1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <linux/fs.h>
31 #include <sys/file.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_vnops.h>
36 #include <sys/zfs_project.h>
37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
38     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
39 #include <linux/pagemap.h>
40 #endif
41 #ifdef HAVE_FILE_FADVISE
42 #include <linux/fadvise.h>
43 #endif
44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
45 #include <linux/writeback.h>
46 #endif
47 
48 /*
49  * When using fallocate(2) to preallocate space, inflate the requested
50  * capacity check by 10% to account for the required metadata blocks.
51  */
52 static unsigned int zfs_fallocate_reserve_percent = 110;
53 
54 static int
55 zpl_open(struct inode *ip, struct file *filp)
56 {
57 	cred_t *cr = CRED();
58 	int error;
59 	fstrans_cookie_t cookie;
60 
61 	error = generic_file_open(ip, filp);
62 	if (error)
63 		return (error);
64 
65 	crhold(cr);
66 	cookie = spl_fstrans_mark();
67 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
68 	spl_fstrans_unmark(cookie);
69 	crfree(cr);
70 	ASSERT3S(error, <=, 0);
71 
72 	return (error);
73 }
74 
75 static int
76 zpl_release(struct inode *ip, struct file *filp)
77 {
78 	cred_t *cr = CRED();
79 	int error;
80 	fstrans_cookie_t cookie;
81 
82 	cookie = spl_fstrans_mark();
83 	if (ITOZ(ip)->z_atime_dirty)
84 		zfs_mark_inode_dirty(ip);
85 
86 	crhold(cr);
87 	error = -zfs_close(ip, filp->f_flags, cr);
88 	spl_fstrans_unmark(cookie);
89 	crfree(cr);
90 	ASSERT3S(error, <=, 0);
91 
92 	return (error);
93 }
94 
95 static int
96 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
97 {
98 	cred_t *cr = CRED();
99 	int error;
100 	fstrans_cookie_t cookie;
101 
102 	crhold(cr);
103 	cookie = spl_fstrans_mark();
104 	error = -zfs_readdir(file_inode(filp), ctx, cr);
105 	spl_fstrans_unmark(cookie);
106 	crfree(cr);
107 	ASSERT3S(error, <=, 0);
108 
109 	return (error);
110 }
111 
112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
113 static int
114 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
115 {
116 	zpl_dir_context_t ctx =
117 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
118 	int error;
119 
120 	error = zpl_iterate(filp, &ctx);
121 	filp->f_pos = ctx.pos;
122 
123 	return (error);
124 }
125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
126 
127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
128 /*
129  * Linux 2.6.35 - 3.0 API,
130  * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
131  * redundant.  The dentry is still accessible via filp->f_path.dentry,
132  * and we are guaranteed that filp will never be NULL.
133  */
134 static int
135 zpl_fsync(struct file *filp, int datasync)
136 {
137 	struct inode *inode = filp->f_mapping->host;
138 	cred_t *cr = CRED();
139 	int error;
140 	fstrans_cookie_t cookie;
141 
142 	crhold(cr);
143 	cookie = spl_fstrans_mark();
144 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
145 	spl_fstrans_unmark(cookie);
146 	crfree(cr);
147 	ASSERT3S(error, <=, 0);
148 
149 	return (error);
150 }
151 
152 #ifdef HAVE_FILE_AIO_FSYNC
153 static int
154 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
155 {
156 	return (zpl_fsync(kiocb->ki_filp, datasync));
157 }
158 #endif
159 
160 #elif defined(HAVE_FSYNC_RANGE)
161 /*
162  * Linux 3.1 API,
163  * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
164  * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
165  * lock is no longer held by the caller, for zfs we don't require the lock
166  * to be held so we don't acquire it.
167  */
168 static int
169 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
170 {
171 	struct inode *inode = filp->f_mapping->host;
172 	znode_t *zp = ITOZ(inode);
173 	zfsvfs_t *zfsvfs = ITOZSB(inode);
174 	cred_t *cr = CRED();
175 	int error;
176 	fstrans_cookie_t cookie;
177 
178 	/*
179 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
180 	 * tandem so that sync writes can detect if there are any non-sync
181 	 * writes going on and vice-versa. The "vice-versa" part to this logic
182 	 * is located in zfs_putpage() where non-sync writes check if there are
183 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
184 	 * we do a commit to complete the non-sync writes since the latter can
185 	 * potentially take several seconds to complete and thus block sync
186 	 * writes in the upcoming call to filemap_write_and_wait_range().
187 	 */
188 	atomic_inc_32(&zp->z_sync_writes_cnt);
189 	/*
190 	 * If the following check does not detect an overlapping non-sync write
191 	 * (say because it's just about to start), then it is guaranteed that
192 	 * the non-sync write will detect this sync write. This is because we
193 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
194 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
195 	 * zfs_putpage() respectively.
196 	 */
197 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
198 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
199 			atomic_dec_32(&zp->z_sync_writes_cnt);
200 			return (error);
201 		}
202 		zil_commit(zfsvfs->z_log, zp->z_id);
203 		zpl_exit(zfsvfs, FTAG);
204 	}
205 
206 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
207 
208 	/*
209 	 * The sync write is not complete yet but we decrement
210 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
211 	 * it internally. If a non-sync write starts just after the decrement
212 	 * operation but before we call zfs_fsync(), it may not detect this
213 	 * overlapping sync write but it does not matter since we have already
214 	 * gone past filemap_write_and_wait_range() and we won't block due to
215 	 * the non-sync write.
