1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <sys/file.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/zfs_znode.h>
33 #include <sys/zfs_vfsops.h>
34 #include <sys/zfs_vnops.h>
35 #include <sys/zfs_project.h>
36 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
37 #include <linux/pagemap.h>
38 #endif
39 
40 /*
41  * When using fallocate(2) to preallocate space, inflate the requested
42  * capacity check by 10% to account for the required metadata blocks.
43  */
44 unsigned int zfs_fallocate_reserve_percent = 110;
45 
46 static int
47 zpl_open(struct inode *ip, struct file *filp)
48 {
49 	cred_t *cr = CRED();
50 	int error;
51 	fstrans_cookie_t cookie;
52 
53 	error = generic_file_open(ip, filp);
54 	if (error)
55 		return (error);
56 
57 	crhold(cr);
58 	cookie = spl_fstrans_mark();
59 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
60 	spl_fstrans_unmark(cookie);
61 	crfree(cr);
62 	ASSERT3S(error, <=, 0);
63 
64 	return (error);
65 }
66 
67 static int
68 zpl_release(struct inode *ip, struct file *filp)
69 {
70 	cred_t *cr = CRED();
71 	int error;
72 	fstrans_cookie_t cookie;
73 
74 	cookie = spl_fstrans_mark();
75 	if (ITOZ(ip)->z_atime_dirty)
76 		zfs_mark_inode_dirty(ip);
77 
78 	crhold(cr);
79 	error = -zfs_close(ip, filp->f_flags, cr);
80 	spl_fstrans_unmark(cookie);
81 	crfree(cr);
82 	ASSERT3S(error, <=, 0);
83 
84 	return (error);
85 }
86 
87 static int
88 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
89 {
90 	cred_t *cr = CRED();
91 	int error;
92 	fstrans_cookie_t cookie;
93 
94 	crhold(cr);
95 	cookie = spl_fstrans_mark();
96 	error = -zfs_readdir(file_inode(filp), ctx, cr);
97 	spl_fstrans_unmark(cookie);
98 	crfree(cr);
99 	ASSERT3S(error, <=, 0);
100 
101 	return (error);
102 }
103 
104 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
105 static int
106 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
107 {
108 	zpl_dir_context_t ctx =
109 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
110 	int error;
111 
112 	error = zpl_iterate(filp, &ctx);
113 	filp->f_pos = ctx.pos;
114 
115 	return (error);
116 }
117 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
118 
119 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
120 /*
121  * Linux 2.6.35 - 3.0 API,
122  * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
123  * redundant.  The dentry is still accessible via filp->f_path.dentry,
124  * and we are guaranteed that filp will never be NULL.
125  */
126 static int
127 zpl_fsync(struct file *filp, int datasync)
128 {
129 	struct inode *inode = filp->f_mapping->host;
130 	cred_t *cr = CRED();
131 	int error;
132 	fstrans_cookie_t cookie;
133 
134 	crhold(cr);
135 	cookie = spl_fstrans_mark();
136 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
137 	spl_fstrans_unmark(cookie);
138 	crfree(cr);
139 	ASSERT3S(error, <=, 0);
140 
141 	return (error);
142 }
143 
144 #ifdef HAVE_FILE_AIO_FSYNC
145 static int
146 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
147 {
148 	return (zpl_fsync(kiocb->ki_filp, datasync));
149 }
150 #endif
151 
152 #elif defined(HAVE_FSYNC_RANGE)
153 /*
154  * Linux 3.1 API,
155  * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
156  * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
157  * lock is no longer held by the caller, for zfs we don't require the lock
158  * to be held so we don't acquire it.
