1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/sysmacros.h>
33 #include <sys/mntent.h>
34 #include <sys/u8_textprep.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/errno.h>
41 #include <sys/atomic.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zfs_acl.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zfs_rlock.h>
46 #include <sys/zfs_fuid.h>
47 #include <sys/zfs_vnops.h>
48 #include <sys/zfs_ctldir.h>
49 #include <sys/dnode.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zpl.h>
52 #endif /* _KERNEL */
53 
54 #include <sys/dmu.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/dmu_tx.h>
57 #include <sys/zfs_refcount.h>
58 #include <sys/stat.h>
59 #include <sys/zap.h>
60 #include <sys/zfs_znode.h>
61 #include <sys/sa.h>
62 #include <sys/zfs_sa.h>
63 #include <sys/zfs_stat.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 /*
69  * Functions needed for userland (ie: libzpool) are not put under
70  * #ifdef_KERNEL; the rest of the functions have dependencies
71  * (such as VFS logic) that will not compile easily in userland.
72  */
73 #ifdef _KERNEL
74 
75 static kmem_cache_t *znode_cache = NULL;
76 static kmem_cache_t *znode_hold_cache = NULL;
77 unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
78 
79 /*
80  * This is used by the test suite so that it can delay znodes from being
81  * freed in order to inspect the unlinked set.
82  */
83 static int zfs_unlink_suspend_progress = 0;
84 
85 /*
86  * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
87  * z_rangelock. It will modify the offset and length of the lock to reflect
88  * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
89  * called with the rangelock_t's rl_lock held, which avoids races.
90  */
91 static void
92 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
93 {
94 	znode_t *zp = arg;
95 
96 	/*
97 	 * If in append mode, convert to writer and lock starting at the
98 	 * current end of file.
99 	 */
100 	if (new->lr_type == RL_APPEND) {
101 		new->lr_offset = zp->z_size;
102 		new->lr_type = RL_WRITER;
103 	}
104 
105 	/*
106 	 * If we need to grow the block size then lock the whole file range.
107 	 */
108 	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
109 	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
110 	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
111 		new->lr_offset = 0;
112 		new->lr_length = UINT64_MAX;
113 	}
114 }
115 
116 static int
117 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
118 {
119 	(void) arg, (void) kmflags;
120 	znode_t *zp = buf;
121 
122 	inode_init_once(ZTOI(zp));
123 	list_link_init(&zp->z_link_node);
124 
125 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127 	rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
128 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129 	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
130 
131 	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
132 
133 	zp->z_dirlocks = NULL;
134 	zp->z_acl_cached = NULL;
135 	zp->z_xattr_cached = NULL;
136 	zp->z_xattr_parent = 0;
137 	zp->z_sync_writes_cnt = 0;
138 	zp->z_async_writes_cnt = 0;
139 
140 	return (0);
141 }
142 
143 static void
144 zfs_znode_cache_destructor(void *buf, void *arg)
145 {
146 	(void) arg;
147 	znode_t *zp = buf;
148 
149 	ASSERT(!list_link_active(&zp->z_link_node));
150 	mutex_destroy(&zp->z_lock);
151 	rw_destroy(&zp->z_parent_lock);
152 	rw_destroy(&zp->z_name_lock);
153 	mutex_destroy(&zp->z_acl_lock);
154 	rw_destroy(&zp->z_xattr_lock);
155 	zfs_rangelock_fini(&zp->z_rangelock);
156 
157 	ASSERT3P(zp->z_dirlocks, ==, NULL);
158 	ASSERT3P(zp->z_acl_cached, ==, NULL);
159 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
160 
161 	ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
162 	ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
163 }
164 
165 static int
166 zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
167 {
168 	(void) arg, (void) kmflags;
169 	znode_hold_t *zh = buf;
170 
171 	mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
172 	zh->zh_refcount = 0;
173 
174 	return (0);
175 }
176 
177 static void
178 zfs_znode_hold_cache_destructor(void *buf, void *arg)
179 {
180 	(void) arg;
181 	znode_hold_t *zh = buf;
182 
183 	mutex_destroy(&zh->zh_lock);
184 }
185 
186 void
187 zfs_znode_init(void)
188 {
189 	/*
190 	 * Initialize zcache.  The KMC_SLAB hint is used in order that it be
191 	 * backed by kmalloc() when on the Linux slab in order that any
192 	 * wait_on_bit() operations on the related inode operate properly.
193 	 */
194 	ASSERT(znode_cache == NULL);
195 	znode_cache = kmem_cache_create("zfs_znode_cache",
196 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
197 	    zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB);
198 
199 	ASSERT(znode_hold_cache == NULL);
200 	znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
201 	    sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
202 	    zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
203 }
204 
205 void
206 zfs_znode_fini(void)
207 {
208 	/*
209 	 * Cleanup zcache
210 	 */
211 	if (znode_cache)
212 		kmem_cache_destroy(znode_cache);
213 	znode_cache = NULL;
214 
215 	if (znode_hold_cache)
216 		kmem_cache_destroy(znode_hold_cache);
217 	znode_hold_cache = NULL;
218 }
219 
220 /*
221  * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
222  * serialize access to a znode and its SA buffer while the object is being
223  * created or destroyed.  This kind of locking would normally reside in the
224  * znode itself but in this case that's impossible because the znode and SA
225  * buffer may not yet exist.  Therefore the locking is handled externally
226  * with an array of mutexes and AVLs trees which contain per-object locks.
227  *
228  * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
229  * in to the correct AVL tree and finally the per-object lock is held.  In
230  * zfs_znode_hold_exit() the process is reversed.  The per-object lock is
231  * released, removed from the AVL tree and destroyed if there are no waiters.
232  *
233  * This scheme has two important properties:
234  *
235  * 1) No memory allocations are performed while holding one of the z_hold_locks.
236  *    This ensures evict(), which can be called from direct memory reclaim, will
237  *    never block waiting on a z_hold_locks which just happens to have hashed
238  *    to the same index.
239  *
240  * 2) All locks used to serialize access to an object are per-object and never
241  *    shared.  This minimizes lock contention without creating a large number
242  *    of dedicated locks.
243  *
244  * On the downside it does require znode_lock_t structures to be frequently
245  * allocated and freed.  However, because these are backed by a kmem cache
246  * and very short lived this cost is minimal.
247  */
248 int
249 zfs_znode_hold_compare(const void *a, const void *b)
250 {
251 	const znode_hold_t *zh_a = (const znode_hold_t *)a;
252 	const znode_hold_t *zh_b = (const znode_hold_t *)b;
253 
254 	return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
255 }
256 
257 static boolean_t __maybe_unused
258 zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
259 {
260 	znode_hold_t *zh, search;
261 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
262 	boolean_t held;
263 
264 	search.zh_obj = obj;
265 
266 	mutex_enter(&zfsvfs->z_hold_locks[i]);
267 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
268 	held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
269 	mutex_exit(&zfsvfs->z_hold_locks[i]);
270 
271 	return (held);
272 }
273 
274 znode_hold_t *
275 zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
276 {
277 	znode_hold_t *zh, *zh_new, search;
278 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
279 	boolean_t found = B_FALSE;
280 
281 	zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
282 	search.zh_obj = obj;
283 
284 	mutex_enter(&zfsvfs->z_hold_locks[i]);
285 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
286 	if (likely(zh == NULL)) {
287 		zh = zh_new;
288 		zh->zh_obj = obj;
289 		avl_add(&zfsvfs->z_hold_trees[i], zh);
290 	} else {
291 		ASSERT3U(zh->zh_obj, ==, obj);
292 		found = B_TRUE;
293 	}
294 	zh->zh_refcount++;
295 	ASSERT3S(zh->zh_refcount, >, 0);
296 	mutex_exit(&zfsvfs->z_hold_locks[i]);
297 
298 	if (found == B_TRUE)
299 		kmem_cache_free(znode_hold_cache, zh_new);
300 
301 	ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
302 	mutex_enter(&zh->zh_lock);
303 
304 	return (zh);
305 }
306 
307 void
308 zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
309 {
310 	int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
311 	boolean_t remove = B_FALSE;
312 
313 	ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
314 	mutex_exit(&zh->zh_lock);
315 
316 	mutex_enter(&zfsvfs->z_hold_locks[i]);
317 	ASSERT3S(zh->zh_refcount, >, 0);
318 	if (--zh->zh_refcount == 0) {
319 		avl_remove(&zfsvfs->z_hold_trees[i], zh);
320 		remove = B_TRUE;
321 	}
322 	mutex_exit(&zfsvfs->z_hold_locks[i]);
323 
324 	if (remove == B_TRUE)
325 		kmem_cache_free(znode_hold_cache, zh);
326 }
327 
328 dev_t
329 zfs_cmpldev(uint64_t dev)
330 {
331 	return (dev);
332 }
333 
334 static void
335 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
336     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
337 {
338 	ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
339 
340 	mutex_enter(&zp->z_lock);
341 
342 	ASSERT(zp->z_sa_hdl == NULL);
343 	ASSERT(zp->z_acl_cached == NULL);
344 	if (sa_hdl == NULL) {
345 		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
346 		    SA_HDL_SHARED, &zp->z_sa_hdl));
347 	} else {
348 		zp->z_sa_hdl = sa_hdl;
349 		sa_set_userp(sa_hdl, zp);
350 	}
351 
352 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
353 
354 	mutex_exit(&zp->z_lock);
355 }
356 
357 void
358 zfs_znode_dmu_fini(znode_t *zp)
359 {
360 	ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
361 	    RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
362 
363 	sa_handle_destroy(zp->z_sa_hdl);
364 	zp->z_sa_hdl = NULL;
365 }
366 
367 /*
368  * Called by new_inode() to allocate a new inode.