216 	 */
217 	atomic_dec_32(&zp->z_sync_writes_cnt);
218 
219 	if (error)
220 		return (error);
221 
222 	crhold(cr);
223 	cookie = spl_fstrans_mark();
224 	error = -zfs_fsync(zp, datasync, cr);
225 	spl_fstrans_unmark(cookie);
226 	crfree(cr);
227 	ASSERT3S(error, <=, 0);
228 
229 	return (error);
230 }
231 
232 #ifdef HAVE_FILE_AIO_FSYNC
233 static int
234 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
235 {
236 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
237 }
238 #endif
239 
240 #else
241 #error "Unsupported fops->fsync() implementation"
242 #endif
243 
244 static inline int
245 zfs_io_flags(struct kiocb *kiocb)
246 {
247 	int flags = 0;
248 
249 #if defined(IOCB_DSYNC)
250 	if (kiocb->ki_flags & IOCB_DSYNC)
251 		flags |= O_DSYNC;
252 #endif
253 #if defined(IOCB_SYNC)
254 	if (kiocb->ki_flags & IOCB_SYNC)
255 		flags |= O_SYNC;
256 #endif
257 #if defined(IOCB_APPEND)
258 	if (kiocb->ki_flags & IOCB_APPEND)
259 		flags |= O_APPEND;
260 #endif
261 #if defined(IOCB_DIRECT)
262 	if (kiocb->ki_flags & IOCB_DIRECT)
263 		flags |= O_DIRECT;
264 #endif
265 	return (flags);
266 }
267 
268 /*
269  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
270  * is true.  This is needed since datasets with inherited "relatime" property
271  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
272  * `zfs set relatime=...`), which is what relatime test in VFS by
273  * relatime_need_update() is based on.
274  */
275 static inline void
276 zpl_file_accessed(struct file *filp)
277 {
278 	struct inode *ip = filp->f_mapping->host;
279 
280 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
281 		if (zfs_relatime_need_update(ip))
282 			file_accessed(filp);
283 	} else {
284 		file_accessed(filp);
285 	}
286 }
287 
288 #if defined(HAVE_VFS_RW_ITERATE)
289 
290 /*
291  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
292  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
293  * manipulate the iov_iter are available.  In which case the full iov_iter
294  * can be attached to the uio and correctly handled in the lower layers.
295  * Otherwise, for older kernels extract the iovec and pass it instead.
296  */
297 static void
298 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
299     loff_t pos, ssize_t count, size_t skip)
300 {
301 #if defined(HAVE_VFS_IOV_ITER)
302 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
303 #else
304 	zfs_uio_iovec_init(uio, zfs_uio_iter_iov(to), to->nr_segs, pos,
305 	    zfs_uio_iov_iter_type(to) & ITER_KVEC ?
306 	    UIO_SYSSPACE : UIO_USERSPACE,
307 	    count, skip);
308 #endif
309 }
310 
311 static ssize_t
312 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
313 {
314 	cred_t *cr = CRED();
315 	fstrans_cookie_t cookie;
316 	struct file *filp = kiocb->ki_filp;
317 	ssize_t count = iov_iter_count(to);
318 	zfs_uio_t uio;
319 
320 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
321 
322 	crhold(cr);
323 	cookie = spl_fstrans_mark();
324 
325 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
326 	    filp->f_flags | zfs_io_flags(kiocb), cr);
327 
328 	spl_fstrans_unmark(cookie);
329 	crfree(cr);
330 
331 	if (error < 0)
332 		return (error);
333 
334 	ssize_t read = count - uio.uio_resid;
335 	kiocb->ki_pos += read;
336 
337 	zpl_file_accessed(filp);
338 
339 	return (read);
340 }
341 
342 static inline ssize_t
343 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
344     size_t *countp)
345 {
346 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
347 	ssize_t ret = generic_write_checks(kiocb, from);
348 	if (ret <= 0)
349 		return (ret);
350 
351 	*countp = ret;
352 #else
353 	struct file *file = kiocb->ki_filp;
354 	struct address_space *mapping = file->f_mapping;
355 	struct inode *ip = mapping->host;
356 	int isblk = S_ISBLK(ip->i_mode);
357 
358 	*countp = iov_iter_count(from);
359 	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
360 	if (ret)
361 		return (ret);
362 #endif
363 
364 	return (0);
365 }
366 
367 static ssize_t
368 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
369 {
370 	cred_t *cr = CRED();
371 	fstrans_cookie_t cookie;
372 	struct file *filp = kiocb->ki_filp;
373 	struct inode *ip = filp->f_mapping->host;
374 	zfs_uio_t uio;
375 	size_t count = 0;
376 	ssize_t ret;
377 
378 	ret = zpl_generic_write_checks(kiocb, from, &count);
379 	if (ret)
380 		return (ret);
381 
382 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
383 
384 	crhold(cr);
385 	cookie = spl_fstrans_mark();
386 
387 	int error = -zfs_write(ITOZ(ip), &uio,
388 	    filp->f_flags | zfs_io_flags(kiocb), cr);
389 
390 	spl_fstrans_unmark(cookie);
391 	crfree(cr);
392 
393 	if (error < 0)
394 		return (error);
395 
396 	ssize_t wrote = count - uio.uio_resid;
397 	kiocb->ki_pos += wrote;
398 
399 	return (wrote);
400 }
401 
