1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 
73 /*
74  * Programming rules.
75  *
76  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
77  * properly lock its in-core state, create a DMU transaction, do the work,
78  * record this work in the intent log (ZIL), commit the DMU transaction,
79  * and wait for the intent log to commit if it is a synchronous operation.
80  * Moreover, the vnode ops must work in both normal and log replay context.
81  * The ordering of events is important to avoid deadlocks and references
82  * to freed memory.  The example below illustrates the following Big Rules:
83  *
84  *  (1) A check must be made in each zfs thread for a mounted file system.
85  *	This is done avoiding races using zfs_enter(zfsvfs).
86  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
87  *      must be checked with zfs_verify_zp(zp).  Both of these macros
88  *      can return EIO from the calling function.
89  *
90  *  (2) zrele() should always be the last thing except for zil_commit() (if
91  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92  *	last reference, the vnode/znode can be freed, so the zp may point to
93  *	freed memory.  Second, the last reference will call zfs_zinactive(),
94  *	which may induce a lot of work -- pushing cached pages (which acquires
95  *	range locks) and syncing out cached atime changes.  Third,
96  *	zfs_zinactive() may require a new tx, which could deadlock the system
97  *	if you were already holding one. This deadlock occurs because the tx
98  *	currently being operated on prevents a txg from syncing, which
99  *	prevents the new tx from progressing, resulting in a deadlock.  If you
100  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101  *	is a synonym for zrele().
102  *
103  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
104  *	as they can span dmu_tx_assign() calls.
105  *
106  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107  *      dmu_tx_assign().  This is critical because we don't want to block
108  *      while holding locks.
109  *
110  *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
111  *	reduces lock contention and CPU usage when we must wait (note that if
112  *	throughput is constrained by the storage, nearly every transaction
113  *	must wait).
114  *
115  *      Note, in particular, that if a lock is sometimes acquired before
116  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
117  *      to use a non-blocking assign can deadlock the system.  The scenario:
118  *
119  *	Thread A has grabbed a lock before calling dmu_tx_assign().
120  *	Thread B is in an already-assigned tx, and blocks for this lock.
121  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122  *	forever, because the previous txg can't quiesce until B's tx commits.
123  *
124  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
126  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127  *	to indicate that this operation has already called dmu_tx_wait().
128  *	This will ensure that we don't retry forever, waiting a short bit
129  *	each time.
130  *
131  *  (5)	If the operation succeeded, generate the intent log entry for it
132  *	before dropping locks.  This ensures that the ordering of events
133  *	in the intent log matches the order in which they actually occurred.
134  *	During ZIL replay the zfs_log_* functions will update the sequence
135  *	number to indicate the zil transaction has replayed.
136  *
137  *  (6)	At the end of each vnode op, the DMU tx must always commit,
138  *	regardless of whether there were any errors.
139  *
140  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
141  *	to ensure that synchronous semantics are provided when necessary.
142  *
143  * In general, this is how things should be ordered in each vnode op:
144  *
145  *	zfs_enter(zfsvfs);		// exit if unmounted
146  * top:
147  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
148  *	rw_enter(...);			// grab any other locks you need
149  *	tx = dmu_tx_create(...);	// get DMU tx
150  *	dmu_tx_hold_*();		// hold each object you might modify
151  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152  *	if (error) {
153  *		rw_exit(...);		// drop locks
154  *		zfs_dirent_unlock(dl);	// unlock directory entry
155  *		zrele(...);		// release held znodes
156  *		if (error == ERESTART) {
157  *			waited = B_TRUE;
158  *			dmu_tx_wait(tx);
159  *			dmu_tx_abort(tx);
160  *			goto top;
161  *		}
162  *		dmu_tx_abort(tx);	// abort DMU tx
163  *		zfs_exit(zfsvfs);	// finished in zfs
164  *		return (error);		// really out of space
165  *	}
166  *	error = do_real_work();		// do whatever this VOP does
167  *	if (error == 0)
168  *		zfs_log_*(...);		// on success, make ZIL entry
169  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
170  *	rw_exit(...);			// drop locks
171  *	zfs_dirent_unlock(dl);		// unlock directory entry
172  *	zrele(...);			// release held znodes
173  *	zil_commit(zilog, foid);	// synchronous when necessary
174  *	zfs_exit(zfsvfs);		// finished in zfs
175  *	return (error);			// done, report error
176  */
177 int
178 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
179 {
180 	(void) cr;
181 	znode_t	*zp = ITOZ(ip);
182 	zfsvfs_t *zfsvfs = ITOZSB(ip);
183 	int error;
184 
185 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186 		return (error);
187 
188 	/* Honor ZFS_APPENDONLY file attribute */
189 	if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 	    ((flag & O_APPEND) == 0)) {
191 		zfs_exit(zfsvfs, FTAG);
192 		return (SET_ERROR(EPERM));
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & O_SYNC)
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	zfs_exit(zfsvfs, FTAG);
200 	return (0);
201 }
202 
203 int
204 zfs_close(struct inode *ip, int flag, cred_t *cr)
205 {
206 	(void) cr;
207 	znode_t	*zp = ITOZ(ip);
208 	zfsvfs_t *zfsvfs = ITOZSB(ip);
209 	int error;
210 
211 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 		return (error);
213 
214 	/* Decrement the synchronous opens in the znode */
215 	if (flag & O_SYNC)
216 		atomic_dec_32(&zp->z_sync_cnt);
217 
218 	zfs_exit(zfsvfs, FTAG);
219 	return (0);
220 }
221 
222 #if defined(_KERNEL)
223 /*
224  * When a file is memory mapped, we must keep the IO data synchronized
225  * between the DMU cache and the memory mapped pages.  What this means:
226  *
227  * On Write:	If we find a memory mapped page, we write to *both*
228  *		the page and the dmu buffer.
229  */
230 void
231 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
232 {
233 	struct inode *ip = ZTOI(zp);
234 	struct address_space *mp = ip->i_mapping;
235 	struct page *pp;
236 	uint64_t nbytes;
237 	int64_t	off;
238 	void *pb;
239 
240 	off = start & (PAGE_SIZE-1);
241 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
242 		nbytes = MIN(PAGE_SIZE - off, len);
243 
244 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
245 		if (pp) {
246 			if (mapping_writably_mapped(mp))
247 				flush_dcache_page(pp);
248 
249 			pb = kmap(pp);
250 			(void) dmu_read(os, zp->z_id, start + off, nbytes,
251 			    pb + off, DMU_READ_PREFETCH);
252 			kunmap(pp);
253 
254 			if (mapping_writably_mapped(mp))
255 				flush_dcache_page(pp);
256 
257 			mark_page_accessed(pp);
258 			SetPageUptodate(pp);
259 			ClearPageError(pp);
260 			unlock_page(pp);
261 			put_page(pp);
262 		}
263 
264 		len -= nbytes;
265 		off = 0;
266 	}
267 }
268 
269 /*
270  * When a file is memory mapped, we must keep the IO data synchronized
271  * between the DMU cache and the memory mapped pages.  What this means:
272  *
273  * On Read:	We "read" preferentially from memory mapped pages,
274  *		else we default from the dmu buffer.
275  *
276  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
277  *	 the file is memory mapped.
278  */
279 int
280 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
281 {
282 	struct inode *ip = ZTOI(zp);
283 	struct address_space *mp = ip->i_mapping;
284 	struct page *pp;
285 	int64_t	start, off;
286 	uint64_t bytes;
287 	int len = nbytes;
288 	int error = 0;
289 	void *pb;
290 
291 	start = uio->uio_loffset;
292 	off = start & (PAGE_SIZE-1);
293 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
294 		bytes = MIN(PAGE_SIZE - off, len);
295 
296 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
297 		if (pp) {
298 			ASSERT(PageUptodate(pp));
299 			unlock_page(pp);
300 
301 			pb = kmap(pp);
302 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
303 			kunmap(pp);
304 
305 			if (mapping_writably_mapped(mp))
306 				flush_dcache_page(pp);
307 
308 			mark_page_accessed(pp);
309 			put_page(pp);
310 		} else {
311 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
312 			    uio, bytes);
313 		}
314 
315 		len -= bytes;
316 		off = 0;
317 		if (error)
318 			break;
319 	}
320 	return (error);
321 }
322 #endif /* _KERNEL */
323 
324 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
325 
326 /*
327  * Write the bytes to a file.
328  *
329  *	IN:	zp	- znode of file to be written to
330  *		data	- bytes to write
331  *		len	- number of bytes to write
332  *		pos	- offset to start writing at
333  *
334  *	OUT:	resid	- remaining bytes to write
335  *
336  *	RETURN:	0 if success
337  *		positive error code if failure.  EIO is	returned
338  *		for a short write when residp isn't provided.
339  *
340  * Timestamps:
341  *	zp - ctime|mtime updated if byte count > 0
342  */
343 int
344 zfs_write_simple(znode_t *zp, const void *data, size_t len,
345     loff_t pos, size_t *residp)
346 {
347 	fstrans_cookie_t cookie;
348 	int error;
349 
350 	struct iovec iov;
351 	iov.iov_base = (void *)data;
352 	iov.iov_len = len;
353 
354 	zfs_uio_t uio;
355 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
356 
357 	cookie = spl_fstrans_mark();
358 	error = zfs_write(zp, &uio, 0, kcred);
359 	spl_fstrans_unmark(cookie);
360 
361 	if (error == 0) {
362 		if (residp != NULL)
363 			*residp = zfs_uio_resid(&uio);
364 		else if (zfs_uio_resid(&uio) != 0)
365 			error = SET_ERROR(EIO);
366 	}
367 
368 	return (error);
369 }
370 
371 static void
372 zfs_rele_async_task(void *arg)
373 {
374 	iput(arg);
375 }
376 
377 void
378 zfs_zrele_async(znode_t *zp)
379 {
380 	struct inode *ip = ZTOI(zp);
381 	objset_t *os = ITOZSB(ip)->z_os;
382 
383 	ASSERT(atomic_read(&ip->i_count) > 0);
384 	ASSERT(os != NULL);
385 
386 	/*
387 	 * If decrementing the count would put us at 0, we can't do it inline
388 	 * here, because that would be synchronous. Instead, dispatch an iput
389 	 * to run later.
390 	 *
391 	 * For more information on the dangers of a synchronous iput, see the
392 	 * header comment of this file.
393 	 */
394 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
395 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
396 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
397 	}
398 }
399 
400 
401 /*
402  * Lookup an entry in a directory, or an extended attribute directory.
403  * If it exists, return a held inode reference for it.
404  *
405  *	IN:	zdp	- znode of directory to search.
406  *		nm	- name of entry to lookup.
407  *		flags	- LOOKUP_XATTR set if looking for an attribute.
408  *		cr	- credentials of caller.
409  *		direntflags - directory lookup flags
410  *		realpnp - returned pathname.
411  *
412  *	OUT:	zpp	- znode of located entry, NULL if not found.
413  *
414  *	RETURN:	0 on success, error code on failure.
415  *
416  * Timestamps:
417  *	NA
418  */
419 int
420 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
421     int *direntflags, pathname_t *realpnp)
422 {
423 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
424 	int error = 0;
425 
426 	/*
427 	 * Fast path lookup, however we must skip DNLC lookup
428 	 * for case folding or normalizing lookups because the
429 	 * DNLC code only stores the passed in name.  This means
430 	 * creating 'a' and removing 'A' on a case insensitive
431 	 * file system would work, but DNLC still thinks 'a'
432 	 * exists and won't let you create it again on the next
433 	 * pass through fast path.
434 	 */
435 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
436 
437 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
438 			return (SET_ERROR(ENOTDIR));
439 		} else if (zdp->z_sa_hdl == NULL) {
440 			return (SET_ERROR(EIO));
441 		}
442 
443 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
444 			error = zfs_fastaccesschk_execute(zdp, cr);
445 			if (!error) {
446 				*zpp = zdp;
447 				zhold(*zpp);
448 				return (0);
449 			}
450 			return (error);
451 		}
452 	}
453 
454 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
455 		return (error);
456 
457 	*zpp = NULL;
458 
459 	if (flags & LOOKUP_XATTR) {
460 		/*
461 		 * We don't allow recursive attributes..
462 		 * Maybe someday we will.
463 		 */
464 		if (zdp->z_pflags & ZFS_XATTR) {
465 			zfs_exit(zfsvfs, FTAG);
466 			return (SET_ERROR(EINVAL));
467 		}
468 
469 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
470 			zfs_exit(zfsvfs, FTAG);
471 			return (error);
472 		}
473 
474 		/*
475 		 * Do we have permission to get into attribute directory?
476 		 */
477 
478 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
479 		    B_TRUE, cr, kcred->user_ns))) {
480 			zrele(*zpp);
481 			*zpp = NULL;
482 		}
483 
484 		zfs_exit(zfsvfs, FTAG);
485 		return (error);
486 	}
487 
488 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
489 		zfs_exit(zfsvfs, FTAG);
490 		return (SET_ERROR(ENOTDIR));
491 	}
492 
493 	/*
494 	 * Check accessibility of directory.
495 	 */
496 
497 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
498 	    kcred->user_ns))) {
499 		zfs_exit(zfsvfs, FTAG);
500 		return (error);
501 	}
502 
503 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
504 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
505 		zfs_exit(zfsvfs, FTAG);
506 		return (SET_ERROR(EILSEQ));
507 	}
508 
509 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
510 	if ((error == 0) && (*zpp))
511 		zfs_znode_update_vfs(*zpp);
512 
513 	zfs_exit(zfsvfs, FTAG);
514 	return (error);
515 }
516 
517 /*
518  * Attempt to create a new entry in a directory.  If the entry
519  * already exists, truncate the file if permissible, else return
520  * an error.  Return the ip of the created or trunc'd file.
521  *
522  *	IN:	dzp	- znode of directory to put new file entry in.
523  *		name	- name of new file entry.
524  *		vap	- attributes of new file.
525  *		excl	- flag indicating exclusive or non-exclusive mode.
526  *		mode	- mode to open file with.
527  *		cr	- credentials of caller.
528  *		flag	- file flag.
529  *		vsecp	- ACL to be set
530  *		mnt_ns	- user namespace of the mount
531  *
532  *	OUT:	zpp	- znode of created or trunc'd entry.
533  *
534  *	RETURN:	0 on success, error code on failure.
535  *
536  * Timestamps:
537  *	dzp - ctime|mtime updated if new entry created
538  *	 zp - ctime|mtime always, atime if new
539  */
540 int
541 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
542     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
543     zuserns_t *mnt_ns)
544 {
545 	znode_t		*zp;
546 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
547 	zilog_t		*zilog;
548 	objset_t	*os;
549 	zfs_dirlock_t	*dl;
550 	dmu_tx_t	*tx;
551 	int		error;
552 	uid_t		uid;
553 	gid_t		gid;
554 	zfs_acl_ids_t   acl_ids;
555 	boolean_t	fuid_dirtied;
556 	boolean_t	have_acl = B_FALSE;
557 	boolean_t	waited = B_FALSE;
558 
559 	/*
560 	 * If we have an ephemeral id, ACL, or XVATTR then
561 	 * make sure file system is at proper version
562 	 */
563 
564 	gid = crgetgid(cr);
565 	uid = crgetuid(cr);
566 
567 	if (zfsvfs->z_use_fuids == B_FALSE &&
568 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
569 		return (SET_ERROR(EINVAL));
570 
571 	if (name == NULL)
572 		return (SET_ERROR(EINVAL));
573 
574 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
575 		return (error);
576 	os = zfsvfs->z_os;
577 	zilog = zfsvfs->z_log;
578 
579 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
580 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
581 		zfs_exit(zfsvfs, FTAG);
582 		return (SET_ERROR(EILSEQ));
583 	}
584 
585 	if (vap->va_mask & ATTR_XVATTR) {
586 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
587 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
588 			zfs_exit(zfsvfs, FTAG);
589 			return (error);
590 		}
591 	}
592 
593 top:
594 	*zpp = NULL;
595 	if (*name == '\0') {
596 		/*
597 		 * Null component name refers to the directory itself.
