1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <linux/fs.h>
31 #include <sys/file.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_vnops.h>
36 #include <sys/zfs_project.h>
37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
38     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
39 #include <linux/pagemap.h>
40 #endif
41 #ifdef HAVE_FILE_FADVISE
42 #include <linux/fadvise.h>
43 #endif
44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
45 #include <linux/writeback.h>
46 #endif
47 
48 /*
49  * When using fallocate(2) to preallocate space, inflate the requested
50  * capacity check by 10% to account for the required metadata blocks.
51  */
52 static unsigned int zfs_fallocate_reserve_percent = 110;
53 
54 static int
55 zpl_open(struct inode *ip, struct file *filp)
56 {
57 	cred_t *cr = CRED();
58 	int error;
59 	fstrans_cookie_t cookie;
60 
61 	error = generic_file_open(ip, filp);
62 	if (error)
63 		return (error);
64 
65 	crhold(cr);
66 	cookie = spl_fstrans_mark();
67 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
68 	spl_fstrans_unmark(cookie);
69 	crfree(cr);
70 	ASSERT3S(error, <=, 0);
71 
72 	return (error);
73 }
74 
75 static int
76 zpl_release(struct inode *ip, struct file *filp)
77 {
78 	cred_t *cr = CRED();
79 	int error;
80 	fstrans_cookie_t cookie;
81 
82 	cookie = spl_fstrans_mark();
83 	if (ITOZ(ip)->z_atime_dirty)
84 		zfs_mark_inode_dirty(ip);
85 
86 	crhold(cr);
87 	error = -zfs_close(ip, filp->f_flags, cr);
88 	spl_fstrans_unmark(cookie);
89 	crfree(cr);
90 	ASSERT3S(error, <=, 0);
91 
92 	return (error);
93 }
94 
95 static int
96 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
97 {
98 	cred_t *cr = CRED();
99 	int error;
100 	fstrans_cookie_t cookie;
101 
102 	crhold(cr);
103 	cookie = spl_fstrans_mark();
104 	error = -zfs_readdir(file_inode(filp), ctx, cr);
105 	spl_fstrans_unmark(cookie);
106 	crfree(cr);
107 	ASSERT3S(error, <=, 0);
108 
109 	return (error);
110 }
111 
112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
113 static int
114 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
115 {
116 	zpl_dir_context_t ctx =
117 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
118 	int error;
119 
120 	error = zpl_iterate(filp, &ctx);
121 	filp->f_pos = ctx.pos;
122 
123 	return (error);
124 }
125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
126 
127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
128 /*
129  * Linux 2.6.35 - 3.0 API,
130  * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
131  * redundant.  The dentry is still accessible via filp->f_path.dentry,
132  * and we are guaranteed that filp will never be NULL.
133  */
134 static int
135 zpl_fsync(struct file *filp, int datasync)
136 {
137 	struct inode *inode = filp->f_mapping->host;
138 	cred_t *cr = CRED();
139 	int error;
140 	fstrans_cookie_t cookie;
141 
142 	crhold(cr);
143 	cookie = spl_fstrans_mark();
144 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
145 	spl_fstrans_unmark(cookie);
146 	crfree(cr);
147 	ASSERT3S(error, <=, 0);
148 
149 	return (error);
150 }
151 
152 #ifdef HAVE_FILE_AIO_FSYNC
153 static int
154 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
155 {
156 	return (zpl_fsync(kiocb->ki_filp, datasync));
157 }
158 #endif
159 
160 #elif defined(HAVE_FSYNC_RANGE)
161 /*
162  * Linux 3.1 API,
163  * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
164  * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
165  * lock is no longer held by the caller, for zfs we don't require the lock
166  * to be held so we don't acquire it.
167  */
168 static int
169 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
170 {
171 	struct inode *inode = filp->f_mapping->host;
172 	znode_t *zp = ITOZ(inode);
173 	zfsvfs_t *zfsvfs = ITOZSB(inode);
174 	cred_t *cr = CRED();
175 	int error;
176 	fstrans_cookie_t cookie;
177 
178 	/*
179 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
180 	 * tandem so that sync writes can detect if there are any non-sync
181 	 * writes going on and vice-versa. The "vice-versa" part to this logic
182 	 * is located in zfs_putpage() where non-sync writes check if there are
183 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
184 	 * we do a commit to complete the non-sync writes since the latter can
185 	 * potentially take several seconds to complete and thus block sync
186 	 * writes in the upcoming call to filemap_write_and_wait_range().
187 	 */
188 	atomic_inc_32(&zp->z_sync_writes_cnt);
189 	/*
190 	 * If the following check does not detect an overlapping non-sync write
191 	 * (say because it's just about to start), then it is guaranteed that
192 	 * the non-sync write will detect this sync write. This is because we
193 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
194 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
195 	 * zfs_putpage() respectively.