402 #else /* !HAVE_VFS_RW_ITERATE */
403 
404 static ssize_t
405 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
406     unsigned long nr_segs, loff_t pos)
407 {
408 	cred_t *cr = CRED();
409 	fstrans_cookie_t cookie;
410 	struct file *filp = kiocb->ki_filp;
411 	size_t count;
412 	ssize_t ret;
413 
414 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
415 	if (ret)
416 		return (ret);
417 
418 	zfs_uio_t uio;
419 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
420 	    count, 0);
421 
422 	crhold(cr);
423 	cookie = spl_fstrans_mark();
424 
425 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
426 	    filp->f_flags | zfs_io_flags(kiocb), cr);
427 
428 	spl_fstrans_unmark(cookie);
429 	crfree(cr);
430 
431 	if (error < 0)
432 		return (error);
433 
434 	ssize_t read = count - uio.uio_resid;
435 	kiocb->ki_pos += read;
436 
437 	zpl_file_accessed(filp);
438 
439 	return (read);
440 }
441 
442 static ssize_t
443 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
444     unsigned long nr_segs, loff_t pos)
445 {
446 	cred_t *cr = CRED();
447 	fstrans_cookie_t cookie;
448 	struct file *filp = kiocb->ki_filp;
449 	struct inode *ip = filp->f_mapping->host;
450 	size_t count;
451 	ssize_t ret;
452 
453 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
454 	if (ret)
455 		return (ret);
456 
457 	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
458 	if (ret)
459 		return (ret);
460 
461 	kiocb->ki_pos = pos;
462 
463 	zfs_uio_t uio;
464 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
465 	    count, 0);
466 
467 	crhold(cr);
468 	cookie = spl_fstrans_mark();
469 
470 	int error = -zfs_write(ITOZ(ip), &uio,
471 	    filp->f_flags | zfs_io_flags(kiocb), cr);
472 
473 	spl_fstrans_unmark(cookie);
474 	crfree(cr);
475 
476 	if (error < 0)
477 		return (error);
478 
479 	ssize_t wrote = count - uio.uio_resid;
480 	kiocb->ki_pos += wrote;
481 
482 	return (wrote);
483 }
484 #endif /* HAVE_VFS_RW_ITERATE */
485 
486 #if defined(HAVE_VFS_RW_ITERATE)
487 static ssize_t
488 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
489 {
490 	if (rw == WRITE)
491 		return (zpl_iter_write(kiocb, iter));
492 	else
493 		return (zpl_iter_read(kiocb, iter));
494 }
495 #if defined(HAVE_VFS_DIRECT_IO_ITER)
496 static ssize_t
497 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
498 {
499 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
500 }
501 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
502 static ssize_t
503 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
504 {
505 	ASSERT3S(pos, ==, kiocb->ki_pos);
506 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
507 }
508 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
509 static ssize_t
510 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
511 {
512 	ASSERT3S(pos, ==, kiocb->ki_pos);
513 	return (zpl_direct_IO_impl(rw, kiocb, iter));
514 }
515 #else
516 #error "Unknown direct IO interface"
517 #endif
518 
519 #else /* HAVE_VFS_RW_ITERATE */
520 
521 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
522 static ssize_t
523 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
524     loff_t pos, unsigned long nr_segs)
525 {
526 	if (rw == WRITE)
527 		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
528 	else
529 		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
530 }
531 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
532 static ssize_t
533 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
534 {
535 	const struct iovec *iovp = iov_iter_iovec(iter);
536 	unsigned long nr_segs = iter->nr_segs;
537 
538 	ASSERT3S(pos, ==, kiocb->ki_pos);
539 	if (rw == WRITE)
540 		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
541 	else
542 		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
543 }
544 #else
545 #error "Unknown direct IO interface"
546 #endif
547 
548 #endif /* HAVE_VFS_RW_ITERATE */
549 
550 static loff_t
551 zpl_llseek(struct file *filp, loff_t offset, int whence)
552 {
553 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
554 	fstrans_cookie_t cookie;
555 
556 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
557 		struct inode *ip = filp->f_mapping->host;
558 		loff_t maxbytes = ip->i_sb->s_maxbytes;
559 		loff_t error;
560 
561 		spl_inode_lock_shared(ip);
562 		cookie = spl_fstrans_mark();
563 		error = -zfs_holey(ITOZ(ip), whence, &offset);
564 		spl_fstrans_unmark(cookie);
565 		if (error == 0)
566 			error = lseek_execute(filp, ip, offset, maxbytes);
567 		spl_inode_unlock_shared(ip);
568 
569 		return (error);
570 	}
571 #endif /* SEEK_HOLE && SEEK_DATA */
572 
573 	return (generic_file_llseek(filp, offset, whence));
574 }
575 
576 /*
577  * It's worth taking a moment to describe how mmap is implemented
578  * for zfs because it differs considerably from other Linux filesystems.