369  */
370 int
371 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
372 {
373 	znode_t *zp;
374 
375 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
376 	*ip = ZTOI(zp);
377 
378 	return (0);
379 }
380 
381 /*
382  * Called in multiple places when an inode should be destroyed.
383  */
384 void
385 zfs_inode_destroy(struct inode *ip)
386 {
387 	znode_t *zp = ITOZ(ip);
388 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
389 
390 	mutex_enter(&zfsvfs->z_znodes_lock);
391 	if (list_link_active(&zp->z_link_node)) {
392 		list_remove(&zfsvfs->z_all_znodes, zp);
393 		zfsvfs->z_nr_znodes--;
394 	}
395 	mutex_exit(&zfsvfs->z_znodes_lock);
396 
397 	if (zp->z_acl_cached) {
398 		zfs_acl_free(zp->z_acl_cached);
399 		zp->z_acl_cached = NULL;
400 	}
401 
402 	if (zp->z_xattr_cached) {
403 		nvlist_free(zp->z_xattr_cached);
404 		zp->z_xattr_cached = NULL;
405 	}
406 
407 	kmem_cache_free(znode_cache, zp);
408 }
409 
410 static void
411 zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
412 {
413 	uint64_t rdev = 0;
414 
415 	switch (ip->i_mode & S_IFMT) {
416 	case S_IFREG:
417 		ip->i_op = &zpl_inode_operations;
418 		ip->i_fop = &zpl_file_operations;
419 		ip->i_mapping->a_ops = &zpl_address_space_operations;
420 		break;
421 
422 	case S_IFDIR:
423 #ifdef HAVE_RENAME2_OPERATIONS_WRAPPER
424 		ip->i_flags |= S_IOPS_WRAPPER;
425 		ip->i_op = &zpl_dir_inode_operations.ops;
426 #else
427 		ip->i_op = &zpl_dir_inode_operations;
428 #endif
429 		ip->i_fop = &zpl_dir_file_operations;
430 		ITOZ(ip)->z_zn_prefetch = B_TRUE;
431 		break;
432 
433 	case S_IFLNK:
434 		ip->i_op = &zpl_symlink_inode_operations;
435 		break;
436 
437 	/*
438 	 * rdev is only stored in a SA only for device files.
439 	 */
440 	case S_IFCHR:
441 	case S_IFBLK:
442 		(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
443 		    sizeof (rdev));
444 		zfs_fallthrough;
445 	case S_IFIFO:
446 	case S_IFSOCK:
447 		init_special_inode(ip, ip->i_mode, rdev);
448 		ip->i_op = &zpl_special_inode_operations;
449 		break;
450 
451 	default:
452 		zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
453 		    (u_longlong_t)ip->i_ino, ip->i_mode);
454 
455 		/* Assume the inode is a file and attempt to continue */
456 		ip->i_mode = S_IFREG | 0644;
457 		ip->i_op = &zpl_inode_operations;
458 		ip->i_fop = &zpl_file_operations;
459 		ip->i_mapping->a_ops = &zpl_address_space_operations;
460 		break;
461 	}
462 }
463 
464 static void
465 zfs_set_inode_flags(znode_t *zp, struct inode *ip)
466 {
467 	/*
468 	 * Linux and Solaris have different sets of file attributes, so we
469 	 * restrict this conversion to the intersection of the two.
470 	 */
471 #ifdef HAVE_INODE_SET_FLAGS
472 	unsigned int flags = 0;
473 	if (zp->z_pflags & ZFS_IMMUTABLE)
474 		flags |= S_IMMUTABLE;
475 	if (zp->z_pflags & ZFS_APPENDONLY)
476 		flags |= S_APPEND;
477 
478 	inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
479 #else
480 	if (zp->z_pflags & ZFS_IMMUTABLE)
481 		ip->i_flags |= S_IMMUTABLE;
482 	else
483 		ip->i_flags &= ~S_IMMUTABLE;
484 
485 	if (zp->z_pflags & ZFS_APPENDONLY)
486 		ip->i_flags |= S_APPEND;
487 	else
488 		ip->i_flags &= ~S_APPEND;
489 #endif
490 }
491 
492 /*
493  * Update the embedded inode given the znode.
494  */
495 void
496 zfs_znode_update_vfs(znode_t *zp)
497 {
498 	struct inode	*ip;
499 	uint32_t	blksize;
500 	u_longlong_t	i_blocks;
501 
502 	ASSERT(zp != NULL);
503 	ip = ZTOI(zp);
504 
505 	/* Skip .zfs control nodes which do not exist on disk. */
506 	if (zfsctl_is_node(ip))
507 		return;
508 
509 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
510 
511 	spin_lock(&ip->i_lock);
512 	ip->i_mode = zp->z_mode;
513 	ip->i_blocks = i_blocks;
514 	i_size_write(ip, zp->z_size);
515 	spin_unlock(&ip->i_lock);
516 }
517 
518 
519 /*
520  * Construct a znode+inode and initialize.
521  *
522  * This does not do a call to dmu_set_user() that is
523  * up to the caller to do, in case you don't want to
524  * return the znode
525  */
526 static znode_t *
527 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
528     dmu_object_type_t obj_type, sa_handle_t *hdl)
529 {
530 	znode_t	*zp;
531 	struct inode *ip;
532 	uint64_t mode;
533 	uint64_t parent;
534 	uint64_t tmp_gen;
535 	uint64_t links;
536 	uint64_t z_uid, z_gid;
537 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
538 	uint64_t projid = ZFS_DEFAULT_PROJID;
539 	sa_bulk_attr_t bulk[12];
540 	int count = 0;
541 
542 	ASSERT(zfsvfs != NULL);
543 
544 	ip = new_inode(zfsvfs->z_sb);
545 	if (ip == NULL)
546 		return (NULL);
547 
548 	zp = ITOZ(ip);
549 	ASSERT(zp->z_dirlocks == NULL);
550 	ASSERT3P(zp->z_acl_cached, ==, NULL);
551 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
552 	zp->z_unlinked = B_FALSE;
553 	zp->z_atime_dirty = B_FALSE;
554 	zp->z_is_mapped = B_FALSE;
555 	zp->z_is_ctldir = B_FALSE;
556 	zp->z_suspended = B_FALSE;
557 	zp->z_sa_hdl = NULL;
558 	zp->z_mapcnt = 0;
559 	zp->z_id = db->db_object;
560 	zp->z_blksz = blksz;
561 	zp->z_seq = 0x7A4653;
562 	zp->z_sync_cnt = 0;
563 	zp->z_sync_writes_cnt = 0;
564 	zp->z_async_writes_cnt = 0;
565 
566 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
567 
568 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
569 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
570 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
571 	    &zp->z_size, 8);
572 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
573 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
574 	    &zp->z_pflags, 8);
575 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
576 	    &parent, 8);
577 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
578 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
579 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
580 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
581 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
582 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
583 
584 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
585 	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
586 	    (zp->z_pflags & ZFS_PROJID) &&
587 	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
588 		if (hdl == NULL)
589 			sa_handle_destroy(zp->z_sa_hdl);
590 		zp->z_sa_hdl = NULL;
591 		goto error;
592 	}
593 
594 	zp->z_projid = projid;
595 	zp->z_mode = ip->i_mode = mode;
596 	ip->i_generation = (uint32_t)tmp_gen;
597 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
598 	set_nlink(ip, (uint32_t)links);
599 	zfs_uid_write(ip, z_uid);
600 	zfs_gid_write(ip, z_gid);
601 	zfs_set_inode_flags(zp, ip);
602 
603 	/* Cache the xattr parent id */
604 	if (zp->z_pflags & ZFS_XATTR)
605 		zp->z_xattr_parent = parent;
606 
607 	ZFS_TIME_DECODE(&ip->i_atime, atime);
608 	ZFS_TIME_DECODE(&ip->i_mtime, mtime);
609 	ZFS_TIME_DECODE(&ip->i_ctime, ctime);
610 	ZFS_TIME_DECODE(&zp->z_btime, btime);
611 
612 	ip->i_ino = zp->z_id;
613 	zfs_znode_update_vfs(zp);
614 	zfs_inode_set_ops(zfsvfs, ip);
615 
616 	/*
617 	 * The only way insert_inode_locked() can fail is if the ip->i_ino
618 	 * number is already hashed for this super block.  This can never
619 	 * happen because the inode numbers map 1:1 with the object numbers.