598 		 */
599 		zhold(dzp);
600 		zp = dzp;
601 		dl = NULL;
602 		error = 0;
603 	} else {
604 		/* possible igrab(zp) */
605 		int zflg = 0;
606 
607 		if (flag & FIGNORECASE)
608 			zflg |= ZCILOOK;
609 
610 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
611 		    NULL, NULL);
612 		if (error) {
613 			if (have_acl)
614 				zfs_acl_ids_free(&acl_ids);
615 			if (strcmp(name, "..") == 0)
616 				error = SET_ERROR(EISDIR);
617 			zfs_exit(zfsvfs, FTAG);
618 			return (error);
619 		}
620 	}
621 
622 	if (zp == NULL) {
623 		uint64_t txtype;
624 		uint64_t projid = ZFS_DEFAULT_PROJID;
625 
626 		/*
627 		 * Create a new file object and update the directory
628 		 * to reference it.
629 		 */
630 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr,
631 		    mnt_ns))) {
632 			if (have_acl)
633 				zfs_acl_ids_free(&acl_ids);
634 			goto out;
635 		}
636 
637 		/*
638 		 * We only support the creation of regular files in
639 		 * extended attribute directories.
640 		 */
641 
642 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
643 			if (have_acl)
644 				zfs_acl_ids_free(&acl_ids);
645 			error = SET_ERROR(EINVAL);
646 			goto out;
647 		}
648 
649 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
650 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
651 			goto out;
652 		have_acl = B_TRUE;
653 
654 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
655 			projid = zfs_inherit_projid(dzp);
656 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
657 			zfs_acl_ids_free(&acl_ids);
658 			error = SET_ERROR(EDQUOT);
659 			goto out;
660 		}
661 
662 		tx = dmu_tx_create(os);
663 
664 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
665 		    ZFS_SA_BASE_ATTR_SIZE);
666 
667 		fuid_dirtied = zfsvfs->z_fuid_dirty;
668 		if (fuid_dirtied)
669 			zfs_fuid_txhold(zfsvfs, tx);
670 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
671 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
672 		if (!zfsvfs->z_use_sa &&
673 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
674 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
675 			    0, acl_ids.z_aclp->z_acl_bytes);
676 		}
677 
678 		error = dmu_tx_assign(tx,
679 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
680 		if (error) {
681 			zfs_dirent_unlock(dl);
682 			if (error == ERESTART) {
683 				waited = B_TRUE;
684 				dmu_tx_wait(tx);
685 				dmu_tx_abort(tx);
686 				goto top;
687 			}
688 			zfs_acl_ids_free(&acl_ids);
689 			dmu_tx_abort(tx);
690 			zfs_exit(zfsvfs, FTAG);
691 			return (error);
692 		}
693 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
694 
695 		error = zfs_link_create(dl, zp, tx, ZNEW);
696 		if (error != 0) {
697 			/*
698 			 * Since, we failed to add the directory entry for it,
699 			 * delete the newly created dnode.
700 			 */
701 			zfs_znode_delete(zp, tx);
702 			remove_inode_hash(ZTOI(zp));
703 			zfs_acl_ids_free(&acl_ids);
704 			dmu_tx_commit(tx);
705 			goto out;
706 		}
707 
708 		if (fuid_dirtied)
709 			zfs_fuid_sync(zfsvfs, tx);
710 
711 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
712 		if (flag & FIGNORECASE)
713 			txtype |= TX_CI;
714 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
715 		    vsecp, acl_ids.z_fuidp, vap);
716 		zfs_acl_ids_free(&acl_ids);
717 		dmu_tx_commit(tx);
718 	} else {
719 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
720 
721 		if (have_acl)
722 			zfs_acl_ids_free(&acl_ids);
723 		have_acl = B_FALSE;
724 
725 		/*
726 		 * A directory entry already exists for this name.
727 		 */
728 		/*
729 		 * Can't truncate an existing file if in exclusive mode.
730 		 */
731 		if (excl) {
732 			error = SET_ERROR(EEXIST);
733 			goto out;
734 		}
735 		/*
736 		 * Can't open a directory for writing.
737 		 */
738 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
739 			error = SET_ERROR(EISDIR);
740 			goto out;
741 		}
742 		/*
743 		 * Verify requested access to file.
744 		 */
745 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
746 		    mnt_ns))) {
747 			goto out;
748 		}
749 
750 		mutex_enter(&dzp->z_lock);
751 		dzp->z_seq++;
752 		mutex_exit(&dzp->z_lock);
753 
754 		/*
755 		 * Truncate regular files if requested.
756 		 */
757 		if (S_ISREG(ZTOI(zp)->i_mode) &&
758 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
759 			/* we can't hold any locks when calling zfs_freesp() */
760 			if (dl) {
761 				zfs_dirent_unlock(dl);
762 				dl = NULL;
763 			}
764 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
765 		}
766 	}
767 out:
768 
769 	if (dl)
770 		zfs_dirent_unlock(dl);
771 
772 	if (error) {
773 		if (zp)
774 			zrele(zp);
775 	} else {
776 		zfs_znode_update_vfs(dzp);
777 		zfs_znode_update_vfs(zp);
778 		*zpp = zp;
779 	}
780 
781 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
782 		zil_commit(zilog, 0);
783 
784 	zfs_exit(zfsvfs, FTAG);
785 	return (error);
786 }
787 
788 int
789 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
790     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
791     zuserns_t *mnt_ns)
792 {
793 	(void) excl, (void) mode, (void) flag;
794 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
795 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
796 	objset_t	*os;
797 	dmu_tx_t	*tx;
798 	int		error;
799 	uid_t		uid;
800 	gid_t		gid;
801 	zfs_acl_ids_t   acl_ids;
802 	uint64_t	projid = ZFS_DEFAULT_PROJID;
803 	boolean_t	fuid_dirtied;
804 	boolean_t	have_acl = B_FALSE;
805 	boolean_t	waited = B_FALSE;
806 
807 	/*
808 	 * If we have an ephemeral id, ACL, or XVATTR then
809 	 * make sure file system is at proper version
810 	 */
811 
812 	gid = crgetgid(cr);
813 	uid = crgetuid(cr);
814 
815 	if (zfsvfs->z_use_fuids == B_FALSE &&
816 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
817 		return (SET_ERROR(EINVAL));
818 
819 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
820 		return (error);
821 	os = zfsvfs->z_os;
822 
823 	if (vap->va_mask & ATTR_XVATTR) {
824 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
825 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
826 			zfs_exit(zfsvfs, FTAG);
827 			return (error);
828 		}
829 	}
830 
831 top:
832 	*ipp = NULL;
833 
834 	/*
835 	 * Create a new file object and update the directory
836 	 * to reference it.
837 	 */
838 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
839 		if (have_acl)
840 			zfs_acl_ids_free(&acl_ids);
841 		goto out;
842 	}
843 
844 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
845 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
846 		goto out;
847 	have_acl = B_TRUE;
848 
849 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
850 		projid = zfs_inherit_projid(dzp);
851 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
852 		zfs_acl_ids_free(&acl_ids);
853 		error = SET_ERROR(EDQUOT);
854 		goto out;
855 	}
856 
857 	tx = dmu_tx_create(os);
858 
859 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
860 	    ZFS_SA_BASE_ATTR_SIZE);
861 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
862 
863 	fuid_dirtied = zfsvfs->z_fuid_dirty;
864 	if (fuid_dirtied)
865 		zfs_fuid_txhold(zfsvfs, tx);
866 	if (!zfsvfs->z_use_sa &&
867 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
868 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
869 		    0, acl_ids.z_aclp->z_acl_bytes);
870 	}
871 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
872 	if (error) {
873 		if (error == ERESTART) {
874 			waited = B_TRUE;
875 			dmu_tx_wait(tx);
876 			dmu_tx_abort(tx);
877 			goto top;
878 		}
879 		zfs_acl_ids_free(&acl_ids);
880 		dmu_tx_abort(tx);
881 		zfs_exit(zfsvfs, FTAG);
882 		return (error);
883 	}
884 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
885 
886 	if (fuid_dirtied)
887 		zfs_fuid_sync(zfsvfs, tx);
888 
889 	/* Add to unlinked set */
890 	zp->z_unlinked = B_TRUE;
891 	zfs_unlinked_add(zp, tx);
892 	zfs_acl_ids_free(&acl_ids);
893 	dmu_tx_commit(tx);
894 out:
895 
896 	if (error) {
897 		if (zp)
898 			zrele(zp);
899 	} else {
900 		zfs_znode_update_vfs(dzp);
901 		zfs_znode_update_vfs(zp);
902 		*ipp = ZTOI(zp);
903 	}
904 
905 	zfs_exit(zfsvfs, FTAG);
906 	return (error);
907 }
908 
909 /*
910  * Remove an entry from a directory.
911  *
912  *	IN:	dzp	- znode of directory to remove entry from.
913  *		name	- name of entry to remove.
914  *		cr	- credentials of caller.
915  *		flags	- case flags.
916  *
917  *	RETURN:	0 if success
918  *		error code if failure
919  *
920  * Timestamps:
921  *	dzp - ctime|mtime
922  *	 ip - ctime (if nlink > 0)
923  */
924 
925 static uint64_t null_xattr = 0;
926 
927 int
928 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
929 {
930 	znode_t		*zp;
931 	znode_t		*xzp;
932 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
933 	zilog_t		*zilog;
934 	uint64_t	acl_obj, xattr_obj;
935 	uint64_t	xattr_obj_unlinked = 0;
936 	uint64_t	obj = 0;
937 	uint64_t	links;
938 	zfs_dirlock_t	*dl;
939 	dmu_tx_t	*tx;
940 	boolean_t	may_delete_now, delete_now = FALSE;
941 	boolean_t	unlinked, toobig = FALSE;
942 	uint64_t	txtype;
943 	pathname_t	*realnmp = NULL;
944 	pathname_t	realnm;
945 	int		error;
946 	int		zflg = ZEXISTS;
947 	boolean_t	waited = B_FALSE;
948 
949 	if (name == NULL)
950 		return (SET_ERROR(EINVAL));
951 
952 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
953 		return (error);
954 	zilog = zfsvfs->z_log;
955 
956 	if (flags & FIGNORECASE) {
957 		zflg |= ZCILOOK;
958 		pn_alloc(&realnm);
959 		realnmp = &realnm;
960 	}
961 
962 top:
963 	xattr_obj = 0;
964 	xzp = NULL;
965 	/*
966 	 * Attempt to lock directory; fail if entry doesn't exist.
967 	 */
968 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
969 	    NULL, realnmp))) {
970 		if (realnmp)
971 			pn_free(realnmp);
972 		zfs_exit(zfsvfs, FTAG);
973 		return (error);
974 	}
975 
976 	if ((error = zfs_zaccess_delete(dzp, zp, cr, kcred->user_ns))) {
977 		goto out;
978 	}
979 
980 	/*
981 	 * Need to use rmdir for removing directories.
982 	 */
983 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
984 		error = SET_ERROR(EPERM);
985 		goto out;
986 	}
987 
988 	mutex_enter(&zp->z_lock);
989 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
990 	    !(zp->z_is_mapped);
991 	mutex_exit(&zp->z_lock);
992 
993 	/*
994 	 * We may delete the znode now, or we may put it in the unlinked set;
995 	 * it depends on whether we're the last link, and on whether there are
996 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
997 	 * allow for either case.
998 	 */
999 	obj = zp->z_id;
1000 	tx = dmu_tx_create(zfsvfs->z_os);
1001 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1002 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1003 	zfs_sa_upgrade_txholds(tx, zp);
1004 	zfs_sa_upgrade_txholds(tx, dzp);
1005 	if (may_delete_now) {
1006 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1007 		/* if the file is too big, only hold_free a token amount */
1008 		dmu_tx_hold_free(tx, zp->z_id, 0,
1009 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1010 	}
1011 
1012 	/* are there any extended attributes? */
1013 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1014 	    &xattr_obj, sizeof (xattr_obj));
1015 	if (error == 0 && xattr_obj) {
1016 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1017 		ASSERT0(error);
1018 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1019 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1020 	}
1021 
1022 	mutex_enter(&zp->z_lock);
1023 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1024 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1025 	mutex_exit(&zp->z_lock);
1026 
1027 	/* charge as an update -- would be nice not to charge at all */
1028 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1029 
1030 	/*
1031 	 * Mark this transaction as typically resulting in a net free of space
1032 	 */
1033 	dmu_tx_mark_netfree(tx);
1034 
1035 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1036 	if (error) {
1037 		zfs_dirent_unlock(dl);
1038 		if (error == ERESTART) {
1039 			waited = B_TRUE;
1040 			dmu_tx_wait(tx);
1041 			dmu_tx_abort(tx);
1042 			zrele(zp);
1043 			if (xzp)
1044 				zrele(xzp);
1045 			goto top;
1046 		}
1047 		if (realnmp)
1048 			pn_free(realnmp);
1049 		dmu_tx_abort(tx);
1050 		zrele(zp);
1051 		if (xzp)
1052 			zrele(xzp);
1053 		zfs_exit(zfsvfs, FTAG);
1054 		return (error);
1055 	}
1056 
1057 	/*
1058 	 * Remove the directory entry.
1059 	 */
1060 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1061 
1062 	if (error) {
1063 		dmu_tx_commit(tx);
1064 		goto out;
1065 	}
1066 
1067 	if (unlinked) {
1068 		/*
1069 		 * Hold z_lock so that we can make sure that the ACL obj
1070 		 * hasn't changed.  Could have been deleted due to
1071 		 * zfs_sa_upgrade().
1072 		 */
1073 		mutex_enter(&zp->z_lock);
1074 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1075 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1076 		delete_now = may_delete_now && !toobig &&
1077 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1078 		    !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
1079 		    zfs_external_acl(zp) == acl_obj;
1080 	}
1081 
1082 	if (delete_now) {
1083 		if (xattr_obj_unlinked) {
1084 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1085 			mutex_enter(&xzp->z_lock);
1086 			xzp->z_unlinked = B_TRUE;
1087 			clear_nlink(ZTOI(xzp));
1088 			links = 0;
1089 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1090 			    &links, sizeof (links), tx);
1091 			ASSERT3U(error,  ==,  0);
1092 			mutex_exit(&xzp->z_lock);
1093 			zfs_unlinked_add(xzp, tx);
1094 
1095 			if (zp->z_is_sa)
1096 				error = sa_remove(zp->z_sa_hdl,
1097 				    SA_ZPL_XATTR(zfsvfs), tx);
1098 			else
1099 				error = sa_update(zp->z_sa_hdl,
1100 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1101 				    sizeof (uint64_t), tx);
1102 			ASSERT0(error);
1103 		}
1104 		/*
1105 		 * Add to the unlinked set because a new reference could be
1106 		 * taken concurrently resulting in a deferred destruction.
1107 		 */
1108 		zfs_unlinked_add(zp, tx);
1109 		mutex_exit(&zp->z_lock);
1110 	} else if (unlinked) {
1111 		mutex_exit(&zp->z_lock);
1112 		zfs_unlinked_add(zp, tx);
1113 	}
1114 
1115 	txtype = TX_REMOVE;
1116 	if (flags & FIGNORECASE)
1117 		txtype |= TX_CI;
1118 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1119 
1120 	dmu_tx_commit(tx);
1121 out:
1122 	if (realnmp)
1123 		pn_free(realnmp);
1124 
1125 	zfs_dirent_unlock(dl);
1126 	zfs_znode_update_vfs(dzp);
1127 	zfs_znode_update_vfs(zp);
1128 
1129 	if (delete_now)
1130 		zrele(zp);
1131 	else
1132 		zfs_zrele_async(zp);
1133 
1134 	if (xzp) {
1135 		zfs_znode_update_vfs(xzp);
1136 		zfs_zrele_async(xzp);
1137 	}
1138 
1139 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1140 		zil_commit(zilog, 0);
1141 
1142 	zfs_exit(zfsvfs, FTAG);
1143 	return (error);
1144 }
1145 
1146 /*
1147  * Create a new directory and insert it into dzp using the name
1148  * provided.  Return a pointer to the inserted directory.