159  */
160 static int
161 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
162 {
163 	struct inode *inode = filp->f_mapping->host;
164 	cred_t *cr = CRED();
165 	int error;
166 	fstrans_cookie_t cookie;
167 
168 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
169 	if (error)
170 		return (error);
171 
172 	crhold(cr);
173 	cookie = spl_fstrans_mark();
174 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
175 	spl_fstrans_unmark(cookie);
176 	crfree(cr);
177 	ASSERT3S(error, <=, 0);
178 
179 	return (error);
180 }
181 
182 #ifdef HAVE_FILE_AIO_FSYNC
183 static int
184 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
185 {
186 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
187 }
188 #endif
189 
190 #else
191 #error "Unsupported fops->fsync() implementation"
192 #endif
193 
194 static inline int
195 zfs_io_flags(struct kiocb *kiocb)
196 {
197 	int flags = 0;
198 
199 #if defined(IOCB_DSYNC)
200 	if (kiocb->ki_flags & IOCB_DSYNC)
201 		flags |= O_DSYNC;
202 #endif
203 #if defined(IOCB_SYNC)
204 	if (kiocb->ki_flags & IOCB_SYNC)
205 		flags |= O_SYNC;
206 #endif
207 #if defined(IOCB_APPEND)
208 	if (kiocb->ki_flags & IOCB_APPEND)
209 		flags |= O_APPEND;
210 #endif
211 #if defined(IOCB_DIRECT)
212 	if (kiocb->ki_flags & IOCB_DIRECT)
213 		flags |= O_DIRECT;
214 #endif
215 	return (flags);
216 }
217 
218 /*
219  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
220  * is true.  This is needed since datasets with inherited "relatime" property
221  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
222  * `zfs set relatime=...`), which is what relatime test in VFS by
223  * relatime_need_update() is based on.
224  */
225 static inline void
226 zpl_file_accessed(struct file *filp)
227 {
228 	struct inode *ip = filp->f_mapping->host;
229 
230 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
231 		if (zfs_relatime_need_update(ip))
232 			file_accessed(filp);
233 	} else {
234 		file_accessed(filp);
235 	}
236 }
237 
238 #if defined(HAVE_VFS_RW_ITERATE)
239 
240 /*
241  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
242  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
243  * manipulate the iov_iter are available.  In which case the full iov_iter
244  * can be attached to the uio and correctly handled in the lower layers.
245  * Otherwise, for older kernels extract the iovec and pass it instead.
246  */
247 static void
248 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
249     loff_t pos, ssize_t count, size_t skip)
250 {
251 #if defined(HAVE_VFS_IOV_ITER)
252 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
253 #else
254 #ifdef HAVE_IOV_ITER_TYPE
255 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
256 	    iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
257 	    count, skip);
258 #else
259 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
260 	    to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
261 	    count, skip);
262 #endif
263 #endif
264 }
265 
266 static ssize_t
267 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
268 {
269 	cred_t *cr = CRED();
270 	fstrans_cookie_t cookie;
271 	struct file *filp = kiocb->ki_filp;
272 	ssize_t count = iov_iter_count(to);
273 	zfs_uio_t uio;
274 
275 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
276 
277 	crhold(cr);
278 	cookie = spl_fstrans_mark();
279 
280 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
281 	    filp->f_flags | zfs_io_flags(kiocb), cr);
282 
283 	spl_fstrans_unmark(cookie);
284 	crfree(cr);
285 
286 	if (error < 0)
287 		return (error);
288 
289 	ssize_t read = count - uio.uio_resid;
290 	kiocb->ki_pos += read;
291 
292 	zpl_file_accessed(filp);
293 
294 	return (read);
295 }
296 
297 static inline ssize_t
298 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
299     size_t *countp)
300 {
301 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
302 	ssize_t ret = generic_write_checks(kiocb, from);
303 	if (ret <= 0)
304 		return (ret);
305 
306 	*countp = ret;
307 #else
308 	struct file *file = kiocb->ki_filp;
309 	struct address_space *mapping = file->f_mapping;
310 	struct inode *ip = mapping->host;
311 	int isblk = S_ISBLK(ip->i_mode);
312 
313 	*countp = iov_iter_count(from);
314 	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
315 	if (ret)
316 		return (ret);
317 #endif
318 
319 	return (0);
320 }
321 
322 static ssize_t