620 	 *
621 	 * Exceptions include rolling back a mounted file system, either
622 	 * from the zfs rollback or zfs recv command.
623 	 *
624 	 * Active inodes are unhashed during the rollback, but since zrele
625 	 * can happen asynchronously, we can't guarantee they've been
626 	 * unhashed.  This can cause hash collisions in unlinked drain
627 	 * processing so do not hash unlinked znodes.
628 	 */
629 	if (links > 0)
630 		VERIFY3S(insert_inode_locked(ip), ==, 0);
631 
632 	mutex_enter(&zfsvfs->z_znodes_lock);
633 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
634 	zfsvfs->z_nr_znodes++;
635 	mutex_exit(&zfsvfs->z_znodes_lock);
636 
637 	if (links > 0)
638 		unlock_new_inode(ip);
639 	return (zp);
640 
641 error:
642 	iput(ip);
643 	return (NULL);
644 }
645 
646 /*
647  * Safely mark an inode dirty.  Inodes which are part of a read-only
648  * file system or snapshot may not be dirtied.
649  */
650 void
651 zfs_mark_inode_dirty(struct inode *ip)
652 {
653 	zfsvfs_t *zfsvfs = ITOZSB(ip);
654 
655 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
656 		return;
657 
658 	mark_inode_dirty(ip);
659 }
660 
661 static uint64_t empty_xattr;
662 static uint64_t pad[4];
663 static zfs_acl_phys_t acl_phys;
664 /*
665  * Create a new DMU object to hold a zfs znode.
666  *
667  *	IN:	dzp	- parent directory for new znode
668  *		vap	- file attributes for new znode
669  *		tx	- dmu transaction id for zap operations
670  *		cr	- credentials of caller
671  *		flag	- flags:
672  *			  IS_ROOT_NODE	- new object will be root
673  *			  IS_TMPFILE	- new object is of O_TMPFILE
674  *			  IS_XATTR	- new object is an attribute
675  *		acl_ids	- ACL related attributes
676  *
677  *	OUT:	zpp	- allocated znode (set to dzp if IS_ROOT_NODE)
678  *
679  */
680 void
681 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
682     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
683 {
684 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
685 	uint64_t	mode, size, links, parent, pflags;
686 	uint64_t	projid = ZFS_DEFAULT_PROJID;
687 	uint64_t	rdev = 0;
688 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
689 	dmu_buf_t	*db;
690 	inode_timespec_t now;
691 	uint64_t	gen, obj;
692 	int		bonuslen;
693 	int		dnodesize;
694 	sa_handle_t	*sa_hdl;
695 	dmu_object_type_t obj_type;
696 	sa_bulk_attr_t	*sa_attrs;
697 	int		cnt = 0;
698 	zfs_acl_locator_cb_t locate = { 0 };
699 	znode_hold_t	*zh;
700 
701 	if (zfsvfs->z_replay) {
702 		obj = vap->va_nodeid;
703 		now = vap->va_ctime;		/* see zfs_replay_create() */
704 		gen = vap->va_nblocks;		/* ditto */
705 		dnodesize = vap->va_fsid;	/* ditto */
706 	} else {
707 		obj = 0;
708 		gethrestime(&now);
709 		gen = dmu_tx_get_txg(tx);
710 		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
711 	}
712 
713 	if (dnodesize == 0)
714 		dnodesize = DNODE_MIN_SIZE;
715 
716 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
717 
718 	bonuslen = (obj_type == DMU_OT_SA) ?
719 	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
720 
721 	/*
722 	 * Create a new DMU object.
723 	 */
724 	/*
725 	 * There's currently no mechanism for pre-reading the blocks that will
726 	 * be needed to allocate a new object, so we accept the small chance
727 	 * that there will be an i/o error and we will fail one of the
728 	 * assertions below.
729 	 */
730 	if (S_ISDIR(vap->va_mode)) {
731 		if (zfsvfs->z_replay) {
732 			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
733 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
734 			    obj_type, bonuslen, dnodesize, tx));
735 		} else {
736 			obj = zap_create_norm_dnsize(zfsvfs->z_os,
737 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
738 			    obj_type, bonuslen, dnodesize, tx);
739 		}
740 	} else {
741 		if (zfsvfs->z_replay) {
742 			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
743 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
744 			    obj_type, bonuslen, dnodesize, tx));
745 		} else {
746 			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
747 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
748 			    obj_type, bonuslen, dnodesize, tx);
749 		}
750 	}
751 
752 	zh = zfs_znode_hold_enter(zfsvfs, obj);
753 	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
754 
755 	/*
756 	 * If this is the root, fix up the half-initialized parent pointer
757 	 * to reference the just-allocated physical data area.
758 	 */
759 	if (flag & IS_ROOT_NODE) {
760 		dzp->z_id = obj;
761 	}
762 
763 	/*
764 	 * If parent is an xattr, so am I.
765 	 */
766 	if (dzp->z_pflags & ZFS_XATTR) {
767 		flag |= IS_XATTR;
768 	}
769 
770 	if (zfsvfs->z_use_fuids)
771 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
772 	else
773 		pflags = 0;
774 
775 	if (S_ISDIR(vap->va_mode)) {
776 		size = 2;		/* contents ("." and "..") */
777 		links = 2;
778 	} else {
779 		size = 0;
780 		links = (flag & IS_TMPFILE) ? 0 : 1;
781 	}
782 
783 	if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
784 		rdev = vap->va_rdev;
785 
786 	parent = dzp->z_id;
787 	mode = acl_ids->z_mode;
788 	if (flag & IS_XATTR)
789 		pflags |= ZFS_XATTR;
790 
791 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
792 		/*
793 		 * With ZFS_PROJID flag, we can easily know whether there is
794 		 * project ID stored on disk or not. See zfs_space_delta_cb().
795 		 */
796 		if (obj_type != DMU_OT_ZNODE &&
797 		    dmu_objset_projectquota_enabled(zfsvfs->z_os))
798 			pflags |= ZFS_PROJID;
799 
800 		/*
801 		 * Inherit project ID from parent if required.
802 		 */
803 		projid = zfs_inherit_projid(dzp);
804 		if (dzp->z_pflags & ZFS_PROJINHERIT)
805 			pflags |= ZFS_PROJINHERIT;
806 	}
807 
808 	/*
809 	 * No execs denied will be determined when zfs_mode_compute() is called.