1149  *
1150  *	IN:	dzp	- znode of directory to add subdir to.
1151  *		dirname	- name of new directory.
1152  *		vap	- attributes of new directory.
1153  *		cr	- credentials of caller.
1154  *		flags	- case flags.
1155  *		vsecp	- ACL to be set
1156  *		mnt_ns	- user namespace of the mount
1157  *
1158  *	OUT:	zpp	- znode of created directory.
1159  *
1160  *	RETURN:	0 if success
1161  *		error code if failure
1162  *
1163  * Timestamps:
1164  *	dzp - ctime|mtime updated
1165  *	zpp - ctime|mtime|atime updated
1166  */
1167 int
1168 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1169     cred_t *cr, int flags, vsecattr_t *vsecp, zuserns_t *mnt_ns)
1170 {
1171 	znode_t		*zp;
1172 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1173 	zilog_t		*zilog;
1174 	zfs_dirlock_t	*dl;
1175 	uint64_t	txtype;
1176 	dmu_tx_t	*tx;
1177 	int		error;
1178 	int		zf = ZNEW;
1179 	uid_t		uid;
1180 	gid_t		gid = crgetgid(cr);
1181 	zfs_acl_ids_t   acl_ids;
1182 	boolean_t	fuid_dirtied;
1183 	boolean_t	waited = B_FALSE;
1184 
1185 	ASSERT(S_ISDIR(vap->va_mode));
1186 
1187 	/*
1188 	 * If we have an ephemeral id, ACL, or XVATTR then
1189 	 * make sure file system is at proper version
1190 	 */
1191 
1192 	uid = crgetuid(cr);
1193 	if (zfsvfs->z_use_fuids == B_FALSE &&
1194 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1195 		return (SET_ERROR(EINVAL));
1196 
1197 	if (dirname == NULL)
1198 		return (SET_ERROR(EINVAL));
1199 
1200 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1201 		return (error);
1202 	zilog = zfsvfs->z_log;
1203 
1204 	if (dzp->z_pflags & ZFS_XATTR) {
1205 		zfs_exit(zfsvfs, FTAG);
1206 		return (SET_ERROR(EINVAL));
1207 	}
1208 
1209 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1210 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1211 		zfs_exit(zfsvfs, FTAG);
1212 		return (SET_ERROR(EILSEQ));
1213 	}
1214 	if (flags & FIGNORECASE)
1215 		zf |= ZCILOOK;
1216 
1217 	if (vap->va_mask & ATTR_XVATTR) {
1218 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1219 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1220 			zfs_exit(zfsvfs, FTAG);
1221 			return (error);
1222 		}
1223 	}
1224 
1225 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1226 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1227 		zfs_exit(zfsvfs, FTAG);
1228 		return (error);
1229 	}
1230 	/*
1231 	 * First make sure the new directory doesn't exist.
1232 	 *
1233 	 * Existence is checked first to make sure we don't return
1234 	 * EACCES instead of EEXIST which can cause some applications
1235 	 * to fail.
1236 	 */
1237 top:
1238 	*zpp = NULL;
1239 
1240 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1241 	    NULL, NULL))) {
1242 		zfs_acl_ids_free(&acl_ids);
1243 		zfs_exit(zfsvfs, FTAG);
1244 		return (error);
1245 	}
1246 
1247 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1248 	    mnt_ns))) {
1249 		zfs_acl_ids_free(&acl_ids);
1250 		zfs_dirent_unlock(dl);
1251 		zfs_exit(zfsvfs, FTAG);
1252 		return (error);
1253 	}
1254 
1255 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1256 		zfs_acl_ids_free(&acl_ids);
1257 		zfs_dirent_unlock(dl);
1258 		zfs_exit(zfsvfs, FTAG);
1259 		return (SET_ERROR(EDQUOT));
1260 	}
1261 
1262 	/*
1263 	 * Add a new entry to the directory.
1264 	 */
1265 	tx = dmu_tx_create(zfsvfs->z_os);
1266 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1267 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1268 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1269 	if (fuid_dirtied)
1270 		zfs_fuid_txhold(zfsvfs, tx);
1271 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1272 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1273 		    acl_ids.z_aclp->z_acl_bytes);
1274 	}
1275 
1276 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1277 	    ZFS_SA_BASE_ATTR_SIZE);
1278 
1279 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1280 	if (error) {
1281 		zfs_dirent_unlock(dl);
1282 		if (error == ERESTART) {
1283 			waited = B_TRUE;
1284 			dmu_tx_wait(tx);
1285 			dmu_tx_abort(tx);
1286 			goto top;
1287 		}
1288 		zfs_acl_ids_free(&acl_ids);
1289 		dmu_tx_abort(tx);
1290 		zfs_exit(zfsvfs, FTAG);
1291 		return (error);
1292 	}
1293 
1294 	/*
1295 	 * Create new node.
1296 	 */
1297 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1298 
1299 	/*
1300 	 * Now put new name in parent dir.
1301 	 */
1302 	error = zfs_link_create(dl, zp, tx, ZNEW);
1303 	if (error != 0) {
1304 		zfs_znode_delete(zp, tx);
1305 		remove_inode_hash(ZTOI(zp));
1306 		goto out;
1307 	}
1308 
1309 	if (fuid_dirtied)
1310 		zfs_fuid_sync(zfsvfs, tx);
1311 
1312 	*zpp = zp;
1313 
1314 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1315 	if (flags & FIGNORECASE)
1316 		txtype |= TX_CI;
1317 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1318 	    acl_ids.z_fuidp, vap);
1319 
1320 out:
1321 	zfs_acl_ids_free(&acl_ids);
1322 
1323 	dmu_tx_commit(tx);
1324 
1325 	zfs_dirent_unlock(dl);
1326 
1327 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1328 		zil_commit(zilog, 0);
1329 
1330 	if (error != 0) {
1331 		zrele(zp);
1332 	} else {
1333 		zfs_znode_update_vfs(dzp);
1334 		zfs_znode_update_vfs(zp);
1335 	}
1336 	zfs_exit(zfsvfs, FTAG);
1337 	return (error);
1338 }
1339 
1340 /*
1341  * Remove a directory subdir entry.  If the current working
1342  * directory is the same as the subdir to be removed, the
1343  * remove will fail.
1344  *
1345  *	IN:	dzp	- znode of directory to remove from.
1346  *		name	- name of directory to be removed.
1347  *		cwd	- inode of current working directory.
1348  *		cr	- credentials of caller.
1349  *		flags	- case flags
1350  *
1351  *	RETURN:	0 on success, error code on failure.
1352  *
1353  * Timestamps:
1354  *	dzp - ctime|mtime updated
1355  */
1356 int
1357 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1358     int flags)
1359 {
1360 	znode_t		*zp;
1361 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1362 	zilog_t		*zilog;
1363 	zfs_dirlock_t	*dl;
1364 	dmu_tx_t	*tx;
1365 	int		error;
1366 	int		zflg = ZEXISTS;
1367 	boolean_t	waited = B_FALSE;
1368 
1369 	if (name == NULL)
1370 		return (SET_ERROR(EINVAL));
1371 
1372 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1373 		return (error);
1374 	zilog = zfsvfs->z_log;
1375 
1376 	if (flags & FIGNORECASE)
1377 		zflg |= ZCILOOK;
1378 top:
1379 	zp = NULL;
1380 
1381 	/*
1382 	 * Attempt to lock directory; fail if entry doesn't exist.
1383 	 */
1384 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1385 	    NULL, NULL))) {
1386 		zfs_exit(zfsvfs, FTAG);
1387 		return (error);
1388 	}
1389 
1390 	if ((error = zfs_zaccess_delete(dzp, zp, cr, kcred->user_ns))) {
1391 		goto out;
1392 	}
1393 
1394 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1395 		error = SET_ERROR(ENOTDIR);
1396 		goto out;
1397 	}
1398 
1399 	if (zp == cwd) {
1400 		error = SET_ERROR(EINVAL);
1401 		goto out;
1402 	}
1403 
1404 	/*
1405 	 * Grab a lock on the directory to make sure that no one is
1406 	 * trying to add (or lookup) entries while we are removing it.
1407 	 */
1408 	rw_enter(&zp->z_name_lock, RW_WRITER);
1409 
1410 	/*
1411 	 * Grab a lock on the parent pointer to make sure we play well
1412 	 * with the treewalk and directory rename code.
1413 	 */
1414 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1415 
1416 	tx = dmu_tx_create(zfsvfs->z_os);
1417 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1418 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1419 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1420 	zfs_sa_upgrade_txholds(tx, zp);
1421 	zfs_sa_upgrade_txholds(tx, dzp);
1422 	dmu_tx_mark_netfree(tx);
1423 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1424 	if (error) {
1425 		rw_exit(&zp->z_parent_lock);
1426 		rw_exit(&zp->z_name_lock);
1427 		zfs_dirent_unlock(dl);
1428 		if (error == ERESTART) {
1429 			waited = B_TRUE;
1430 			dmu_tx_wait(tx);
1431 			dmu_tx_abort(tx);
1432 			zrele(zp);
1433 			goto top;
1434 		}
1435 		dmu_tx_abort(tx);
1436 		zrele(zp);
1437 		zfs_exit(zfsvfs, FTAG);
1438 		return (error);
1439 	}
1440 
1441 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1442 
1443 	if (error == 0) {
1444 		uint64_t txtype = TX_RMDIR;
1445 		if (flags & FIGNORECASE)
1446 			txtype |= TX_CI;
1447 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1448 		    B_FALSE);
1449 	}
1450 
1451 	dmu_tx_commit(tx);
1452 
1453 	rw_exit(&zp->z_parent_lock);
1454 	rw_exit(&zp->z_name_lock);
1455 out:
1456 	zfs_dirent_unlock(dl);
1457 
1458 	zfs_znode_update_vfs(dzp);
1459 	zfs_znode_update_vfs(zp);
1460 	zrele(zp);
1461 
1462 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1463 		zil_commit(zilog, 0);
1464 
1465 	zfs_exit(zfsvfs, FTAG);
1466 	return (error);
1467 }
1468 
1469 /*
1470  * Read directory entries from the given directory cursor position and emit
1471  * name and position for each entry.
1472  *
1473  *	IN:	ip	- inode of directory to read.
1474  *		ctx	- directory entry context.
1475  *		cr	- credentials of caller.
1476  *
1477  *	RETURN:	0 if success
1478  *		error code if failure
1479  *
1480  * Timestamps:
1481  *	ip - atime updated
1482  *
1483  * Note that the low 4 bits of the cookie returned by zap is always zero.
1484  * This allows us to use the low range for "special" directory entries:
1485  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1486  * we use the offset 2 for the '.zfs' directory.
1487  */
1488 int
1489 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1490 {
1491 	(void) cr;
1492 	znode_t		*zp = ITOZ(ip);
1493 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1494 	objset_t	*os;
1495 	zap_cursor_t	zc;
1496 	zap_attribute_t	zap;
1497 	int		error;
1498 	uint8_t		prefetch;
1499 	uint8_t		type;
1500 	int		done = 0;
1501 	uint64_t	parent;
1502 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1503 
1504 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1505 		return (error);
1506 
1507 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1508 	    &parent, sizeof (parent))) != 0)
1509 		goto out;
1510 
1511 	/*
1512 	 * Quit if directory has been removed (posix)
1513 	 */
1514 	if (zp->z_unlinked)
1515 		goto out;
1516 
1517 	error = 0;
1518 	os = zfsvfs->z_os;
1519 	offset = ctx->pos;
1520 	prefetch = zp->z_zn_prefetch;
1521 
1522 	/*
1523 	 * Initialize the iterator cursor.
1524 	 */
1525 	if (offset <= 3) {
1526 		/*
1527 		 * Start iteration from the beginning of the directory.
1528 		 */
1529 		zap_cursor_init(&zc, os, zp->z_id);
1530 	} else {
1531 		/*
1532 		 * The offset is a serialized cursor.
1533 		 */
1534 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1535 	}
1536 
1537 	/*
1538 	 * Transform to file-system independent format
1539 	 */
1540 	while (!done) {
1541 		uint64_t objnum;
1542 		/*
1543 		 * Special case `.', `..', and `.zfs'.
1544 		 */
1545 		if (offset == 0) {
1546 			(void) strcpy(zap.za_name, ".");
1547 			zap.za_normalization_conflict = 0;
1548 			objnum = zp->z_id;
1549 			type = DT_DIR;
1550 		} else if (offset == 1) {
1551 			(void) strcpy(zap.za_name, "..");
1552 			zap.za_normalization_conflict = 0;
1553 			objnum = parent;
1554 			type = DT_DIR;
1555 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1556 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1557 			zap.za_normalization_conflict = 0;
1558 			objnum = ZFSCTL_INO_ROOT;
1559 			type = DT_DIR;
1560 		} else {
1561 			/*
1562 			 * Grab next entry.
1563 			 */
1564 			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1565 				if (error == ENOENT)
1566 					break;
1567 				else
1568 					goto update;
1569 			}
1570 
1571 			/*
1572 			 * Allow multiple entries provided the first entry is
1573 			 * the object id.  Non-zpl consumers may safely make
1574 			 * use of the additional space.
1575 			 *
1576 			 * XXX: This should be a feature flag for compatibility
1577 			 */
1578 			if (zap.za_integer_length != 8 ||
1579 			    zap.za_num_integers == 0) {
1580 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1581 				    "entry, obj = %lld, offset = %lld, "
1582 				    "length = %d, num = %lld\n",
1583 				    (u_longlong_t)zp->z_id,
1584 				    (u_longlong_t)offset,
1585 				    zap.za_integer_length,
1586 				    (u_longlong_t)zap.za_num_integers);
1587 				error = SET_ERROR(ENXIO);
1588 				goto update;
1589 			}
1590 
1591 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1592 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1593 		}
1594 
1595 		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1596 		    objnum, type);
1597 		if (done)
1598 			break;
1599 
1600 		/* Prefetch znode */
1601 		if (prefetch) {
1602 			dmu_prefetch(os, objnum, 0, 0, 0,
1603 			    ZIO_PRIORITY_SYNC_READ);
1604 		}
1605 
1606 		/*
1607 		 * Move to the next entry, fill in the previous offset.
1608 		 */
1609 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1610 			zap_cursor_advance(&zc);
1611 			offset = zap_cursor_serialize(&zc);
1612 		} else {
1613 			offset += 1;
1614 		}
1615 		ctx->pos = offset;
1616 	}
1617 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1618 
1619 update:
1620 	zap_cursor_fini(&zc);
1621 	if (error == ENOENT)
1622 		error = 0;
1623 out:
1624 	zfs_exit(zfsvfs, FTAG);
1625 
1626 	return (error);
1627 }
1628 
1629 /*
1630  * Get the basic file attributes and place them in the provided kstat
1631  * structure.  The inode is assumed to be the authoritative source
1632  * for most of the attributes.  However, the znode currently has the
1633  * authoritative atime, blksize, and block count.
1634  *
1635  *	IN:	ip	- inode of file.
1636  *
1637  *	OUT:	sp	- kstat values.
1638  *
1639  *	RETURN:	0 (always succeeds)
1640  */
1641 int
1642 zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
1643     struct kstat *sp)
1644 {
1645 	znode_t *zp = ITOZ(ip);
1646 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1647 	uint32_t blksize;
1648 	u_longlong_t nblocks;
1649 	int error;
1650 
1651 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1652 		return (error);
1653 
1654 	mutex_enter(&zp->z_lock);
1655 
1656 	zpl_generic_fillattr(user_ns, ip, sp);
1657 	/*
1658 	 * +1 link count for root inode with visible '.zfs' directory.