323 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
324 {
325 	cred_t *cr = CRED();
326 	fstrans_cookie_t cookie;
327 	struct file *filp = kiocb->ki_filp;
328 	struct inode *ip = filp->f_mapping->host;
329 	zfs_uio_t uio;
330 	size_t count = 0;
331 	ssize_t ret;
332 
333 	ret = zpl_generic_write_checks(kiocb, from, &count);
334 	if (ret)
335 		return (ret);
336 
337 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
338 
339 	crhold(cr);
340 	cookie = spl_fstrans_mark();
341 
342 	int error = -zfs_write(ITOZ(ip), &uio,
343 	    filp->f_flags | zfs_io_flags(kiocb), cr);
344 
345 	spl_fstrans_unmark(cookie);
346 	crfree(cr);
347 
348 	if (error < 0)
349 		return (error);
350 
351 	ssize_t wrote = count - uio.uio_resid;
352 	kiocb->ki_pos += wrote;
353 
354 	return (wrote);
355 }
356 
357 #else /* !HAVE_VFS_RW_ITERATE */
358 
359 static ssize_t
360 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
361     unsigned long nr_segs, loff_t pos)
362 {
363 	cred_t *cr = CRED();
364 	fstrans_cookie_t cookie;
365 	struct file *filp = kiocb->ki_filp;
366 	size_t count;
367 	ssize_t ret;
368 
369 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
370 	if (ret)
371 		return (ret);
372 
373 	zfs_uio_t uio;
374 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
375 	    count, 0);
376 
377 	crhold(cr);
378 	cookie = spl_fstrans_mark();
379 
380 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
381 	    filp->f_flags | zfs_io_flags(kiocb), cr);
382 
383 	spl_fstrans_unmark(cookie);
384 	crfree(cr);
385 
386 	if (error < 0)
387 		return (error);
388 
389 	ssize_t read = count - uio.uio_resid;
390 	kiocb->ki_pos += read;
391 
392 	zpl_file_accessed(filp);
393 
394 	return (read);
395 }
396 
397 static ssize_t
398 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
399     unsigned long nr_segs, loff_t pos)
400 {
401 	cred_t *cr = CRED();
402 	fstrans_cookie_t cookie;
403 	struct file *filp = kiocb->ki_filp;
404 	struct inode *ip = filp->f_mapping->host;
405 	size_t count;
406 	ssize_t ret;
407 
408 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
409 	if (ret)
410 		return (ret);
411 
412 	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
413 	if (ret)
414 		return (ret);
415 
416 	zfs_uio_t uio;
417 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
418 	    count, 0);
419 
420 	crhold(cr);
421 	cookie = spl_fstrans_mark();
422 
423 	int error = -zfs_write(ITOZ(ip), &uio,
424 	    filp->f_flags | zfs_io_flags(kiocb), cr);
425 
426 	spl_fstrans_unmark(cookie);
427 	crfree(cr);
428 
429 	if (error < 0)
430 		return (error);
431 
432 	ssize_t wrote = count - uio.uio_resid;
433 	kiocb->ki_pos += wrote;
434 
435 	return (wrote);
436 }
437 #endif /* HAVE_VFS_RW_ITERATE */
438 
439 #if defined(HAVE_VFS_RW_ITERATE)
440 static ssize_t
441 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
442 {
443 	if (rw == WRITE)
444 		return (zpl_iter_write(kiocb, iter));
445 	else
446 		return (zpl_iter_read(kiocb, iter));
447 }
448 #if defined(HAVE_VFS_DIRECT_IO_ITER)
449 static ssize_t
450 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
451 {
452 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
453 }
454 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
455 static ssize_t
456 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
457 {
458 	ASSERT3S(pos, ==, kiocb->ki_pos);
459 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
460 }
461 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
462 static ssize_t
463 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
464 {
465 	ASSERT3S(pos, ==, kiocb->ki_pos);
466 	return (zpl_direct_IO_impl(rw, kiocb, iter));
467 }
468 #else
469 #error "Unknown direct IO interface"
470 #endif
471 
472 #else /* HAVE_VFS_RW_ITERATE */
473 
474 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
475 static ssize_t
476 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
477     loff_t pos, unsigned long nr_segs)
478 {
479 	if (rw == WRITE)
480 		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
481 	else
482 		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
483 }
484 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
485 static ssize_t
486 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
487 {
488 	const struct iovec *iovp = iov_iter_iovec(iter);
489 	unsigned long nr_segs = iter->nr_segs;
490 
491 	ASSERT3S(pos, ==, kiocb->ki_pos);
