dzp);
1472 	zfs_znode_update_vfs(zp);
1473 	zrele(zp);
1474 
1475 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1476 		zil_commit(zilog, 0);
1477 
1478 	zfs_exit(zfsvfs, FTAG);
1479 	return (error);
1480 }
1481 
1482 /*
1483  * Read directory entries from the given directory cursor position and emit
1484  * name and position for each entry.
1485  *
1486  *	IN:	ip	- inode of directory to read.
1487  *		ctx	- directory entry context.
1488  *		cr	- credentials of caller.
1489  *
1490  *	RETURN:	0 if success
1491  *		error code if failure
1492  *
1493  * Timestamps:
1494  *	ip - atime updated
1495  *
1496  * Note that the low 4 bits of the cookie returned by zap is always zero.
1497  * This allows us to use the low range for "special" directory entries:
1498  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1499  * we use the offset 2 for the '.zfs' directory.
1500  */
1501 int
1502 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1503 {
1504 	(void) cr;
1505 	znode_t		*zp = ITOZ(ip);
1506 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1507 	objset_t	*os;
1508 	zap_cursor_t	zc;
1509 	zap_attribute_t	zap;
1510 	int		error;
1511 	uint8_t		prefetch;
1512 	uint8_t		type;
1513 	int		done = 0;
1514 	uint64_t	parent;
1515 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1516 
1517 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1518 		return (error);
1519 
1520 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1521 	    &parent, sizeof (parent))) != 0)
1522 		goto out;
1523 
1524 	/*
1525 	 * Quit if directory has been removed (posix)
1526 	 */
1527 	if (zp->z_unlinked)
1528 		goto out;
1529 
1530 	error = 0;
1531 	os = zfsvfs->z_os;
1532 	offset = ctx->pos;
1533 	prefetch = zp->z_zn_prefetch;
1534 
1535 	/*
1536 	 * Initialize the iterator cursor.
1537 	 */
1538 	if (offset <= 3) {
1539 		/*
1540 		 * Start iteration from the beginning of the directory.
1541 		 */
1542 		zap_cursor_init(&zc, os, zp->z_id);
1543 	} else {
1544 		/*
1545 		 * The offset is a serialized cursor.
1546 		 */
1547 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1548 	}
1549 
1550 	/*
1551 	 * Transform to file-system independent format
1552 	 */
1553 	while (!done) {
1554 		uint64_t objnum;
1555 		/*
1556 		 * Special case `.', `..', and `.zfs'.
1557 		 */
1558 		if (offset == 0) {
1559 			(void) strcpy(zap.za_name, ".");
1560 			zap.za_normalization_conflict = 0;
1561 			objnum = zp->z_id;
1562 			type = DT_DIR;
1563 		} else if (offset == 1) {
1564 			(void) strcpy(zap.za_name, "..");
1565 			zap.za_normalization_conflict = 0;
1566 			objnum = parent;
1567 			type = DT_DIR;
1568 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1569 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1570 			zap.za_normalization_conflict = 0;
1571 			objnum = ZFSCTL_INO_ROOT;
1572 			type = DT_DIR;
1573 		} else {
1574 			/*
1575 			 * Grab next entry.
1576 			 */
1577 			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1578 				if (error == ENOENT)
1579 					break;
1580 				else
1581 					goto update;
1582 			}
1583 
1584 			/*
1585 			 * Allow multiple entries provided the first entry is
1586 			 * the object id.  Non-zpl consumers may safely make
1587 			 * use of the additional space.
1588 			 *
1589 			 * XXX: This should be a feature flag for compatibility
1590 			 */
1591 			if (zap.za_integer_length != 8 ||
1592 			    zap.za_num_integers == 0) {
1593 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1594 				    "entry, obj = %lld, offset = %lld, "
1595 				    "length = %d, num = %lld\n",
1596 				    (u_longlong_t)zp->z_id,
1597 				    (u_longlong_t)offset,
1598 				    zap.za_integer_length,
1599 				    (u_longlong_t)zap.za_num_integers);
1600 				error = SET_ERROR(ENXIO);
1601 				goto update;
1602 			}
1603 
1604 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1605 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1606 		}
1607 
1608 		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1609 		    objnum, type);
1610 		if (done)
1611 			break;
1612 
1613 		/* Prefetch znode */
1614 		if (prefetch) {
1615 			dmu_prefetch(os, objnum, 0, 0, 0,
1616 			    ZIO_PRIORITY_SYNC_READ);
1617 		}
1618 
1619 		/*
1620 		 * Move to the next entry, fill in the previous offset.
1621 		 */
1622 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1623 			zap_cursor_advance(&zc);
1624 			offset = zap_cursor_serialize(&zc);
1625 		} else {
1626 			offset += 1;
1627 		}
1628 		ctx->pos = offset;
1629 	}
1630 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1631 
1632 update:
1633 	zap_cursor_fini(&zc);
1634 	if (error == ENOENT)
1635 		error = 0;
1636 out:
1637 	zfs_exit(zfsvfs, FTAG);
1638 
1639 	return (error);
1640 }
1641 
1642 /*
1643  * Get the basic file attributes and place them in the provided kstat
1644  * structure.  The inode is assumed to be the authoritative source
1645  * for most of the attributes.  However, the znode currently has the
1646  * authoritative atime, blksize, and block count.
1647  *
1648  *	IN:	ip	- inode of file.
1649  *
1650  *	OUT:	sp	- kstat values.
1651  *
1652  *	RETURN:	0 (always succeeds)
1653  */
1654 int
1655 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1656 {
1657 	znode_t *zp = ITOZ(ip);
1658 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1659 	uint32_t blksize;
1660 	u_longlong_t nblocks;
1661 	int error;
1662 
1663 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1664 		return (error);
1665 
1666 	mutex_enter(&zp->z_lock);
1667 
1668 	zpl_generic_fillattr(user_ns, ip, sp);
1669 	/*
1670 	 * +1 link count for root inode with visible '.zfs' directory.
1671 	 */
1672 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1673 		if (sp->nlink < ZFS_LINK_MAX)
1674 			sp->nlink++;
1675 
1676 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1677 	sp->blksize = blksize;
1678 	sp->blocks = nblocks;
1679 
1680 	if (unlikely(zp->z_blksz == 0)) {
1681 		/*
1682 		 * Block size hasn't been set; suggest maximal I/O transfers.
1683 		 */
1684 		sp->blksize = zfsvfs->z_max_blksz;
1685 	}
1686 
1687 	mutex_exit(&zp->z_lock);
1688 
1689 	/*
1690 	 * Required to prevent NFS client from detecting different inode
1691 	 * numbers of snapshot root dentry before and after snapshot mount.
1692 	 */
1693 	if (zfsvfs->z_issnap) {
1694 		if (ip->i_sb->s_root->d_inode == ip)
1695 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1696 			    dmu_objset_id(zfsvfs->z_os);
1697 	}
1698 
1699 	zfs_exit(zfsvfs, FTAG);
1700 
1701 	return (0);
1702 }
1703 
1704 /*
1705  * For the operation of changing file's user/group/project, we need to
1706  * handle not only the main object that is assigned to the file directly,
1707  * but also the ones that are used by the file via hidden xattr directory.
1708  *
1709  * Because the xattr directory may contains many EA entries, as to it may
1710  * be impossible to change all of them via the transaction of changing the
1711  * main object's user/group/project attributes. Then we have to change them
1712  * via other multiple independent transactions one by one. It may be not good
1713  * solution, but we have no better idea yet.
1714  */
1715 static int
1716 zfs_setattr_dir(znode_t *dzp)
1717 {
1718 	struct inode	*dxip = ZTOI(dzp);
1719 	struct inode	*xip = NULL;
1720 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1721 	objset_t	*os = zfsvfs->z_os;
1722 	zap_cursor_t	zc;
1723 	zap_attribute_t	zap;
1724 	zfs_dirlock_t	*dl;
1725 	znode_t		*zp = NULL;
1726 	dmu_tx_t	*tx = NULL;
1727 	uint64_t	uid, gid;
1728 	sa_bulk_attr_t	bulk[4];
1729 	int		count;
1730 	int		err;
1731 
1732 	zap_cursor_init(&zc, os, dzp->z_id);
1733 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1734 		count = 0;
1735 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1736 			err = ENXIO;
1737 			break;
1738 		}
1739 
1740 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1741 		    ZEXISTS, NULL, NULL);
1742 		if (err == ENOENT)
1743 			goto next;
1744 		if (err)
1745 			break;
1746 
1747 		xip = ZTOI(zp);
1748 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1749 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1750 		    zp->z_projid == dzp->z_projid)
1751 			goto next;
1752 
1753 		tx = dmu_tx_create(os);
1754 		if (!(zp->z_pflags & ZFS_PROJID))
1755 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1756 		else
1757 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1758 
1759 		err = dmu_tx_assign(tx, TXG_WAIT);
1760 		if (err)
1761 			break;
1762 
1763 		mutex_enter(&dzp->z_lock);
1764 
1765 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1766 			xip->i_uid = dxip->i_uid;
1767 			uid = zfs_uid_read(dxip);
1768 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1769 			    &uid, sizeof (uid));
1770 		}
1771 
1772 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1773 			xip->i_gid = dxip->i_gid;
1774 			gid = zfs_gid_read(dxip);
1775 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1776 			    &gid, sizeof (gid));
1777 		}
1778 
1779 		if (zp->z_projid != dzp->z_projid) {
1780 			if (!(zp->z_pflags & ZFS_PROJID)) {
1781 				zp->z_pflags |= ZFS_PROJID;
1782 				SA_ADD_BULK_ATTR(bulk, count,
1783 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1784 				    sizeof (zp->z_pflags));
1785 			}
1786 
1787 			zp->z_projid = dzp->z_projid;
1788 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1789 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
1790 		}
1791 
1792 		mutex_exit(&dzp->z_lock);
1793 
1794 		if (likely(count > 0)) {
1795 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1796 			dmu_tx_commit(tx);
1797 		} else {
1798 			dmu_tx_abort(tx);
1799 		}
1800 		tx = NULL;
1801 		if (err != 0 && err != ENOENT)
1802 			break;
1803 
1804 next:
1805 		if (zp) {
1806 			zrele(zp);
1807 			zp = NULL;
1808 			zfs_dirent_unlock(dl);
1809 		}
1810 		zap_cursor_advance(&zc);
1811 	}
1812 
1813 	if (tx)
1814 		dmu_tx_abort(tx);
1815 	if (zp) {
1816 		zrele(zp);
1817 		zfs_dirent_unlock(dl);
1818 	}
1819 	zap_cursor_fini(&zc);
1820 
1821 	return (err == ENOENT ? 0 : err);
1822 }
1823 
1824 /*
1825  * Set the file attributes to the values contained in the
1826  * vattr structure.