810 	 */
811 	pflags |= acl_ids->z_aclp->z_hints &
812 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
813 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
814 
815 	ZFS_TIME_ENCODE(&now, crtime);
816 	ZFS_TIME_ENCODE(&now, ctime);
817 
818 	if (vap->va_mask & ATTR_ATIME) {
819 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
820 	} else {
821 		ZFS_TIME_ENCODE(&now, atime);
822 	}
823 
824 	if (vap->va_mask & ATTR_MTIME) {
825 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
826 	} else {
827 		ZFS_TIME_ENCODE(&now, mtime);
828 	}
829 
830 	/* Now add in all of the "SA" attributes */
831 	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
832 	    &sa_hdl));
833 
834 	/*
835 	 * Setup the array of attributes to be replaced/set on the new file
836 	 *
837 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
838 	 * in the old znode_phys_t format.  Don't change this ordering
839 	 */
840 	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
841 
842 	if (obj_type == DMU_OT_ZNODE) {
843 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
844 		    NULL, &atime, 16);
845 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
846 		    NULL, &mtime, 16);
847 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
848 		    NULL, &ctime, 16);
849 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
850 		    NULL, &crtime, 16);
851 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
852 		    NULL, &gen, 8);
853 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
854 		    NULL, &mode, 8);
855 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
856 		    NULL, &size, 8);
857 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
858 		    NULL, &parent, 8);
859 	} else {
860 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
861 		    NULL, &mode, 8);
862 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
863 		    NULL, &size, 8);
864 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
865 		    NULL, &gen, 8);
866 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
867 		    NULL, &acl_ids->z_fuid, 8);
868 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
869 		    NULL, &acl_ids->z_fgid, 8);
870 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
871 		    NULL, &parent, 8);
872 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
873 		    NULL, &pflags, 8);
874 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
875 		    NULL, &atime, 16);
876 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
877 		    NULL, &mtime, 16);
878 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
879 		    NULL, &ctime, 16);
880 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
881 		    NULL, &crtime, 16);
882 	}
883 
884 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
885 
886 	if (obj_type == DMU_OT_ZNODE) {
887 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
888 		    &empty_xattr, 8);
889 	} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
890 	    pflags & ZFS_PROJID) {
891 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
892 		    NULL, &projid, 8);
893 	}
894 	if (obj_type == DMU_OT_ZNODE ||
895 	    (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
896 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
897 		    NULL, &rdev, 8);
898 	}
899 	if (obj_type == DMU_OT_ZNODE) {
900 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
901 		    NULL, &pflags, 8);
902 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
903 		    &acl_ids->z_fuid, 8);
904 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
905 		    &acl_ids->z_fgid, 8);
906 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
907 		    sizeof (uint64_t) * 4);
908 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
909 		    &acl_phys, sizeof (zfs_acl_phys_t));
910 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
911 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
912 		    &acl_ids->z_aclp->z_acl_count, 8);
913 		locate.cb_aclp = acl_ids->z_aclp;
914 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
915 		    zfs_acl_data_locator, &locate,
916 		    acl_ids->z_aclp->z_acl_bytes);
917 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
918 		    acl_ids->z_fuid, acl_ids->z_fgid);
919 	}
920 
921 	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
922 
923 	if (!(flag & IS_ROOT_NODE)) {
924 		/*
925 		 * The call to zfs_znode_alloc() may fail if memory is low
926 		 * via the call path: alloc_inode() -> inode_init_always() ->
927 		 * security_inode_alloc() -> inode_alloc_security().  Since
928 		 * the existing code is written such that zfs_mknode() can
929 		 * not fail retry until sufficient memory has been reclaimed.
930 		 */
931 		do {
932 			*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
933 		} while (*zpp == NULL);
934 
935 		VERIFY(*zpp != NULL);
936 		VERIFY(dzp != NULL);
937 	} else {
938 		/*
939 		 * If we are creating the root node, the "parent" we
940 		 * passed in is the znode for the root.
941 		 */
942 		*zpp = dzp;
943 
944 		(*zpp)->z_sa_hdl = sa_hdl;
945 	}
946 
947 	(*zpp)->z_pflags = pflags;
948 	(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
949 	(*zpp)->z_dnodesize = dnodesize;
950 	(*zpp)->z_projid = projid;
951 
952 	if (obj_type == DMU_OT_ZNODE ||
953 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
954 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
955 	}
956 	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
957 	zfs_znode_hold_exit(zfsvfs, zh);
958 }
959 
960 /*
961  * Update in-core attributes.  It is assumed the caller will be doing an
962  * sa_bulk_update to push the changes out.
963  */
964 void
965 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
966 {
967 	xoptattr_t *xoap;
968 	boolean_t update_inode = B_FALSE;
969 
970 	xoap = xva_getxoptattr(xvap);
971 	ASSERT(xoap);
972 
973 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
974 		uint64_t times[2];
975 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
976 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
977 		    &times, sizeof (times), tx);
978 		XVA_SET_RTN(xvap, XAT_CREATETIME);
979 	}
980 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
981 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
982 		    zp->z_pflags, tx);
983 		XVA_SET_RTN(xvap, XAT_READONLY);
984 	}
985 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
986 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
987 		    zp->z_pflags, tx);
988 		XVA_SET_RTN(xvap, XAT_HIDDEN);
989 	}
990 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
991 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
992 		    zp->z_pflags, tx);
993 		XVA_SET_RTN(xvap, XAT_SYSTEM);
994 	}
995 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
996 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
997 		    zp->z_pflags, tx);
998 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
999 	}
1000 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1001 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1002 		    zp->z_pflags, tx);
1003 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1004 
1005 		update_inode = B_TRUE;
1006 	}
1007 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1008 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1009 		    zp->z_pflags, tx);
1010 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
1011 	}
1012 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1013 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1014 		    zp->z_pflags, tx);
1015 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
1016 
1017 		update_inode = B_TRUE;
1018 	}
1019 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1020 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1021 		    zp->z_pflags, tx);
1022 		XVA_SET_RTN(xvap, XAT_NODUMP);
1023 	}
1024 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1025 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1026 		    zp->z_pflags, tx);
1027 		XVA_SET_RTN(xvap, XAT_OPAQUE);
1028 	}
1029 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1030 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1031 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1032 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1033 	}
1034 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1035 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1036 		    zp->z_pflags, tx);
1037 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1038 	}
1039 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1040 		zfs_sa_set_scanstamp(zp, xvap, tx);
1041 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1042 	}
1043 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1044 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1045 		    zp->z_pflags, tx);
1046 		XVA_SET_RTN(xvap, XAT_REPARSE);
1047 	}
1048 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1049 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1050 		    zp->z_pflags, tx);
1051 		XVA_SET_RTN(xvap, XAT_OFFLINE);
1052 	}
1053 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1054 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1055 		    zp->z_pflags, tx);
1056 		XVA_SET_RTN(xvap, XAT_SPARSE);
1057 	}
1058 	if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1059 		ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1060 		    zp->z_pflags, tx);
1061 		XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1062 	}
1063 
1064 	if (update_inode)
1065 		zfs_set_inode_flags(zp, ZTOI(zp));
1066 }
1067 
1068 int
1069 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1070 {
1071 	dmu_object_info_t doi;
1072 	dmu_buf_t	*db;
1073 	znode_t		*zp;
1074 	znode_hold_t	*zh;
1075 	int err;
1076 	sa_handle_t	*hdl;
1077 
1078 	*zpp = NULL;
1079 
1080 again:
1081 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1082 
1083 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1084 	if (err) {
1085 		zfs_znode_hold_exit(zfsvfs, zh);
1086 		return (err);
1087 	}
1088 
1089 	dmu_object_info_from_db(db, &doi);
1090 	if (doi.doi_bonus_type != DMU_OT_SA &&
1091 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1092 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1093 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1094 		sa_buf_rele(db, NULL);
1095 		zfs_znode_hold_exit(zfsvfs, zh);
1096 		return (SET_ERROR(EINVAL));
1097 	}
1098 
1099 	hdl = dmu_buf_get_user(db);
1100 	if (hdl != NULL) {
1101 		zp = sa_get_userdata(hdl);
1102 
1103 
1104 		/*
1105 		 * Since "SA" does immediate eviction we
1106 		 * should never find a sa handle that doesn't
1107 		 * know about the znode.
1108 		 */
1109 
1110 		ASSERT3P(zp, !=, NULL);
1111 
1112 		mutex_enter(&zp->z_lock);
1113 		ASSERT3U(zp->z_id, ==, obj_num);
1114 		/*
1115 		 * If zp->z_unlinked is set, the znode is already marked
1116 		 * for deletion and should not be discovered. Check this
1117 		 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1118 		 *
1119 		 * If igrab() returns NULL the VFS has independently
1120 		 * determined the inode should be evicted and has
1121 		 * called iput_final() to start the eviction process.
1122 		 * The SA handle is still valid but because the VFS
1123 		 * requires that the eviction succeed we must drop
1124 		 * our locks and references to allow the eviction to
1125 		 * complete.  The zfs_zget() may then be retried.
1126 		 *
1127 		 * This unlikely case could be optimized by registering
1128 		 * a sops->drop_inode() callback.  The callback would
1129 		 * need to detect the active SA hold thereby informing
1130 		 * the VFS that this inode should not be evicted.
1131 		 */
1132 		if (igrab(ZTOI(zp)) == NULL) {
1133 			if (zp->z_unlinked)
1134 				err = SET_ERROR(ENOENT);
1135 			else
1136 				err = SET_ERROR(EAGAIN);
1137 		} else {
1138 			*zpp = zp;
1139 			err = 0;
1140 		}
1141 
1142 		mutex_exit(&zp->z_lock);
1143 		sa_buf_rele(db, NULL);
1144 		zfs_znode_hold_exit(zfsvfs, zh);
1145 
1146 		if (err == EAGAIN) {
1147 			/* inode might need this to finish evict */
1148 			cond_resched();
1149 			goto again;
1150 		}
1151 		return (err);
1152 	}
1153 
1154 	/*
1155 	 * Not found create new znode/vnode but only if file exists.