1659 	 */
1660 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1661 		if (sp->nlink < ZFS_LINK_MAX)
1662 			sp->nlink++;
1663 
1664 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1665 	sp->blksize = blksize;
1666 	sp->blocks = nblocks;
1667 
1668 	if (unlikely(zp->z_blksz == 0)) {
1669 		/*
1670 		 * Block size hasn't been set; suggest maximal I/O transfers.
1671 		 */
1672 		sp->blksize = zfsvfs->z_max_blksz;
1673 	}
1674 
1675 	mutex_exit(&zp->z_lock);
1676 
1677 	/*
1678 	 * Required to prevent NFS client from detecting different inode
1679 	 * numbers of snapshot root dentry before and after snapshot mount.
1680 	 */
1681 	if (zfsvfs->z_issnap) {
1682 		if (ip->i_sb->s_root->d_inode == ip)
1683 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1684 			    dmu_objset_id(zfsvfs->z_os);
1685 	}
1686 
1687 	zfs_exit(zfsvfs, FTAG);
1688 
1689 	return (0);
1690 }
1691 
1692 /*
1693  * For the operation of changing file's user/group/project, we need to
1694  * handle not only the main object that is assigned to the file directly,
1695  * but also the ones that are used by the file via hidden xattr directory.
1696  *
1697  * Because the xattr directory may contains many EA entries, as to it may
1698  * be impossible to change all of them via the transaction of changing the
1699  * main object's user/group/project attributes. Then we have to change them
1700  * via other multiple independent transactions one by one. It may be not good
1701  * solution, but we have no better idea yet.
1702  */
1703 static int
1704 zfs_setattr_dir(znode_t *dzp)
1705 {
1706 	struct inode	*dxip = ZTOI(dzp);
1707 	struct inode	*xip = NULL;
1708 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1709 	objset_t	*os = zfsvfs->z_os;
1710 	zap_cursor_t	zc;
1711 	zap_attribute_t	zap;
1712 	zfs_dirlock_t	*dl;
1713 	znode_t		*zp = NULL;
1714 	dmu_tx_t	*tx = NULL;
1715 	uint64_t	uid, gid;
1716 	sa_bulk_attr_t	bulk[4];
1717 	int		count;
1718 	int		err;
1719 
1720 	zap_cursor_init(&zc, os, dzp->z_id);
1721 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1722 		count = 0;
1723 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1724 			err = ENXIO;
1725 			break;
1726 		}
1727 
1728 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1729 		    ZEXISTS, NULL, NULL);
1730 		if (err == ENOENT)
1731 			goto next;
1732 		if (err)
1733 			break;
1734 
1735 		xip = ZTOI(zp);
1736 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1737 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1738 		    zp->z_projid == dzp->z_projid)
1739 			goto next;
1740 
1741 		tx = dmu_tx_create(os);
1742 		if (!(zp->z_pflags & ZFS_PROJID))
1743 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1744 		else
1745 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1746 
1747 		err = dmu_tx_assign(tx, TXG_WAIT);
1748 		if (err)
1749 			break;
1750 
1751 		mutex_enter(&dzp->z_lock);
1752 
1753 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1754 			xip->i_uid = dxip->i_uid;
1755 			uid = zfs_uid_read(dxip);
1756 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1757 			    &uid, sizeof (uid));
1758 		}
1759 
1760 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1761 			xip->i_gid = dxip->i_gid;
1762 			gid = zfs_gid_read(dxip);
1763 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1764 			    &gid, sizeof (gid));
1765 		}
1766 
1767 		if (zp->z_projid != dzp->z_projid) {
1768 			if (!(zp->z_pflags & ZFS_PROJID)) {
1769 				zp->z_pflags |= ZFS_PROJID;
1770 				SA_ADD_BULK_ATTR(bulk, count,
1771 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1772 				    sizeof (zp->z_pflags));
1773 			}
1774 
1775 			zp->z_projid = dzp->z_projid;
1776 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1777 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
1778 		}
1779 
1780 		mutex_exit(&dzp->z_lock);
1781 
1782 		if (likely(count > 0)) {
1783 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1784 			dmu_tx_commit(tx);
1785 		} else {
1786 			dmu_tx_abort(tx);
1787 		}
1788 		tx = NULL;
1789 		if (err != 0 && err != ENOENT)
1790 			break;
1791 
1792 next:
1793 		if (zp) {
1794 			zrele(zp);
1795 			zp = NULL;
1796 			zfs_dirent_unlock(dl);
1797 		}
1798 		zap_cursor_advance(&zc);
1799 	}
1800 
1801 	if (tx)
1802 		dmu_tx_abort(tx);
1803 	if (zp) {
1804 		zrele(zp);
1805 		zfs_dirent_unlock(dl);
1806 	}
1807 	zap_cursor_fini(&zc);
1808 
1809 	return (err == ENOENT ? 0 : err);
1810 }
1811 
1812 /*
1813  * Set the file attributes to the values contained in the
1814  * vattr structure.
1815  *
1816  *	IN:	zp	- znode of file to be modified.
1817  *		vap	- new attribute values.
1818  *			  If ATTR_XVATTR set, then optional attrs are being set
1819  *		flags	- ATTR_UTIME set if non-default time values provided.
1820  *			- ATTR_NOACLCHECK (CIFS context only).
1821  *		cr	- credentials of caller.
1822  *		mnt_ns	- user namespace of the mount
1823  *
1824  *	RETURN:	0 if success
1825  *		error code if failure
1826  *
1827  * Timestamps:
1828  *	ip - ctime updated, mtime updated if size changed.
1829  */
1830 int
1831 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zuserns_t *mnt_ns)
1832 {
1833 	struct inode	*ip;
1834 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1835 	objset_t	*os = zfsvfs->z_os;
1836 	zilog_t		*zilog;
1837 	dmu_tx_t	*tx;
1838 	vattr_t		oldva;
1839 	xvattr_t	*tmpxvattr;
1840 	uint_t		mask = vap->va_mask;
1841 	uint_t		saved_mask = 0;
1842 	int		trim_mask = 0;
1843 	uint64_t	new_mode;
1844 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1845 	uint64_t	xattr_obj;
1846 	uint64_t	mtime[2], ctime[2], atime[2];
1847 	uint64_t	projid = ZFS_INVALID_PROJID;
1848 	znode_t		*attrzp;
1849 	int		need_policy = FALSE;
1850 	int		err, err2 = 0;
1851 	zfs_fuid_info_t *fuidp = NULL;
1852 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1853 	xoptattr_t	*xoap;
1854 	zfs_acl_t	*aclp;
1855 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1856 	boolean_t	fuid_dirtied = B_FALSE;
1857 	boolean_t	handle_eadir = B_FALSE;
1858 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1859 	int		count = 0, xattr_count = 0, bulks = 8;
1860 
1861 	if (mask == 0)
1862 		return (0);
1863 
1864 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1865 		return (err);
1866 	ip = ZTOI(zp);
1867 
1868 	/*
1869 	 * If this is a xvattr_t, then get a pointer to the structure of
1870 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1871 	 */
1872 	xoap = xva_getxoptattr(xvap);
1873 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1874 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1875 			if (!dmu_objset_projectquota_enabled(os) ||
1876 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1877 				zfs_exit(zfsvfs, FTAG);
1878 				return (SET_ERROR(ENOTSUP));
1879 			}
1880 
1881 			projid = xoap->xoa_projid;
1882 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1883 				zfs_exit(zfsvfs, FTAG);
1884 				return (SET_ERROR(EINVAL));
1885 			}
1886 
1887 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1888 				projid = ZFS_INVALID_PROJID;
1889 			else
1890 				need_policy = TRUE;
1891 		}
1892 
1893 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1894 		    (xoap->xoa_projinherit !=
1895 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1896 		    (!dmu_objset_projectquota_enabled(os) ||
1897 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1898 			zfs_exit(zfsvfs, FTAG);
1899 			return (SET_ERROR(ENOTSUP));
1900 		}
1901 	}
1902 
1903 	zilog = zfsvfs->z_log;
1904 
1905 	/*
1906 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1907 	 * that file system is at proper version level
1908 	 */
1909 
1910 	if (zfsvfs->z_use_fuids == B_FALSE &&
1911 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1912 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1913 	    (mask & ATTR_XVATTR))) {
1914 		zfs_exit(zfsvfs, FTAG);
1915 		return (SET_ERROR(EINVAL));
1916 	}
1917 
1918 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1919 		zfs_exit(zfsvfs, FTAG);
1920 		return (SET_ERROR(EISDIR));
1921 	}
1922 
1923 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1924 		zfs_exit(zfsvfs, FTAG);
1925 		return (SET_ERROR(EINVAL));
1926 	}
1927 
1928 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1929 	xva_init(tmpxvattr);
1930 
1931 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1932 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1933 
1934 	/*
1935 	 * Immutable files can only alter immutable bit and atime
1936 	 */
1937 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1938 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1939 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1940 		err = SET_ERROR(EPERM);
1941 		goto out3;
1942 	}
1943 
1944 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1945 		err = SET_ERROR(EPERM);
1946 		goto out3;
1947 	}
1948 
1949 	/*
1950 	 * Verify timestamps doesn't overflow 32 bits.
1951 	 * ZFS can handle large timestamps, but 32bit syscalls can't
1952 	 * handle times greater than 2039.  This check should be removed
1953 	 * once large timestamps are fully supported.
1954 	 */
1955 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1956 		if (((mask & ATTR_ATIME) &&
1957 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1958 		    ((mask & ATTR_MTIME) &&
1959 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1960 			err = SET_ERROR(EOVERFLOW);
1961 			goto out3;
1962 		}
1963 	}
1964 
1965 top:
1966 	attrzp = NULL;
1967 	aclp = NULL;
1968 
1969 	/* Can this be moved to before the top label? */
1970 	if (zfs_is_readonly(zfsvfs)) {
1971 		err = SET_ERROR(EROFS);
1972 		goto out3;
1973 	}
1974 
1975 	/*
1976 	 * First validate permissions
1977 	 */
1978 
1979 	if (mask & ATTR_SIZE) {
1980 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
1981 		    mnt_ns);
1982 		if (err)
1983 			goto out3;
1984 
1985 		/*
1986 		 * XXX - Note, we are not providing any open
1987 		 * mode flags here (like FNDELAY), so we may
1988 		 * block if there are locks present... this
1989 		 * should be addressed in openat().
1990 		 */
1991 		/* XXX - would it be OK to generate a log record here? */
1992 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1993 		if (err)
1994 			goto out3;
1995 	}
1996 
1997 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
1998 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
1999 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2000 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2001 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2002 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2003 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2004 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2005 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2006 		    skipaclchk, cr, mnt_ns);
2007 	}
2008 
2009 	if (mask & (ATTR_UID|ATTR_GID)) {
2010 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2011 		int	take_owner;
2012 		int	take_group;
2013 		uid_t	uid;
2014 		gid_t	gid;
2015 
2016 		/*
2017 		 * NOTE: even if a new mode is being set,
2018 		 * we may clear S_ISUID/S_ISGID bits.
2019 		 */
2020 
2021 		if (!(mask & ATTR_MODE))
2022 			vap->va_mode = zp->z_mode;
2023 
2024 		/*
2025 		 * Take ownership or chgrp to group we are a member of
2026 		 */
2027 
2028 		uid = zfs_uid_to_vfsuid((struct user_namespace *)mnt_ns,
2029 		    zfs_i_user_ns(ip), vap->va_uid);
2030 		gid = zfs_gid_to_vfsgid((struct user_namespace *)mnt_ns,
2031 		    zfs_i_user_ns(ip), vap->va_gid);
2032 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2033 		take_group = (mask & ATTR_GID) &&
2034 		    zfs_groupmember(zfsvfs, gid, cr);
2035 
2036 		/*
2037 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2038 		 * take_group must both be set in order to allow taking
2039 		 * ownership.
2040 		 *
2041 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2042 		 *
2043 		 */
2044 
2045 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2046 		    take_owner && take_group) ||
2047 		    ((idmask == ATTR_UID) && take_owner) ||
2048 		    ((idmask == ATTR_GID) && take_group)) {
2049 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2050 			    skipaclchk, cr, mnt_ns) == 0) {
2051 				/*
2052 				 * Remove setuid/setgid for non-privileged users
2053 				 */
2054 				(void) secpolicy_setid_clear(vap, cr);
2055 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2056 			} else {
2057 				need_policy =  TRUE;
2058 			}
2059 		} else {
2060 			need_policy =  TRUE;
2061 		}
2062 	}
2063 
2064 	mutex_enter(&zp->z_lock);
2065 	oldva.va_mode = zp->z_mode;
2066 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2067 	if (mask & ATTR_XVATTR) {
2068 		/*
2069 		 * Update xvattr mask to include only those attributes
2070 		 * that are actually changing.
2071 		 *
2072 		 * the bits will be restored prior to actually setting
2073 		 * the attributes so the caller thinks they were set.
2074 		 */
2075 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2076 			if (xoap->xoa_appendonly !=
2077 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2078 				need_policy = TRUE;
2079 			} else {
2080 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2081 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2082 			}
2083 		}
2084 
2085 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2086 			if (xoap->xoa_projinherit !=
2087 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2088 				need_policy = TRUE;
2089 			} else {
2090 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2091 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2092 			}
2093 		}
2094 
2095 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2096 			if (xoap->xoa_nounlink !=
2097 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2098 				need_policy = TRUE;
2099 			} else {
2100 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2101 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2102 			}
2103 		}
2104 
2105 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2106 			if (xoap->xoa_immutable !=
2107 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2108 				need_policy = TRUE;
2109 			} else {
2110 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2111 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2112 			}
2113 		}
2114 
2115 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2116 			if (xoap->xoa_nodump !=
2117 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2118 				need_policy = TRUE;
2119 			} else {
2120 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2121 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2122 			}
2123 		}
2124 
2125 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2126 			if (xoap->xoa_av_modified !=
2127 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2128 				need_policy = TRUE;
2129 			} else {
2130 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2131 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2132 			}
2133 		}
2134 
2135 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2136 			if ((!S_ISREG(ip->i_mode) &&
2137 			    xoap->xoa_av_quarantined) ||
2138 			    xoap->xoa_av_quarantined !=
2139 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2140 				need_policy = TRUE;
2141 			} else {
2142 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2143 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2144 			}
2145 		}
2146 
2147 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2148 			mutex_exit(&zp->z_lock);
2149 			err = SET_ERROR(EPERM);
2150 			goto out3;
2151 		}
2152 
2153 		if (need_policy == FALSE &&
2154 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2155 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2156 			need_policy = TRUE;
2157 		}
2158 	}
2159 
2160 	mutex_exit(&zp->z_lock);
2161 
2162 	if (mask & ATTR_MODE) {
2163 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2164 		    mnt_ns) == 0) {
2165 			err = secpolicy_setid_setsticky_clear(ip, vap,
2166 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2167 			if (err)
2168 				goto out3;
2169 			trim_mask |= ATTR_MODE;
2170 		} else {
2171 			need_policy = TRUE;
2172 		}
2173 	}
2174 
2175 	if (need_policy) {
2176 		/*
2177 		 * If trim_mask is set then take ownership
2178 		 * has been granted or write_acl is present and user
2179 		 * has the ability to modify mode.  In that case remove
2180 		 * UID|GID and or MODE from mask so that
2181 		 * secpolicy_vnode_setattr() doesn't revoke it.