492 	if (rw == WRITE)
493 		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
494 	else
495 		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
496 }
497 #else
498 #error "Unknown direct IO interface"
499 #endif
500 
501 #endif /* HAVE_VFS_RW_ITERATE */
502 
503 static loff_t
504 zpl_llseek(struct file *filp, loff_t offset, int whence)
505 {
506 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
507 	fstrans_cookie_t cookie;
508 
509 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
510 		struct inode *ip = filp->f_mapping->host;
511 		loff_t maxbytes = ip->i_sb->s_maxbytes;
512 		loff_t error;
513 
514 		spl_inode_lock_shared(ip);
515 		cookie = spl_fstrans_mark();
516 		error = -zfs_holey(ITOZ(ip), whence, &offset);
517 		spl_fstrans_unmark(cookie);
518 		if (error == 0)
519 			error = lseek_execute(filp, ip, offset, maxbytes);
520 		spl_inode_unlock_shared(ip);
521 
522 		return (error);
523 	}
524 #endif /* SEEK_HOLE && SEEK_DATA */
525 
526 	return (generic_file_llseek(filp, offset, whence));
527 }
528 
529 /*
530  * It's worth taking a moment to describe how mmap is implemented
531  * for zfs because it differs considerably from other Linux filesystems.
532  * However, this issue is handled the same way under OpenSolaris.
533  *
534  * The issue is that by design zfs bypasses the Linux page cache and
535  * leaves all caching up to the ARC.  This has been shown to work
536  * well for the common read(2)/write(2) case.  However, mmap(2)
537  * is problem because it relies on being tightly integrated with the
538  * page cache.  To handle this we cache mmap'ed files twice, once in
539  * the ARC and a second time in the page cache.  The code is careful
540  * to keep both copies synchronized.
541  *
542  * When a file with an mmap'ed region is written to using write(2)
543  * both the data in the ARC and existing pages in the page cache
544  * are updated.  For a read(2) data will be read first from the page
545  * cache then the ARC if needed.  Neither a write(2) or read(2) will
546  * will ever result in new pages being added to the page cache.
547  *
548  * New pages are added to the page cache only via .readpage() which
549  * is called when the vfs needs to read a page off disk to back the
550  * virtual memory region.  These pages may be modified without
551  * notifying the ARC and will be written out periodically via
552  * .writepage().  This will occur due to either a sync or the usual
553  * page aging behavior.  Note because a read(2) of a mmap'ed file
554  * will always check the page cache first even when the ARC is out
555  * of date correct data will still be returned.
556  *
557  * While this implementation ensures correct behavior it does have
558  * have some drawbacks.  The most obvious of which is that it
559  * increases the required memory footprint when access mmap'ed
560  * files.  It also adds additional complexity to the code keeping
561  * both caches synchronized.
562  *
563  * Longer term it may be possible to cleanly resolve this wart by
564  * mapping page cache pages directly on to the ARC buffers.  The
565  * Linux address space operations are flexible enough to allow
566  * selection of which pages back a particular index.  The trick
567  * would be working out the details of which subsystem is in
568  * charge, the ARC, the page cache, or both.  It may also prove
569  * helpful to move the ARC buffers to a scatter-gather lists
570  * rather than a vmalloc'ed region.
571  */
572 static int
573 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
574 {
575 	struct inode *ip = filp->f_mapping->host;
576 	znode_t *zp = ITOZ(ip);
577 	int error;
578 	fstrans_cookie_t cookie;
579 
580 	cookie = spl_fstrans_mark();
581 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
582 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
583 	spl_fstrans_unmark(cookie);
584 	if (error)
585 		return (error);
586 
587 	error = generic_file_mmap(filp, vma);
588 	if (error)
589 		return (error);
590 
591 	mutex_enter(&zp->z_lock);
592 	zp->z_is_mapped = B_TRUE;
593 	mutex_exit(&zp->z_lock);
594 
595 	return (error);
596 }
597 
598 /*
599  * Populate a page with data for the Linux page cache.  This function is
600  * only used to support mmap(2).  There will be an identical copy of the
601  * data in the ARC which is kept up to date via .write() and .writepage().