196 	 */
197 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
198 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
199 			atomic_dec_32(&zp->z_sync_writes_cnt);
200 			return (error);
201 		}
202 		zil_commit(zfsvfs->z_log, zp->z_id);
203 		zpl_exit(zfsvfs, FTAG);
204 	}
205 
206 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
207 
208 	/*
209 	 * The sync write is not complete yet but we decrement
210 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
211 	 * it internally. If a non-sync write starts just after the decrement
212 	 * operation but before we call zfs_fsync(), it may not detect this
213 	 * overlapping sync write but it does not matter since we have already
214 	 * gone past filemap_write_and_wait_range() and we won't block due to
215 	 * the non-sync write.
216 	 */
217 	atomic_dec_32(&zp->z_sync_writes_cnt);
218 
219 	if (error)
220 		return (error);
221 
222 	crhold(cr);
223 	cookie = spl_fstrans_mark();
224 	error = -zfs_fsync(zp, datasync, cr);
225 	spl_fstrans_unmark(cookie);
226 	crfree(cr);
227 	ASSERT3S(error, <=, 0);
228 
229 	return (error);
230 }
231 
232 #ifdef HAVE_FILE_AIO_FSYNC
233 static int
234 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
235 {
236 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
237 }
238 #endif
239 
240 #else
241 #error "Unsupported fops->fsync() implementation"
242 #endif
243 
244 static inline int
245 zfs_io_flags(struct kiocb *kiocb)
246 {
247 	int flags = 0;
248 
249 #if defined(IOCB_DSYNC)
250 	if (kiocb->ki_flags & IOCB_DSYNC)
251 		flags |= O_DSYNC;
252 #endif
253 #if defined(IOCB_SYNC)
254 	if (kiocb->ki_flags & IOCB_SYNC)
255 		flags |= O_SYNC;
256 #endif
257 #if defined(IOCB_APPEND)
258 	if (kiocb->ki_flags & IOCB_APPEND)
259 		flags |= O_APPEND;
260 #endif
261 #if defined(IOCB_DIRECT)
262 	if (kiocb->ki_flags & IOCB_DIRECT)
263 		flags |= O_DIRECT;
264 #endif
265 	return (flags);
266 }
267 
268 /*
269  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
270  * is true.  This is needed since datasets with inherited "relatime" property
271  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
272  * `zfs set relatime=...`), which is what relatime test in VFS by
273  * relatime_need_update() is based on.
274  */
275 static inline void
276 zpl_file_accessed(struct file *filp)
277 {
278 	struct inode *ip = filp->f_mapping->host;
279 
280 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
281 		if (zfs_relatime_need_update(ip))
282 			file_accessed(filp);
283 	} else {
284 		file_accessed(filp);
285 	}
286 }
287 
288 #if defined(HAVE_VFS_RW_ITERATE)
289 
290 /*
291  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
292  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
293  * manipulate the iov_iter are available.  In which case the full iov_iter
294  * can be attached to the uio and correctly handled in the lower layers.
295  * Otherwise, for older kernels extract the iovec and pass it instead.
296  */
297 static void
298 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
299     loff_t pos, ssize_t count, size_t skip)
300 {
301 #if defined(HAVE_VFS_IOV_ITER)
302 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
303 #else
304 #ifdef HAVE_IOV_ITER_TYPE
305 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
306 	    iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
307 	    count, skip);
308 #else
309 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
310 	    to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
311 	    count, skip);
312 #endif
313 #endif
314 }
315 
316 static ssize_t
317 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
318 {
319 	cred_t *cr = CRED();
320 	fstrans_cookie_t cookie;
321 	struct file *filp = kiocb->ki_filp;
322 	ssize_t count = iov_iter_count(to);
323 	zfs_uio_t uio;
324 
325 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
326 
327 	crhold(cr);
328 	cookie = spl_fstrans_mark();
329 
330 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
331 	    filp->f_flags | zfs_io_flags(kiocb), cr);
332 
333 	spl_fstrans_unmark(cookie);
334 	crfree(cr);
335 
336 	if (error < 0)
337 		return (error);
338 
339 	ssize_t read = count - uio.uio_resid;
340 	kiocb->ki_pos += read;
341 
342 	zpl_file_accessed(filp);
343 
344 	return (read);
345 }
346 
347 static inline ssize_t
348 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
349     size_t *countp)
350 {
351 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
352 	ssize_t ret = generic_write_checks(kiocb, from);
353 	if (ret <= 0)
354 		return (ret);
355 
356 	*countp = ret;
357 #else
358 	struct file *file = kiocb->ki_filp;
359 	struct address_space *mapping = file->f_mapping;
360 	struct inode *ip = mapping->host;
361 	int isblk = S_ISBLK(ip->i_mode);
362 
363 	*countp = iov_iter_count(from);
364 	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
365 	if (ret)
366 		return (ret);
367 #endif
368 
369 	return (0);
370 }
371 
372 static ssize_t
373 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
374 {
375 	cred_t *cr = CRED();
376 	fstrans_cookie_t cookie;
377 	struct file *filp = kiocb->ki_filp;
378 	struct inode *ip = filp->f_mapping->host;
379 	zfs_uio_t uio;
380 	size_t count = 0;
381 	ssize_t ret;
382 
383 	ret = zpl_generic_write_checks(kiocb, from, &count);