579  * However, this issue is handled the same way under OpenSolaris.
580  *
581  * The issue is that by design zfs bypasses the Linux page cache and
582  * leaves all caching up to the ARC.  This has been shown to work
583  * well for the common read(2)/write(2) case.  However, mmap(2)
584  * is problem because it relies on being tightly integrated with the
585  * page cache.  To handle this we cache mmap'ed files twice, once in
586  * the ARC and a second time in the page cache.  The code is careful
587  * to keep both copies synchronized.
588  *
589  * When a file with an mmap'ed region is written to using write(2)
590  * both the data in the ARC and existing pages in the page cache
591  * are updated.  For a read(2) data will be read first from the page
592  * cache then the ARC if needed.  Neither a write(2) or read(2) will
593  * will ever result in new pages being added to the page cache.
594  *
595  * New pages are added to the page cache only via .readpage() which
596  * is called when the vfs needs to read a page off disk to back the
597  * virtual memory region.  These pages may be modified without
598  * notifying the ARC and will be written out periodically via
599  * .writepage().  This will occur due to either a sync or the usual
600  * page aging behavior.  Note because a read(2) of a mmap'ed file
601  * will always check the page cache first even when the ARC is out
602  * of date correct data will still be returned.
603  *
604  * While this implementation ensures correct behavior it does have
605  * have some drawbacks.  The most obvious of which is that it
606  * increases the required memory footprint when access mmap'ed
607  * files.  It also adds additional complexity to the code keeping
608  * both caches synchronized.
609  *
610  * Longer term it may be possible to cleanly resolve this wart by
611  * mapping page cache pages directly on to the ARC buffers.  The
612  * Linux address space operations are flexible enough to allow
613  * selection of which pages back a particular index.  The trick
614  * would be working out the details of which subsystem is in
615  * charge, the ARC, the page cache, or both.  It may also prove
616  * helpful to move the ARC buffers to a scatter-gather lists
617  * rather than a vmalloc'ed region.
618  */
619 static int
620 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
621 {
622 	struct inode *ip = filp->f_mapping->host;
623 	int error;
624 	fstrans_cookie_t cookie;
625 
626 	cookie = spl_fstrans_mark();
627 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
628 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
629 	spl_fstrans_unmark(cookie);
630 	if (error)
631 		return (error);
632 
633 	error = generic_file_mmap(filp, vma);
634 	if (error)
635 		return (error);
636 
637 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
638 	znode_t *zp = ITOZ(ip);
639 	mutex_enter(&zp->z_lock);
640 	zp->z_is_mapped = B_TRUE;
641 	mutex_exit(&zp->z_lock);
642 #endif
643 
644 	return (error);
645 }
646 
647 /*
648  * Populate a page with data for the Linux page cache.  This function is
649  * only used to support mmap(2).  There will be an identical copy of the
650  * data in the ARC which is kept up to date via .write() and .writepage().
651  */
652 static inline int
653 zpl_readpage_common(struct page *pp)
654 {
655 	fstrans_cookie_t cookie;
656 
657 	ASSERT(PageLocked(pp));
658 
659 	cookie = spl_fstrans_mark();
660 	int error = -zfs_getpage(pp->mapping->host, pp);
661 	spl_fstrans_unmark(cookie);
662 
663 	unlock_page(pp);
664 
665 	return (error);
666 }
667 
668 #ifdef HAVE_VFS_READ_FOLIO
669 static int
670 zpl_read_folio(struct file *filp, struct folio *folio)
671 {
672 	return (zpl_readpage_common(&folio->page));
673 }
674 #else
675 static int
676 zpl_readpage(struct file *filp, struct page *pp)
677 {
678 	return (zpl_readpage_common(pp));
679 }
680 #endif
681 
682 static int
683 zpl_readpage_filler(void *data, struct page *pp)
684 {
685 	return (zpl_readpage_common(pp));
686 }
687 
688 /*
689  * Populate a set of pages with data for the Linux page cache.  This
690  * function will only be called for read ahead and never for demand
691  * paging.  For simplicity, the code relies on read_cache_pages() to
692  * correctly lock each page for IO and call zpl_readpage().