1156 	 *
1157 	 * There is a small window where zfs_vget() could
1158 	 * find this object while a file create is still in
1159 	 * progress.  This is checked for in zfs_znode_alloc()
1160 	 *
1161 	 * if zfs_znode_alloc() fails it will drop the hold on the
1162 	 * bonus buffer.
1163 	 */
1164 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1165 	    doi.doi_bonus_type, NULL);
1166 	if (zp == NULL) {
1167 		err = SET_ERROR(ENOENT);
1168 	} else {
1169 		*zpp = zp;
1170 	}
1171 	zfs_znode_hold_exit(zfsvfs, zh);
1172 	return (err);
1173 }
1174 
1175 int
1176 zfs_rezget(znode_t *zp)
1177 {
1178 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1179 	dmu_object_info_t doi;
1180 	dmu_buf_t *db;
1181 	uint64_t obj_num = zp->z_id;
1182 	uint64_t mode;
1183 	uint64_t links;
1184 	sa_bulk_attr_t bulk[11];
1185 	int err;
1186 	int count = 0;
1187 	uint64_t gen;
1188 	uint64_t z_uid, z_gid;
1189 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
1190 	uint64_t projid = ZFS_DEFAULT_PROJID;
1191 	znode_hold_t *zh;
1192 
1193 	/*
1194 	 * skip ctldir, otherwise they will always get invalidated. This will
1195 	 * cause funny behaviour for the mounted snapdirs. Especially for
1196 	 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1197 	 * anyone automount it again as long as someone is still using the
1198 	 * detached mount.
1199 	 */
1200 	if (zp->z_is_ctldir)
1201 		return (0);
1202 
1203 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1204 
1205 	mutex_enter(&zp->z_acl_lock);
1206 	if (zp->z_acl_cached) {
1207 		zfs_acl_free(zp->z_acl_cached);
1208 		zp->z_acl_cached = NULL;
1209 	}
1210 	mutex_exit(&zp->z_acl_lock);
1211 
1212 	rw_enter(&zp->z_xattr_lock, RW_WRITER);
1213 	if (zp->z_xattr_cached) {
1214 		nvlist_free(zp->z_xattr_cached);
1215 		zp->z_xattr_cached = NULL;
1216 	}
1217 	rw_exit(&zp->z_xattr_lock);
1218 
1219 	ASSERT(zp->z_sa_hdl == NULL);
1220 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1221 	if (err) {
1222 		zfs_znode_hold_exit(zfsvfs, zh);
1223 		return (err);
1224 	}
1225 
1226 	dmu_object_info_from_db(db, &doi);
1227 	if (doi.doi_bonus_type != DMU_OT_SA &&
1228 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1229 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1230 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1231 		sa_buf_rele(db, NULL);
1232 		zfs_znode_hold_exit(zfsvfs, zh);
1233 		return (SET_ERROR(EINVAL));
1234 	}
1235 
1236 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1237 
1238 	/* reload cached values */
1239 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1240 	    &gen, sizeof (gen));
1241 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1242 	    &zp->z_size, sizeof (zp->z_size));
1243 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1244 	    &links, sizeof (links));
1245 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1246 	    &zp->z_pflags, sizeof (zp->z_pflags));
1247 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1248 	    &z_uid, sizeof (z_uid));
1249 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1250 	    &z_gid, sizeof (z_gid));
1251 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1252 	    &mode, sizeof (mode));
1253 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1254 	    &atime, 16);
1255 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1256 	    &mtime, 16);
1257 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1258 	    &ctime, 16);
1259 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
1260 
1261 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1262 		zfs_znode_dmu_fini(zp);
1263 		zfs_znode_hold_exit(zfsvfs, zh);
1264 		return (SET_ERROR(EIO));
1265 	}
1266 
1267 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1268 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1269 		    &projid, 8);
1270 		if (err != 0 && err != ENOENT) {
1271 			zfs_znode_dmu_fini(zp);
1272 			zfs_znode_hold_exit(zfsvfs, zh);
1273 			return (SET_ERROR(err));
1274 		}
1275 	}
1276 
1277 	zp->z_projid = projid;
1278 	zp->z_mode = ZTOI(zp)->i_mode = mode;
1279 	zfs_uid_write(ZTOI(zp), z_uid);
1280 	zfs_gid_write(ZTOI(zp), z_gid);
1281 
1282 	ZFS_TIME_DECODE(&ZTOI(zp)->i_atime, atime);
1283 	ZFS_TIME_DECODE(&ZTOI(zp)->i_mtime, mtime);
1284 	ZFS_TIME_DECODE(&ZTOI(zp)->i_ctime, ctime);
1285 	ZFS_TIME_DECODE(&zp->z_btime, btime);
1286 
1287 	if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1288 		zfs_znode_dmu_fini(zp);
1289 		zfs_znode_hold_exit(zfsvfs, zh);
1290 		return (SET_ERROR(EIO));
1291 	}
1292 
1293 	set_nlink(ZTOI(zp), (uint32_t)links);
1294 	zfs_set_inode_flags(zp, ZTOI(zp));
1295 
1296 	zp->z_blksz = doi.doi_data_block_size;
1297 	zp->z_atime_dirty = B_FALSE;
1298 	zfs_znode_update_vfs(zp);
1299 
1300 	/*
1301 	 * If the file has zero links, then it has been unlinked on the send
1302 	 * side and it must be in the received unlinked set.
1303 	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1304 	 * stale data and to prevent automatic removal of the file in
1305 	 * zfs_zinactive().  The file will be removed either when it is removed
1306 	 * on the send side and the next incremental stream is received or
1307 	 * when the unlinked set gets processed.
1308 	 */
1309 	zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1310 	if (zp->z_unlinked)
1311 		zfs_znode_dmu_fini(zp);
1312 
1313 	zfs_znode_hold_exit(zfsvfs, zh);
1314 
1315 	return (0);
1316 }
1317 
1318 void
1319 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1320 {
1321 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1322 	objset_t *os = zfsvfs->z_os;
1323 	uint64_t obj = zp->z_id;
1324 	uint64_t acl_obj = zfs_external_acl(zp);
1325 	znode_hold_t *zh;
1326 
1327 	zh = zfs_znode_hold_enter(zfsvfs, obj);
1328 	if (acl_obj) {
1329 		VERIFY(!zp->z_is_sa);
1330 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1331 	}
1332 	VERIFY(0 == dmu_object_free(os, obj, tx));
1333 	zfs_znode_dmu_fini(zp);
1334 	zfs_znode_hold_exit(zfsvfs, zh);
1335 }
1336 
1337 void
1338 zfs_zinactive(znode_t *zp)
1339 {
1340 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1341 	uint64_t z_id = zp->z_id;
1342 	znode_hold_t *zh;
1343 
1344 	ASSERT(zp->z_sa_hdl);
1345 
1346 	/*
1347 	 * Don't allow a zfs_zget() while were trying to release this znode.
1348 	 */
1349 	zh = zfs_znode_hold_enter(zfsvfs, z_id);
1350 
1351 	mutex_enter(&zp->z_lock);
1352 
1353 	/*
1354 	 * If this was the last reference to a file with no links, remove
1355 	 * the file from the file system unless the file system is mounted
1356 	 * read-only.  That can happen, for example, if the file system was
1357 	 * originally read-write, the file was opened, then unlinked and
1358 	 * the file system was made read-only before the file was finally
1359 	 * closed.  The file will remain in the unlinked set.
1360 	 */
1361 	if (zp->z_unlinked) {
1362 		ASSERT(!zfsvfs->z_issnap);
1363 		if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1364 			mutex_exit(&zp->z_lock);
1365 			zfs_znode_hold_exit(zfsvfs, zh);
1366 			zfs_rmnode(zp);
1367 			return;
1368 		}
1369 	}
1370 
1371 	mutex_exit(&zp->z_lock);
1372 	zfs_znode_dmu_fini(zp);
1373 
1374 	zfs_znode_hold_exit(zfsvfs, zh);
1375 }
1376 
1377 #if defined(HAVE_INODE_TIMESPEC64_TIMES)
1378 #define	zfs_compare_timespec timespec64_compare
1379 #else
1380 #define	zfs_compare_timespec timespec_compare
1381 #endif
1382 
1383 /*
1384  * Determine whether the znode's atime must be updated.  The logic mostly
1385  * duplicates the Linux kernel's relatime_need_update() functionality.
1386  * This function is only called if the underlying filesystem actually has
1387  * atime updates enabled.
1388  */
1389 boolean_t
1390 zfs_relatime_need_update(const struct inode *ip)
1391 {
1392 	inode_timespec_t now;
1393 
1394 	gethrestime(&now);
1395 	/*
1396 	 * In relatime mode, only update the atime if the previous atime
1397 	 * is earlier than either the ctime or mtime or if at least a day
1398 	 * has passed since the last update of atime.