602  */
603 static inline int
604 zpl_readpage_common(struct page *pp)
605 {
606 	struct inode *ip;
607 	struct page *pl[1];
608 	int error = 0;
609 	fstrans_cookie_t cookie;
610 
611 	ASSERT(PageLocked(pp));
612 	ip = pp->mapping->host;
613 	pl[0] = pp;
614 
615 	cookie = spl_fstrans_mark();
616 	error = -zfs_getpage(ip, pl, 1);
617 	spl_fstrans_unmark(cookie);
618 
619 	if (error) {
620 		SetPageError(pp);
621 		ClearPageUptodate(pp);
622 	} else {
623 		ClearPageError(pp);
624 		SetPageUptodate(pp);
625 		flush_dcache_page(pp);
626 	}
627 
628 	unlock_page(pp);
629 	return (error);
630 }
631 
632 static int
633 zpl_readpage(struct file *filp, struct page *pp)
634 {
635 	return (zpl_readpage_common(pp));
636 }
637 
638 static int
639 zpl_readpage_filler(void *data, struct page *pp)
640 {
641 	return (zpl_readpage_common(pp));
642 }
643 
644 /*
645  * Populate a set of pages with data for the Linux page cache.  This
646  * function will only be called for read ahead and never for demand
647  * paging.  For simplicity, the code relies on read_cache_pages() to
648  * correctly lock each page for IO and call zpl_readpage().
649  */
650 static int
651 zpl_readpages(struct file *filp, struct address_space *mapping,
652     struct list_head *pages, unsigned nr_pages)
653 {
654 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
655 }
656 
657 static int
658 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
659 {
660 	struct address_space *mapping = data;
661 	fstrans_cookie_t cookie;
662 
663 	ASSERT(PageLocked(pp));
664 	ASSERT(!PageWriteback(pp));
665 
666 	cookie = spl_fstrans_mark();
667 	(void) zfs_putpage(mapping->host, pp, wbc);
668 	spl_fstrans_unmark(cookie);
669 
670 	return (0);
671 }
672 
673 static int
674 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
675 {
676 	znode_t		*zp = ITOZ(mapping->host);
677 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
678 	enum writeback_sync_modes sync_mode;
679 	int result;
680 
681 	ZPL_ENTER(zfsvfs);
682 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
683 		wbc->sync_mode = WB_SYNC_ALL;
684 	ZPL_EXIT(zfsvfs);
685 	sync_mode = wbc->sync_mode;
686 
687 	/*
688 	 * We don't want to run write_cache_pages() in SYNC mode here, because
689 	 * that would make putpage() wait for a single page to be committed to
690 	 * disk every single time, resulting in atrocious performance. Instead
691 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
692 	 * and then we commit it all in one go.
693 	 */
694 	wbc->sync_mode = WB_SYNC_NONE;
695 	result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
696 	if (sync_mode != wbc->sync_mode) {
697 		ZPL_ENTER(zfsvfs);
698 		ZPL_VERIFY_ZP(zp);
699 		if (zfsvfs->z_log != NULL)
700 			zil_commit(zfsvfs->z_log, zp->z_id);
701 		ZPL_EXIT(zfsvfs);
702 
703 		/*
704 		 * We need to call write_cache_pages() again (we can't just
705 		 * return after the commit) because the previous call in
706 		 * non-SYNC mode does not guarantee that we got all the dirty
707 		 * pages (see the implementation of write_cache_pages() for
708 		 * details). That being said, this is a no-op in most cases.
709 		 */
710 		wbc->sync_mode = sync_mode;
711 		result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
712 	}
713 	return (result);
714 }
715 
716 /*
717  * Write out dirty pages to the ARC, this function is only required to
718  * support mmap(2).  Mapped pages may be dirtied by memory operations
719  * which never call .write().  These dirty pages are kept in sync with
720  * the ARC buffers via this hook.