2182 		 */
2183 
2184 		if (trim_mask) {
2185 			saved_mask = vap->va_mask;
2186 			vap->va_mask &= ~trim_mask;
2187 		}
2188 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2189 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2190 		if (err)
2191 			goto out3;
2192 
2193 		if (trim_mask)
2194 			vap->va_mask |= saved_mask;
2195 	}
2196 
2197 	/*
2198 	 * secpolicy_vnode_setattr, or take ownership may have
2199 	 * changed va_mask
2200 	 */
2201 	mask = vap->va_mask;
2202 
2203 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2204 		handle_eadir = B_TRUE;
2205 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2206 		    &xattr_obj, sizeof (xattr_obj));
2207 
2208 		if (err == 0 && xattr_obj) {
2209 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2210 			if (err)
2211 				goto out2;
2212 		}
2213 		if (mask & ATTR_UID) {
2214 			new_kuid = zfs_fuid_create(zfsvfs,
2215 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2216 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2217 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2218 			    new_kuid)) {
2219 				if (attrzp)
2220 					zrele(attrzp);
2221 				err = SET_ERROR(EDQUOT);
2222 				goto out2;
2223 			}
2224 		}
2225 
2226 		if (mask & ATTR_GID) {
2227 			new_kgid = zfs_fuid_create(zfsvfs,
2228 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2229 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2230 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2231 			    new_kgid)) {
2232 				if (attrzp)
2233 					zrele(attrzp);
2234 				err = SET_ERROR(EDQUOT);
2235 				goto out2;
2236 			}
2237 		}
2238 
2239 		if (projid != ZFS_INVALID_PROJID &&
2240 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2241 			if (attrzp)
2242 				zrele(attrzp);
2243 			err = EDQUOT;
2244 			goto out2;
2245 		}
2246 	}
2247 	tx = dmu_tx_create(os);
2248 
2249 	if (mask & ATTR_MODE) {
2250 		uint64_t pmode = zp->z_mode;
2251 		uint64_t acl_obj;
2252 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2253 
2254 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2255 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2256 			err = EPERM;
2257 			goto out;
2258 		}
2259 
2260 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2261 			goto out;
2262 
2263 		mutex_enter(&zp->z_lock);
2264 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2265 			/*
2266 			 * Are we upgrading ACL from old V0 format
2267 			 * to V1 format?
2268 			 */
2269 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2270 			    zfs_znode_acl_version(zp) ==
2271 			    ZFS_ACL_VERSION_INITIAL) {
2272 				dmu_tx_hold_free(tx, acl_obj, 0,
2273 				    DMU_OBJECT_END);
2274 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2275 				    0, aclp->z_acl_bytes);
2276 			} else {
2277 				dmu_tx_hold_write(tx, acl_obj, 0,
2278 				    aclp->z_acl_bytes);
2279 			}
2280 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2281 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2282 			    0, aclp->z_acl_bytes);
2283 		}
2284 		mutex_exit(&zp->z_lock);
2285 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2286 	} else {
2287 		if (((mask & ATTR_XVATTR) &&
2288 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2289 		    (projid != ZFS_INVALID_PROJID &&
2290 		    !(zp->z_pflags & ZFS_PROJID)))
2291 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2292 		else
2293 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2294 	}
2295 
2296 	if (attrzp) {
2297 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2298 	}
2299 
2300 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2301 	if (fuid_dirtied)
2302 		zfs_fuid_txhold(zfsvfs, tx);
2303 
2304 	zfs_sa_upgrade_txholds(tx, zp);
2305 
2306 	err = dmu_tx_assign(tx, TXG_WAIT);
2307 	if (err)
2308 		goto out;
2309 
2310 	count = 0;
2311 	/*
2312 	 * Set each attribute requested.
2313 	 * We group settings according to the locks they need to acquire.
2314 	 *
2315 	 * Note: you cannot set ctime directly, although it will be
2316 	 * updated as a side-effect of calling this function.
2317 	 */
2318 
2319 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2320 		/*
2321 		 * For the existed object that is upgraded from old system,
2322 		 * its on-disk layout has no slot for the project ID attribute.
2323 		 * But quota accounting logic needs to access related slots by
2324 		 * offset directly. So we need to adjust old objects' layout
2325 		 * to make the project ID to some unified and fixed offset.
2326 		 */
2327 		if (attrzp)
2328 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2329 		if (err == 0)
2330 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2331 
2332 		if (unlikely(err == EEXIST))
2333 			err = 0;
2334 		else if (err != 0)
2335 			goto out;
2336 		else
2337 			projid = ZFS_INVALID_PROJID;
2338 	}
2339 
2340 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2341 		mutex_enter(&zp->z_acl_lock);
2342 	mutex_enter(&zp->z_lock);
2343 
2344 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2345 	    &zp->z_pflags, sizeof (zp->z_pflags));
2346 
2347 	if (attrzp) {
2348 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2349 			mutex_enter(&attrzp->z_acl_lock);
2350 		mutex_enter(&attrzp->z_lock);
2351 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2352 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2353 		    sizeof (attrzp->z_pflags));
2354 		if (projid != ZFS_INVALID_PROJID) {
2355 			attrzp->z_projid = projid;
2356 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2357 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2358 			    sizeof (attrzp->z_projid));
2359 		}
2360 	}
2361 
2362 	if (mask & (ATTR_UID|ATTR_GID)) {
2363 
2364 		if (mask & ATTR_UID) {
2365 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2366 			new_uid = zfs_uid_read(ZTOI(zp));
2367 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2368 			    &new_uid, sizeof (new_uid));
2369 			if (attrzp) {
2370 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2371 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2372 				    sizeof (new_uid));
2373 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2374 			}
2375 		}
2376 
2377 		if (mask & ATTR_GID) {
2378 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2379 			new_gid = zfs_gid_read(ZTOI(zp));
2380 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2381 			    NULL, &new_gid, sizeof (new_gid));
2382 			if (attrzp) {
2383 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2384 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2385 				    sizeof (new_gid));
2386 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2387 			}
2388 		}
2389 		if (!(mask & ATTR_MODE)) {
2390 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2391 			    NULL, &new_mode, sizeof (new_mode));
2392 			new_mode = zp->z_mode;
2393 		}
2394 		err = zfs_acl_chown_setattr(zp);
2395 		ASSERT(err == 0);
2396 		if (attrzp) {
2397 			err = zfs_acl_chown_setattr(attrzp);
2398 			ASSERT(err == 0);
2399 		}
2400 	}
2401 
2402 	if (mask & ATTR_MODE) {
2403 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2404 		    &new_mode, sizeof (new_mode));
2405 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2406 		ASSERT3P(aclp, !=, NULL);
2407 		err = zfs_aclset_common(zp, aclp, cr, tx);
2408 		ASSERT0(err);
2409 		if (zp->z_acl_cached)
2410 			zfs_acl_free(zp->z_acl_cached);
2411 		zp->z_acl_cached = aclp;
2412 		aclp = NULL;
2413 	}
2414 
2415 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2416 		zp->z_atime_dirty = B_FALSE;
2417 		ZFS_TIME_ENCODE(&ip->i_atime, atime);
2418 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2419 		    &atime, sizeof (atime));
2420 	}
2421 
2422 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2423 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2424 		ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2425 		    vap->va_mtime, ZTOI(zp));
2426 
2427 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2428 		    mtime, sizeof (mtime));
2429 	}
2430 
2431 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2432 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2433 		ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2434 		    ZTOI(zp));
2435 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2436 		    ctime, sizeof (ctime));
2437 	}
2438 
2439 	if (projid != ZFS_INVALID_PROJID) {
2440 		zp->z_projid = projid;
2441 		SA_ADD_BULK_ATTR(bulk, count,
2442 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2443 		    sizeof (zp->z_projid));
2444 	}
2445 
2446 	if (attrzp && mask) {
2447 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2448 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2449 		    sizeof (ctime));
2450 	}
2451 
2452 	/*
2453 	 * Do this after setting timestamps to prevent timestamp
2454 	 * update from toggling bit
2455 	 */
2456 
2457 	if (xoap && (mask & ATTR_XVATTR)) {
2458 
2459 		/*
2460 		 * restore trimmed off masks
2461 		 * so that return masks can be set for caller.
2462 		 */
2463 
2464 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2465 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2466 		}
2467 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2468 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2469 		}
2470 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2471 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2472 		}
2473 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2474 			XVA_SET_REQ(xvap, XAT_NODUMP);
2475 		}
2476 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2477 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2478 		}
2479 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2480 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2481 		}
2482 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2483 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2484 		}
2485 
2486 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2487 			ASSERT(S_ISREG(ip->i_mode));
2488 
2489 		zfs_xvattr_set(zp, xvap, tx);
2490 	}
2491 
2492 	if (fuid_dirtied)
2493 		zfs_fuid_sync(zfsvfs, tx);
2494 
2495 	if (mask != 0)
2496 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2497 
2498 	mutex_exit(&zp->z_lock);
2499 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2500 		mutex_exit(&zp->z_acl_lock);
2501 
2502 	if (attrzp) {
2503 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2504 			mutex_exit(&attrzp->z_acl_lock);
2505 		mutex_exit(&attrzp->z_lock);
2506 	}
2507 out:
2508 	if (err == 0 && xattr_count > 0) {
2509 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2510 		    xattr_count, tx);
2511 		ASSERT(err2 == 0);
2512 	}
2513 
2514 	if (aclp)
2515 		zfs_acl_free(aclp);
2516 
2517 	if (fuidp) {
2518 		zfs_fuid_info_free(fuidp);
2519 		fuidp = NULL;
2520 	}
2521 
2522 	if (err) {
2523 		dmu_tx_abort(tx);
2524 		if (attrzp)
2525 			zrele(attrzp);
2526 		if (err == ERESTART)
2527 			goto top;
2528 	} else {
2529 		if (count > 0)
2530 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2531 		dmu_tx_commit(tx);
2532 		if (attrzp) {
2533 			if (err2 == 0 && handle_eadir)
2534 				err2 = zfs_setattr_dir(attrzp);
2535 			zrele(attrzp);
2536 		}
2537 		zfs_znode_update_vfs(zp);
2538 	}
2539 
2540 out2:
2541 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2542 		zil_commit(zilog, 0);
2543 
2544 out3:
2545 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2546 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2547 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2548 	zfs_exit(zfsvfs, FTAG);
2549 	return (err);
2550 }
2551 
2552 typedef struct zfs_zlock {
2553 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2554 	znode_t		*zl_znode;	/* znode we held */
2555 	struct zfs_zlock *zl_next;	/* next in list */
2556 } zfs_zlock_t;
2557 
2558 /*
2559  * Drop locks and release vnodes that were held by zfs_rename_lock().
2560  */
2561 static void
2562 zfs_rename_unlock(zfs_zlock_t **zlpp)
2563 {
2564 	zfs_zlock_t *zl;
2565 
2566 	while ((zl = *zlpp) != NULL) {
2567 		if (zl->zl_znode != NULL)
2568 			zfs_zrele_async(zl->zl_znode);
2569 		rw_exit(zl->zl_rwlock);
2570 		*zlpp = zl->zl_next;
2571 		kmem_free(zl, sizeof (*zl));
2572 	}
2573 }
2574 
2575 /*
2576  * Search back through the directory tree, using the ".." entries.
2577  * Lock each directory in the chain to prevent concurrent renames.
2578  * Fail any attempt to move a directory into one of its own descendants.
2579  * XXX - z_parent_lock can overlap with map or grow locks
2580  */
2581 static int
2582 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2583 {
2584 	zfs_zlock_t	*zl;
2585 	znode_t		*zp = tdzp;
2586 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2587 	uint64_t	oidp = zp->z_id;
2588 	krwlock_t	*rwlp = &szp->z_parent_lock;
2589 	krw_t		rw = RW_WRITER;
2590 
2591 	/*
2592 	 * First pass write-locks szp and compares to zp->z_id.
2593 	 * Later passes read-lock zp and compare to zp->z_parent.
2594 	 */
2595 	do {
2596 		if (!rw_tryenter(rwlp, rw)) {
2597 			/*
2598 			 * Another thread is renaming in this path.
2599 			 * Note that if we are a WRITER, we don't have any
2600 			 * parent_locks held yet.
2601 			 */
2602 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2603 				/*
2604 				 * Drop our locks and restart
2605 				 */
2606 				zfs_rename_unlock(&zl);
2607 				*zlpp = NULL;
2608 				zp = tdzp;
2609 				oidp = zp->z_id;
2610 				rwlp = &szp->z_parent_lock;
2611 				rw = RW_WRITER;
2612 				continue;
2613 			} else {
2614 				/*
2615 				 * Wait for other thread to drop its locks
2616 				 */
2617 				rw_enter(rwlp, rw);
2618 			}
2619 		}
2620 
2621 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2622 		zl->zl_rwlock = rwlp;
2623 		zl->zl_znode = NULL;
2624 		zl->zl_next = *zlpp;
2625 		*zlpp = zl;
2626 
2627 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2628 			return (SET_ERROR(EINVAL));
2629 
2630 		if (oidp == rootid)		/* We've hit the top */
2631 			return (0);
2632 
2633 		if (rw == RW_READER) {		/* i.e. not the first pass */
2634 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2635 			if (error)
2636 				return (error);
2637 			zl->zl_znode = zp;
2638 		}
2639 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2640 		    &oidp, sizeof (oidp));
2641 		rwlp = &zp->z_parent_lock;
2642 		rw = RW_READER;
2643 
2644 	} while (zp->z_id != sdzp->z_id);
2645 
2646 	return (0);
2647 }
2648 
2649 /*
2650  * Move an entry from the provided source directory to the target
2651  * directory.  Change the entry name as indicated.
2652  *
2653  *	IN:	sdzp	- Source directory containing the "old entry".
2654  *		snm	- Old entry name.
2655  *		tdzp	- Target directory to contain the "new entry".
2656  *		tnm	- New entry name.
2657  *		cr	- credentials of caller.
2658  *		flags	- case flags
2659  *		rflags  - RENAME_* flags
2660  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2661  *		mnt_ns	- user namespace of the mount
2662  *
2663  *	RETURN:	0 on success, error code on failure.
2664  *
2665  * Timestamps:
2666  *	sdzp,tdzp - ctime|mtime updated
2667  */
2668 int
2669 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2670     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zuserns_t *mnt_ns)
2671 {
2672 	znode_t		*szp, *tzp;
2673 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2674 	zilog_t		*zilog;
2675 	zfs_dirlock_t	*sdl, *tdl;
2676 	dmu_tx_t	*tx;
2677 	zfs_zlock_t	*zl;
2678 	int		cmp, serr, terr;
2679 	int		error = 0;
2680 	int		zflg = 0;
2681 	boolean_t	waited = B_FALSE;
2682 	/* Needed for whiteout inode creation. */
2683 	boolean_t	fuid_dirtied;
2684 	zfs_acl_ids_t	acl_ids;
2685 	boolean_t	have_acl = B_FALSE;
2686 	znode_t		*wzp = NULL;
2687 
2688 
2689 	if (snm == NULL || tnm == NULL)
2690 		return (SET_ERROR(EINVAL));
2691 
2692 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2693 		return (SET_ERROR(EINVAL));
2694 
2695 	/* Already checked by Linux VFS, but just to make sure. */
2696 	if (rflags & RENAME_EXCHANGE &&
2697 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2698 		return (SET_ERROR(EINVAL));
2699 
2700 	/*
2701 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2702 	 * right kind of vattr_t for the whiteout file. These are set
2703 	 * internally by ZFS so should never be incorrect.
2704 	 */
2705 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2706 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2707 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2708 
2709 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2710 		return (error);
2711 	zilog = zfsvfs->z_log;
2712 
2713 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2714 		zfs_exit(zfsvfs, FTAG);
2715 		return (error);
2716 	}
2717 
2718 	/*
2719 	 * We check i_sb because snapshots and the ctldir must have different
2720 	 * super blocks.