1827  *
1828  *	IN:	zp	- znode of file to be modified.
1829  *		vap	- new attribute values.
1830  *			  If ATTR_XVATTR set, then optional attrs are being set
1831  *		flags	- ATTR_UTIME set if non-default time values provided.
1832  *			- ATTR_NOACLCHECK (CIFS context only).
1833  *		cr	- credentials of caller.
1834  *		mnt_ns	- user namespace of the mount
1835  *
1836  *	RETURN:	0 if success
1837  *		error code if failure
1838  *
1839  * Timestamps:
1840  *	ip - ctime updated, mtime updated if size changed.
1841  */
1842 int
1843 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1844 {
1845 	struct inode	*ip;
1846 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1847 	objset_t	*os = zfsvfs->z_os;
1848 	zilog_t		*zilog;
1849 	dmu_tx_t	*tx;
1850 	vattr_t		oldva;
1851 	xvattr_t	*tmpxvattr;
1852 	uint_t		mask = vap->va_mask;
1853 	uint_t		saved_mask = 0;
1854 	int		trim_mask = 0;
1855 	uint64_t	new_mode;
1856 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1857 	uint64_t	xattr_obj;
1858 	uint64_t	mtime[2], ctime[2], atime[2];
1859 	uint64_t	projid = ZFS_INVALID_PROJID;
1860 	znode_t		*attrzp;
1861 	int		need_policy = FALSE;
1862 	int		err, err2 = 0;
1863 	zfs_fuid_info_t *fuidp = NULL;
1864 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1865 	xoptattr_t	*xoap;
1866 	zfs_acl_t	*aclp;
1867 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1868 	boolean_t	fuid_dirtied = B_FALSE;
1869 	boolean_t	handle_eadir = B_FALSE;
1870 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1871 	int		count = 0, xattr_count = 0, bulks = 8;
1872 
1873 	if (mask == 0)
1874 		return (0);
1875 
1876 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1877 		return (err);
1878 	ip = ZTOI(zp);
1879 
1880 	/*
1881 	 * If this is a xvattr_t, then get a pointer to the structure of
1882 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1883 	 */
1884 	xoap = xva_getxoptattr(xvap);
1885 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1886 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1887 			if (!dmu_objset_projectquota_enabled(os) ||
1888 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1889 				zfs_exit(zfsvfs, FTAG);
1890 				return (SET_ERROR(ENOTSUP));
1891 			}
1892 
1893 			projid = xoap->xoa_projid;
1894 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1895 				zfs_exit(zfsvfs, FTAG);
1896 				return (SET_ERROR(EINVAL));
1897 			}
1898 
1899 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1900 				projid = ZFS_INVALID_PROJID;
1901 			else
1902 				need_policy = TRUE;
1903 		}
1904 
1905 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1906 		    (xoap->xoa_projinherit !=
1907 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1908 		    (!dmu_objset_projectquota_enabled(os) ||
1909 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1910 			zfs_exit(zfsvfs, FTAG);
1911 			return (SET_ERROR(ENOTSUP));
1912 		}
1913 	}
1914 
1915 	zilog = zfsvfs->z_log;
1916 
1917 	/*
1918 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1919 	 * that file system is at proper version level
1920 	 */
1921 
1922 	if (zfsvfs->z_use_fuids == B_FALSE &&
1923 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1924 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1925 	    (mask & ATTR_XVATTR))) {
1926 		zfs_exit(zfsvfs, FTAG);
1927 		return (SET_ERROR(EINVAL));
1928 	}
1929 
1930 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1931 		zfs_exit(zfsvfs, FTAG);
1932 		return (SET_ERROR(EISDIR));
1933 	}
1934 
1935 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1936 		zfs_exit(zfsvfs, FTAG);
1937 		return (SET_ERROR(EINVAL));
1938 	}
1939 
1940 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1941 	xva_init(tmpxvattr);
1942 
1943 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1944 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1945 
1946 	/*
1947 	 * Immutable files can only alter immutable bit and atime
1948 	 */
1949 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1950 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1951 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1952 		err = SET_ERROR(EPERM);
1953 		goto out3;
1954 	}
1955 
1956 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1957 		err = SET_ERROR(EPERM);
1958 		goto out3;
1959 	}
1960 
1961 	/*
1962 	 * Verify timestamps doesn't overflow 32 bits.
1963 	 * ZFS can handle large timestamps, but 32bit syscalls can't
1964 	 * handle times greater than 2039.  This check should be removed
1965 	 * once large timestamps are fully supported.
1966 	 */
1967 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1968 		if (((mask & ATTR_ATIME) &&
1969 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1970 		    ((mask & ATTR_MTIME) &&
1971 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1972 			err = SET_ERROR(EOVERFLOW);
1973 			goto out3;
1974 		}
1975 	}
1976 
1977 top:
1978 	attrzp = NULL;
1979 	aclp = NULL;
1980 
1981 	/* Can this be moved to before the top label? */
1982 	if (zfs_is_readonly(zfsvfs)) {
1983 		err = SET_ERROR(EROFS);
1984 		goto out3;
1985 	}
1986 
1987 	/*
1988 	 * First validate permissions
1989 	 */
1990 
1991 	if (mask & ATTR_SIZE) {
1992 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
1993 		    mnt_ns);
1994 		if (err)
1995 			goto out3;
1996 
1997 		/*
1998 		 * XXX - Note, we are not providing any open
1999 		 * mode flags here (like FNDELAY), so we may
2000 		 * block if there are locks present... this
2001 		 * should be addressed in openat().
2002 		 */
2003 		/* XXX - would it be OK to generate a log record here? */
2004 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2005 		if (err)
2006 			goto out3;
2007 	}
2008 
2009 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2010 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2011 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2012 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2013 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2014 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2015 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2016 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2017 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2018 		    skipaclchk, cr, mnt_ns);
2019 	}
2020 
2021 	if (mask & (ATTR_UID|ATTR_GID)) {
2022 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2023 		int	take_owner;
2024 		int	take_group;
2025 		uid_t	uid;
2026 		gid_t	gid;
2027 
2028 		/*
2029 		 * NOTE: even if a new mode is being set,
2030 		 * we may clear S_ISUID/S_ISGID bits.
2031 		 */
2032 
2033 		if (!(mask & ATTR_MODE))
2034 			vap->va_mode = zp->z_mode;
2035 
2036 		/*
2037 		 * Take ownership or chgrp to group we are a member of
2038 		 */
2039 
2040 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2041 		    vap->va_uid);
2042 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2043 		    vap->va_gid);
2044 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2045 		take_group = (mask & ATTR_GID) &&
2046 		    zfs_groupmember(zfsvfs, gid, cr);
2047 
2048 		/*
2049 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2050 		 * take_group must both be set in order to allow taking
2051 		 * ownership.
2052 		 *
2053 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2054 		 *
2055 		 */
2056 
2057 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2058 		    take_owner && take_group) ||
2059 		    ((idmask == ATTR_UID) && take_owner) ||
2060 		    ((idmask == ATTR_GID) && take_group)) {
2061 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2062 			    skipaclchk, cr, mnt_ns) == 0) {
2063 				/*
2064 				 * Remove setuid/setgid for non-privileged users
2065 				 */
2066 				(void) secpolicy_setid_clear(vap, cr);
2067 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2068 			} else {
2069 				need_policy =  TRUE;
2070 			}
2071 		} else {
2072 			need_policy =  TRUE;
2073 		}
2074 	}
2075 
2076 	mutex_enter(&zp->z_lock);
2077 	oldva.va_mode = zp->z_mode;
2078 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2079 	if (mask & ATTR_XVATTR) {
2080 		/*
2081 		 * Update xvattr mask to include only those attributes
2082 		 * that are actually changing.
2083 		 *
2084 		 * the bits will be restored prior to actually setting
2085 		 * the attributes so the caller thinks they were set.
2086 		 */
2087 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2088 			if (xoap->xoa_appendonly !=
2089 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2090 				need_policy = TRUE;
2091 			} else {
2092 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2093 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2094 			}
2095 		}
2096 
2097 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2098 			if (xoap->xoa_projinherit !=
2099 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2100 				need_policy = TRUE;
2101 			} else {
2102 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2103 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2104 			}
2105 		}
2106 
2107 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2108 			if (xoap->xoa_nounlink !=
2109 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2110 				need_policy = TRUE;
2111 			} else {
2112 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2113 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2114 			}
2115 		}
2116 
2117 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2118 			if (xoap->xoa_immutable !=
2119 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2120 				need_policy = TRUE;
2121 			} else {
2122 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2123 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2124 			}
2125 		}
2126 
2127 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2128 			if (xoap->xoa_nodump !=
2129 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2130 				need_policy = TRUE;
2131 			} else {
2132 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2133 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2134 			}
2135 		}
2136 
2137 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2138 			if (xoap->xoa_av_modified !=
2139 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2140 				need_policy = TRUE;
2141 			} else {
2142 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2143 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2144 			}
2145 		}
2146 
2147 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2148 			if ((!S_ISREG(ip->i_mode) &&
2149 			    xoap->xoa_av_quarantined) ||
2150 			    xoap->xoa_av_quarantined !=
2151 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2152 				need_policy = TRUE;
2153 			} else {
2154 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2155 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2156 			}
2157 		}
2158 
2159 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2160 			mutex_exit(&zp->z_lock);
2161 			err = SET_ERROR(EPERM);
2162 			goto out3;
2163 		}
2164 
2165 		if (need_policy == FALSE &&
2166 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2167 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2168 			need_policy = TRUE;
2169 		}
2170 	}
2171 
2172 	mutex_exit(&zp->z_lock);
2173 
2174 	if (mask & ATTR_MODE) {
2175 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2176 		    mnt_ns) == 0) {
2177 			err = secpolicy_setid_setsticky_clear(ip, vap,
2178 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2179 			if (err)
2180 				goto out3;
2181 			trim_mask |= ATTR_MODE;
2182 		} else {
2183 			need_policy = TRUE;
2184 		}
2185 	}
2186 
2187 	if (need_policy) {
2188 		/*
2189 		 * If trim_mask is set then take ownership
2190 		 * has been granted or write_acl is present and user
2191 		 * has the ability to modify mode.  In that case remove
2192 		 * UID|GID and or MODE from mask so that
2193 		 * secpolicy_vnode_setattr() doesn't revoke it.