693  */
694 #ifdef HAVE_VFS_READPAGES
695 static int
696 zpl_readpages(struct file *filp, struct address_space *mapping,
697     struct list_head *pages, unsigned nr_pages)
698 {
699 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
700 }
701 #else
702 static void
703 zpl_readahead(struct readahead_control *ractl)
704 {
705 	struct page *page;
706 
707 	while ((page = readahead_page(ractl)) != NULL) {
708 		int ret;
709 
710 		ret = zpl_readpage_filler(NULL, page);
711 		put_page(page);
712 		if (ret)
713 			break;
714 	}
715 }
716 #endif
717 
718 static int
719 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
720 {
721 	boolean_t *for_sync = data;
722 	fstrans_cookie_t cookie;
723 
724 	ASSERT(PageLocked(pp));
725 	ASSERT(!PageWriteback(pp));
726 
727 	cookie = spl_fstrans_mark();
728 	(void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
729 	spl_fstrans_unmark(cookie);
730 
731 	return (0);
732 }
733 
734 #ifdef HAVE_WRITEPAGE_T_FOLIO
735 static int
736 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
737 {
738 	(void) zpl_putpage(&pp->page, wbc, data);
739 	return (0);
740 }
741 #endif
742 
743 static inline int
744 zpl_write_cache_pages(struct address_space *mapping,
745     struct writeback_control *wbc, void *data)
746 {
747 	int result;
748 
749 #ifdef HAVE_WRITEPAGE_T_FOLIO
750 	result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
751 #else
752 	result = write_cache_pages(mapping, wbc, zpl_putpage, data);
753 #endif
754 	return (result);
755 }
756 
757 static int
758 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
759 {
760 	znode_t		*zp = ITOZ(mapping->host);
761 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
762 	enum writeback_sync_modes sync_mode;
763 	int result;
764 
765 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
766 		return (result);
767 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
768 		wbc->sync_mode = WB_SYNC_ALL;
769 	zpl_exit(zfsvfs, FTAG);
770 	sync_mode = wbc->sync_mode;
771 
772 	/*
773 	 * We don't want to run write_cache_pages() in SYNC mode here, because
774 	 * that would make putpage() wait for a single page to be committed to
775 	 * disk every single time, resulting in atrocious performance. Instead
776 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
777 	 * and then we commit it all in one go.
778 	 */
779 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
780 	wbc->sync_mode = WB_SYNC_NONE;
781 	result = zpl_write_cache_pages(mapping, wbc, &for_sync);
782 	if (sync_mode != wbc->sync_mode) {
783 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
784 			return (result);
785 		if (zfsvfs->z_log != NULL)
786 			zil_commit(zfsvfs->z_log, zp->z_id);
787 		zpl_exit(zfsvfs, FTAG);
788 
789 		/*
790 		 * We need to call write_cache_pages() again (we can't just
791 		 * return after the commit) because the previous call in
792 		 * non-SYNC mode does not guarantee that we got all the dirty
793 		 * pages (see the implementation of write_cache_pages() for
794 		 * details). That being said, this is a no-op in most cases.
795 		 */
796 		wbc->sync_mode = sync_mode;
797 		result = zpl_write_cache_pages(mapping, wbc, &for_sync);
798 	}
799 	return (result);
800 }
801 
802 /*
803  * Write out dirty pages to the ARC, this function is only required to
804  * support mmap(2).  Mapped pages may be dirtied by memory operations
805  * which never call .write().  These dirty pages are kept in sync with
806  * the ARC buffers via this hook.
807  */
808 static int
809 zpl_writepage(struct page *pp, struct writeback_control *wbc)
810 {
811 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
812 		wbc->sync_mode = WB_SYNC_ALL;
813 
814 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
815 
816 	return (zpl_putpage(pp, wbc, &for_sync));
817 }
818 
819 /*
820  * The flag combination which matches the behavior of zfs_space() is
821  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
822  * flag was introduced in the 2.6.38 kernel.
823  *
824  * The original mode=0 (allocate space) behavior can be reasonably emulated
825  * by checking if enough space exists and creating a sparse file, as real
826  * persistent space reservation is not possible due to COW, snapshots, etc.
827  */
828 static long
829 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
830 {
831 	cred_t *cr = CRED();
832 	loff_t olen;
833 	fstrans_cookie_t cookie;
834 	int error = 0;
835 
836 	int test_mode = FALLOC_FL_PUNCH_HOLE;
837 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
838 	test_mode |= FALLOC_FL_ZERO_RANGE;
839 #endif
840 
841 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
842 		return (-EOPNOTSUPP);
843 
844 	if (offset < 0 || len <= 0)
845 		return (-EINVAL);
846 
847 	spl_inode_lock(ip);
848 	olen = i_size_read(ip);
849 
850 	crhold(cr);
851 	cookie = spl_fstrans_mark();
852 	if (mode & (test_mode)) {
853 		flock64_t bf;
854 
855 		if (mode & FALLOC_FL_KEEP_SIZE) {
856 			if (offset > olen)
857 				goto out_unmark;
858 
859 			if (offset + len > olen)
860 				len = olen - offset;
861 		}
862 		bf.l_type = F_WRLCK;
863 		bf.l_whence = SEEK_SET;
864 		bf.l_start = offset;
865 		bf.l_len = len;
866 		bf.l_pid = 0;
867 
868 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
869 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
870 		unsigned int percent = zfs_fallocate_reserve_percent;
871 		struct kstatfs statfs;
872 
873 		/* Legacy mode, disable fallocate compatibility. */
874 		if (percent == 0) {
875 			error = -EOPNOTSUPP;
876 			goto out_unmark;
877 		}
878 
879 		/*
880 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
881 		 * also checks project quota limits, which are relevant here.
882 		 */
883 		error = zfs_statvfs(ip, &statfs);
884 		if (error)
885 			goto out_unmark;
886 
887 		/*
888 		 * Shrink available space a bit to account for overhead/races.
889 		 * We know the product previously fit into availbytes from
890 		 * dmu_objset_space(), so the smaller product will also fit.