2721 	 */
2722 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2723 	    zfsctl_is_node(ZTOI(tdzp))) {
2724 		zfs_exit(zfsvfs, FTAG);
2725 		return (SET_ERROR(EXDEV));
2726 	}
2727 
2728 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2729 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2730 		zfs_exit(zfsvfs, FTAG);
2731 		return (SET_ERROR(EILSEQ));
2732 	}
2733 
2734 	if (flags & FIGNORECASE)
2735 		zflg |= ZCILOOK;
2736 
2737 top:
2738 	szp = NULL;
2739 	tzp = NULL;
2740 	zl = NULL;
2741 
2742 	/*
2743 	 * This is to prevent the creation of links into attribute space
2744 	 * by renaming a linked file into/outof an attribute directory.
2745 	 * See the comment in zfs_link() for why this is considered bad.
2746 	 */
2747 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2748 		zfs_exit(zfsvfs, FTAG);
2749 		return (SET_ERROR(EINVAL));
2750 	}
2751 
2752 	/*
2753 	 * Lock source and target directory entries.  To prevent deadlock,
2754 	 * a lock ordering must be defined.  We lock the directory with
2755 	 * the smallest object id first, or if it's a tie, the one with
2756 	 * the lexically first name.
2757 	 */
2758 	if (sdzp->z_id < tdzp->z_id) {
2759 		cmp = -1;
2760 	} else if (sdzp->z_id > tdzp->z_id) {
2761 		cmp = 1;
2762 	} else {
2763 		/*
2764 		 * First compare the two name arguments without
2765 		 * considering any case folding.
2766 		 */
2767 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2768 
2769 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2770 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2771 		if (cmp == 0) {
2772 			/*
2773 			 * POSIX: "If the old argument and the new argument
2774 			 * both refer to links to the same existing file,
2775 			 * the rename() function shall return successfully
2776 			 * and perform no other action."
2777 			 */
2778 			zfs_exit(zfsvfs, FTAG);
2779 			return (0);
2780 		}
2781 		/*
2782 		 * If the file system is case-folding, then we may
2783 		 * have some more checking to do.  A case-folding file
2784 		 * system is either supporting mixed case sensitivity
2785 		 * access or is completely case-insensitive.  Note
2786 		 * that the file system is always case preserving.
2787 		 *
2788 		 * In mixed sensitivity mode case sensitive behavior
2789 		 * is the default.  FIGNORECASE must be used to
2790 		 * explicitly request case insensitive behavior.
2791 		 *
2792 		 * If the source and target names provided differ only
2793 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2794 		 * we will treat this as a special case in the
2795 		 * case-insensitive mode: as long as the source name
2796 		 * is an exact match, we will allow this to proceed as
2797 		 * a name-change request.
2798 		 */
2799 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2800 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2801 		    flags & FIGNORECASE)) &&
2802 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2803 		    &error) == 0) {
2804 			/*
2805 			 * case preserving rename request, require exact
2806 			 * name matches
2807 			 */
2808 			zflg |= ZCIEXACT;
2809 			zflg &= ~ZCILOOK;
2810 		}
2811 	}
2812 
2813 	/*
2814 	 * If the source and destination directories are the same, we should
2815 	 * grab the z_name_lock of that directory only once.
2816 	 */
2817 	if (sdzp == tdzp) {
2818 		zflg |= ZHAVELOCK;
2819 		rw_enter(&sdzp->z_name_lock, RW_READER);
2820 	}
2821 
2822 	if (cmp < 0) {
2823 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2824 		    ZEXISTS | zflg, NULL, NULL);
2825 		terr = zfs_dirent_lock(&tdl,
2826 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2827 	} else {
2828 		terr = zfs_dirent_lock(&tdl,
2829 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2830 		serr = zfs_dirent_lock(&sdl,
2831 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2832 		    NULL, NULL);
2833 	}
2834 
2835 	if (serr) {
2836 		/*
2837 		 * Source entry invalid or not there.
2838 		 */
2839 		if (!terr) {
2840 			zfs_dirent_unlock(tdl);
2841 			if (tzp)
2842 				zrele(tzp);
2843 		}
2844 
2845 		if (sdzp == tdzp)
2846 			rw_exit(&sdzp->z_name_lock);
2847 
2848 		if (strcmp(snm, "..") == 0)
2849 			serr = EINVAL;
2850 		zfs_exit(zfsvfs, FTAG);
2851 		return (serr);
2852 	}
2853 	if (terr) {
2854 		zfs_dirent_unlock(sdl);
2855 		zrele(szp);
2856 
2857 		if (sdzp == tdzp)
2858 			rw_exit(&sdzp->z_name_lock);
2859 
2860 		if (strcmp(tnm, "..") == 0)
2861 			terr = EINVAL;
2862 		zfs_exit(zfsvfs, FTAG);
2863 		return (terr);
2864 	}
2865 
2866 	/*
2867 	 * If we are using project inheritance, means if the directory has
2868 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2869 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2870 	 * such case, we only allow renames into our tree when the project
2871 	 * IDs are the same.
2872 	 */
2873 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2874 	    tdzp->z_projid != szp->z_projid) {
2875 		error = SET_ERROR(EXDEV);
2876 		goto out;
2877 	}
2878 
2879 	/*
2880 	 * Must have write access at the source to remove the old entry
2881 	 * and write access at the target to create the new entry.
2882 	 * Note that if target and source are the same, this can be
2883 	 * done in a single check.
2884 	 */
2885 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2886 		goto out;
2887 
2888 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2889 		/*
2890 		 * Check to make sure rename is valid.
2891 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2892 		 */
2893 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2894 			goto out;
2895 	}
2896 
2897 	/*
2898 	 * Does target exist?
2899 	 */
2900 	if (tzp) {
2901 		if (rflags & RENAME_NOREPLACE) {
2902 			error = SET_ERROR(EEXIST);
2903 			goto out;
2904 		}
2905 		/*
2906 		 * Source and target must be the same type (unless exchanging).
2907 		 */
2908 		if (!(rflags & RENAME_EXCHANGE)) {
2909 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2910 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2911 
2912 			if (s_is_dir != t_is_dir) {
2913 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2914 				goto out;
2915 			}
2916 		}
2917 		/*
2918 		 * POSIX dictates that when the source and target
2919 		 * entries refer to the same file object, rename
2920 		 * must do nothing and exit without error.
2921 		 */
2922 		if (szp->z_id == tzp->z_id) {
2923 			error = 0;
2924 			goto out;
2925 		}
2926 	} else if (rflags & RENAME_EXCHANGE) {
2927 		/* Target must exist for RENAME_EXCHANGE. */
2928 		error = SET_ERROR(ENOENT);
2929 		goto out;
2930 	}
2931 
2932 	/* Set up inode creation for RENAME_WHITEOUT. */
2933 	if (rflags & RENAME_WHITEOUT) {
2934 		/*
2935 		 * Whiteout files are not regular files or directories, so to
2936 		 * match zfs_create() we do not inherit the project id.
2937 		 */
2938 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
2939 
2940 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
2941 		if (error)
2942 			goto out;
2943 
2944 		if (!have_acl) {
2945 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
2946 			    &acl_ids, mnt_ns);
2947 			if (error)
2948 				goto out;
2949 			have_acl = B_TRUE;
2950 		}
2951 
2952 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
2953 			error = SET_ERROR(EDQUOT);
2954 			goto out;
2955 		}
2956 	}
2957 
2958 	tx = dmu_tx_create(zfsvfs->z_os);
2959 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2960 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2961 	dmu_tx_hold_zap(tx, sdzp->z_id,
2962 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
2963 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2964 	if (sdzp != tdzp) {
2965 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2966 		zfs_sa_upgrade_txholds(tx, tdzp);
2967 	}
2968 	if (tzp) {
2969 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2970 		zfs_sa_upgrade_txholds(tx, tzp);
2971 	}
2972 	if (rflags & RENAME_WHITEOUT) {
2973 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2974 		    ZFS_SA_BASE_ATTR_SIZE);
2975 
2976 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
2977 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2978 		if (!zfsvfs->z_use_sa &&
2979 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2980 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2981 			    0, acl_ids.z_aclp->z_acl_bytes);
2982 		}
2983 	}
2984 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2985 	if (fuid_dirtied)
2986 		zfs_fuid_txhold(zfsvfs, tx);
2987 	zfs_sa_upgrade_txholds(tx, szp);
2988 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2989 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2990 	if (error) {
2991 		if (zl != NULL)
2992 			zfs_rename_unlock(&zl);
2993 		zfs_dirent_unlock(sdl);
2994 		zfs_dirent_unlock(tdl);
2995 
2996 		if (sdzp == tdzp)
2997 			rw_exit(&sdzp->z_name_lock);
2998 
2999 		if (error == ERESTART) {
3000 			waited = B_TRUE;
3001 			dmu_tx_wait(tx);
3002 			dmu_tx_abort(tx);
3003 			zrele(szp);
3004 			if (tzp)
3005 				zrele(tzp);
3006 			goto top;
3007 		}
3008 		dmu_tx_abort(tx);
3009 		zrele(szp);
3010 		if (tzp)
3011 			zrele(tzp);
3012 		zfs_exit(zfsvfs, FTAG);
3013 		return (error);
3014 	}
3015 
3016 	/*
3017 	 * Unlink the source.
3018 	 */
3019 	szp->z_pflags |= ZFS_AV_MODIFIED;
3020 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3021 		szp->z_pflags |= ZFS_PROJINHERIT;
3022 
3023 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3024 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3025 	VERIFY0(error);
3026 
3027 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3028 	if (error)
3029 		goto commit;
3030 
3031 	/*
3032 	 * Unlink the target.
3033 	 */
3034 	if (tzp) {
3035 		int tzflg = zflg;
3036 
3037 		if (rflags & RENAME_EXCHANGE) {
3038 			/* This inode will be re-linked soon. */
3039 			tzflg |= ZRENAMING;
3040 
3041 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3042 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3043 				tzp->z_pflags |= ZFS_PROJINHERIT;
3044 
3045 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3046 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3047 			ASSERT0(error);
3048 		}
3049 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3050 		if (error)
3051 			goto commit_link_szp;
3052 	}
3053 
3054 	/*
3055 	 * Create the new target links:
3056 	 *   * We always link the target.
3057 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3058 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3059 	 */
3060 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3061 	if (error) {
3062 		/*
3063 		 * If we have removed the existing target, a subsequent call to
3064 		 * zfs_link_create() to add back the same entry, but with a new
3065 		 * dnode (szp), should not fail.
3066 		 */
3067 		ASSERT3P(tzp, ==, NULL);
3068 		goto commit_link_tzp;
3069 	}
3070 
3071 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3072 	case RENAME_EXCHANGE:
3073 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3074 		/*
3075 		 * The same argument as zfs_link_create() failing for
3076 		 * szp applies here, since the source directory must
3077 		 * have had an entry we are replacing.
3078 		 */
3079 		ASSERT0(error);
3080 		if (error)
3081 			goto commit_unlink_td_szp;
3082 		break;
3083 	case RENAME_WHITEOUT:
3084 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3085 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3086 		if (error) {
3087 			zfs_znode_delete(wzp, tx);
3088 			remove_inode_hash(ZTOI(wzp));
3089 			goto commit_unlink_td_szp;
3090 		}
3091 		break;
3092 	}
3093 
3094 	if (fuid_dirtied)
3095 		zfs_fuid_sync(zfsvfs, tx);
3096 
3097 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3098 	case RENAME_EXCHANGE:
3099 		zfs_log_rename_exchange(zilog, tx,
3100 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3101 		    tdzp, tdl->dl_name, szp);
3102 		break;
3103 	case RENAME_WHITEOUT:
3104 		zfs_log_rename_whiteout(zilog, tx,
3105 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3106 		    tdzp, tdl->dl_name, szp, wzp);
3107 		break;
3108 	default:
3109 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3110 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3111 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3112 		break;
3113 	}
3114 
3115 commit:
3116 	dmu_tx_commit(tx);
3117 out:
3118 	if (have_acl)
3119 		zfs_acl_ids_free(&acl_ids);
3120 
3121 	zfs_znode_update_vfs(sdzp);
3122 	if (sdzp == tdzp)
3123 		rw_exit(&sdzp->z_name_lock);
3124 
3125 	if (sdzp != tdzp)
3126 		zfs_znode_update_vfs(tdzp);
3127 
3128 	zfs_znode_update_vfs(szp);
3129 	zrele(szp);
3130 	if (wzp) {
3131 		zfs_znode_update_vfs(wzp);
3132 		zrele(wzp);
3133 	}
3134 	if (tzp) {
3135 		zfs_znode_update_vfs(tzp);
3136 		zrele(tzp);
3137 	}
3138 
3139 	if (zl != NULL)
3140 		zfs_rename_unlock(&zl);
3141 
3142 	zfs_dirent_unlock(sdl);
3143 	zfs_dirent_unlock(tdl);
3144 
3145 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3146 		zil_commit(zilog, 0);
3147 
3148 	zfs_exit(zfsvfs, FTAG);
3149 	return (error);
3150 
3151 	/*
3152 	 * Clean-up path for broken link state.
3153 	 *
3154 	 * At this point we are in a (very) bad state, so we need to do our
3155 	 * best to correct the state. In particular, all of the nlinks are
3156 	 * wrong because we were destroying and creating links with ZRENAMING.
3157 	 *
3158 	 * In some form, all of these operations have to resolve the state:
3159 	 *
3160 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3161 	 *    since we only just created it.
3162 	 *
3163 	 *  * link_create()s are allowed to fail (though they shouldn't because
3164 	 *    we only just unlinked them and are putting the entries back
3165 	 *    during clean-up). But if they fail, we can just forcefully drop
3166 	 *    the nlink value to (at the very least) avoid broken nlink values
3167 	 *    -- though in the case of non-empty directories we will have to
3168 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3169 	 */
3170 commit_unlink_td_szp:
3171 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3172 commit_link_tzp:
3173 	if (tzp) {
3174 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3175 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3176 	}
3177 commit_link_szp:
3178 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3179 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3180 	goto commit;
3181 }
3182 
3183 /*
3184  * Insert the indicated symbolic reference entry into the directory.
3185  *
3186  *	IN:	dzp	- Directory to contain new symbolic link.
3187  *		name	- Name of directory entry in dip.
3188  *		vap	- Attributes of new entry.
3189  *		link	- Name for new symlink entry.
3190  *		cr	- credentials of caller.
3191  *		flags	- case flags
3192  *		mnt_ns	- user namespace of the mount
3193  *
3194  *	OUT:	zpp	- Znode for new symbolic link.
3195  *
3196  *	RETURN:	0 on success, error code on failure.
3197  *
3198  * Timestamps:
3199  *	dip - ctime|mtime updated
3200  */
3201 int
3202 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3203     znode_t **zpp, cred_t *cr, int flags, zuserns_t *mnt_ns)
3204 {
3205 	znode_t		*zp;
3206 	zfs_dirlock_t	*dl;
3207 	dmu_tx_t	*tx;
3208 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3209 	zilog_t		*zilog;
3210 	uint64_t	len = strlen(link);
3211 	int		error;
3212 	int		zflg = ZNEW;
3213 	zfs_acl_ids_t	acl_ids;
3214 	boolean_t	fuid_dirtied;
3215 	uint64_t	txtype = TX_SYMLINK;
3216 	boolean_t	waited = B_FALSE;
3217 
3218 	ASSERT(S_ISLNK(vap->va_mode));
3219 
3220 	if (name == NULL)
3221 		return (SET_ERROR(EINVAL));
3222 
3223 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3224 		return (error);
3225 	zilog = zfsvfs->z_log;
3226 
3227 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3228 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3229 		zfs_exit(zfsvfs, FTAG);
3230 		return (SET_ERROR(EILSEQ));
3231 	}
3232 	if (flags & FIGNORECASE)
3233 		zflg |= ZCILOOK;
3234 
3235 	if (len > MAXPATHLEN) {
3236 		zfs_exit(zfsvfs, FTAG);
3237 		return (SET_ERROR(ENAMETOOLONG));
3238 	}
3239 
3240 	if ((error = zfs_acl_ids_create(dzp, 0,
3241 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3242 		zfs_exit(zfsvfs, FTAG);
3243 		return (error);
3244 	}
3245 top:
3246 	*zpp = NULL;
3247 
3248 	/*
3249 	 * Attempt to lock directory; fail if entry already exists.