2194 		 */
2195 
2196 		if (trim_mask) {
2197 			saved_mask = vap->va_mask;
2198 			vap->va_mask &= ~trim_mask;
2199 		}
2200 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2201 		    zfs_zaccess_unix, zp);
2202 		if (err)
2203 			goto out3;
2204 
2205 		if (trim_mask)
2206 			vap->va_mask |= saved_mask;
2207 	}
2208 
2209 	/*
2210 	 * secpolicy_vnode_setattr, or take ownership may have
2211 	 * changed va_mask
2212 	 */
2213 	mask = vap->va_mask;
2214 
2215 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2216 		handle_eadir = B_TRUE;
2217 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2218 		    &xattr_obj, sizeof (xattr_obj));
2219 
2220 		if (err == 0 && xattr_obj) {
2221 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2222 			if (err)
2223 				goto out2;
2224 		}
2225 		if (mask & ATTR_UID) {
2226 			new_kuid = zfs_fuid_create(zfsvfs,
2227 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2228 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2229 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2230 			    new_kuid)) {
2231 				if (attrzp)
2232 					zrele(attrzp);
2233 				err = SET_ERROR(EDQUOT);
2234 				goto out2;
2235 			}
2236 		}
2237 
2238 		if (mask & ATTR_GID) {
2239 			new_kgid = zfs_fuid_create(zfsvfs,
2240 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2241 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2242 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2243 			    new_kgid)) {
2244 				if (attrzp)
2245 					zrele(attrzp);
2246 				err = SET_ERROR(EDQUOT);
2247 				goto out2;
2248 			}
2249 		}
2250 
2251 		if (projid != ZFS_INVALID_PROJID &&
2252 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2253 			if (attrzp)
2254 				zrele(attrzp);
2255 			err = EDQUOT;
2256 			goto out2;
2257 		}
2258 	}
2259 	tx = dmu_tx_create(os);
2260 
2261 	if (mask & ATTR_MODE) {
2262 		uint64_t pmode = zp->z_mode;
2263 		uint64_t acl_obj;
2264 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2265 
2266 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2267 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2268 			err = EPERM;
2269 			goto out;
2270 		}
2271 
2272 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2273 			goto out;
2274 
2275 		mutex_enter(&zp->z_lock);
2276 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2277 			/*
2278 			 * Are we upgrading ACL from old V0 format
2279 			 * to V1 format?
2280 			 */
2281 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2282 			    zfs_znode_acl_version(zp) ==
2283 			    ZFS_ACL_VERSION_INITIAL) {
2284 				dmu_tx_hold_free(tx, acl_obj, 0,
2285 				    DMU_OBJECT_END);
2286 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2287 				    0, aclp->z_acl_bytes);
2288 			} else {
2289 				dmu_tx_hold_write(tx, acl_obj, 0,
2290 				    aclp->z_acl_bytes);
2291 			}
2292 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2293 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2294 			    0, aclp->z_acl_bytes);
2295 		}
2296 		mutex_exit(&zp->z_lock);
2297 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2298 	} else {
2299 		if (((mask & ATTR_XVATTR) &&
2300 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2301 		    (projid != ZFS_INVALID_PROJID &&
2302 		    !(zp->z_pflags & ZFS_PROJID)))
2303 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2304 		else
2305 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2306 	}
2307 
2308 	if (attrzp) {
2309 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2310 	}
2311 
2312 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2313 	if (fuid_dirtied)
2314 		zfs_fuid_txhold(zfsvfs, tx);
2315 
2316 	zfs_sa_upgrade_txholds(tx, zp);
2317 
2318 	err = dmu_tx_assign(tx, TXG_WAIT);
2319 	if (err)
2320 		goto out;
2321 
2322 	count = 0;
2323 	/*
2324 	 * Set each attribute requested.
2325 	 * We group settings according to the locks they need to acquire.
2326 	 *
2327 	 * Note: you cannot set ctime directly, although it will be
2328 	 * updated as a side-effect of calling this function.
2329 	 */
2330 
2331 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2332 		/*
2333 		 * For the existed object that is upgraded from old system,
2334 		 * its on-disk layout has no slot for the project ID attribute.
2335 		 * But quota accounting logic needs to access related slots by
2336 		 * offset directly. So we need to adjust old objects' layout
2337 		 * to make the project ID to some unified and fixed offset.
2338 		 */
2339 		if (attrzp)
2340 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2341 		if (err == 0)
2342 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2343 
2344 		if (unlikely(err == EEXIST))
2345 			err = 0;
2346 		else if (err != 0)
2347 			goto out;
2348 		else
2349 			projid = ZFS_INVALID_PROJID;
2350 	}
2351 
2352 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2353 		mutex_enter(&zp->z_acl_lock);
2354 	mutex_enter(&zp->z_lock);
2355 
2356 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2357 	    &zp->z_pflags, sizeof (zp->z_pflags));
2358 
2359 	if (attrzp) {
2360 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2361 			mutex_enter(&attrzp->z_acl_lock);
2362 		mutex_enter(&attrzp->z_lock);
2363 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2364 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2365 		    sizeof (attrzp->z_pflags));
2366 		if (projid != ZFS_INVALID_PROJID) {
2367 			attrzp->z_projid = projid;
2368 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2369 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2370 			    sizeof (attrzp->z_projid));
2371 		}
2372 	}
2373 
2374 	if (mask & (ATTR_UID|ATTR_GID)) {
2375 
2376 		if (mask & ATTR_UID) {
2377 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2378 			new_uid = zfs_uid_read(ZTOI(zp));
2379 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2380 			    &new_uid, sizeof (new_uid));
2381 			if (attrzp) {
2382 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2383 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2384 				    sizeof (new_uid));
2385 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2386 			}
2387 		}
2388 
2389 		if (mask & ATTR_GID) {
2390 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2391 			new_gid = zfs_gid_read(ZTOI(zp));
2392 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2393 			    NULL, &new_gid, sizeof (new_gid));
2394 			if (attrzp) {
2395 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2396 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2397 				    sizeof (new_gid));
2398 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2399 			}
2400 		}
2401 		if (!(mask & ATTR_MODE)) {
2402 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2403 			    NULL, &new_mode, sizeof (new_mode));
2404 			new_mode = zp->z_mode;
2405 		}
2406 		err = zfs_acl_chown_setattr(zp);
2407 		ASSERT(err == 0);
2408 		if (attrzp) {
2409 			err = zfs_acl_chown_setattr(attrzp);
2410 			ASSERT(err == 0);
2411 		}
2412 	}
2413 
2414 	if (mask & ATTR_MODE) {
2415 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2416 		    &new_mode, sizeof (new_mode));
2417 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2418 		ASSERT3P(aclp, !=, NULL);
2419 		err = zfs_aclset_common(zp, aclp, cr, tx);
2420 		ASSERT0(err);
2421 		if (zp->z_acl_cached)
2422 			zfs_acl_free(zp->z_acl_cached);
2423 		zp->z_acl_cached = aclp;
2424 		aclp = NULL;
2425 	}
2426 
2427 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2428 		zp->z_atime_dirty = B_FALSE;
2429 		ZFS_TIME_ENCODE(&ip->i_atime, atime);
2430 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2431 		    &atime, sizeof (atime));
2432 	}
2433 
2434 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2435 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2436 		ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2437 		    vap->va_mtime, ZTOI(zp));
2438 
2439 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2440 		    mtime, sizeof (mtime));
2441 	}
2442 
2443 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2444 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2445 		ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2446 		    ZTOI(zp));
2447 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2448 		    ctime, sizeof (ctime));
2449 	}
2450 
2451 	if (projid != ZFS_INVALID_PROJID) {
2452 		zp->z_projid = projid;
2453 		SA_ADD_BULK_ATTR(bulk, count,
2454 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2455 		    sizeof (zp->z_projid));
2456 	}
2457 
2458 	if (attrzp && mask) {
2459 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2460 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2461 		    sizeof (ctime));
2462 	}
2463 
2464 	/*
2465 	 * Do this after setting timestamps to prevent timestamp
2466 	 * update from toggling bit
2467 	 */
2468 
2469 	if (xoap && (mask & ATTR_XVATTR)) {
2470 
2471 		/*
2472 		 * restore trimmed off masks
2473 		 * so that return masks can be set for caller.
2474 		 */
2475 
2476 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2477 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2478 		}
2479 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2480 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2481 		}
2482 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2483 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2484 		}
2485 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2486 			XVA_SET_REQ(xvap, XAT_NODUMP);
2487 		}
2488 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2489 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2490 		}
2491 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2492 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2493 		}
2494 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2495 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2496 		}
2497 
2498 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2499 			ASSERT(S_ISREG(ip->i_mode));
2500 
2501 		zfs_xvattr_set(zp, xvap, tx);
2502 	}
2503 
2504 	if (fuid_dirtied)
2505 		zfs_fuid_sync(zfsvfs, tx);
2506 
2507 	if (mask != 0)
2508 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2509 
2510 	mutex_exit(&zp->z_lock);
2511 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2512 		mutex_exit(&zp->z_acl_lock);
2513 
2514 	if (attrzp) {
2515 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2516 			mutex_exit(&attrzp->z_acl_lock);
2517 		mutex_exit(&attrzp->z_lock);
2518 	}
2519 out:
2520 	if (err == 0 && xattr_count > 0) {
2521 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2522 		    xattr_count, tx);
2523 		ASSERT(err2 == 0);
2524 	}
2525 
2526 	if (aclp)
2527 		zfs_acl_free(aclp);
2528 
2529 	if (fuidp) {
2530 		zfs_fuid_info_free(fuidp);
2531 		fuidp = NULL;
2532 	}
2533 
2534 	if (err) {
2535 		dmu_tx_abort(tx);
2536 		if (attrzp)
2537 			zrele(attrzp);
2538 		if (err == ERESTART)
2539 			goto top;
2540 	} else {
2541 		if (count > 0)
2542 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2543 		dmu_tx_commit(tx);
2544 		if (attrzp) {
2545 			if (err2 == 0 && handle_eadir)
2546 				err = zfs_setattr_dir(attrzp);
2547 			zrele(attrzp);
2548 		}
2549 		zfs_znode_update_vfs(zp);
2550 	}
2551 
2552 out2:
2553 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2554 		zil_commit(zilog, 0);
2555 
2556 out3:
2557 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2558 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2559 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2560 	zfs_exit(zfsvfs, FTAG);
2561 	return (err);
2562 }
2563 
2564 typedef struct zfs_zlock {
2565 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2566 	znode_t		*zl_znode;	/* znode we held */
2567 	struct zfs_zlock *zl_next;	/* next in list */
2568 } zfs_zlock_t;
2569 
2570 /*
2571  * Drop locks and release vnodes that were held by zfs_rename_lock().