891 		 */
892 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
893 			error = -ENOSPC;
894 			goto out_unmark;
895 		}
896 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
897 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
898 	}
899 out_unmark:
900 	spl_fstrans_unmark(cookie);
901 	spl_inode_unlock(ip);
902 
903 	crfree(cr);
904 
905 	return (error);
906 }
907 
908 static long
909 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
910 {
911 	return zpl_fallocate_common(file_inode(filp),
912 	    mode, offset, len);
913 }
914 
915 static int
916 zpl_ioctl_getversion(struct file *filp, void __user *arg)
917 {
918 	uint32_t generation = file_inode(filp)->i_generation;
919 
920 	return (copy_to_user(arg, &generation, sizeof (generation)));
921 }
922 
923 #ifdef HAVE_FILE_FADVISE
924 static int
925 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
926 {
927 	struct inode *ip = file_inode(filp);
928 	znode_t *zp = ITOZ(ip);
929 	zfsvfs_t *zfsvfs = ITOZSB(ip);
930 	objset_t *os = zfsvfs->z_os;
931 	int error = 0;
932 
933 	if (S_ISFIFO(ip->i_mode))
934 		return (-ESPIPE);
935 
936 	if (offset < 0 || len < 0)
937 		return (-EINVAL);
938 
939 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
940 		return (error);
941 
942 	switch (advice) {
943 	case POSIX_FADV_SEQUENTIAL:
944 	case POSIX_FADV_WILLNEED:
945 #ifdef HAVE_GENERIC_FADVISE
946 		if (zn_has_cached_data(zp, offset, offset + len - 1))
947 			error = generic_fadvise(filp, offset, len, advice);
948 #endif
949 		/*
950 		 * Pass on the caller's size directly, but note that
951 		 * dmu_prefetch_max will effectively cap it.  If there
952 		 * really is a larger sequential access pattern, perhaps
953 		 * dmu_zfetch will detect it.
954 		 */
955 		if (len == 0)
956 			len = i_size_read(ip) - offset;
957 
958 		dmu_prefetch(os, zp->z_id, 0, offset, len,
959 		    ZIO_PRIORITY_ASYNC_READ);
960 		break;
961 	case POSIX_FADV_NORMAL:
962 	case POSIX_FADV_RANDOM:
963 	case POSIX_FADV_DONTNEED:
964 	case POSIX_FADV_NOREUSE:
965 		/* ignored for now */
966 		break;
967 	default:
968 		error = -EINVAL;
969 		break;
970 	}
971 
972 	zfs_exit(zfsvfs, FTAG);
973 
974 	return (error);
975 }
976 #endif /* HAVE_FILE_FADVISE */
977 
978 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
979 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
980 
981 static uint32_t
982 __zpl_ioctl_getflags(struct inode *ip)
983 {
984 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
985 	uint32_t ioctl_flags = 0;
986 
987 	if (zfs_flags & ZFS_IMMUTABLE)
988 		ioctl_flags |= FS_IMMUTABLE_FL;
989 
990 	if (zfs_flags & ZFS_APPENDONLY)
991 		ioctl_flags |= FS_APPEND_FL;
992 
993 	if (zfs_flags & ZFS_NODUMP)
994 		ioctl_flags |= FS_NODUMP_FL;
995 
996 	if (zfs_flags & ZFS_PROJINHERIT)
997 		ioctl_flags |= ZFS_PROJINHERIT_FL;
998 
999 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
1000 }
1001 
1002 /*
1003  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
1004  * attributes common to both Linux and Solaris are mapped.
1005  */
1006 static int
1007 zpl_ioctl_getflags(struct file *filp, void __user *arg)
1008 {
1009 	uint32_t flags;
1010 	int err;
1011 
1012 	flags = __zpl_ioctl_getflags(file_inode(filp));
1013 	err = copy_to_user(arg, &flags, sizeof (flags));
1014 
1015 	return (err);
1016 }
1017 
1018 /*
1019  * fchange() is a helper macro to detect if we have been asked to change a
1020  * flag. This is ugly, but the requirement that we do this is a consequence of
1021  * how the Linux file attribute interface was designed. Another consequence is
1022  * that concurrent modification of files suffers from a TOCTOU race. Neither
1023  * are things we can fix without modifying the kernel-userland interface, which
1024  * is outside of our jurisdiction.