384 	if (ret)
385 		return (ret);
386 
387 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
388 
389 	crhold(cr);
390 	cookie = spl_fstrans_mark();
391 
392 	int error = -zfs_write(ITOZ(ip), &uio,
393 	    filp->f_flags | zfs_io_flags(kiocb), cr);
394 
395 	spl_fstrans_unmark(cookie);
396 	crfree(cr);
397 
398 	if (error < 0)
399 		return (error);
400 
401 	ssize_t wrote = count - uio.uio_resid;
402 	kiocb->ki_pos += wrote;
403 
404 	return (wrote);
405 }
406 
407 #else /* !HAVE_VFS_RW_ITERATE */
408 
409 static ssize_t
410 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
411     unsigned long nr_segs, loff_t pos)
412 {
413 	cred_t *cr = CRED();
414 	fstrans_cookie_t cookie;
415 	struct file *filp = kiocb->ki_filp;
416 	size_t count;
417 	ssize_t ret;
418 
419 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
420 	if (ret)
421 		return (ret);
422 
423 	zfs_uio_t uio;
424 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
425 	    count, 0);
426 
427 	crhold(cr);
428 	cookie = spl_fstrans_mark();
429 
430 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
431 	    filp->f_flags | zfs_io_flags(kiocb), cr);
432 
433 	spl_fstrans_unmark(cookie);
434 	crfree(cr);
435 
436 	if (error < 0)
437 		return (error);
438 
439 	ssize_t read = count - uio.uio_resid;
440 	kiocb->ki_pos += read;
441 
442 	zpl_file_accessed(filp);
443 
444 	return (read);
445 }
446 
447 static ssize_t
448 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
449     unsigned long nr_segs, loff_t pos)
450 {
451 	cred_t *cr = CRED();
452 	fstrans_cookie_t cookie;
453 	struct file *filp = kiocb->ki_filp;
454 	struct inode *ip = filp->f_mapping->host;
455 	size_t count;
456 	ssize_t ret;
457 
458 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
459 	if (ret)
460 		return (ret);
461 
462 	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
463 	if (ret)
464 		return (ret);
465 
466 	kiocb->ki_pos = pos;
467 
468 	zfs_uio_t uio;
469 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
470 	    count, 0);
471 
472 	crhold(cr);
473 	cookie = spl_fstrans_mark();
474 
475 	int error = -zfs_write(ITOZ(ip), &uio,
476 	    filp->f_flags | zfs_io_flags(kiocb), cr);
477 
478 	spl_fstrans_unmark(cookie);
479 	crfree(cr);
480 
481 	if (error < 0)
482 		return (error);
483 
484 	ssize_t wrote = count - uio.uio_resid;
485 	kiocb->ki_pos += wrote;
486 
487 	return (wrote);
488 }
489 #endif /* HAVE_VFS_RW_ITERATE */
490 
491 #if defined(HAVE_VFS_RW_ITERATE)
492 static ssize_t
493 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
494 {
495 	if (rw == WRITE)
496 		return (zpl_iter_write(kiocb, iter));
497 	else
498 		return (zpl_iter_read(kiocb, iter));
499 }
500 #if defined(HAVE_VFS_DIRECT_IO_ITER)
501 static ssize_t
502 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
503 {
504 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
505 }
506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
507 static ssize_t
508 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
509 {
510 	ASSERT3S(pos, ==, kiocb->ki_pos);
511 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
512 }
513 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
514 static ssize_t
515 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
516 {
517 	ASSERT3S(pos, ==, kiocb->ki_pos);
518 	return (zpl_direct_IO_impl(rw, kiocb, iter));
519 }
520 #else
521 #error "Unknown direct IO interface"
522 #endif
523 
524 #else /* HAVE_VFS_RW_ITERATE */
525 
526 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
527 static ssize_t
528 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
529     loff_t pos, unsigned long nr_segs)
530 {
531 	if (rw == WRITE)
532 		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
533 	else
534 		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
535 }
536 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
537 static ssize_t
538 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
539 {
540 	const struct iovec *iovp = iov_iter_iovec(iter);
541 	unsigned long nr_segs = iter->nr_segs;
542 
543 	ASSERT3S(pos, ==, kiocb->ki_pos);
544 	if (rw == WRITE)
545 		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
546 	else
547 		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
548 }
549 #else
550 #error "Unknown direct IO interface"
551 #endif
552 
553 #endif /* HAVE_VFS_RW_ITERATE */
554 
555 static loff_t
556 zpl_llseek(struct file *filp, loff_t offset, int whence)
557 {
558 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
559 	fstrans_cookie_t cookie;
560 
561 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
562 		struct inode *ip = filp->f_mapping->host;
563 		loff_t maxbytes = ip->i_sb->s_maxbytes;
564 		loff_t error;
565 
566 		spl_inode_lock_shared(ip);
567 		cookie = spl_fstrans_mark();
568 		error = -zfs_holey(ITOZ(ip), whence, &offset);
569 		spl_fstrans_unmark(cookie);
570 		if (error == 0)
571 			error = lseek_execute(filp, ip, offset, maxbytes);
572 		spl_inode_unlock_shared(ip);
573 
574 		return (error);
575 	}
576 #endif /* SEEK_HOLE && SEEK_DATA */
577 
578 	return (generic_file_llseek(filp, offset, whence));
579 }
580 
581 /*
582  * It's worth taking a moment to describe how mmap is implemented
583  * for zfs because it differs considerably from other Linux filesystems.