3250 	 */
3251 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3252 	if (error) {
3253 		zfs_acl_ids_free(&acl_ids);
3254 		zfs_exit(zfsvfs, FTAG);
3255 		return (error);
3256 	}
3257 
3258 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3259 		zfs_acl_ids_free(&acl_ids);
3260 		zfs_dirent_unlock(dl);
3261 		zfs_exit(zfsvfs, FTAG);
3262 		return (error);
3263 	}
3264 
3265 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3266 		zfs_acl_ids_free(&acl_ids);
3267 		zfs_dirent_unlock(dl);
3268 		zfs_exit(zfsvfs, FTAG);
3269 		return (SET_ERROR(EDQUOT));
3270 	}
3271 	tx = dmu_tx_create(zfsvfs->z_os);
3272 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3273 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3274 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3275 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3276 	    ZFS_SA_BASE_ATTR_SIZE + len);
3277 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3278 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3279 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3280 		    acl_ids.z_aclp->z_acl_bytes);
3281 	}
3282 	if (fuid_dirtied)
3283 		zfs_fuid_txhold(zfsvfs, tx);
3284 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3285 	if (error) {
3286 		zfs_dirent_unlock(dl);
3287 		if (error == ERESTART) {
3288 			waited = B_TRUE;
3289 			dmu_tx_wait(tx);
3290 			dmu_tx_abort(tx);
3291 			goto top;
3292 		}
3293 		zfs_acl_ids_free(&acl_ids);
3294 		dmu_tx_abort(tx);
3295 		zfs_exit(zfsvfs, FTAG);
3296 		return (error);
3297 	}
3298 
3299 	/*
3300 	 * Create a new object for the symlink.
3301 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3302 	 */
3303 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3304 
3305 	if (fuid_dirtied)
3306 		zfs_fuid_sync(zfsvfs, tx);
3307 
3308 	mutex_enter(&zp->z_lock);
3309 	if (zp->z_is_sa)
3310 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3311 		    link, len, tx);
3312 	else
3313 		zfs_sa_symlink(zp, link, len, tx);
3314 	mutex_exit(&zp->z_lock);
3315 
3316 	zp->z_size = len;
3317 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3318 	    &zp->z_size, sizeof (zp->z_size), tx);
3319 	/*
3320 	 * Insert the new object into the directory.
3321 	 */
3322 	error = zfs_link_create(dl, zp, tx, ZNEW);
3323 	if (error != 0) {
3324 		zfs_znode_delete(zp, tx);
3325 		remove_inode_hash(ZTOI(zp));
3326 	} else {
3327 		if (flags & FIGNORECASE)
3328 			txtype |= TX_CI;
3329 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3330 
3331 		zfs_znode_update_vfs(dzp);
3332 		zfs_znode_update_vfs(zp);
3333 	}
3334 
3335 	zfs_acl_ids_free(&acl_ids);
3336 
3337 	dmu_tx_commit(tx);
3338 
3339 	zfs_dirent_unlock(dl);
3340 
3341 	if (error == 0) {
3342 		*zpp = zp;
3343 
3344 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3345 			zil_commit(zilog, 0);
3346 	} else {
3347 		zrele(zp);
3348 	}
3349 
3350 	zfs_exit(zfsvfs, FTAG);
3351 	return (error);
3352 }
3353 
3354 /*
3355  * Return, in the buffer contained in the provided uio structure,
3356  * the symbolic path referred to by ip.
3357  *
3358  *	IN:	ip	- inode of symbolic link
3359  *		uio	- structure to contain the link path.
3360  *		cr	- credentials of caller.
3361  *
3362  *	RETURN:	0 if success
3363  *		error code if failure
3364  *
3365  * Timestamps:
3366  *	ip - atime updated
3367  */
3368 int
3369 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3370 {
3371 	(void) cr;
3372 	znode_t		*zp = ITOZ(ip);
3373 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3374 	int		error;
3375 
3376 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3377 		return (error);
3378 
3379 	mutex_enter(&zp->z_lock);
3380 	if (zp->z_is_sa)
3381 		error = sa_lookup_uio(zp->z_sa_hdl,
3382 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3383 	else
3384 		error = zfs_sa_readlink(zp, uio);
3385 	mutex_exit(&zp->z_lock);
3386 
3387 	zfs_exit(zfsvfs, FTAG);
3388 	return (error);
3389 }
3390 
3391 /*
3392  * Insert a new entry into directory tdzp referencing szp.
3393  *
3394  *	IN:	tdzp	- Directory to contain new entry.
3395  *		szp	- znode of new entry.
3396  *		name	- name of new entry.
3397  *		cr	- credentials of caller.
3398  *		flags	- case flags.
3399  *
3400  *	RETURN:	0 if success
3401  *		error code if failure
3402  *
3403  * Timestamps:
3404  *	tdzp - ctime|mtime updated
3405  *	 szp - ctime updated
3406  */
3407 int
3408 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3409     int flags)
3410 {
3411 	struct inode *sip = ZTOI(szp);
3412 	znode_t		*tzp;
3413 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3414 	zilog_t		*zilog;
3415 	zfs_dirlock_t	*dl;
3416 	dmu_tx_t	*tx;
3417 	int		error;
3418 	int		zf = ZNEW;
3419 	uint64_t	parent;
3420 	uid_t		owner;
3421 	boolean_t	waited = B_FALSE;
3422 	boolean_t	is_tmpfile = 0;
3423 	uint64_t	txg;
3424 #ifdef HAVE_TMPFILE
3425 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3426 #endif
3427 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3428 
3429 	if (name == NULL)
3430 		return (SET_ERROR(EINVAL));
3431 
3432 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3433 		return (error);
3434 	zilog = zfsvfs->z_log;
3435 
3436 	/*
3437 	 * POSIX dictates that we return EPERM here.
3438 	 * Better choices include ENOTSUP or EISDIR.
3439 	 */
3440 	if (S_ISDIR(sip->i_mode)) {
3441 		zfs_exit(zfsvfs, FTAG);
3442 		return (SET_ERROR(EPERM));
3443 	}
3444 
3445 	if ((error = zfs_verify_zp(szp)) != 0) {
3446 		zfs_exit(zfsvfs, FTAG);
3447 		return (error);
3448 	}
3449 
3450 	/*
3451 	 * If we are using project inheritance, means if the directory has
3452 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3453 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3454 	 * such case, we only allow hard link creation in our tree when the
3455 	 * project IDs are the same.
3456 	 */
3457 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3458 	    tdzp->z_projid != szp->z_projid) {
3459 		zfs_exit(zfsvfs, FTAG);
3460 		return (SET_ERROR(EXDEV));
3461 	}
3462 
3463 	/*
3464 	 * We check i_sb because snapshots and the ctldir must have different
3465 	 * super blocks.
3466 	 */
3467 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3468 		zfs_exit(zfsvfs, FTAG);
3469 		return (SET_ERROR(EXDEV));
3470 	}
3471 
3472 	/* Prevent links to .zfs/shares files */
3473 
3474 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3475 	    &parent, sizeof (uint64_t))) != 0) {
3476 		zfs_exit(zfsvfs, FTAG);
3477 		return (error);
3478 	}
3479 	if (parent == zfsvfs->z_shares_dir) {
3480 		zfs_exit(zfsvfs, FTAG);
3481 		return (SET_ERROR(EPERM));
3482 	}
3483 
3484 	if (zfsvfs->z_utf8 && u8_validate(name,
3485 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3486 		zfs_exit(zfsvfs, FTAG);
3487 		return (SET_ERROR(EILSEQ));
3488 	}
3489 	if (flags & FIGNORECASE)
3490 		zf |= ZCILOOK;
3491 
3492 	/*
3493 	 * We do not support links between attributes and non-attributes
3494 	 * because of the potential security risk of creating links
3495 	 * into "normal" file space in order to circumvent restrictions
3496 	 * imposed in attribute space.
3497 	 */
3498 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3499 		zfs_exit(zfsvfs, FTAG);
3500 		return (SET_ERROR(EINVAL));
3501 	}
3502 
3503 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3504 	    cr, ZFS_OWNER);
3505 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3506 		zfs_exit(zfsvfs, FTAG);
3507 		return (SET_ERROR(EPERM));
3508 	}
3509 
3510 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3511 	    kcred->user_ns))) {
3512 		zfs_exit(zfsvfs, FTAG);
3513 		return (error);
3514 	}
3515 
3516 top:
3517 	/*
3518 	 * Attempt to lock directory; fail if entry already exists.
3519 	 */
3520 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3521 	if (error) {
3522 		zfs_exit(zfsvfs, FTAG);
3523 		return (error);
3524 	}
3525 
3526 	tx = dmu_tx_create(zfsvfs->z_os);
3527 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3528 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3529 	if (is_tmpfile)
3530 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3531 
3532 	zfs_sa_upgrade_txholds(tx, szp);
3533 	zfs_sa_upgrade_txholds(tx, tdzp);
3534 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3535 	if (error) {
3536 		zfs_dirent_unlock(dl);
3537 		if (error == ERESTART) {
3538 			waited = B_TRUE;
3539 			dmu_tx_wait(tx);
3540 			dmu_tx_abort(tx);
3541 			goto top;
3542 		}
3543 		dmu_tx_abort(tx);
3544 		zfs_exit(zfsvfs, FTAG);
3545 		return (error);
3546 	}
3547 	/* unmark z_unlinked so zfs_link_create will not reject */
3548 	if (is_tmpfile)
3549 		szp->z_unlinked = B_FALSE;
3550 	error = zfs_link_create(dl, szp, tx, 0);
3551 
3552 	if (error == 0) {
3553 		uint64_t txtype = TX_LINK;
3554 		/*
3555 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3556 		 * Also, we don't log in ZIL, because all previous file
3557 		 * operation on the tmpfile are ignored by ZIL. Instead we
3558 		 * always wait for txg to sync to make sure all previous
3559 		 * operation are sync safe.
3560 		 */
3561 		if (is_tmpfile) {
3562 			VERIFY(zap_remove_int(zfsvfs->z_os,
3563 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3564 		} else {
3565 			if (flags & FIGNORECASE)
3566 				txtype |= TX_CI;
3567 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3568 		}
3569 	} else if (is_tmpfile) {
3570 		/* restore z_unlinked since when linking failed */
3571 		szp->z_unlinked = B_TRUE;
3572 	}
3573 	txg = dmu_tx_get_txg(tx);
3574 	dmu_tx_commit(tx);
3575 
3576 	zfs_dirent_unlock(dl);
3577 
3578 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3579 		zil_commit(zilog, 0);
3580 
3581 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3582 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3583 
3584 	zfs_znode_update_vfs(tdzp);
3585 	zfs_znode_update_vfs(szp);
3586 	zfs_exit(zfsvfs, FTAG);
3587 	return (error);
3588 }
3589 
3590 static void
3591 zfs_putpage_sync_commit_cb(void *arg)
3592 {
3593 	struct page *pp = arg;
3594 
3595 	ClearPageError(pp);
3596 	end_page_writeback(pp);
3597 }
3598 
3599 static void
3600 zfs_putpage_async_commit_cb(void *arg)
3601 {
3602 	struct page *pp = arg;
3603 	znode_t *zp = ITOZ(pp->mapping->host);
3604 
3605 	ClearPageError(pp);
3606 	end_page_writeback(pp);
3607 	atomic_dec_32(&zp->z_async_writes_cnt);
3608 }
3609 
3610 /*
3611  * Push a page out to disk, once the page is on stable storage the
3612  * registered commit callback will be run as notification of completion.
3613  *
3614  *	IN:	ip	 - page mapped for inode.
3615  *		pp	 - page to push (page is locked)
3616  *		wbc	 - writeback control data
3617  *		for_sync - does the caller intend to wait synchronously for the
3618  *			   page writeback to complete?
3619  *
3620  *	RETURN:	0 if success
3621  *		error code if failure
3622  *
3623  * Timestamps:
3624  *	ip - ctime|mtime updated
3625  */
3626 int
3627 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3628     boolean_t for_sync)
3629 {
3630 	znode_t		*zp = ITOZ(ip);
3631 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3632 	loff_t		offset;
3633 	loff_t		pgoff;
3634 	unsigned int	pglen;
3635 	dmu_tx_t	*tx;
3636 	caddr_t		va;
3637 	int		err = 0;
3638 	uint64_t	mtime[2], ctime[2];
3639 	sa_bulk_attr_t	bulk[3];
3640 	int		cnt = 0;
3641 	struct address_space *mapping;
3642 
3643 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3644 		return (err);
3645 
3646 	ASSERT(PageLocked(pp));
3647 
3648 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3649 	offset = i_size_read(ip);	/* File length in bytes */
3650 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3651 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3652 
3653 	/* Page is beyond end of file */
3654 	if (pgoff >= offset) {
3655 		unlock_page(pp);
3656 		zfs_exit(zfsvfs, FTAG);
3657 		return (0);
3658 	}
3659 
3660 	/* Truncate page length to end of file */
3661 	if (pgoff + pglen > offset)
3662 		pglen = offset - pgoff;
3663 
3664 #if 0
3665 	/*
3666 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3667 	 * is to register a page_mkwrite() handler to count the page
3668 	 * against its quota when it is about to be dirtied.
3669 	 */
3670 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3671 	    KUID_TO_SUID(ip->i_uid)) ||
3672 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3673 	    KGID_TO_SGID(ip->i_gid)) ||
3674 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3675 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3676 	    zp->z_projid))) {
3677 		err = EDQUOT;
3678 	}
3679 #endif
3680 
3681 	/*
3682 	 * The ordering here is critical and must adhere to the following
3683 	 * rules in order to avoid deadlocking in either zfs_read() or
3684 	 * zfs_free_range() due to a lock inversion.
3685 	 *
3686 	 * 1) The page must be unlocked prior to acquiring the range lock.
3687 	 *    This is critical because zfs_read() calls find_lock_page()
3688 	 *    which may block on the page lock while holding the range lock.
3689 	 *
3690 	 * 2) Before setting or clearing write back on a page the range lock
3691 	 *    must be held in order to prevent a lock inversion with the
3692 	 *    zfs_free_range() function.
3693 	 *
3694 	 * This presents a problem because upon entering this function the
3695 	 * page lock is already held.  To safely acquire the range lock the
3696 	 * page lock must be dropped.  This creates a window where another
3697 	 * process could truncate, invalidate, dirty, or write out the page.
3698 	 *
3699 	 * Therefore, after successfully reacquiring the range and page locks
3700 	 * the current page state is checked.  In the common case everything
3701 	 * will be as is expected and it can be written out.  However, if
3702 	 * the page state has changed it must be handled accordingly.
3703 	 */
3704 	mapping = pp->mapping;
3705 	redirty_page_for_writepage(wbc, pp);
3706 	unlock_page(pp);
3707 
3708 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3709 	    pgoff, pglen, RL_WRITER);
3710 	lock_page(pp);
3711 
3712 	/* Page mapping changed or it was no longer dirty, we're done */
3713 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3714 		unlock_page(pp);
3715 		zfs_rangelock_exit(lr);
3716 		zfs_exit(zfsvfs, FTAG);
3717 		return (0);
3718 	}
3719 
3720 	/* Another process started write block if required */
3721 	if (PageWriteback(pp)) {
3722 		unlock_page(pp);
3723 		zfs_rangelock_exit(lr);
3724 
3725 		if (wbc->sync_mode != WB_SYNC_NONE) {
3726 			/*
3727 			 * Speed up any non-sync page writebacks since
3728 			 * they may take several seconds to complete.