1399 	 */
1400 	if (zfs_compare_timespec(&ip->i_mtime, &ip->i_atime) >= 0)
1401 		return (B_TRUE);
1402 
1403 	if (zfs_compare_timespec(&ip->i_ctime, &ip->i_atime) >= 0)
1404 		return (B_TRUE);
1405 
1406 	if ((hrtime_t)now.tv_sec - (hrtime_t)ip->i_atime.tv_sec >= 24*60*60)
1407 		return (B_TRUE);
1408 
1409 	return (B_FALSE);
1410 }
1411 
1412 /*
1413  * Prepare to update znode time stamps.
1414  *
1415  *	IN:	zp	- znode requiring timestamp update
1416  *		flag	- ATTR_MTIME, ATTR_CTIME flags
1417  *
1418  *	OUT:	zp	- z_seq
1419  *		mtime	- new mtime
1420  *		ctime	- new ctime
1421  *
1422  *	Note: We don't update atime here, because we rely on Linux VFS to do
1423  *	atime updating.
1424  */
1425 void
1426 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1427     uint64_t ctime[2])
1428 {
1429 	inode_timespec_t now;
1430 
1431 	gethrestime(&now);
1432 
1433 	zp->z_seq++;
1434 
1435 	if (flag & ATTR_MTIME) {
1436 		ZFS_TIME_ENCODE(&now, mtime);
1437 		ZFS_TIME_DECODE(&(ZTOI(zp)->i_mtime), mtime);
1438 		if (ZTOZSB(zp)->z_use_fuids) {
1439 			zp->z_pflags |= (ZFS_ARCHIVE |
1440 			    ZFS_AV_MODIFIED);
1441 		}
1442 	}
1443 
1444 	if (flag & ATTR_CTIME) {
1445 		ZFS_TIME_ENCODE(&now, ctime);
1446 		ZFS_TIME_DECODE(&(ZTOI(zp)->i_ctime), ctime);
1447 		if (ZTOZSB(zp)->z_use_fuids)
1448 			zp->z_pflags |= ZFS_ARCHIVE;
1449 	}
1450 }
1451 
1452 /*
1453  * Grow the block size for a file.
1454  *
1455  *	IN:	zp	- znode of file to free data in.
1456  *		size	- requested block size
1457  *		tx	- open transaction.
1458  *
1459  * NOTE: this function assumes that the znode is write locked.
1460  */
1461 void
1462 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1463 {
1464 	int		error;
1465 	u_longlong_t	dummy;
1466 
1467 	if (size <= zp->z_blksz)
1468 		return;
1469 	/*
1470 	 * If the file size is already greater than the current blocksize,
1471 	 * we will not grow.  If there is more than one block in a file,
1472 	 * the blocksize cannot change.
1473 	 */
1474 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1475 		return;
1476 
1477 	error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1478 	    size, 0, tx);
1479 
1480 	if (error == ENOTSUP)
1481 		return;
1482 	ASSERT0(error);
1483 
1484 	/* What blocksize did we actually get? */
1485 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1486 }
1487 
1488 /*
1489  * Increase the file length
1490  *
1491  *	IN:	zp	- znode of file to free data in.
1492  *		end	- new end-of-file
1493  *
1494  *	RETURN:	0 on success, error code on failure
1495  */
1496 static int
1497 zfs_extend(znode_t *zp, uint64_t end)
1498 {
1499 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1500 	dmu_tx_t *tx;
1501 	zfs_locked_range_t *lr;
1502 	uint64_t newblksz;
1503 	int error;
1504 
1505 	/*
1506 	 * We will change zp_size, lock the whole file.
1507 	 */
1508 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1509 
1510 	/*
1511 	 * Nothing to do if file already at desired length.
1512 	 */
1513 	if (end <= zp->z_size) {
1514 		zfs_rangelock_exit(lr);
1515 		return (0);
1516 	}
1517 	tx = dmu_tx_create(zfsvfs->z_os);
1518 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1519 	zfs_sa_upgrade_txholds(tx, zp);
1520 	if (end > zp->z_blksz &&
1521 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1522 		/*
1523 		 * We are growing the file past the current block size.
1524 		 */
1525 		if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1526 			/*
1527 			 * File's blocksize is already larger than the
1528 			 * "recordsize" property.  Only let it grow to
1529 			 * the next power of 2.
1530 			 */
1531 			ASSERT(!ISP2(zp->z_blksz));
1532 			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1533 		} else {
1534 			newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1535 		}
1536 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1537 	} else {
1538 		newblksz = 0;
1539 	}
1540 
1541 	error = dmu_tx_assign(tx, TXG_WAIT);
1542 	if (error) {
1543 		dmu_tx_abort(tx);
1544 		zfs_rangelock_exit(lr);
1545 		return (error);
1546 	}
1547 
1548 	if (newblksz)
1549 		zfs_grow_blocksize(zp, newblksz, tx);
1550 
1551 	zp->z_size = end;
1552 
1553 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1554 	    &zp->z_size, sizeof (zp->z_size), tx));
1555 
1556 	zfs_rangelock_exit(lr);
1557 
1558 	dmu_tx_commit(tx);
1559 
1560 	return (0);
1561 }
1562 
1563 /*
1564  * zfs_zero_partial_page - Modeled after update_pages() but
1565  * with different arguments and semantics for use by zfs_freesp().
1566  *
1567  * Zeroes a piece of a single page cache entry for zp at offset
1568  * start and length len.
1569  *
1570  * Caller must acquire a range lock on the file for the region
1571  * being zeroed in order that the ARC and page cache stay in sync.
1572  */
1573 static void
1574 zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1575 {
1576 	struct address_space *mp = ZTOI(zp)->i_mapping;
1577 	struct page *pp;
1578 	int64_t	off;
1579 	void *pb;
1580 
1581 	ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1582 
1583 	off = start & (PAGE_SIZE - 1);
1584 	start &= PAGE_MASK;
1585 
1586 	pp = find_lock_page(mp, start >> PAGE_SHIFT);
1587 	if (pp) {
1588 		if (mapping_writably_mapped(mp))
1589 			flush_dcache_page(pp);
1590 
1591 		pb = kmap(pp);
1592 		memset(pb + off, 0, len);
1593 		kunmap(pp);
1594 
1595 		if (mapping_writably_mapped(mp))
1596 			flush_dcache_page(pp);
1597 
1598 		mark_page_accessed(pp);
1599 		SetPageUptodate(pp);
1600 		ClearPageError(pp);
1601 		unlock_page(pp);
1602 		put_page(pp);
1603 	}
1604 }
1605 
1606 /*
1607  * Free space in a file.
1608  *
1609  *	IN:	zp	- znode of file to free data in.
1610  *		off	- start of section to free.
1611  *		len	- length of section to free.
1612  *
1613  *	RETURN:	0 on success, error code on failure
1614  */
1615 static int
1616 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1617 {
1618 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1619 	zfs_locked_range_t *lr;
1620 	int error;
1621 
1622 	/*
1623 	 * Lock the range being freed.
1624 	 */
1625 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1626 
1627 	/*
1628 	 * Nothing to do if file already at desired length.
1629 	 */
1630 	if (off >= zp->z_size) {
1631 		zfs_rangelock_exit(lr);
1632 		return (0);
1633 	}
1634 
1635 	if (off + len > zp->z_size)
1636 		len = zp->z_size - off;
1637 
1638 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1639 
1640 	/*
1641 	 * Zero partial page cache entries.  This must be done under a
1642 	 * range lock in order to keep the ARC and page cache in sync.
1643 	 */
1644 	if (zp->z_is_mapped) {
1645 		loff_t first_page, last_page, page_len;
1646 		loff_t first_page_offset, last_page_offset;
1647 
1648 		/* first possible full page in hole */
1649 		first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1650 		/* last page of hole */
1651 		last_page = (off + len) >> PAGE_SHIFT;
1652 
1653 		/* offset of first_page */
1654 		first_page_offset = first_page << PAGE_SHIFT;
1655 		/* offset of last_page */
1656 		last_page_offset = last_page << PAGE_SHIFT;
1657 
1658 		/* truncate whole pages */
1659 		if (last_page_offset > first_page_offset) {
1660 			truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1661 			    first_page_offset, last_page_offset - 1);
1662 		}
1663 
1664 		/* truncate sub-page ranges */
1665 		if (first_page > last_page) {
1666 			/* entire punched area within a single page */
1667 			zfs_zero_partial_page(zp, off, len);
1668 		} else {
1669 			/* beginning of punched area at the end of a page */
1670 			page_len  = first_page_offset - off;
1671 			if (page_len > 0)
1672 				zfs_zero_partial_page(zp, off, page_len);
1673 
1674 			/* end of punched area at the beginning of a page */
1675 			page_len = off + len - last_page_offset;
1676 			if (page_len > 0)
1677 				zfs_zero_partial_page(zp, last_page_offset,
1678 				    page_len);
1679 		}
1680 	}
1681 	zfs_rangelock_exit(lr);
1682 
1683 	return (error);
1684 }
1685 
1686 /*
1687  * Truncate a file
1688  *
1689  *	IN:	zp	- znode of file to free data in.