584  * However, this issue is handled the same way under OpenSolaris.
585  *
586  * The issue is that by design zfs bypasses the Linux page cache and
587  * leaves all caching up to the ARC.  This has been shown to work
588  * well for the common read(2)/write(2) case.  However, mmap(2)
589  * is problem because it relies on being tightly integrated with the
590  * page cache.  To handle this we cache mmap'ed files twice, once in
591  * the ARC and a second time in the page cache.  The code is careful
592  * to keep both copies synchronized.
593  *
594  * When a file with an mmap'ed region is written to using write(2)
595  * both the data in the ARC and existing pages in the page cache
596  * are updated.  For a read(2) data will be read first from the page
597  * cache then the ARC if needed.  Neither a write(2) or read(2) will
598  * will ever result in new pages being added to the page cache.
599  *
600  * New pages are added to the page cache only via .readpage() which
601  * is called when the vfs needs to read a page off disk to back the
602  * virtual memory region.  These pages may be modified without
603  * notifying the ARC and will be written out periodically via
604  * .writepage().  This will occur due to either a sync or the usual
605  * page aging behavior.  Note because a read(2) of a mmap'ed file
606  * will always check the page cache first even when the ARC is out
607  * of date correct data will still be returned.
608  *
609  * While this implementation ensures correct behavior it does have
610  * have some drawbacks.  The most obvious of which is that it
611  * increases the required memory footprint when access mmap'ed
612  * files.  It also adds additional complexity to the code keeping
613  * both caches synchronized.
614  *
615  * Longer term it may be possible to cleanly resolve this wart by
616  * mapping page cache pages directly on to the ARC buffers.  The
617  * Linux address space operations are flexible enough to allow
618  * selection of which pages back a particular index.  The trick
619  * would be working out the details of which subsystem is in
620  * charge, the ARC, the page cache, or both.  It may also prove
621  * helpful to move the ARC buffers to a scatter-gather lists
622  * rather than a vmalloc'ed region.
623  */
624 static int
625 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
626 {
627 	struct inode *ip = filp->f_mapping->host;
628 	int error;
629 	fstrans_cookie_t cookie;
630 
631 	cookie = spl_fstrans_mark();
632 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
633 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
634 	spl_fstrans_unmark(cookie);
635 	if (error)
636 		return (error);
637 
638 	error = generic_file_mmap(filp, vma);
639 	if (error)
640 		return (error);
641 
642 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
643 	znode_t *zp = ITOZ(ip);
644 	mutex_enter(&zp->z_lock);
645 	zp->z_is_mapped = B_TRUE;
646 	mutex_exit(&zp->z_lock);
647 #endif
648 
649 	return (error);
650 }
651 
652 /*
653  * Populate a page with data for the Linux page cache.  This function is
654  * only used to support mmap(2).  There will be an identical copy of the
655  * data in the ARC which is kept up to date via .write() and .writepage().
656  */
657 static inline int
658 zpl_readpage_common(struct page *pp)
659 {
660 	fstrans_cookie_t cookie;
661 
662 	ASSERT(PageLocked(pp));
663 
664 	cookie = spl_fstrans_mark();
665 	int error = -zfs_getpage(pp->mapping->host, pp);
666 	spl_fstrans_unmark(cookie);
667 
668 	unlock_page(pp);
669 
670 	return (error);
671 }
672 
673 #ifdef HAVE_VFS_READ_FOLIO
674 static int
675 zpl_read_folio(struct file *filp, struct folio *folio)
676 {
677 	return (zpl_readpage_common(&folio->page));
678 }
679 #else
680 static int
681 zpl_readpage(struct file *filp, struct page *pp)
682 {
683 	return (zpl_readpage_common(pp));
684 }
685 #endif
686 
687 static int
688 zpl_readpage_filler(void *data, struct page *pp)
689 {
690 	return (zpl_readpage_common(pp));
691 }
692 
693 /*
694  * Populate a set of pages with data for the Linux page cache.  This
695  * function will only be called for read ahead and never for demand
696  * paging.  For simplicity, the code relies on read_cache_pages() to
697  * correctly lock each page for IO and call zpl_readpage().