2572  */
2573 static void
2574 zfs_rename_unlock(zfs_zlock_t **zlpp)
2575 {
2576 	zfs_zlock_t *zl;
2577 
2578 	while ((zl = *zlpp) != NULL) {
2579 		if (zl->zl_znode != NULL)
2580 			zfs_zrele_async(zl->zl_znode);
2581 		rw_exit(zl->zl_rwlock);
2582 		*zlpp = zl->zl_next;
2583 		kmem_free(zl, sizeof (*zl));
2584 	}
2585 }
2586 
2587 /*
2588  * Search back through the directory tree, using the ".." entries.
2589  * Lock each directory in the chain to prevent concurrent renames.
2590  * Fail any attempt to move a directory into one of its own descendants.
2591  * XXX - z_parent_lock can overlap with map or grow locks
2592  */
2593 static int
2594 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2595 {
2596 	zfs_zlock_t	*zl;
2597 	znode_t		*zp = tdzp;
2598 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2599 	uint64_t	oidp = zp->z_id;
2600 	krwlock_t	*rwlp = &szp->z_parent_lock;
2601 	krw_t		rw = RW_WRITER;
2602 
2603 	/*
2604 	 * First pass write-locks szp and compares to zp->z_id.
2605 	 * Later passes read-lock zp and compare to zp->z_parent.
2606 	 */
2607 	do {
2608 		if (!rw_tryenter(rwlp, rw)) {
2609 			/*
2610 			 * Another thread is renaming in this path.
2611 			 * Note that if we are a WRITER, we don't have any
2612 			 * parent_locks held yet.
2613 			 */
2614 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2615 				/*
2616 				 * Drop our locks and restart
2617 				 */
2618 				zfs_rename_unlock(&zl);
2619 				*zlpp = NULL;
2620 				zp = tdzp;
2621 				oidp = zp->z_id;
2622 				rwlp = &szp->z_parent_lock;
2623 				rw = RW_WRITER;
2624 				continue;
2625 			} else {
2626 				/*
2627 				 * Wait for other thread to drop its locks
2628 				 */
2629 				rw_enter(rwlp, rw);
2630 			}
2631 		}
2632 
2633 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2634 		zl->zl_rwlock = rwlp;
2635 		zl->zl_znode = NULL;
2636 		zl->zl_next = *zlpp;
2637 		*zlpp = zl;
2638 
2639 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2640 			return (SET_ERROR(EINVAL));
2641 
2642 		if (oidp == rootid)		/* We've hit the top */
2643 			return (0);
2644 
2645 		if (rw == RW_READER) {		/* i.e. not the first pass */
2646 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2647 			if (error)
2648 				return (error);
2649 			zl->zl_znode = zp;
2650 		}
2651 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2652 		    &oidp, sizeof (oidp));
2653 		rwlp = &zp->z_parent_lock;
2654 		rw = RW_READER;
2655 
2656 	} while (zp->z_id != sdzp->z_id);
2657 
2658 	return (0);
2659 }
2660 
2661 /*
2662  * Move an entry from the provided source directory to the target
2663  * directory.  Change the entry name as indicated.
2664  *
2665  *	IN:	sdzp	- Source directory containing the "old entry".
2666  *		snm	- Old entry name.
2667  *		tdzp	- Target directory to contain the "new entry".
2668  *		tnm	- New entry name.
2669  *		cr	- credentials of caller.
2670  *		flags	- case flags
2671  *		rflags  - RENAME_* flags
2672  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2673  *		mnt_ns	- user namespace of the mount
2674  *
2675  *	RETURN:	0 on success, error code on failure.
2676  *
2677  * Timestamps:
2678  *	sdzp,tdzp - ctime|mtime updated
2679  */
2680 int
2681 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2682     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2683 {
2684 	znode_t		*szp, *tzp;
2685 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2686 	zilog_t		*zilog;
2687 	zfs_dirlock_t	*sdl, *tdl;
2688 	dmu_tx_t	*tx;
2689 	zfs_zlock_t	*zl;
2690 	int		cmp, serr, terr;
2691 	int		error = 0;
2692 	int		zflg = 0;
2693 	boolean_t	waited = B_FALSE;
2694 	/* Needed for whiteout inode creation. */
2695 	boolean_t	fuid_dirtied;
2696 	zfs_acl_ids_t	acl_ids;
2697 	boolean_t	have_acl = B_FALSE;
2698 	znode_t		*wzp = NULL;
2699 
2700 
2701 	if (snm == NULL || tnm == NULL)
2702 		return (SET_ERROR(EINVAL));
2703 
2704 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2705 		return (SET_ERROR(EINVAL));
2706 
2707 	/* Already checked by Linux VFS, but just to make sure. */
2708 	if (rflags & RENAME_EXCHANGE &&
2709 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2710 		return (SET_ERROR(EINVAL));
2711 
2712 	/*
2713 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2714 	 * right kind of vattr_t for the whiteout file. These are set
2715 	 * internally by ZFS so should never be incorrect.
2716 	 */
2717 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2718 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2719 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2720 
2721 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2722 		return (error);
2723 	zilog = zfsvfs->z_log;
2724 
2725 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2726 		zfs_exit(zfsvfs, FTAG);
2727 		return (error);
2728 	}
2729 
2730 	/*
2731 	 * We check i_sb because snapshots and the ctldir must have different
2732 	 * super blocks.
2733 	 */
2734 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2735 	    zfsctl_is_node(ZTOI(tdzp))) {
2736 		zfs_exit(zfsvfs, FTAG);
2737 		return (SET_ERROR(EXDEV));
2738 	}
2739 
2740 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2741 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2742 		zfs_exit(zfsvfs, FTAG);
2743 		return (SET_ERROR(EILSEQ));
2744 	}
2745 
2746 	if (flags & FIGNORECASE)
2747 		zflg |= ZCILOOK;
2748 
2749 top:
2750 	szp = NULL;
2751 	tzp = NULL;
2752 	zl = NULL;
2753 
2754 	/*
2755 	 * This is to prevent the creation of links into attribute space
2756 	 * by renaming a linked file into/outof an attribute directory.
2757 	 * See the comment in zfs_link() for why this is considered bad.
2758 	 */
2759 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2760 		zfs_exit(zfsvfs, FTAG);
2761 		return (SET_ERROR(EINVAL));
2762 	}
2763 
2764 	/*
2765 	 * Lock source and target directory entries.  To prevent deadlock,
2766 	 * a lock ordering must be defined.  We lock the directory with
2767 	 * the smallest object id first, or if it's a tie, the one with
2768 	 * the lexically first name.
2769 	 */
2770 	if (sdzp->z_id < tdzp->z_id) {
2771 		cmp = -1;
2772 	} else if (sdzp->z_id > tdzp->z_id) {
2773 		cmp = 1;
2774 	} else {
2775 		/*
2776 		 * First compare the two name arguments without
2777 		 * considering any case folding.
2778 		 */
2779 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2780 
2781 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2782 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2783 		if (cmp == 0) {
2784 			/*
2785 			 * POSIX: "If the old argument and the new argument
2786 			 * both refer to links to the same existing file,
2787 			 * the rename() function shall return successfully
2788 			 * and perform no other action."
2789 			 */
2790 			zfs_exit(zfsvfs, FTAG);
2791 			return (0);
2792 		}
2793 		/*
2794 		 * If the file system is case-folding, then we may
2795 		 * have some more checking to do.  A case-folding file
2796 		 * system is either supporting mixed case sensitivity
2797 		 * access or is completely case-insensitive.  Note
2798 		 * that the file system is always case preserving.
2799 		 *
2800 		 * In mixed sensitivity mode case sensitive behavior
2801 		 * is the default.  FIGNORECASE must be used to
2802 		 * explicitly request case insensitive behavior.
2803 		 *
2804 		 * If the source and target names provided differ only
2805 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2806 		 * we will treat this as a special case in the
2807 		 * case-insensitive mode: as long as the source name
2808 		 * is an exact match, we will allow this to proceed as
2809 		 * a name-change request.
2810 		 */
2811 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2812 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2813 		    flags & FIGNORECASE)) &&
2814 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2815 		    &error) == 0) {
2816 			/*
2817 			 * case preserving rename request, require exact
2818 			 * name matches
2819 			 */
2820 			zflg |= ZCIEXACT;
2821 			zflg &= ~ZCILOOK;
2822 		}
2823 	}
2824 
2825 	/*
2826 	 * If the source and destination directories are the same, we should
2827 	 * grab the z_name_lock of that directory only once.
2828 	 */
2829 	if (sdzp == tdzp) {
2830 		zflg |= ZHAVELOCK;
2831 		rw_enter(&sdzp->z_name_lock, RW_READER);
2832 	}
2833 
2834 	if (cmp < 0) {
2835 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2836 		    ZEXISTS | zflg, NULL, NULL);
2837 		terr = zfs_dirent_lock(&tdl,
2838 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2839 	} else {
2840 		terr = zfs_dirent_lock(&tdl,
2841 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2842 		serr = zfs_dirent_lock(&sdl,
2843 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2844 		    NULL, NULL);
2845 	}
2846 
2847 	if (serr) {
2848 		/*
2849 		 * Source entry invalid or not there.
2850 		 */
2851 		if (!terr) {
2852 			zfs_dirent_unlock(tdl);
2853 			if (tzp)
2854 				zrele(tzp);
2855 		}
2856 
2857 		if (sdzp == tdzp)
2858 			rw_exit(&sdzp->z_name_lock);
2859 
2860 		if (strcmp(snm, "..") == 0)
2861 			serr = EINVAL;
2862 		zfs_exit(zfsvfs, FTAG);
2863 		return (serr);
2864 	}
2865 	if (terr) {
2866 		zfs_dirent_unlock(sdl);
2867 		zrele(szp);
2868 
2869 		if (sdzp == tdzp)
2870 			rw_exit(&sdzp->z_name_lock);
2871 
2872 		if (strcmp(tnm, "..") == 0)
2873 			terr = EINVAL;
2874 		zfs_exit(zfsvfs, FTAG);
2875 		return (terr);
2876 	}
2877 
2878 	/*
2879 	 * If we are using project inheritance, means if the directory has
2880 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2881 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2882 	 * such case, we only allow renames into our tree when the project
2883 	 * IDs are the same.
2884 	 */
2885 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2886 	    tdzp->z_projid != szp->z_projid) {
2887 		error = SET_ERROR(EXDEV);
2888 		goto out;
2889 	}
2890 
2891 	/*
2892 	 * Must have write access at the source to remove the old entry
2893 	 * and write access at the target to create the new entry.