1690  *		end	- new end-of-file.
1691  *
1692  *	RETURN:	0 on success, error code on failure
1693  */
1694 static int
1695 zfs_trunc(znode_t *zp, uint64_t end)
1696 {
1697 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1698 	dmu_tx_t *tx;
1699 	zfs_locked_range_t *lr;
1700 	int error;
1701 	sa_bulk_attr_t bulk[2];
1702 	int count = 0;
1703 
1704 	/*
1705 	 * We will change zp_size, lock the whole file.
1706 	 */
1707 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1708 
1709 	/*
1710 	 * Nothing to do if file already at desired length.
1711 	 */
1712 	if (end >= zp->z_size) {
1713 		zfs_rangelock_exit(lr);
1714 		return (0);
1715 	}
1716 
1717 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1718 	    DMU_OBJECT_END);
1719 	if (error) {
1720 		zfs_rangelock_exit(lr);
1721 		return (error);
1722 	}
1723 	tx = dmu_tx_create(zfsvfs->z_os);
1724 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1725 	zfs_sa_upgrade_txholds(tx, zp);
1726 	dmu_tx_mark_netfree(tx);
1727 	error = dmu_tx_assign(tx, TXG_WAIT);
1728 	if (error) {
1729 		dmu_tx_abort(tx);
1730 		zfs_rangelock_exit(lr);
1731 		return (error);
1732 	}
1733 
1734 	zp->z_size = end;
1735 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1736 	    NULL, &zp->z_size, sizeof (zp->z_size));
1737 
1738 	if (end == 0) {
1739 		zp->z_pflags &= ~ZFS_SPARSE;
1740 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1741 		    NULL, &zp->z_pflags, 8);
1742 	}
1743 	VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1744 
1745 	dmu_tx_commit(tx);
1746 	zfs_rangelock_exit(lr);
1747 
1748 	return (0);
1749 }
1750 
1751 /*
1752  * Free space in a file
1753  *
1754  *	IN:	zp	- znode of file to free data in.
1755  *		off	- start of range
1756  *		len	- end of range (0 => EOF)
1757  *		flag	- current file open mode flags.
1758  *		log	- TRUE if this action should be logged
1759  *
1760  *	RETURN:	0 on success, error code on failure
1761  */
1762 int
1763 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1764 {
1765 	dmu_tx_t *tx;
1766 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1767 	zilog_t *zilog = zfsvfs->z_log;
1768 	uint64_t mode;
1769 	uint64_t mtime[2], ctime[2];
1770 	sa_bulk_attr_t bulk[3];
1771 	int count = 0;
1772 	int error;
1773 
1774 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1775 	    sizeof (mode))) != 0)
1776 		return (error);
1777 
1778 	if (off > zp->z_size) {
1779 		error =  zfs_extend(zp, off+len);
1780 		if (error == 0 && log)
1781 			goto log;
1782 		goto out;
1783 	}
1784 
1785 	if (len == 0) {
1786 		error = zfs_trunc(zp, off);
1787 	} else {
1788 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1789 		    off + len > zp->z_size)
1790 			error = zfs_extend(zp, off+len);
1791 	}
1792 	if (error || !log)
1793 		goto out;
1794 log:
1795 	tx = dmu_tx_create(zfsvfs->z_os);
1796 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1797 	zfs_sa_upgrade_txholds(tx, zp);
1798 	error = dmu_tx_assign(tx, TXG_WAIT);
1799 	if (error) {
1800 		dmu_tx_abort(tx);
1801 		goto out;
1802 	}
1803 
1804 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1805 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1806 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1807 	    NULL, &zp->z_pflags, 8);
1808 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1809 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1810 	ASSERT(error == 0);
1811 
1812 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1813 
1814 	dmu_tx_commit(tx);
1815 
1816 	zfs_znode_update_vfs(zp);
1817 	error = 0;
1818 
1819 out:
1820 	/*
1821 	 * Truncate the page cache - for file truncate operations, use
1822 	 * the purpose-built API for truncations.  For punching operations,
1823 	 * the truncation is handled under a range lock in zfs_free_range.
1824 	 */
1825 	if (len == 0)
1826 		truncate_setsize(ZTOI(zp), off);
1827 	return (error);
1828 }
1829 
1830 void
1831 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1832 {
1833 	struct super_block *sb;
1834 	zfsvfs_t	*zfsvfs;
1835 	uint64_t	moid, obj, sa_obj, version;
1836 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1837 	uint64_t	norm = 0;
1838 	nvpair_t	*elem;
1839 	int		size;
1840 	int		error;
1841 	int		i;
1842 	znode_t		*rootzp = NULL;
1843 	vattr_t		vattr;
1844 	znode_t		*zp;
1845 	zfs_acl_ids_t	acl_ids;
1846 
1847 	/*
1848 	 * First attempt to create master node.
1849 	 */
1850 	/*
1851 	 * In an empty objset, there are no blocks to read and thus
1852 	 * there can be no i/o errors (which we assert below).
1853 	 */
1854 	moid = MASTER_NODE_OBJ;
1855 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1856 	    DMU_OT_NONE, 0, tx);
1857 	ASSERT(error == 0);
1858 
1859 	/*
1860 	 * Set starting attributes.
1861 	 */
1862 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1863 	elem = NULL;
1864 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1865 		/* For the moment we expect all zpl props to be uint64_ts */
1866 		uint64_t val;
1867 		char *name;
1868 
1869 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1870 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1871 		name = nvpair_name(elem);
1872 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1873 			if (val < version)
1874 				version = val;
1875 		} else {
1876 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1877 		}
1878 		ASSERT(error == 0);
1879 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1880 			norm = val;
1881 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1882 			sense = val;
1883 	}
1884 	ASSERT(version != 0);
1885 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1886 	ASSERT(error == 0);
1887 
1888 	/*
1889 	 * Create zap object used for SA attribute registration
1890 	 */
1891 
1892 	if (version >= ZPL_VERSION_SA) {
1893 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1894 		    DMU_OT_NONE, 0, tx);
1895 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1896 		ASSERT(error == 0);
1897 	} else {
1898 		sa_obj = 0;
1899 	}
1900 	/*
1901 	 * Create a delete queue.
1902 	 */
1903 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1904 
1905 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1906 	ASSERT(error == 0);
1907 
1908 	/*
1909 	 * Create root znode.  Create minimal znode/inode/zfsvfs/sb
1910 	 * to allow zfs_mknode to work.
1911 	 */
1912 	vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1913 	vattr.va_mode = S_IFDIR|0755;
1914 	vattr.va_uid = crgetuid(cr);
1915 	vattr.va_gid = crgetgid(cr);
1916 
1917 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1918 	rootzp->z_unlinked = B_FALSE;
1919 	rootzp->z_atime_dirty = B_FALSE;
1920 	rootzp->z_is_sa = USE_SA(version, os);
1921 	rootzp->z_pflags = 0;
1922 
1923 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1924 	zfsvfs->z_os = os;
1925 	zfsvfs->z_parent = zfsvfs;
1926 	zfsvfs->z_version = version;
1927 	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1928 	zfsvfs->z_use_sa = USE_SA(version, os);
1929 	zfsvfs->z_norm = norm;
1930 
1931 	sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1932 	sb->s_fs_info = zfsvfs;
1933 
1934 	ZTOI(rootzp)->i_sb = sb;
1935 
1936 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1937 	    &zfsvfs->z_attr_table);
1938 
1939 	ASSERT(error == 0);
1940 
1941 	/*
1942 	 * Fold case on file systems that are always or sometimes case
1943 	 * insensitive.