698  */
699 #ifdef HAVE_VFS_READPAGES
700 static int
701 zpl_readpages(struct file *filp, struct address_space *mapping,
702     struct list_head *pages, unsigned nr_pages)
703 {
704 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
705 }
706 #else
707 static void
708 zpl_readahead(struct readahead_control *ractl)
709 {
710 	struct page *page;
711 
712 	while ((page = readahead_page(ractl)) != NULL) {
713 		int ret;
714 
715 		ret = zpl_readpage_filler(NULL, page);
716 		put_page(page);
717 		if (ret)
718 			break;
719 	}
720 }
721 #endif
722 
723 static int
724 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
725 {
726 	boolean_t *for_sync = data;
727 	fstrans_cookie_t cookie;
728 
729 	ASSERT(PageLocked(pp));
730 	ASSERT(!PageWriteback(pp));
731 
732 	cookie = spl_fstrans_mark();
733 	(void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
734 	spl_fstrans_unmark(cookie);
735 
736 	return (0);
737 }
738 
739 static int
740 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
741 {
742 	znode_t		*zp = ITOZ(mapping->host);
743 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
744 	enum writeback_sync_modes sync_mode;
745 	int result;
746 
747 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
748 		return (result);
749 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
750 		wbc->sync_mode = WB_SYNC_ALL;
751 	zpl_exit(zfsvfs, FTAG);
752 	sync_mode = wbc->sync_mode;
753 
754 	/*
755 	 * We don't want to run write_cache_pages() in SYNC mode here, because
756 	 * that would make putpage() wait for a single page to be committed to
757 	 * disk every single time, resulting in atrocious performance. Instead
758 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
759 	 * and then we commit it all in one go.
760 	 */
761 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
762 	wbc->sync_mode = WB_SYNC_NONE;
763 	result = write_cache_pages(mapping, wbc, zpl_putpage, &for_sync);
764 	if (sync_mode != wbc->sync_mode) {
765 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
766 			return (result);
767 		if (zfsvfs->z_log != NULL)
768 			zil_commit(zfsvfs->z_log, zp->z_id);
769 		zpl_exit(zfsvfs, FTAG);
770 
771 		/*
772 		 * We need to call write_cache_pages() again (we can't just
773 		 * return after the commit) because the previous call in
774 		 * non-SYNC mode does not guarantee that we got all the dirty
775 		 * pages (see the implementation of write_cache_pages() for
776 		 * details). That being said, this is a no-op in most cases.
777 		 */
778 		wbc->sync_mode = sync_mode;
779 		result = write_cache_pages(mapping, wbc, zpl_putpage,
780 		    &for_sync);
781 	}
782 	return (result);
783 }
784 
785 /*
786  * Write out dirty pages to the ARC, this function is only required to
787  * support mmap(2).  Mapped pages may be dirtied by memory operations
788  * which never call .write().  These dirty pages are kept in sync with
789  * the ARC buffers via this hook.
790  */
791 static int
792 zpl_writepage(struct page *pp, struct writeback_control *wbc)
793 {
794 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
795 		wbc->sync_mode = WB_SYNC_ALL;
796 
797 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
798 
799 	return (zpl_putpage(pp, wbc, &for_sync));
800 }
801 
802 /*
803  * The flag combination which matches the behavior of zfs_space() is
804  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
805  * flag was introduced in the 2.6.38 kernel.
806  *
807  * The original mode=0 (allocate space) behavior can be reasonably emulated
808  * by checking if enough space exists and creating a sparse file, as real
809  * persistent space reservation is not possible due to COW, snapshots, etc.
810  */
811 static long
812 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
813 {
814 	cred_t *cr = CRED();
815 	loff_t olen;
816 	fstrans_cookie_t cookie;
817 	int error = 0;
818 
819 	int test_mode = FALLOC_FL_PUNCH_HOLE;
820 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
821 	test_mode |= FALLOC_FL_ZERO_RANGE;
822 #endif
823 
824 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
825 		return (-EOPNOTSUPP);
826 
827 	if (offset < 0 || len <= 0)
828 		return (-EINVAL);
829 
830 	spl_inode_lock(ip);
831 	olen = i_size_read(ip);
832 
833 	crhold(cr);
834 	cookie = spl_fstrans_mark();
835 	if (mode & (test_mode)) {
836 		flock64_t bf;
837 
838 		if (mode & FALLOC_FL_KEEP_SIZE) {
839 			if (offset > olen)
840 				goto out_unmark;
841 
842 			if (offset + len > olen)
843 				len = olen - offset;
844 		}
845 		bf.l_type = F_WRLCK;
846 		bf.l_whence = SEEK_SET;
847 		bf.l_start = offset;
848 		bf.l_len = len;
849 		bf.l_pid = 0;
850 
851 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
852 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
853 		unsigned int percent = zfs_fallocate_reserve_percent;
854 		struct kstatfs statfs;
855 
856 		/* Legacy mode, disable fallocate compatibility. */
857 		if (percent == 0) {
858 			error = -EOPNOTSUPP;
859 			goto out_unmark;
860 		}
861 
862 		/*
863 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
864 		 * also checks project quota limits, which are relevant here.