2894 	 * Note that if target and source are the same, this can be
2895 	 * done in a single check.
2896 	 */
2897 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2898 		goto out;
2899 
2900 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2901 		/*
2902 		 * Check to make sure rename is valid.
2903 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2904 		 */
2905 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2906 			goto out;
2907 	}
2908 
2909 	/*
2910 	 * Does target exist?
2911 	 */
2912 	if (tzp) {
2913 		if (rflags & RENAME_NOREPLACE) {
2914 			error = SET_ERROR(EEXIST);
2915 			goto out;
2916 		}
2917 		/*
2918 		 * Source and target must be the same type (unless exchanging).
2919 		 */
2920 		if (!(rflags & RENAME_EXCHANGE)) {
2921 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2922 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2923 
2924 			if (s_is_dir != t_is_dir) {
2925 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2926 				goto out;
2927 			}
2928 		}
2929 		/*
2930 		 * POSIX dictates that when the source and target
2931 		 * entries refer to the same file object, rename
2932 		 * must do nothing and exit without error.
2933 		 */
2934 		if (szp->z_id == tzp->z_id) {
2935 			error = 0;
2936 			goto out;
2937 		}
2938 	} else if (rflags & RENAME_EXCHANGE) {
2939 		/* Target must exist for RENAME_EXCHANGE. */
2940 		error = SET_ERROR(ENOENT);
2941 		goto out;
2942 	}
2943 
2944 	/* Set up inode creation for RENAME_WHITEOUT. */
2945 	if (rflags & RENAME_WHITEOUT) {
2946 		/*
2947 		 * Whiteout files are not regular files or directories, so to
2948 		 * match zfs_create() we do not inherit the project id.
2949 		 */
2950 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
2951 
2952 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
2953 		if (error)
2954 			goto out;
2955 
2956 		if (!have_acl) {
2957 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
2958 			    &acl_ids, mnt_ns);
2959 			if (error)
2960 				goto out;
2961 			have_acl = B_TRUE;
2962 		}
2963 
2964 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
2965 			error = SET_ERROR(EDQUOT);
2966 			goto out;
2967 		}
2968 	}
2969 
2970 	tx = dmu_tx_create(zfsvfs->z_os);
2971 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2972 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2973 	dmu_tx_hold_zap(tx, sdzp->z_id,
2974 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
2975 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2976 	if (sdzp != tdzp) {
2977 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2978 		zfs_sa_upgrade_txholds(tx, tdzp);
2979 	}
2980 	if (tzp) {
2981 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2982 		zfs_sa_upgrade_txholds(tx, tzp);
2983 	}
2984 	if (rflags & RENAME_WHITEOUT) {
2985 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2986 		    ZFS_SA_BASE_ATTR_SIZE);
2987 
2988 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
2989 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2990 		if (!zfsvfs->z_use_sa &&
2991 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2992 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2993 			    0, acl_ids.z_aclp->z_acl_bytes);
2994 		}
2995 	}
2996 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2997 	if (fuid_dirtied)
2998 		zfs_fuid_txhold(zfsvfs, tx);
2999 	zfs_sa_upgrade_txholds(tx, szp);
3000 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3001 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3002 	if (error) {
3003 		if (zl != NULL)
3004 			zfs_rename_unlock(&zl);
3005 		zfs_dirent_unlock(sdl);
3006 		zfs_dirent_unlock(tdl);
3007 
3008 		if (sdzp == tdzp)
3009 			rw_exit(&sdzp->z_name_lock);
3010 
3011 		if (error == ERESTART) {
3012 			waited = B_TRUE;
3013 			dmu_tx_wait(tx);
3014 			dmu_tx_abort(tx);
3015 			zrele(szp);
3016 			if (tzp)
3017 				zrele(tzp);
3018 			goto top;
3019 		}
3020 		dmu_tx_abort(tx);
3021 		zrele(szp);
3022 		if (tzp)
3023 			zrele(tzp);
3024 		zfs_exit(zfsvfs, FTAG);
3025 		return (error);
3026 	}
3027 
3028 	/*
3029 	 * Unlink the source.
3030 	 */
3031 	szp->z_pflags |= ZFS_AV_MODIFIED;
3032 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3033 		szp->z_pflags |= ZFS_PROJINHERIT;
3034 
3035 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3036 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3037 	VERIFY0(error);
3038 
3039 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3040 	if (error)
3041 		goto commit;
3042 
3043 	/*
3044 	 * Unlink the target.
3045 	 */
3046 	if (tzp) {
3047 		int tzflg = zflg;
3048 
3049 		if (rflags & RENAME_EXCHANGE) {
3050 			/* This inode will be re-linked soon. */
3051 			tzflg |= ZRENAMING;
3052 
3053 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3054 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3055 				tzp->z_pflags |= ZFS_PROJINHERIT;
3056 
3057 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3058 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3059 			ASSERT0(error);
3060 		}
3061 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3062 		if (error)
3063 			goto commit_link_szp;
3064 	}
3065 
3066 	/*
3067 	 * Create the new target links:
3068 	 *   * We always link the target.
3069 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3070 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3071 	 */
3072 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3073 	if (error) {
3074 		/*
3075 		 * If we have removed the existing target, a subsequent call to
3076 		 * zfs_link_create() to add back the same entry, but with a new
3077 		 * dnode (szp), should not fail.
3078 		 */
3079 		ASSERT3P(tzp, ==, NULL);
3080 		goto commit_link_tzp;
3081 	}
3082 
3083 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3084 	case RENAME_EXCHANGE:
3085 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3086 		/*
3087 		 * The same argument as zfs_link_create() failing for
3088 		 * szp applies here, since the source directory must
3089 		 * have had an entry we are replacing.
3090 		 */
3091 		ASSERT0(error);
3092 		if (error)
3093 			goto commit_unlink_td_szp;
3094 		break;
3095 	case RENAME_WHITEOUT:
3096 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3097 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3098 		if (error) {
3099 			zfs_znode_delete(wzp, tx);
3100 			remove_inode_hash(ZTOI(wzp));
3101 			goto commit_unlink_td_szp;
3102 		}
3103 		break;
3104 	}
3105 
3106 	if (fuid_dirtied)
3107 		zfs_fuid_sync(zfsvfs, tx);
3108 
3109 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3110 	case RENAME_EXCHANGE:
3111 		zfs_log_rename_exchange(zilog, tx,
3112 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3113 		    tdzp, tdl->dl_name, szp);
3114 		break;
3115 	case RENAME_WHITEOUT:
3116 		zfs_log_rename_whiteout(zilog, tx,
3117 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3118 		    tdzp, tdl->dl_name, szp, wzp);
3119 		break;
3120 	default:
3121 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3122 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3123 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3124 		break;
3125 	}
3126 
3127 commit:
3128 	dmu_tx_commit(tx);
3129 out:
3130 	if (have_acl)
3131 		zfs_acl_ids_free(&acl_ids);
3132 
3133 	zfs_znode_update_vfs(sdzp);
3134 	if (sdzp == tdzp)
3135 		rw_exit(&sdzp->z_name_lock);
3136 
3137 	if (sdzp != tdzp)
3138 		zfs_znode_update_vfs(tdzp);
3139 
3140 	zfs_znode_update_vfs(szp);
3141 	zrele(szp);
3142 	if (wzp) {
3143 		zfs_znode_update_vfs(wzp);
3144 		zrele(wzp);
3145 	}
3146 	if (tzp) {
3147 		zfs_znode_update_vfs(tzp);
3148 		zrele(tzp);
3149 	}
3150 
3151 	if (zl != NULL)
3152 		zfs_rename_unlock(&zl);
3153 
3154 	zfs_dirent_unlock(sdl);
3155 	zfs_dirent_unlock(tdl);
3156 
3157 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3158 		zil_commit(zilog, 0);
3159 
3160 	zfs_exit(zfsvfs, FTAG);
3161 	return (error);
3162 
3163 	/*
3164 	 * Clean-up path for broken link state.
3165 	 *
3166 	 * At this point we are in a (very) bad state, so we need to do our
3167 	 * best to correct the state. In particular, all of the nlinks are
3168 	 * wrong because we were destroying and creating links with ZRENAMING.
3169 	 *
3170 	 * In some form, all of these operations have to resolve the state:
3171 	 *
3172 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3173 	 *    since we only just created it.
3174 	 *
3175 	 *  * link_create()s are allowed to fail (though they shouldn't because
3176 	 *    we only just unlinked them and are putting the entries back
3177 	 *    during clean-up). But if they fail, we can just forcefully drop
3178 	 *    the nlink value to (at the very least) avoid broken nlink values
3179 	 *    -- though in the case of non-empty directories we will have to
3180 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3181 	 */
3182 commit_unlink_td_szp:
3183 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3184 commit_link_tzp:
3185 	if (tzp) {
3186 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3187 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3188 	}
3189 commit_link_szp:
3190 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3191 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3192 	goto commit;
3193 }
3194 
3195 /*
3196  * Insert the indicated symbolic reference entry into the directory.
3197  *
3198  *	IN:	dzp	- Directory to contain new symbolic link.
3199  *		name	- Name of directory entry in dip.
3200  *		vap	- Attributes of new entry.
3201  *		link	- Name for new symlink entry.
3202  *		cr	- credentials of caller.
3203  *		flags	- case flags
3204  *		mnt_ns	- user namespace of the mount
3205  *
3206  *	OUT:	zpp	- Znode for new symbolic link.
3207  *
3208  *	RETURN:	0 on success, error code on failure.
3209  *
3210  * Timestamps:
3211  *	dip - ctime|mtime updated
3212  */
3213 int
3214 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3215     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3216 {
3217 	znode_t		*zp;
3218 	zfs_dirlock_t	*dl;
3219 	dmu_tx_t	*tx;
3220 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3221 	zilog_t		*zilog;
3222 	uint64_t	len = strlen(link);
3223 	int		error;
3224 	int		zflg = ZNEW;
3225 	zfs_acl_ids_t	acl_ids;
3226 	boolean_t	fuid_dirtied;
3227 	uint64_t	txtype = TX_SYMLINK;
3228 	boolean_t	waited = B_FALSE;
3229 
3230 	ASSERT(S_ISLNK(vap->va_mode));
3231 
3232 	if (name == NULL)
3233 		return (SET_ERROR(EINVAL));
3234 
3235 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3236 		return (error);
3237 	zilog = zfsvfs->z_log;
3238 
3239 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3240 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3241 		zfs_exit(zfsvfs, FTAG);
3242 		return (SET_ERROR(EILSEQ));
3243 	}
3244 	if (flags & FIGNORECASE)
3245 		zflg |= ZCILOOK;
3246 
3247 	if (len > MAXPATHLEN) {
3248 		zfs_exit(zfsvfs, FTAG);
3249 		return (SET_ERROR(ENAMETOOLONG));
3250 	}
3251 
3252 	if ((error = zfs_acl_ids_create(dzp, 0,
3253 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3254 		zfs_exit(zfsvfs, FTAG);
3255 		return (error);
3256 	}
3257 top:
3258 	*zpp = NULL;
3259 
3260 	/*
3261 	 * Attempt to lock directory; fail if entry already exists.