3729 			 * Refer to the comment in zpl_fsync() (when
3730 			 * HAVE_FSYNC_RANGE is defined) for details.
3731 			 */
3732 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3733 				zil_commit(zfsvfs->z_log, zp->z_id);
3734 			}
3735 
3736 			if (PageWriteback(pp))
3737 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3738 				folio_wait_bit(page_folio(pp), PG_writeback);
3739 #else
3740 				wait_on_page_bit(pp, PG_writeback);
3741 #endif
3742 		}
3743 
3744 		zfs_exit(zfsvfs, FTAG);
3745 		return (0);
3746 	}
3747 
3748 	/* Clear the dirty flag the required locks are held */
3749 	if (!clear_page_dirty_for_io(pp)) {
3750 		unlock_page(pp);
3751 		zfs_rangelock_exit(lr);
3752 		zfs_exit(zfsvfs, FTAG);
3753 		return (0);
3754 	}
3755 
3756 	/*
3757 	 * Counterpart for redirty_page_for_writepage() above.  This page
3758 	 * was in fact not skipped and should not be counted as if it were.
3759 	 */
3760 	wbc->pages_skipped--;
3761 	if (!for_sync)
3762 		atomic_inc_32(&zp->z_async_writes_cnt);
3763 	set_page_writeback(pp);
3764 	unlock_page(pp);
3765 
3766 	tx = dmu_tx_create(zfsvfs->z_os);
3767 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3768 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3769 	zfs_sa_upgrade_txholds(tx, zp);
3770 
3771 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3772 	if (err != 0) {
3773 		if (err == ERESTART)
3774 			dmu_tx_wait(tx);
3775 
3776 		dmu_tx_abort(tx);
3777 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3778 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3779 #else
3780 		__set_page_dirty_nobuffers(pp);
3781 #endif
3782 		ClearPageError(pp);
3783 		end_page_writeback(pp);
3784 		if (!for_sync)
3785 			atomic_dec_32(&zp->z_async_writes_cnt);
3786 		zfs_rangelock_exit(lr);
3787 		zfs_exit(zfsvfs, FTAG);
3788 		return (err);
3789 	}
3790 
3791 	va = kmap(pp);
3792 	ASSERT3U(pglen, <=, PAGE_SIZE);
3793 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3794 	kunmap(pp);
3795 
3796 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3797 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3798 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3799 	    &zp->z_pflags, 8);
3800 
3801 	/* Preserve the mtime and ctime provided by the inode */
3802 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3803 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3804 	zp->z_atime_dirty = B_FALSE;
3805 	zp->z_seq++;
3806 
3807 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3808 
3809 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3810 	    for_sync ? zfs_putpage_sync_commit_cb :
3811 	    zfs_putpage_async_commit_cb, pp);
3812 
3813 	dmu_tx_commit(tx);
3814 
3815 	zfs_rangelock_exit(lr);
3816 
3817 	if (wbc->sync_mode != WB_SYNC_NONE) {
3818 		/*
3819 		 * Note that this is rarely called under writepages(), because
3820 		 * writepages() normally handles the entire commit for
3821 		 * performance reasons.
3822 		 */
3823 		zil_commit(zfsvfs->z_log, zp->z_id);
3824 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3825 		/*
3826 		 * If the caller does not intend to wait synchronously
3827 		 * for this page writeback to complete and there are active
3828 		 * synchronous calls on this file, do a commit so that
3829 		 * the latter don't accidentally end up waiting for
3830 		 * our writeback to complete. Refer to the comment in
3831 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3832 		 */
3833 		zil_commit(zfsvfs->z_log, zp->z_id);
3834 	}
3835 
3836 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3837 
3838 	zfs_exit(zfsvfs, FTAG);
3839 	return (err);
3840 }
3841 
3842 /*
3843  * Update the system attributes when the inode has been dirtied.  For the
3844  * moment we only update the mode, atime, mtime, and ctime.
3845  */
3846 int
3847 zfs_dirty_inode(struct inode *ip, int flags)
3848 {
3849 	znode_t		*zp = ITOZ(ip);
3850 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3851 	dmu_tx_t	*tx;
3852 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3853 	sa_bulk_attr_t	bulk[4];
3854 	int		error = 0;
3855 	int		cnt = 0;
3856 
3857 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3858 		return (0);
3859 
3860 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3861 		return (error);
3862 
3863 #ifdef I_DIRTY_TIME
3864 	/*
3865 	 * This is the lazytime semantic introduced in Linux 4.0
3866 	 * This flag will only be called from update_time when lazytime is set.
3867 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3868 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3869 	 * only need to dirty atime.
3870 	 */
3871 	if (flags == I_DIRTY_TIME) {
3872 		zp->z_atime_dirty = B_TRUE;
3873 		goto out;
3874 	}
3875 #endif
3876 
3877 	tx = dmu_tx_create(zfsvfs->z_os);
3878 
3879 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3880 	zfs_sa_upgrade_txholds(tx, zp);
3881 
3882 	error = dmu_tx_assign(tx, TXG_WAIT);
3883 	if (error) {
3884 		dmu_tx_abort(tx);
3885 		goto out;
3886 	}
3887 
3888 	mutex_enter(&zp->z_lock);
3889 	zp->z_atime_dirty = B_FALSE;
3890 
3891 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3892 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3893 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3894 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3895 
3896 	/* Preserve the mode, mtime and ctime provided by the inode */
3897 	ZFS_TIME_ENCODE(&ip->i_atime, atime);
3898 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3899 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3900 	mode = ip->i_mode;
3901 
3902 	zp->z_mode = mode;
3903 
3904 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3905 	mutex_exit(&zp->z_lock);
3906 
3907 	dmu_tx_commit(tx);
3908 out:
3909 	zfs_exit(zfsvfs, FTAG);
3910 	return (error);
3911 }
3912 
3913 void
3914 zfs_inactive(struct inode *ip)
3915 {
3916 	znode_t	*zp = ITOZ(ip);
3917 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3918 	uint64_t atime[2];
3919 	int error;
3920 	int need_unlock = 0;
3921 
3922 	/* Only read lock if we haven't already write locked, e.g. rollback */
3923 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3924 		need_unlock = 1;
3925 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3926 	}
3927 	if (zp->z_sa_hdl == NULL) {
3928 		if (need_unlock)
3929 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3930 		return;
3931 	}
3932 
3933 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3934 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3935 
3936 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3937 		zfs_sa_upgrade_txholds(tx, zp);
3938 		error = dmu_tx_assign(tx, TXG_WAIT);
3939 		if (error) {
3940 			dmu_tx_abort(tx);
3941 		} else {
3942 			ZFS_TIME_ENCODE(&ip->i_atime, atime);
3943 			mutex_enter(&zp->z_lock);
3944 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3945 			    (void *)&atime, sizeof (atime), tx);
3946 			zp->z_atime_dirty = B_FALSE;
3947 			mutex_exit(&zp->z_lock);
3948 			dmu_tx_commit(tx);
3949 		}
3950 	}
3951 
3952 	zfs_zinactive(zp);
3953 	if (need_unlock)
3954 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3955 }
3956 
3957 /*
3958  * Fill pages with data from the disk.
3959  */
3960 static int
3961 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
3962 {
3963 	znode_t *zp = ITOZ(ip);
3964 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3965 	objset_t *os;
3966 	struct page *cur_pp;
3967 	u_offset_t io_off, total;
3968 	size_t io_len;
3969 	loff_t i_size;
3970 	unsigned page_idx;
3971 	int err;
3972 
3973 	os = zfsvfs->z_os;
3974 	io_len = nr_pages << PAGE_SHIFT;
3975 	i_size = i_size_read(ip);
3976 	io_off = page_offset(pl[0]);
3977 
3978 	if (io_off + io_len > i_size)
3979 		io_len = i_size - io_off;
3980 
3981 	/*
3982 	 * Iterate over list of pages and read each page individually.
3983 	 */
3984 	page_idx = 0;
3985 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3986 		caddr_t va;
3987 
3988 		cur_pp = pl[page_idx++];
3989 		va = kmap(cur_pp);
3990 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
3991 		    DMU_READ_PREFETCH);
3992 		kunmap(cur_pp);
3993 		if (err) {
3994 			/* convert checksum errors into IO errors */
3995 			if (err == ECKSUM)
3996 				err = SET_ERROR(EIO);
3997 			return (err);
3998 		}
3999 	}
4000 
4001 	return (0);
4002 }
4003 
4004 /*
4005  * Uses zfs_fillpage to read data from the file and fill the pages.
4006  *
4007  *	IN:	ip	 - inode of file to get data from.
4008  *		pl	 - list of pages to read
4009  *		nr_pages - number of pages to read
4010  *
4011  *	RETURN:	0 on success, error code on failure.
4012  *
4013  * Timestamps:
4014  *	vp - atime updated
4015  */
4016 int
4017 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4018 {
4019 	znode_t	 *zp  = ITOZ(ip);
4020 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4021 	int	 err;
4022 
4023 	if (pl == NULL)
4024 		return (0);
4025 
4026 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4027 		return (err);
4028 
4029 	err = zfs_fillpage(ip, pl, nr_pages);
4030 
4031 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr_pages*PAGESIZE);
4032 
4033 	zfs_exit(zfsvfs, FTAG);
4034 	return (err);
4035 }
4036 
4037 /*
4038  * Check ZFS specific permissions to memory map a section of a file.
4039  *
4040  *	IN:	ip	- inode of the file to mmap
4041  *		off	- file offset
4042  *		addrp	- start address in memory region
4043  *		len	- length of memory region
4044  *		vm_flags- address flags
4045  *
4046  *	RETURN:	0 if success
4047  *		error code if failure
4048  */
4049 int
4050 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4051     unsigned long vm_flags)
4052 {
4053 	(void) addrp;
4054 	znode_t  *zp = ITOZ(ip);
4055 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4056 	int error;
4057 
4058 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4059 		return (error);
4060 
4061 	if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4062 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4063 		zfs_exit(zfsvfs, FTAG);
4064 		return (SET_ERROR(EPERM));
4065 	}
4066 
4067 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4068 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4069 		zfs_exit(zfsvfs, FTAG);
4070 		return (SET_ERROR(EACCES));
4071 	}
4072 
4073 	if (off < 0 || len > MAXOFFSET_T - off) {
4074 		zfs_exit(zfsvfs, FTAG);
4075 		return (SET_ERROR(ENXIO));
4076 	}
4077 
4078 	zfs_exit(zfsvfs, FTAG);
4079 	return (0);
4080 }
4081 
4082 /*
4083  * Free or allocate space in a file.  Currently, this function only
4084  * supports the `F_FREESP' command.  However, this command is somewhat
4085  * misnamed, as its functionality includes the ability to allocate as
4086  * well as free space.
4087  *
4088  *	IN:	zp	- znode of file to free data in.
4089  *		cmd	- action to take (only F_FREESP supported).
4090  *		bfp	- section of file to free/alloc.
4091  *		flag	- current file open mode flags.
4092  *		offset	- current file offset.
4093  *		cr	- credentials of caller.
4094  *
4095  *	RETURN:	0 on success, error code on failure.
4096  *
4097  * Timestamps:
4098  *	zp - ctime|mtime updated
4099  */
4100 int
4101 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4102     offset_t offset, cred_t *cr)
4103 {
4104 	(void) offset;
4105 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4106 	uint64_t	off, len;
4107 	int		error;
4108 
4109 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4110 		return (error);
4111 
4112 	if (cmd != F_FREESP) {
4113 		zfs_exit(zfsvfs, FTAG);
4114 		return (SET_ERROR(EINVAL));
4115 	}
4116 
4117 	/*
4118 	 * Callers might not be able to detect properly that we are read-only,
4119 	 * so check it explicitly here.
4120 	 */
4121 	if (zfs_is_readonly(zfsvfs)) {
4122 		zfs_exit(zfsvfs, FTAG);
4123 		return (SET_ERROR(EROFS));
4124 	}
4125 
4126 	if (bfp->l_len < 0) {
4127 		zfs_exit(zfsvfs, FTAG);
4128 		return (SET_ERROR(EINVAL));
4129 	}
4130 
4131 	/*
4132 	 * Permissions aren't checked on Solaris because on this OS
4133 	 * zfs_space() can only be called with an opened file handle.
4134 	 * On Linux we can get here through truncate_range() which
4135 	 * operates directly on inodes, so we need to check access rights.
4136 	 */
4137 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4138 	    kcred->user_ns))) {
4139 		zfs_exit(zfsvfs, FTAG);
4140 		return (error);
4141 	}
4142 
4143 	off = bfp->l_start;
4144 	len = bfp->l_len; /* 0 means from off to end of file */
4145 
4146 	error = zfs_freesp(zp, off, len, flag, TRUE);
4147 
4148 	zfs_exit(zfsvfs, FTAG);
4149 	return (error);
4150 }
4151 
4152 int
4153 zfs_fid(struct inode *ip, fid_t *fidp)
4154 {
4155 	znode_t		*zp = ITOZ(ip);
4156 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4157 	uint32_t	gen;
4158 	uint64_t	gen64;
4159 	uint64_t	object = zp->z_id;
4160 	zfid_short_t	*zfid;
4161 	int		size, i, error;
4162 
4163 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4164 		return (error);
4165 
4166 	if (fidp->fid_len < SHORT_FID_LEN) {
4167 		fidp->fid_len = SHORT_FID_LEN;
4168 		zfs_exit(zfsvfs, FTAG);
4169 		return (SET_ERROR(ENOSPC));
4170 	}
4171 
4172 	if ((error = zfs_verify_zp(zp)) != 0) {
4173 		zfs_exit(zfsvfs, FTAG);
4174 		return (error);
4175 	}
4176 
4177 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4178 	    &gen64, sizeof (uint64_t))) != 0) {
4179 		zfs_exit(zfsvfs, FTAG);
4180 		return (error);
4181 	}
4182 
4183 	gen = (uint32_t)gen64;
4184 
4185 	size = SHORT_FID_LEN;
4186 
4187 	zfid = (zfid_short_t *)fidp;
4188 
4189 	zfid->zf_len = size;
4190 
4191 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4192 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4193 
4194 	/* Must have a non-zero generation number to distinguish from .zfs */
4195 	if (gen == 0)
4196 		gen = 1;
4197 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4198 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4199 
4200 	zfs_exit(zfsvfs, FTAG);
4201 	return (0);
4202 }
4203 
4204 #if defined(_KERNEL)
4205 EXPORT_SYMBOL(zfs_open);
4206 EXPORT_SYMBOL(zfs_close);
4207 EXPORT_SYMBOL(zfs_lookup);
4208 EXPORT_SYMBOL(zfs_create);
4209 EXPORT_SYMBOL(zfs_tmpfile);
4210 EXPORT_SYMBOL(zfs_remove);
4211 EXPORT_SYMBOL(zfs_mkdir);
4212 EXPORT_SYMBOL(zfs_rmdir);
4213 EXPORT_SYMBOL(zfs_readdir);
4214 EXPORT_SYMBOL(zfs_getattr_fast);
4215 EXPORT_SYMBOL(zfs_setattr);
4216 EXPORT_SYMBOL(zfs_rename);
4217 EXPORT_SYMBOL(zfs_symlink);
4218 EXPORT_SYMBOL(zfs_readlink);
4219 EXPORT_SYMBOL(zfs_link);
4220 EXPORT_SYMBOL(zfs_inactive);
4221 EXPORT_SYMBOL(zfs_space);
4222 EXPORT_SYMBOL(zfs_fid);
4223 EXPORT_SYMBOL(zfs_getpage);
4224 EXPORT_SYMBOL(zfs_putpage);
4225 EXPORT_SYMBOL(zfs_dirty_inode);
4226 EXPORT_SYMBOL(zfs_map);
4227 
4228 /* CSTYLED */
4229 module_param(zfs_delete_blocks, ulong, 0644);
4230 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4231 
4232 #endif
4233