865 		 */
866 		error = zfs_statvfs(ip, &statfs);
867 		if (error)
868 			goto out_unmark;
869 
870 		/*
871 		 * Shrink available space a bit to account for overhead/races.
872 		 * We know the product previously fit into availbytes from
873 		 * dmu_objset_space(), so the smaller product will also fit.
874 		 */
875 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
876 			error = -ENOSPC;
877 			goto out_unmark;
878 		}
879 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
880 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
881 	}
882 out_unmark:
883 	spl_fstrans_unmark(cookie);
884 	spl_inode_unlock(ip);
885 
886 	crfree(cr);
887 
888 	return (error);
889 }
890 
891 static long
892 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
893 {
894 	return zpl_fallocate_common(file_inode(filp),
895 	    mode, offset, len);
896 }
897 
898 static int
899 zpl_ioctl_getversion(struct file *filp, void __user *arg)
900 {
901 	uint32_t generation = file_inode(filp)->i_generation;
902 
903 	return (copy_to_user(arg, &generation, sizeof (generation)));
904 }
905 
906 #ifdef HAVE_FILE_FADVISE
907 static int
908 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
909 {
910 	struct inode *ip = file_inode(filp);
911 	znode_t *zp = ITOZ(ip);
912 	zfsvfs_t *zfsvfs = ITOZSB(ip);
913 	objset_t *os = zfsvfs->z_os;
914 	int error = 0;
915 
916 	if (S_ISFIFO(ip->i_mode))
917 		return (-ESPIPE);
918 
919 	if (offset < 0 || len < 0)
920 		return (-EINVAL);
921 
922 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
923 		return (error);
924 
925 	switch (advice) {
926 	case POSIX_FADV_SEQUENTIAL:
927 	case POSIX_FADV_WILLNEED:
928 #ifdef HAVE_GENERIC_FADVISE
929 		if (zn_has_cached_data(zp, offset, offset + len - 1))
930 			error = generic_fadvise(filp, offset, len, advice);
931 #endif
932 		/*
933 		 * Pass on the caller's size directly, but note that
934 		 * dmu_prefetch_max will effectively cap it.  If there
935 		 * really is a larger sequential access pattern, perhaps
936 		 * dmu_zfetch will detect it.
937 		 */
938 		if (len == 0)
939 			len = i_size_read(ip) - offset;
940 
941 		dmu_prefetch(os, zp->z_id, 0, offset, len,
942 		    ZIO_PRIORITY_ASYNC_READ);
943 		break;
944 	case POSIX_FADV_NORMAL:
945 	case POSIX_FADV_RANDOM:
946 	case POSIX_FADV_DONTNEED:
947 	case POSIX_FADV_NOREUSE:
948 		/* ignored for now */
949 		break;
950 	default:
951 		error = -EINVAL;
952 		break;
953 	}
954 
955 	zfs_exit(zfsvfs, FTAG);
956 
957 	return (error);
958 }
959 #endif /* HAVE_FILE_FADVISE */
960 
961 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
962 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
963 
964 static uint32_t
965 __zpl_ioctl_getflags(struct inode *ip)
966 {
967 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
968 	uint32_t ioctl_flags = 0;
969 
970 	if (zfs_flags & ZFS_IMMUTABLE)
971 		ioctl_flags |= FS_IMMUTABLE_FL;
972 
973 	if (zfs_flags & ZFS_APPENDONLY)
974 		ioctl_flags |= FS_APPEND_FL;
975 
976 	if (zfs_flags & ZFS_NODUMP)
977 		ioctl_flags |= FS_NODUMP_FL;
978 
979 	if (zfs_flags & ZFS_PROJINHERIT)
980 		ioctl_flags |= ZFS_PROJINHERIT_FL;
981 
982 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
983 }
984 
985 /*
986  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
987  * attributes common to both Linux and Solaris are mapped.
988  */
989 static int
990 zpl_ioctl_getflags(struct file *filp, void __user *arg)
991 {
992 	uint32_t flags;
993 	int err;
994 
995 	flags = __zpl_ioctl_getflags(file_inode(filp));
996 	err = copy_to_user(arg, &flags, sizeof (flags));
997 
998 	return (err);
999 }
1000 
1001 /*
1002  * fchange() is a helper macro to detect if we have been asked to change a
1003  * flag. This is ugly, but the requirement that we do this is a consequence of
1004  * how the Linux file attribute interface was designed. Another consequence is
1005  * that concurrent modification of files suffers from a TOCTOU race. Neither
1006  * are things we can fix without modifying the kernel-userland interface, which
1007  * is outside of our jurisdiction.