3262 	 */
3263 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3264 	if (error) {
3265 		zfs_acl_ids_free(&acl_ids);
3266 		zfs_exit(zfsvfs, FTAG);
3267 		return (error);
3268 	}
3269 
3270 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3271 		zfs_acl_ids_free(&acl_ids);
3272 		zfs_dirent_unlock(dl);
3273 		zfs_exit(zfsvfs, FTAG);
3274 		return (error);
3275 	}
3276 
3277 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3278 		zfs_acl_ids_free(&acl_ids);
3279 		zfs_dirent_unlock(dl);
3280 		zfs_exit(zfsvfs, FTAG);
3281 		return (SET_ERROR(EDQUOT));
3282 	}
3283 	tx = dmu_tx_create(zfsvfs->z_os);
3284 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3285 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3286 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3287 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3288 	    ZFS_SA_BASE_ATTR_SIZE + len);
3289 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3290 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3291 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3292 		    acl_ids.z_aclp->z_acl_bytes);
3293 	}
3294 	if (fuid_dirtied)
3295 		zfs_fuid_txhold(zfsvfs, tx);
3296 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3297 	if (error) {
3298 		zfs_dirent_unlock(dl);
3299 		if (error == ERESTART) {
3300 			waited = B_TRUE;
3301 			dmu_tx_wait(tx);
3302 			dmu_tx_abort(tx);
3303 			goto top;
3304 		}
3305 		zfs_acl_ids_free(&acl_ids);
3306 		dmu_tx_abort(tx);
3307 		zfs_exit(zfsvfs, FTAG);
3308 		return (error);
3309 	}
3310 
3311 	/*
3312 	 * Create a new object for the symlink.
3313 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3314 	 */
3315 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3316 
3317 	if (fuid_dirtied)
3318 		zfs_fuid_sync(zfsvfs, tx);
3319 
3320 	mutex_enter(&zp->z_lock);
3321 	if (zp->z_is_sa)
3322 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3323 		    link, len, tx);
3324 	else
3325 		zfs_sa_symlink(zp, link, len, tx);
3326 	mutex_exit(&zp->z_lock);
3327 
3328 	zp->z_size = len;
3329 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3330 	    &zp->z_size, sizeof (zp->z_size), tx);
3331 	/*
3332 	 * Insert the new object into the directory.
3333 	 */
3334 	error = zfs_link_create(dl, zp, tx, ZNEW);
3335 	if (error != 0) {
3336 		zfs_znode_delete(zp, tx);
3337 		remove_inode_hash(ZTOI(zp));
3338 	} else {
3339 		if (flags & FIGNORECASE)
3340 			txtype |= TX_CI;
3341 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3342 
3343 		zfs_znode_update_vfs(dzp);
3344 		zfs_znode_update_vfs(zp);
3345 	}
3346 
3347 	zfs_acl_ids_free(&acl_ids);
3348 
3349 	dmu_tx_commit(tx);
3350 
3351 	zfs_dirent_unlock(dl);
3352 
3353 	if (error == 0) {
3354 		*zpp = zp;
3355 
3356 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3357 			zil_commit(zilog, 0);
3358 	} else {
3359 		zrele(zp);
3360 	}
3361 
3362 	zfs_exit(zfsvfs, FTAG);
3363 	return (error);
3364 }
3365 
3366 /*
3367  * Return, in the buffer contained in the provided uio structure,
3368  * the symbolic path referred to by ip.
3369  *
3370  *	IN:	ip	- inode of symbolic link
3371  *		uio	- structure to contain the link path.
3372  *		cr	- credentials of caller.
3373  *
3374  *	RETURN:	0 if success
3375  *		error code if failure
3376  *
3377  * Timestamps:
3378  *	ip - atime updated
3379  */
3380 int
3381 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3382 {
3383 	(void) cr;
3384 	znode_t		*zp = ITOZ(ip);
3385 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3386 	int		error;
3387 
3388 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3389 		return (error);
3390 
3391 	mutex_enter(&zp->z_lock);
3392 	if (zp->z_is_sa)
3393 		error = sa_lookup_uio(zp->z_sa_hdl,
3394 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3395 	else
3396 		error = zfs_sa_readlink(zp, uio);
3397 	mutex_exit(&zp->z_lock);
3398 
3399 	zfs_exit(zfsvfs, FTAG);
3400 	return (error);
3401 }
3402 
3403 /*
3404  * Insert a new entry into directory tdzp referencing szp.
3405  *
3406  *	IN:	tdzp	- Directory to contain new entry.
3407  *		szp	- znode of new entry.
3408  *		name	- name of new entry.
3409  *		cr	- credentials of caller.
3410  *		flags	- case flags.
3411  *
3412  *	RETURN:	0 if success
3413  *		error code if failure
3414  *
3415  * Timestamps:
3416  *	tdzp - ctime|mtime updated
3417  *	 szp - ctime updated
3418  */
3419 int
3420 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3421     int flags)
3422 {
3423 	struct inode *sip = ZTOI(szp);
3424 	znode_t		*tzp;
3425 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3426 	zilog_t		*zilog;
3427 	zfs_dirlock_t	*dl;
3428 	dmu_tx_t	*tx;
3429 	int		error;
3430 	int		zf = ZNEW;
3431 	uint64_t	parent;
3432 	uid_t		owner;
3433 	boolean_t	waited = B_FALSE;
3434 	boolean_t	is_tmpfile = 0;
3435 	uint64_t	txg;
3436 #ifdef HAVE_TMPFILE
3437 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3438 #endif
3439 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3440 
3441 	if (name == NULL)
3442 		return (SET_ERROR(EINVAL));
3443 
3444 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3445 		return (error);
3446 	zilog = zfsvfs->z_log;
3447 
3448 	/*
3449 	 * POSIX dictates that we return EPERM here.
3450 	 * Better choices include ENOTSUP or EISDIR.
3451 	 */
3452 	if (S_ISDIR(sip->i_mode)) {
3453 		zfs_exit(zfsvfs, FTAG);
3454 		return (SET_ERROR(EPERM));
3455 	}
3456 
3457 	if ((error = zfs_verify_zp(szp)) != 0) {
3458 		zfs_exit(zfsvfs, FTAG);
3459 		return (error);
3460 	}
3461 
3462 	/*
3463 	 * If we are using project inheritance, means if the directory has
3464 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3465 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3466 	 * such case, we only allow hard link creation in our tree when the
3467 	 * project IDs are the same.
3468 	 */
3469 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3470 	    tdzp->z_projid != szp->z_projid) {
3471 		zfs_exit(zfsvfs, FTAG);
3472 		return (SET_ERROR(EXDEV));
3473 	}
3474 
3475 	/*
3476 	 * We check i_sb because snapshots and the ctldir must have different
3477 	 * super blocks.
3478 	 */
3479 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3480 		zfs_exit(zfsvfs, FTAG);
3481 		return (SET_ERROR(EXDEV));
3482 	}
3483 
3484 	/* Prevent links to .zfs/shares files */
3485 
3486 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3487 	    &parent, sizeof (uint64_t))) != 0) {
3488 		zfs_exit(zfsvfs, FTAG);
3489 		return (error);
3490 	}
3491 	if (parent == zfsvfs->z_shares_dir) {
3492 		zfs_exit(zfsvfs, FTAG);
3493 		return (SET_ERROR(EPERM));
3494 	}
3495 
3496 	if (zfsvfs->z_utf8 && u8_validate(name,
3497 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3498 		zfs_exit(zfsvfs, FTAG);
3499 		return (SET_ERROR(EILSEQ));
3500 	}
3501 	if (flags & FIGNORECASE)
3502 		zf |= ZCILOOK;
3503 
3504 	/*
3505 	 * We do not support links between attributes and non-attributes
3506 	 * because of the potential security risk of creating links
3507 	 * into "normal" file space in order to circumvent restrictions
3508 	 * imposed in attribute space.
3509 	 */
3510 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3511 		zfs_exit(zfsvfs, FTAG);
3512 		return (SET_ERROR(EINVAL));
3513 	}
3514 
3515 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3516 	    cr, ZFS_OWNER);
3517 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3518 		zfs_exit(zfsvfs, FTAG);
3519 		return (SET_ERROR(EPERM));
3520 	}
3521 
3522 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3523 	    zfs_init_idmap))) {
3524 		zfs_exit(zfsvfs, FTAG);
3525 		return (error);
3526 	}
3527 
3528 top:
3529 	/*
3530 	 * Attempt to lock directory; fail if entry already exists.
3531 	 */
3532 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3533 	if (error) {
3534 		zfs_exit(zfsvfs, FTAG);
3535 		return (error);
3536 	}
3537 
3538 	tx = dmu_tx_create(zfsvfs->z_os);
3539 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3540 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3541 	if (is_tmpfile)
3542 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3543 
3544 	zfs_sa_upgrade_txholds(tx, szp);
3545 	zfs_sa_upgrade_txholds(tx, tdzp);
3546 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3547 	if (error) {
3548 		zfs_dirent_unlock(dl);
3549 		if (error == ERESTART) {
3550 			waited = B_TRUE;
3551 			dmu_tx_wait(tx);
3552 			dmu_tx_abort(tx);
3553 			goto top;
3554 		}
3555 		dmu_tx_abort(tx);
3556 		zfs_exit(zfsvfs, FTAG);
3557 		return (error);
3558 	}
3559 	/* unmark z_unlinked so zfs_link_create will not reject */
3560 	if (is_tmpfile)
3561 		szp->z_unlinked = B_FALSE;
3562 	error = zfs_link_create(dl, szp, tx, 0);
3563 
3564 	if (error == 0) {
3565 		uint64_t txtype = TX_LINK;
3566 		/*
3567 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3568 		 * Also, we don't log in ZIL, because all previous file
3569 		 * operation on the tmpfile are ignored by ZIL. Instead we
3570 		 * always wait for txg to sync to make sure all previous
3571 		 * operation are sync safe.