1025  */
1026 
1027 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
1028 
1029 static int
1030 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
1031 {
1032 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1033 	xoptattr_t *xoap;
1034 
1035 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
1036 	    ZFS_PROJINHERIT_FL))
1037 		return (-EOPNOTSUPP);
1038 
1039 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
1040 		return (-EACCES);
1041 
1042 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
1043 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
1044 	    !capable(CAP_LINUX_IMMUTABLE))
1045 		return (-EPERM);
1046 
1047 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
1048 		return (-EACCES);
1049 
1050 	xva_init(xva);
1051 	xoap = xva_getxoptattr(xva);
1052 
1053 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
1054 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
1055 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
1056 		XVA_SET_REQ(xva, (xflag));	\
1057 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1058 	}	\
1059 } while (0)
1060 
1061 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
1062 	    xoap->xoa_immutable);
1063 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
1064 	    xoap->xoa_appendonly);
1065 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
1066 	    xoap->xoa_nodump);
1067 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
1068 	    xoap->xoa_projinherit);
1069 
1070 #undef	FLAG_CHANGE
1071 
1072 	return (0);
1073 }
1074 
1075 static int
1076 zpl_ioctl_setflags(struct file *filp, void __user *arg)
1077 {
1078 	struct inode *ip = file_inode(filp);
1079 	uint32_t flags;
1080 	cred_t *cr = CRED();
1081 	xvattr_t xva;
1082 	int err;
1083 	fstrans_cookie_t cookie;
1084 
1085 	if (copy_from_user(&flags, arg, sizeof (flags)))
1086 		return (-EFAULT);
1087 
1088 	err = __zpl_ioctl_setflags(ip, flags, &xva);
1089 	if (err)
1090 		return (err);
1091 
1092 	crhold(cr);
1093 	cookie = spl_fstrans_mark();
1094 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1095 	spl_fstrans_unmark(cookie);
1096 	crfree(cr);
1097 
1098 	return (err);
1099 }
1100 
1101 static int
1102 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
1103 {
1104 	zfsxattr_t fsx = { 0 };
1105 	struct inode *ip = file_inode(filp);
1106 	int err;
1107 
1108 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
1109 	fsx.fsx_projid = ITOZ(ip)->z_projid;
1110 	err = copy_to_user(arg, &fsx, sizeof (fsx));
1111 
1112 	return (err);
1113 }
1114 
1115 static int
1116 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
1117 {
1118 	struct inode *ip = file_inode(filp);
1119 	zfsxattr_t fsx;
1120 	cred_t *cr = CRED();
1121 	xvattr_t xva;
1122 	xoptattr_t *xoap;
1123 	int err;
1124 	fstrans_cookie_t cookie;
1125 
1126 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
1127 		return (-EFAULT);
1128 
1129 	if (!zpl_is_valid_projid(fsx.fsx_projid))
1130 		return (-EINVAL);
1131 
1132 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
1133 	if (err)
1134 		return (err);
1135 
1136 	xoap = xva_getxoptattr(&xva);
1137 	XVA_SET_REQ(&xva, XAT_PROJID);
1138 	xoap->xoa_projid = fsx.fsx_projid;
1139 
1140 	crhold(cr);
1141 	cookie = spl_fstrans_mark();
1142 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1143 	spl_fstrans_unmark(cookie);
1144 	crfree(cr);
1145 
1146 	return (err);
1147 }
1148 
1149 /*
1150  * Expose Additional File Level Attributes of ZFS.
1151  */
1152 static int
1153 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
1154 {
1155 	struct inode *ip = file_inode(filp);
1156 	uint64_t dosflags = ITOZ(ip)->z_pflags;
1157 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
1158 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
1159 
1160 	return (err);
1161 }
1162 
1163 static int
1164 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1165 {
1166 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1167 	xoptattr_t *xoap;
1168 
1169 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1170 		return (-EOPNOTSUPP);
1171 
1172 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1173 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1174 	    !capable(CAP_LINUX_IMMUTABLE))
1175 		return (-EPERM);
1176 
1177 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
1178 		return (-EACCES);
1179 
1180 	xva_init(xva);
1181 	xoap = xva_getxoptattr(xva);
1182 
1183 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
1184 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
1185 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
1186 		XVA_SET_REQ(xva, (xflag));	\
1187 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1188 	}	\
1189 } while (0)
1190 
1191 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1192 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1193 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1194 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1195 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1196 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1197 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1198 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1199 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1200 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1201 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1202 
1203 #undef	FLAG_CHANGE
1204 
1205 	return (0);
1206 }
1207 
1208 /*
1209  * Set Additional File Level Attributes of ZFS.