1008  */
1009 
1010 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
1011 
1012 static int
1013 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
1014 {
1015 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1016 	xoptattr_t *xoap;
1017 
1018 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
1019 	    ZFS_PROJINHERIT_FL))
1020 		return (-EOPNOTSUPP);
1021 
1022 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
1023 		return (-EACCES);
1024 
1025 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
1026 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
1027 	    !capable(CAP_LINUX_IMMUTABLE))
1028 		return (-EPERM);
1029 
1030 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1031 		return (-EACCES);
1032 
1033 	xva_init(xva);
1034 	xoap = xva_getxoptattr(xva);
1035 
1036 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
1037 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
1038 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
1039 		XVA_SET_REQ(xva, (xflag));	\
1040 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1041 	}	\
1042 } while (0)
1043 
1044 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
1045 	    xoap->xoa_immutable);
1046 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
1047 	    xoap->xoa_appendonly);
1048 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
1049 	    xoap->xoa_nodump);
1050 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
1051 	    xoap->xoa_projinherit);
1052 
1053 #undef	FLAG_CHANGE
1054 
1055 	return (0);
1056 }
1057 
1058 static int
1059 zpl_ioctl_setflags(struct file *filp, void __user *arg)
1060 {
1061 	struct inode *ip = file_inode(filp);
1062 	uint32_t flags;
1063 	cred_t *cr = CRED();
1064 	xvattr_t xva;
1065 	int err;
1066 	fstrans_cookie_t cookie;
1067 
1068 	if (copy_from_user(&flags, arg, sizeof (flags)))
1069 		return (-EFAULT);
1070 
1071 	err = __zpl_ioctl_setflags(ip, flags, &xva);
1072 	if (err)
1073 		return (err);
1074 
1075 	crhold(cr);
1076 	cookie = spl_fstrans_mark();
1077 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns);
1078 	spl_fstrans_unmark(cookie);
1079 	crfree(cr);
1080 
1081 	return (err);
1082 }
1083 
1084 static int
1085 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
1086 {
1087 	zfsxattr_t fsx = { 0 };
1088 	struct inode *ip = file_inode(filp);
1089 	int err;
1090 
1091 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
1092 	fsx.fsx_projid = ITOZ(ip)->z_projid;
1093 	err = copy_to_user(arg, &fsx, sizeof (fsx));
1094 
1095 	return (err);
1096 }
1097 
1098 static int
1099 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
1100 {
1101 	struct inode *ip = file_inode(filp);
1102 	zfsxattr_t fsx;
1103 	cred_t *cr = CRED();
1104 	xvattr_t xva;
1105 	xoptattr_t *xoap;
1106 	int err;
1107 	fstrans_cookie_t cookie;
1108 
1109 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
1110 		return (-EFAULT);
1111 
1112 	if (!zpl_is_valid_projid(fsx.fsx_projid))
1113 		return (-EINVAL);
1114 
1115 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
1116 	if (err)
1117 		return (err);
1118 
1119 	xoap = xva_getxoptattr(&xva);
1120 	XVA_SET_REQ(&xva, XAT_PROJID);
1121 	xoap->xoa_projid = fsx.fsx_projid;
1122 
1123 	crhold(cr);
1124 	cookie = spl_fstrans_mark();
1125 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns);
1126 	spl_fstrans_unmark(cookie);
1127 	crfree(cr);
1128 
1129 	return (err);
1130 }
1131 
1132 /*
1133  * Expose Additional File Level Attributes of ZFS.
1134  */
1135 static int
1136 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
1137 {
1138 	struct inode *ip = file_inode(filp);
1139 	uint64_t dosflags = ITOZ(ip)->z_pflags;
1140 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
1141 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
1142 
1143 	return (err);
1144 }
1145 
1146 static int
1147 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1148 {
1149 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1150 	xoptattr_t *xoap;
1151 
1152 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1153 		return (-EOPNOTSUPP);
1154 
1155 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1156 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1157 	    !capable(CAP_LINUX_IMMUTABLE))
1158 		return (-EPERM);
1159 
1160 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1161 		return (-EACCES);
1162 
1163 	xva_init(xva);
1164 	xoap = xva_getxoptattr(xva);
1165 
1166 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
1167 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
1168 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
1169 		XVA_SET_REQ(xva, (xflag));	\
1170 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1171 	}	\
1172 } while (0)
1173 
1174 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1175 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1176 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1177 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1178 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1179 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1180 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1181 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1182 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1183 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1184 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1185 
1186 #undef	FLAG_CHANGE
1187 
1188 	return (0);
1189 }
1190 
1191 /*
1192  * Set Additional File Level Attributes of ZFS.