3572 		 */
3573 		if (is_tmpfile) {
3574 			VERIFY(zap_remove_int(zfsvfs->z_os,
3575 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3576 		} else {
3577 			if (flags & FIGNORECASE)
3578 				txtype |= TX_CI;
3579 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3580 		}
3581 	} else if (is_tmpfile) {
3582 		/* restore z_unlinked since when linking failed */
3583 		szp->z_unlinked = B_TRUE;
3584 	}
3585 	txg = dmu_tx_get_txg(tx);
3586 	dmu_tx_commit(tx);
3587 
3588 	zfs_dirent_unlock(dl);
3589 
3590 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3591 		zil_commit(zilog, 0);
3592 
3593 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3594 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3595 
3596 	zfs_znode_update_vfs(tdzp);
3597 	zfs_znode_update_vfs(szp);
3598 	zfs_exit(zfsvfs, FTAG);
3599 	return (error);
3600 }
3601 
3602 static void
3603 zfs_putpage_sync_commit_cb(void *arg)
3604 {
3605 	struct page *pp = arg;
3606 
3607 	ClearPageError(pp);
3608 	end_page_writeback(pp);
3609 }
3610 
3611 static void
3612 zfs_putpage_async_commit_cb(void *arg)
3613 {
3614 	struct page *pp = arg;
3615 	znode_t *zp = ITOZ(pp->mapping->host);
3616 
3617 	ClearPageError(pp);
3618 	end_page_writeback(pp);
3619 	atomic_dec_32(&zp->z_async_writes_cnt);
3620 }
3621 
3622 /*
3623  * Push a page out to disk, once the page is on stable storage the
3624  * registered commit callback will be run as notification of completion.
3625  *
3626  *	IN:	ip	 - page mapped for inode.
3627  *		pp	 - page to push (page is locked)
3628  *		wbc	 - writeback control data
3629  *		for_sync - does the caller intend to wait synchronously for the
3630  *			   page writeback to complete?
3631  *
3632  *	RETURN:	0 if success
3633  *		error code if failure
3634  *
3635  * Timestamps:
3636  *	ip - ctime|mtime updated
3637  */
3638 int
3639 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3640     boolean_t for_sync)
3641 {
3642 	znode_t		*zp = ITOZ(ip);
3643 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3644 	loff_t		offset;
3645 	loff_t		pgoff;
3646 	unsigned int	pglen;
3647 	dmu_tx_t	*tx;
3648 	caddr_t		va;
3649 	int		err = 0;
3650 	uint64_t	mtime[2], ctime[2];
3651 	sa_bulk_attr_t	bulk[3];
3652 	int		cnt = 0;
3653 	struct address_space *mapping;
3654 
3655 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3656 		return (err);
3657 
3658 	ASSERT(PageLocked(pp));
3659 
3660 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3661 	offset = i_size_read(ip);	/* File length in bytes */
3662 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3663 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3664 
3665 	/* Page is beyond end of file */
3666 	if (pgoff >= offset) {
3667 		unlock_page(pp);
3668 		zfs_exit(zfsvfs, FTAG);
3669 		return (0);
3670 	}
3671 
3672 	/* Truncate page length to end of file */
3673 	if (pgoff + pglen > offset)
3674 		pglen = offset - pgoff;
3675 
3676 #if 0
3677 	/*
3678 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3679 	 * is to register a page_mkwrite() handler to count the page
3680 	 * against its quota when it is about to be dirtied.
3681 	 */
3682 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3683 	    KUID_TO_SUID(ip->i_uid)) ||
3684 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3685 	    KGID_TO_SGID(ip->i_gid)) ||
3686 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3687 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3688 	    zp->z_projid))) {
3689 		err = EDQUOT;
3690 	}
3691 #endif
3692 
3693 	/*
3694 	 * The ordering here is critical and must adhere to the following
3695 	 * rules in order to avoid deadlocking in either zfs_read() or
3696 	 * zfs_free_range() due to a lock inversion.
3697 	 *
3698 	 * 1) The page must be unlocked prior to acquiring the range lock.
3699 	 *    This is critical because zfs_read() calls find_lock_page()
3700 	 *    which may block on the page lock while holding the range lock.
3701 	 *
3702 	 * 2) Before setting or clearing write back on a page the range lock
3703 	 *    must be held in order to prevent a lock inversion with the
3704 	 *    zfs_free_range() function.
3705 	 *
3706 	 * This presents a problem because upon entering this function the
3707 	 * page lock is already held.  To safely acquire the range lock the
3708 	 * page lock must be dropped.  This creates a window where another
3709 	 * process could truncate, invalidate, dirty, or write out the page.
3710 	 *
3711 	 * Therefore, after successfully reacquiring the range and page locks
3712 	 * the current page state is checked.  In the common case everything
3713 	 * will be as is expected and it can be written out.  However, if
3714 	 * the page state has changed it must be handled accordingly.
3715 	 */
3716 	mapping = pp->mapping;
3717 	redirty_page_for_writepage(wbc, pp);
3718 	unlock_page(pp);
3719 
3720 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3721 	    pgoff, pglen, RL_WRITER);
3722 	lock_page(pp);
3723 
3724 	/* Page mapping changed or it was no longer dirty, we're done */
3725 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3726 		unlock_page(pp);
3727 		zfs_rangelock_exit(lr);
3728 		zfs_exit(zfsvfs, FTAG);
3729 		return (0);
3730 	}
3731 
3732 	/* Another process started write block if required */
3733 	if (PageWriteback(pp)) {
3734 		unlock_page(pp);
3735 		zfs_rangelock_exit(lr);
3736 
3737 		if (wbc->sync_mode != WB_SYNC_NONE) {
3738 			/*
3739 			 * Speed up any non-sync page writebacks since
3740 			 * they may take several seconds to complete.
3741 			 * Refer to the comment in zpl_fsync() (when
3742 			 * HAVE_FSYNC_RANGE is defined) for details.
3743 			 */
3744 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3745 				zil_commit(zfsvfs->z_log, zp->z_id);
3746 			}
3747 
3748 			if (PageWriteback(pp))
3749 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3750 				folio_wait_bit(page_folio(pp), PG_writeback);
3751 #else
3752 				wait_on_page_bit(pp, PG_writeback);
3753 #endif
3754 		}
3755 
3756 		zfs_exit(zfsvfs, FTAG);
3757 		return (0);
3758 	}
3759 
3760 	/* Clear the dirty flag the required locks are held */
3761 	if (!clear_page_dirty_for_io(pp)) {
3762 		unlock_page(pp);
3763 		zfs_rangelock_exit(lr);
3764 		zfs_exit(zfsvfs, FTAG);
3765 		return (0);
3766 	}
3767 
3768 	/*
3769 	 * Counterpart for redirty_page_for_writepage() above.  This page
3770 	 * was in fact not skipped and should not be counted as if it were.
3771 	 */
3772 	wbc->pages_skipped--;
3773 	if (!for_sync)
3774 		atomic_inc_32(&zp->z_async_writes_cnt);
3775 	set_page_writeback(pp);
3776 	unlock_page(pp);
3777 
3778 	tx = dmu_tx_create(zfsvfs->z_os);
3779 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3780 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3781 	zfs_sa_upgrade_txholds(tx, zp);
3782 
3783 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3784 	if (err != 0) {
3785 		if (err == ERESTART)
3786 			dmu_tx_wait(tx);
3787 
3788 		dmu_tx_abort(tx);
3789 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3790 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3791 #else
3792 		__set_page_dirty_nobuffers(pp);
3793 #endif
3794 		ClearPageError(pp);
3795 		end_page_writeback(pp);
3796 		if (!for_sync)
3797 			atomic_dec_32(&zp->z_async_writes_cnt);
3798 		zfs_rangelock_exit(lr);
3799 		zfs_exit(zfsvfs, FTAG);
3800 		return (err);
3801 	}
3802 
3803 	va = kmap(pp);
3804 	ASSERT3U(pglen, <=, PAGE_SIZE);
3805 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3806 	kunmap(pp);
3807 
3808 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3809 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3810 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3811 	    &zp->z_pflags, 8);
3812 
3813 	/* Preserve the mtime and ctime provided by the inode */
3814 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3815 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3816 	zp->z_atime_dirty = B_FALSE;
3817 	zp->z_seq++;
3818 
3819 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3820 
3821 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3822 	    for_sync ? zfs_putpage_sync_commit_cb :
3823 	    zfs_putpage_async_commit_cb, pp);
3824 
3825 	dmu_tx_commit(tx);
3826 
3827 	zfs_rangelock_exit(lr);
3828 
3829 	if (wbc->sync_mode != WB_SYNC_NONE) {
3830 		/*
3831 		 * Note that this is rarely called under writepages(), because
3832 		 * writepages() normally handles the entire commit for
3833 		 * performance reasons.
3834 		 */
3835 		zil_commit(zfsvfs->z_log, zp->z_id);
3836 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3837 		/*
3838 		 * If the caller does not intend to wait synchronously
3839 		 * for this page writeback to complete and there are active
3840 		 * synchronous calls on this file, do a commit so that
3841 		 * the latter don't accidentally end up waiting for
3842 		 * our writeback to complete. Refer to the comment in
3843 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3844 		 */
3845 		zil_commit(zfsvfs->z_log, zp->z_id);
3846 	}
3847 
3848 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3849 
3850 	zfs_exit(zfsvfs, FTAG);
3851 	return (err);
3852 }
3853 
3854 /*
3855  * Update the system attributes when the inode has been dirtied.  For the
3856  * moment we only update the mode, atime, mtime, and ctime.
3857  */
3858 int
3859 zfs_dirty_inode(struct inode *ip, int flags)
3860 {
3861 	znode_t		*zp = ITOZ(ip);
3862 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3863 	dmu_tx_t	*tx;
3864 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3865 	sa_bulk_attr_t	bulk[4];
3866 	int		error = 0;
3867 	int		cnt = 0;
3868 
3869 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3870 		return (0);
3871 
3872 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3873 		return (error);
3874 
3875 #ifdef I_DIRTY_TIME
3876 	/*
3877 	 * This is the lazytime semantic introduced in Linux 4.0
3878 	 * This flag will only be called from update_time when lazytime is set.
3879 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3880 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3881 	 * only need to dirty atime.