1944 	 */
1945 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1946 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1947 
1948 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1949 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1950 	    offsetof(znode_t, z_link_node));
1951 
1952 	size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1953 	zfsvfs->z_hold_size = size;
1954 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1955 	    KM_SLEEP);
1956 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1957 	for (i = 0; i != size; i++) {
1958 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1959 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1960 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1961 	}
1962 
1963 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1964 	    cr, NULL, &acl_ids, kcred->user_ns));
1965 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1966 	ASSERT3P(zp, ==, rootzp);
1967 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1968 	ASSERT(error == 0);
1969 	zfs_acl_ids_free(&acl_ids);
1970 
1971 	atomic_set(&ZTOI(rootzp)->i_count, 0);
1972 	sa_handle_destroy(rootzp->z_sa_hdl);
1973 	kmem_cache_free(znode_cache, rootzp);
1974 
1975 	for (i = 0; i != size; i++) {
1976 		avl_destroy(&zfsvfs->z_hold_trees[i]);
1977 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
1978 	}
1979 
1980 	mutex_destroy(&zfsvfs->z_znodes_lock);
1981 
1982 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1983 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1984 	kmem_free(sb, sizeof (struct super_block));
1985 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1986 }
1987 #endif /* _KERNEL */
1988 
1989 static int
1990 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1991 {
1992 	uint64_t sa_obj = 0;
1993 	int error;
1994 
1995 	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1996 	if (error != 0 && error != ENOENT)
1997 		return (error);
1998 
1999 	error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
2000 	return (error);
2001 }
2002 
2003 static int
2004 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
2005     dmu_buf_t **db, const void *tag)
2006 {
2007 	dmu_object_info_t doi;
2008 	int error;
2009 
2010 	if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
2011 		return (error);
2012 
2013 	dmu_object_info_from_db(*db, &doi);
2014 	if ((doi.doi_bonus_type != DMU_OT_SA &&
2015 	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
2016 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
2017 	    doi.doi_bonus_size < sizeof (znode_phys_t))) {
2018 		sa_buf_rele(*db, tag);
2019 		return (SET_ERROR(ENOTSUP));
2020 	}
2021 
2022 	error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
2023 	if (error != 0) {
2024 		sa_buf_rele(*db, tag);
2025 		return (error);
2026 	}
2027 
2028 	return (0);
2029 }
2030 
2031 static void
2032 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, const void *tag)
2033 {
2034 	sa_handle_destroy(hdl);
2035 	sa_buf_rele(db, tag);
2036 }
2037 
2038 /*
2039  * Given an object number, return its parent object number and whether
2040  * or not the object is an extended attribute directory.
2041  */
2042 static int
2043 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
2044     uint64_t *pobjp, int *is_xattrdir)
2045 {
2046 	uint64_t parent;
2047 	uint64_t pflags;
2048 	uint64_t mode;
2049 	uint64_t parent_mode;
2050 	sa_bulk_attr_t bulk[3];
2051 	sa_handle_t *sa_hdl;
2052 	dmu_buf_t *sa_db;
2053 	int count = 0;
2054 	int error;
2055 
2056 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
2057 	    &parent, sizeof (parent));
2058 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
2059 	    &pflags, sizeof (pflags));
2060 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2061 	    &mode, sizeof (mode));
2062 
2063 	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
2064 		return (error);
2065 
2066 	/*
2067 	 * When a link is removed its parent pointer is not changed and will
2068 	 * be invalid.  There are two cases where a link is removed but the
2069 	 * file stays around, when it goes to the delete queue and when there
2070 	 * are additional links.
2071 	 */
2072 	error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
2073 	if (error != 0)
2074 		return (error);
2075 
2076 	error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
2077 	zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2078 	if (error != 0)
2079 		return (error);
2080 
2081 	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
2082 
2083 	/*
2084 	 * Extended attributes can be applied to files, directories, etc.
2085 	 * Otherwise the parent must be a directory.
2086 	 */
2087 	if (!*is_xattrdir && !S_ISDIR(parent_mode))
2088 		return (SET_ERROR(EINVAL));
2089 
2090 	*pobjp = parent;
2091 
2092 	return (0);
2093 }
2094 
2095 /*
2096  * Given an object number, return some zpl level statistics
2097  */
2098 static int
2099 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2100     zfs_stat_t *sb)
2101 {
2102 	sa_bulk_attr_t bulk[4];
2103 	int count = 0;
2104 
2105 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2106 	    &sb->zs_mode, sizeof (sb->zs_mode));
2107 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2108 	    &sb->zs_gen, sizeof (sb->zs_gen));
2109 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2110 	    &sb->zs_links, sizeof (sb->zs_links));
2111 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2112 	    &sb->zs_ctime, sizeof (sb->zs_ctime));
2113 
2114 	return (sa_bulk_lookup(hdl, bulk, count));
2115 }
2116 
2117 static int
2118 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2119     sa_attr_type_t *sa_table, char *buf, int len)
2120 {
2121 	sa_handle_t *sa_hdl;
2122 	sa_handle_t *prevhdl = NULL;
2123 	dmu_buf_t *prevdb = NULL;
2124 	dmu_buf_t *sa_db = NULL;
2125 	char *path = buf + len - 1;
2126 	int error;
2127 
2128 	*path = '\0';
2129 	sa_hdl = hdl;
2130 
2131 	uint64_t deleteq_obj;
2132 	VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
2133 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
2134 	error = zap_lookup_int(osp, deleteq_obj, obj);
2135 	if (error == 0) {
2136 		return (ESTALE);
2137 	} else if (error != ENOENT) {
2138 		return (error);
2139 	}
2140 
2141 	for (;;) {
2142 		uint64_t pobj = 0;
2143 		char component[MAXNAMELEN + 2];
2144 		size_t complen;
2145 		int is_xattrdir = 0;
2146 
2147 		if (prevdb) {
2148 			ASSERT(prevhdl != NULL);
2149 			zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2150 		}
2151 
2152 		if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2153 		    &is_xattrdir)) != 0)
2154 			break;
2155 
2156 		if (pobj == obj) {
2157 			if (path[0] != '/')
2158 				*--path = '/';
2159 			break;
2160 		}
2161 
2162 		component[0] = '/';
2163 		if (is_xattrdir) {
2164 			strcpy(component + 1, "<xattrdir>");
2165 		} else {
2166 			error = zap_value_search(osp, pobj, obj,
2167 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
2168 			if (error != 0)
2169 				break;
2170 		}
2171 
2172 		complen = strlen(component);
2173 		path -= complen;
2174 		ASSERT(path >= buf);
2175 		memcpy(path, component, complen);
2176 		obj = pobj;
2177 
2178 		if (sa_hdl != hdl) {
2179 			prevhdl = sa_hdl;
2180 			prevdb = sa_db;
2181 		}
2182 		error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2183 		if (error != 0) {
2184 			sa_hdl = prevhdl;
2185 			sa_db = prevdb;
2186 			break;
2187 		}
2188 	}
2189 
2190 	if (sa_hdl != NULL && sa_hdl != hdl) {
2191 		ASSERT(sa_db != NULL);
2192 		zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2193 	}
2194 
2195 	if (error == 0)
2196 		(void) memmove(buf, path, buf + len - path);
2197 
2198 	return (error);
2199 }
2200 
2201 int
2202 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2203 {
2204 	sa_attr_type_t *sa_table;
2205 	sa_handle_t *hdl;
2206 	dmu_buf_t *db;
2207 	int error;
2208 
2209 	error = zfs_sa_setup(osp, &sa_table);
2210 	if (error != 0)
2211 		return (error);
2212 
2213 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2214 	if (error != 0)
2215 		return (error);
2216 
2217 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2218 
2219 	zfs_release_sa_handle(hdl, db, FTAG);
2220 	return (error);
2221 }
2222 
2223 int
2224 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2225     char *buf, int len)
2226 {
2227 	char *path = buf + len - 1;
2228 	sa_attr_type_t *sa_table;
2229 	sa_handle_t *hdl;
2230 	dmu_buf_t *db;
2231 	int error;
2232 
2233 	*path = '\0';
2234 
2235 	error = zfs_sa_setup(osp, &sa_table);
2236 	if (error != 0)
2237 		return (error);
2238 
2239 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2240 	if (error != 0)
2241 		return (error);
2242 
2243 	error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2244 	if (error != 0) {
2245 		zfs_release_sa_handle(hdl, db, FTAG);
2246 		return (error);
2247 	}
2248 
2249 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2250 
2251 	zfs_release_sa_handle(hdl, db, FTAG);
2252 	return (error);
2253 }
2254 
2255 #if defined(_KERNEL)
2256 EXPORT_SYMBOL(zfs_create_fs);
2257 EXPORT_SYMBOL(zfs_obj_to_path);
2258 
2259 /* CSTYLED */
2260 module_param(zfs_object_mutex_size, uint, 0644);
2261 MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
2262 module_param(zfs_unlink_suspend_progress, int, 0644);
2263 MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
2264 "(debug - leaks space into the unlinked set)");
2265 #endif
2266