1210  */
1211 static int
1212 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1213 {
1214 	struct inode *ip = file_inode(filp);
1215 	uint64_t dosflags;
1216 	cred_t *cr = CRED();
1217 	xvattr_t xva;
1218 	int err;
1219 	fstrans_cookie_t cookie;
1220 
1221 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1222 		return (-EFAULT);
1223 
1224 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1225 	if (err)
1226 		return (err);
1227 
1228 	crhold(cr);
1229 	cookie = spl_fstrans_mark();
1230 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1231 	spl_fstrans_unmark(cookie);
1232 	crfree(cr);
1233 
1234 	return (err);
1235 }
1236 
1237 static long
1238 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1239 {
1240 	switch (cmd) {
1241 	case FS_IOC_GETVERSION:
1242 		return (zpl_ioctl_getversion(filp, (void *)arg));
1243 	case FS_IOC_GETFLAGS:
1244 		return (zpl_ioctl_getflags(filp, (void *)arg));
1245 	case FS_IOC_SETFLAGS:
1246 		return (zpl_ioctl_setflags(filp, (void *)arg));
1247 	case ZFS_IOC_FSGETXATTR:
1248 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1249 	case ZFS_IOC_FSSETXATTR:
1250 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1251 	case ZFS_IOC_GETDOSFLAGS:
1252 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1253 	case ZFS_IOC_SETDOSFLAGS:
1254 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1255 	case ZFS_IOC_COMPAT_FICLONE:
1256 		return (zpl_ioctl_ficlone(filp, (void *)arg));
1257 	case ZFS_IOC_COMPAT_FICLONERANGE:
1258 		return (zpl_ioctl_ficlonerange(filp, (void *)arg));
1259 	case ZFS_IOC_COMPAT_FIDEDUPERANGE:
1260 		return (zpl_ioctl_fideduperange(filp, (void *)arg));
1261 	default:
1262 		return (-ENOTTY);
1263 	}
1264 }
1265 
1266 #ifdef CONFIG_COMPAT
1267 static long
1268 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1269 {
1270 	switch (cmd) {
1271 	case FS_IOC32_GETVERSION:
1272 		cmd = FS_IOC_GETVERSION;
1273 		break;
1274 	case FS_IOC32_GETFLAGS:
1275 		cmd = FS_IOC_GETFLAGS;
1276 		break;
1277 	case FS_IOC32_SETFLAGS:
1278 		cmd = FS_IOC_SETFLAGS;
1279 		break;
1280 	default:
1281 		return (-ENOTTY);
1282 	}
1283 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1284 }
1285 #endif /* CONFIG_COMPAT */
1286 
1287 const struct address_space_operations zpl_address_space_operations = {
1288 #ifdef HAVE_VFS_READPAGES
1289 	.readpages	= zpl_readpages,
1290 #else
1291 	.readahead	= zpl_readahead,
1292 #endif
1293 #ifdef HAVE_VFS_READ_FOLIO
1294 	.read_folio	= zpl_read_folio,
1295 #else
1296 	.readpage	= zpl_readpage,
1297 #endif
1298 	.writepage	= zpl_writepage,
1299 	.writepages	= zpl_writepages,
1300 	.direct_IO	= zpl_direct_IO,
1301 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1302 	.set_page_dirty = __set_page_dirty_nobuffers,
1303 #endif
1304 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1305 	.dirty_folio	= filemap_dirty_folio,
1306 #endif
1307 };
1308 
1309 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
1310 const struct file_operations_extend zpl_file_operations = {
1311 	.kabi_fops = {
1312 #else
1313 const struct file_operations zpl_file_operations = {
1314 #endif
1315 	.open		= zpl_open,
1316 	.release	= zpl_release,
1317 	.llseek		= zpl_llseek,
1318 #ifdef HAVE_VFS_RW_ITERATE
1319 #ifdef HAVE_NEW_SYNC_READ
1320 	.read		= new_sync_read,
1321 	.write		= new_sync_write,
1322 #endif
1323 	.read_iter	= zpl_iter_read,
1324 	.write_iter	= zpl_iter_write,
1325 #ifdef HAVE_VFS_IOV_ITER
1326 #ifdef HAVE_COPY_SPLICE_READ
1327 	.splice_read	= copy_splice_read,
1328 #else
1329 	.splice_read	= generic_file_splice_read,
1330 #endif
1331 	.splice_write	= iter_file_splice_write,
1332 #endif
1333 #else
1334 	.read		= do_sync_read,
1335 	.write		= do_sync_write,
1336 	.aio_read	= zpl_aio_read,
1337 	.aio_write	= zpl_aio_write,
1338 #endif
1339 	.mmap		= zpl_mmap,
1340 	.fsync		= zpl_fsync,
1341 #ifdef HAVE_FILE_AIO_FSYNC
1342 	.aio_fsync	= zpl_aio_fsync,
1343 #endif
1344 	.fallocate	= zpl_fallocate,
1345 #ifdef HAVE_VFS_COPY_FILE_RANGE
1346 	.copy_file_range	= zpl_copy_file_range,
1347 #endif
1348 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1349 	.clone_file_range	= zpl_clone_file_range,
1350 #endif
1351 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1352 	.remap_file_range	= zpl_remap_file_range,
1353 #endif
1354 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1355 	.dedupe_file_range	= zpl_dedupe_file_range,
1356 #endif
1357 #ifdef HAVE_FILE_FADVISE
1358 	.fadvise	= zpl_fadvise,
1359 #endif
1360 	.unlocked_ioctl	= zpl_ioctl,
1361 #ifdef CONFIG_COMPAT
1362 	.compat_ioctl	= zpl_compat_ioctl,
1363 #endif
1364 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
1365 	}, /* kabi_fops */
1366 	.copy_file_range	= zpl_copy_file_range,
1367 	.clone_file_range	= zpl_clone_file_range,
1368 #endif
1369 };
1370 
1371 const struct file_operations zpl_dir_file_operations = {
1372 	.llseek		= generic_file_llseek,
1373 	.read		= generic_read_dir,
1374 #if defined(HAVE_VFS_ITERATE_SHARED)
1375 	.iterate_shared	= zpl_iterate,
1376 #elif defined(HAVE_VFS_ITERATE)
1377 	.iterate	= zpl_iterate,
1378 #else
1379 	.readdir	= zpl_readdir,
1380 #endif
1381 	.fsync		= zpl_fsync,
1382 	.unlocked_ioctl = zpl_ioctl,
1383 #ifdef CONFIG_COMPAT
1384 	.compat_ioctl   = zpl_compat_ioctl,
1385 #endif
1386 };
1387 
1388 /* CSTYLED */
1389 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1390 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1391 	"Percentage of length to use for the available capacity check");
1392