3882 	 */
3883 	if (flags == I_DIRTY_TIME) {
3884 		zp->z_atime_dirty = B_TRUE;
3885 		goto out;
3886 	}
3887 #endif
3888 
3889 	tx = dmu_tx_create(zfsvfs->z_os);
3890 
3891 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3892 	zfs_sa_upgrade_txholds(tx, zp);
3893 
3894 	error = dmu_tx_assign(tx, TXG_WAIT);
3895 	if (error) {
3896 		dmu_tx_abort(tx);
3897 		goto out;
3898 	}
3899 
3900 	mutex_enter(&zp->z_lock);
3901 	zp->z_atime_dirty = B_FALSE;
3902 
3903 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3904 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3905 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3906 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3907 
3908 	/* Preserve the mode, mtime and ctime provided by the inode */
3909 	ZFS_TIME_ENCODE(&ip->i_atime, atime);
3910 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3911 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3912 	mode = ip->i_mode;
3913 
3914 	zp->z_mode = mode;
3915 
3916 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3917 	mutex_exit(&zp->z_lock);
3918 
3919 	dmu_tx_commit(tx);
3920 out:
3921 	zfs_exit(zfsvfs, FTAG);
3922 	return (error);
3923 }
3924 
3925 void
3926 zfs_inactive(struct inode *ip)
3927 {
3928 	znode_t	*zp = ITOZ(ip);
3929 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3930 	uint64_t atime[2];
3931 	int error;
3932 	int need_unlock = 0;
3933 
3934 	/* Only read lock if we haven't already write locked, e.g. rollback */
3935 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3936 		need_unlock = 1;
3937 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3938 	}
3939 	if (zp->z_sa_hdl == NULL) {
3940 		if (need_unlock)
3941 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3942 		return;
3943 	}
3944 
3945 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3946 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3947 
3948 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3949 		zfs_sa_upgrade_txholds(tx, zp);
3950 		error = dmu_tx_assign(tx, TXG_WAIT);
3951 		if (error) {
3952 			dmu_tx_abort(tx);
3953 		} else {
3954 			ZFS_TIME_ENCODE(&ip->i_atime, atime);
3955 			mutex_enter(&zp->z_lock);
3956 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3957 			    (void *)&atime, sizeof (atime), tx);
3958 			zp->z_atime_dirty = B_FALSE;
3959 			mutex_exit(&zp->z_lock);
3960 			dmu_tx_commit(tx);
3961 		}
3962 	}
3963 
3964 	zfs_zinactive(zp);
3965 	if (need_unlock)
3966 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3967 }
3968 
3969 /*
3970  * Fill pages with data from the disk.
3971  */
3972 static int
3973 zfs_fillpage(struct inode *ip, struct page *pp)
3974 {
3975 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3976 	loff_t i_size = i_size_read(ip);
3977 	u_offset_t io_off = page_offset(pp);
3978 	size_t io_len = PAGE_SIZE;
3979 
3980 	ASSERT3U(io_off, <, i_size);
3981 
3982 	if (io_off + io_len > i_size)
3983 		io_len = i_size - io_off;
3984 
3985 	void *va = kmap(pp);
3986 	int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off,
3987 	    io_len, va, DMU_READ_PREFETCH);
3988 	if (io_len != PAGE_SIZE)
3989 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
3990 	kunmap(pp);
3991 
3992 	if (error) {
3993 		/* convert checksum errors into IO errors */
3994 		if (error == ECKSUM)
3995 			error = SET_ERROR(EIO);
3996 
3997 		SetPageError(pp);
3998 		ClearPageUptodate(pp);
3999 	} else {
4000 		ClearPageError(pp);
4001 		SetPageUptodate(pp);
4002 	}
4003 
4004 	return (error);
4005 }
4006 
4007 /*
4008  * Uses zfs_fillpage to read data from the file and fill the page.
4009  *
4010  *	IN:	ip	 - inode of file to get data from.
4011  *		pp	 - page to read
4012  *
4013  *	RETURN:	0 on success, error code on failure.
4014  *
4015  * Timestamps:
4016  *	vp - atime updated
4017  */
4018 int
4019 zfs_getpage(struct inode *ip, struct page *pp)
4020 {
4021 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4022 	znode_t *zp = ITOZ(ip);
4023 	int error;
4024 
4025 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4026 		return (error);
4027 
4028 	error = zfs_fillpage(ip, pp);
4029 	if (error == 0)
4030 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4031 
4032 	zfs_exit(zfsvfs, FTAG);
4033 
4034 	return (error);
4035 }
4036 
4037 /*
4038  * Check ZFS specific permissions to memory map a section of a file.
4039  *
4040  *	IN:	ip	- inode of the file to mmap
4041  *		off	- file offset
4042  *		addrp	- start address in memory region
4043  *		len	- length of memory region
4044  *		vm_flags- address flags
4045  *
4046  *	RETURN:	0 if success
4047  *		error code if failure
4048  */
4049 int
4050 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4051     unsigned long vm_flags)
4052 {
4053 	(void) addrp;
4054 	znode_t  *zp = ITOZ(ip);
4055 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4056 	int error;
4057 
4058 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4059 		return (error);
4060 
4061 	if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4062 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4063 		zfs_exit(zfsvfs, FTAG);
4064 		return (SET_ERROR(EPERM));
4065 	}
4066 
4067 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4068 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4069 		zfs_exit(zfsvfs, FTAG);
4070 		return (SET_ERROR(EACCES));
4071 	}
4072 
4073 	if (off < 0 || len > MAXOFFSET_T - off) {
4074 		zfs_exit(zfsvfs, FTAG);
4075 		return (SET_ERROR(ENXIO));
4076 	}
4077 
4078 	zfs_exit(zfsvfs, FTAG);
4079 	return (0);
4080 }
4081 
4082 /*
4083  * Free or allocate space in a file.  Currently, this function only
4084  * supports the `F_FREESP' command.  However, this command is somewhat
4085  * misnamed, as its functionality includes the ability to allocate as
4086  * well as free space.
4087  *
4088  *	IN:	zp	- znode of file to free data in.
4089  *		cmd	- action to take (only F_FREESP supported).
4090  *		bfp	- section of file to free/alloc.
4091  *		flag	- current file open mode flags.
4092  *		offset	- current file offset.
4093  *		cr	- credentials of caller.
4094  *
4095  *	RETURN:	0 on success, error code on failure.
4096  *
4097  * Timestamps:
4098  *	zp - ctime|mtime updated
4099  */
4100 int
4101 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4102     offset_t offset, cred_t *cr)
4103 {
4104 	(void) offset;
4105 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4106 	uint64_t	off, len;
4107 	int		error;
4108 
4109 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4110 		return (error);
4111 
4112 	if (cmd != F_FREESP) {
4113 		zfs_exit(zfsvfs, FTAG);
4114 		return (SET_ERROR(EINVAL));
4115 	}
4116 
4117 	/*
4118 	 * Callers might not be able to detect properly that we are read-only,
4119 	 * so check it explicitly here.
4120 	 */
4121 	if (zfs_is_readonly(zfsvfs)) {
4122 		zfs_exit(zfsvfs, FTAG);
4123 		return (SET_ERROR(EROFS));
4124 	}
4125 
4126 	if (bfp->l_len < 0) {
4127 		zfs_exit(zfsvfs, FTAG);
4128 		return (SET_ERROR(EINVAL));
4129 	}
4130 
4131 	/*
4132 	 * Permissions aren't checked on Solaris because on this OS
4133 	 * zfs_space() can only be called with an opened file handle.
4134 	 * On Linux we can get here through truncate_range() which
4135 	 * operates directly on inodes, so we need to check access rights.
4136 	 */
4137 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4138 	    zfs_init_idmap))) {
4139 		zfs_exit(zfsvfs, FTAG);
4140 		return (error);
4141 	}
4142 
4143 	off = bfp->l_start;
4144 	len = bfp->l_len; /* 0 means from off to end of file */
4145 
4146 	error = zfs_freesp(zp, off, len, flag, TRUE);
4147 
4148 	zfs_exit(zfsvfs, FTAG);
4149 	return (error);
4150 }
4151 
4152 int
4153 zfs_fid(struct inode *ip, fid_t *fidp)
4154 {
4155 	znode_t		*zp = ITOZ(ip);
4156 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4157 	uint32_t	gen;
4158 	uint64_t	gen64;
4159 	uint64_t	object = zp->z_id;
4160 	zfid_short_t	*zfid;
4161 	int		size, i, error;
4162 
4163 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4164 		return (error);
4165 
4166 	if (fidp->fid_len < SHORT_FID_LEN) {
4167 		fidp->fid_len = SHORT_FID_LEN;
4168 		zfs_exit(zfsvfs, FTAG);
4169 		return (SET_ERROR(ENOSPC));
4170 	}
4171 
4172 	if ((error = zfs_verify_zp(zp)) != 0) {
4173 		zfs_exit(zfsvfs, FTAG);
4174 		return (error);
4175 	}
4176 
4177 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4178 	    &gen64, sizeof (uint64_t))) != 0) {
4179 		zfs_exit(zfsvfs, FTAG);
4180 		return (error);
4181 	}
4182 
4183 	gen = (uint32_t)gen64;
4184 
4185 	size = SHORT_FID_LEN;
4186 
4187 	zfid = (zfid_short_t *)fidp;
4188 
4189 	zfid->zf_len = size;
4190 
4191 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4192 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4193 
4194 	/* Must have a non-zero generation number to distinguish from .zfs */
4195 	if (gen == 0)
4196 		gen = 1;
4197 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4198 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4199 
4200 	zfs_exit(zfsvfs, FTAG);
4201 	return (0);
4202 }
4203 
4204 #if defined(_KERNEL)
4205 EXPORT_SYMBOL(zfs_open);
4206 EXPORT_SYMBOL(zfs_close);
4207 EXPORT_SYMBOL(zfs_lookup);
4208 EXPORT_SYMBOL(zfs_create);
4209 EXPORT_SYMBOL(zfs_tmpfile);
4210 EXPORT_SYMBOL(zfs_remove);
4211 EXPORT_SYMBOL(zfs_mkdir);
4212 EXPORT_SYMBOL(zfs_rmdir);
4213 EXPORT_SYMBOL(zfs_readdir);
4214 EXPORT_SYMBOL(zfs_getattr_fast);
4215 EXPORT_SYMBOL(zfs_setattr);
4216 EXPORT_SYMBOL(zfs_rename);
4217 EXPORT_SYMBOL(zfs_symlink);
4218 EXPORT_SYMBOL(zfs_readlink);
4219 EXPORT_SYMBOL(zfs_link);
4220 EXPORT_SYMBOL(zfs_inactive);
4221 EXPORT_SYMBOL(zfs_space);
4222 EXPORT_SYMBOL(zfs_fid);
4223 EXPORT_SYMBOL(zfs_getpage);
4224 EXPORT_SYMBOL(zfs_putpage);
4225 EXPORT_SYMBOL(zfs_dirty_inode);
4226 EXPORT_SYMBOL(zfs_map);
4227 
4228 /* CSTYLED */
4229 module_param(zfs_delete_blocks, ulong, 0644);
4230 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4231 
4232 #endif
4233