1193  */
1194 static int
1195 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1196 {
1197 	struct inode *ip = file_inode(filp);
1198 	uint64_t dosflags;
1199 	cred_t *cr = CRED();
1200 	xvattr_t xva;
1201 	int err;
1202 	fstrans_cookie_t cookie;
1203 
1204 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1205 		return (-EFAULT);
1206 
1207 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1208 	if (err)
1209 		return (err);
1210 
1211 	crhold(cr);
1212 	cookie = spl_fstrans_mark();
1213 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns);
1214 	spl_fstrans_unmark(cookie);
1215 	crfree(cr);
1216 
1217 	return (err);
1218 }
1219 
1220 static long
1221 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1222 {
1223 	switch (cmd) {
1224 	case FS_IOC_GETVERSION:
1225 		return (zpl_ioctl_getversion(filp, (void *)arg));
1226 	case FS_IOC_GETFLAGS:
1227 		return (zpl_ioctl_getflags(filp, (void *)arg));
1228 	case FS_IOC_SETFLAGS:
1229 		return (zpl_ioctl_setflags(filp, (void *)arg));
1230 	case ZFS_IOC_FSGETXATTR:
1231 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1232 	case ZFS_IOC_FSSETXATTR:
1233 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1234 	case ZFS_IOC_GETDOSFLAGS:
1235 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1236 	case ZFS_IOC_SETDOSFLAGS:
1237 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1238 	default:
1239 		return (-ENOTTY);
1240 	}
1241 }
1242 
1243 #ifdef CONFIG_COMPAT
1244 static long
1245 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1246 {
1247 	switch (cmd) {
1248 	case FS_IOC32_GETVERSION:
1249 		cmd = FS_IOC_GETVERSION;
1250 		break;
1251 	case FS_IOC32_GETFLAGS:
1252 		cmd = FS_IOC_GETFLAGS;
1253 		break;
1254 	case FS_IOC32_SETFLAGS:
1255 		cmd = FS_IOC_SETFLAGS;
1256 		break;
1257 	default:
1258 		return (-ENOTTY);
1259 	}
1260 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1261 }
1262 #endif /* CONFIG_COMPAT */
1263 
1264 
1265 const struct address_space_operations zpl_address_space_operations = {
1266 #ifdef HAVE_VFS_READPAGES
1267 	.readpages	= zpl_readpages,
1268 #else
1269 	.readahead	= zpl_readahead,
1270 #endif
1271 #ifdef HAVE_VFS_READ_FOLIO
1272 	.read_folio	= zpl_read_folio,
1273 #else
1274 	.readpage	= zpl_readpage,
1275 #endif
1276 	.writepage	= zpl_writepage,
1277 	.writepages	= zpl_writepages,
1278 	.direct_IO	= zpl_direct_IO,
1279 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1280 	.set_page_dirty = __set_page_dirty_nobuffers,
1281 #endif
1282 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1283 	.dirty_folio	= filemap_dirty_folio,
1284 #endif
1285 };
1286 
1287 const struct file_operations zpl_file_operations = {
1288 	.open		= zpl_open,
1289 	.release	= zpl_release,
1290 	.llseek		= zpl_llseek,
1291 #ifdef HAVE_VFS_RW_ITERATE
1292 #ifdef HAVE_NEW_SYNC_READ
1293 	.read		= new_sync_read,
1294 	.write		= new_sync_write,
1295 #endif
1296 	.read_iter	= zpl_iter_read,
1297 	.write_iter	= zpl_iter_write,
1298 #ifdef HAVE_VFS_IOV_ITER
1299 	.splice_read	= generic_file_splice_read,
1300 	.splice_write	= iter_file_splice_write,
1301 #endif
1302 #else
1303 	.read		= do_sync_read,
1304 	.write		= do_sync_write,
1305 	.aio_read	= zpl_aio_read,
1306 	.aio_write	= zpl_aio_write,
1307 #endif
1308 	.mmap		= zpl_mmap,
1309 	.fsync		= zpl_fsync,
1310 #ifdef HAVE_FILE_AIO_FSYNC
1311 	.aio_fsync	= zpl_aio_fsync,
1312 #endif
1313 	.fallocate	= zpl_fallocate,
1314 #ifdef HAVE_FILE_FADVISE
1315 	.fadvise	= zpl_fadvise,
1316 #endif
1317 	.unlocked_ioctl	= zpl_ioctl,
1318 #ifdef CONFIG_COMPAT
1319 	.compat_ioctl	= zpl_compat_ioctl,
1320 #endif
1321 };
1322 
1323 const struct file_operations zpl_dir_file_operations = {
1324 	.llseek		= generic_file_llseek,
1325 	.read		= generic_read_dir,
1326 #if defined(HAVE_VFS_ITERATE_SHARED)
1327 	.iterate_shared	= zpl_iterate,
1328 #elif defined(HAVE_VFS_ITERATE)
1329 	.iterate	= zpl_iterate,
1330 #else
1331 	.readdir	= zpl_readdir,
1332 #endif
1333 	.fsync		= zpl_fsync,
1334 	.unlocked_ioctl = zpl_ioctl,
1335 #ifdef CONFIG_COMPAT
1336 	.compat_ioctl   = zpl_compat_ioctl,
1337 #endif
1338 };
1339 
1340 /* CSTYLED */
1341 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1342 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1343 	"Percentage of length to use for the available capacity check");
1344