721  */
722 static int
723 zpl_writepage(struct page *pp, struct writeback_control *wbc)
724 {
725 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
726 		wbc->sync_mode = WB_SYNC_ALL;
727 
728 	return (zpl_putpage(pp, wbc, pp->mapping));
729 }
730 
731 /*
732  * The flag combination which matches the behavior of zfs_space() is
733  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
734  * flag was introduced in the 2.6.38 kernel.
735  *
736  * The original mode=0 (allocate space) behavior can be reasonably emulated
737  * by checking if enough space exists and creating a sparse file, as real
738  * persistent space reservation is not possible due to COW, snapshots, etc.
739  */
740 static long
741 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
742 {
743 	cred_t *cr = CRED();
744 	loff_t olen;
745 	fstrans_cookie_t cookie;
746 	int error = 0;
747 
748 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0)
749 		return (-EOPNOTSUPP);
750 
751 	if (offset < 0 || len <= 0)
752 		return (-EINVAL);
753 
754 	spl_inode_lock(ip);
755 	olen = i_size_read(ip);
756 
757 	crhold(cr);
758 	cookie = spl_fstrans_mark();
759 	if (mode & FALLOC_FL_PUNCH_HOLE) {
760 		flock64_t bf;
761 
762 		if (offset > olen)
763 			goto out_unmark;
764 
765 		if (offset + len > olen)
766 			len = olen - offset;
767 		bf.l_type = F_WRLCK;
768 		bf.l_whence = SEEK_SET;
769 		bf.l_start = offset;
770 		bf.l_len = len;
771 		bf.l_pid = 0;
772 
773 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
774 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
775 		unsigned int percent = zfs_fallocate_reserve_percent;
776 		struct kstatfs statfs;
777 
778 		/* Legacy mode, disable fallocate compatibility. */
779 		if (percent == 0) {
780 			error = -EOPNOTSUPP;
781 			goto out_unmark;
782 		}
783 
784 		/*
785 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
786 		 * also checks project quota limits, which are relevant here.
787 		 */
788 		error = zfs_statvfs(ip, &statfs);
789 		if (error)
790 			goto out_unmark;
791 
792 		/*
793 		 * Shrink available space a bit to account for overhead/races.
794 		 * We know the product previously fit into availbytes from
795 		 * dmu_objset_space(), so the smaller product will also fit.
796 		 */
797 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
798 			error = -ENOSPC;
799 			goto out_unmark;
800 		}
801 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
802 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
803 	}
804 out_unmark:
805 	spl_fstrans_unmark(cookie);
806 	spl_inode_unlock(ip);
807 
808 	crfree(cr);
809 
810 	return (error);
811 }
812 
813 static long
814 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
815 {
816 	return zpl_fallocate_common(file_inode(filp),
817 	    mode, offset, len);
818 }
819 
820 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
821 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
822 
823 static uint32_t
824 __zpl_ioctl_getflags(struct inode *ip)
825 {
826 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
827 	uint32_t ioctl_flags = 0;
828 
829 	if (zfs_flags & ZFS_IMMUTABLE)
830 		ioctl_flags |= FS_IMMUTABLE_FL;
831 
832 	if (zfs_flags & ZFS_APPENDONLY)
833 		ioctl_flags |= FS_APPEND_FL;
834 
835 	if (zfs_flags & ZFS_NODUMP)
836 		ioctl_flags |= FS_NODUMP_FL;
837 
838 	if (zfs_flags & ZFS_PROJINHERIT)
839 		ioctl_flags |= ZFS_PROJINHERIT_FL;
840 
841 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
842 }
843 
844 /*
845  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
846  * attributes common to both Linux and Solaris are mapped.
847  */
848 static int
849 zpl_ioctl_getflags(struct file *filp, void __user *arg)
850 {
851 	uint32_t flags;
852 	int err;
853 
854 	flags = __zpl_ioctl_getflags(file_inode(filp));
855 	err = copy_to_user(arg, &flags, sizeof (flags));
856 
857 	return (err);
858 }
859 
860 /*
861  * fchange() is a helper macro to detect if we have been asked to change a
862  * flag. This is ugly, but the requirement that we do this is a consequence of
863  * how the Linux file attribute interface was designed. Another consequence is
864  * that concurrent modification of files suffers from a TOCTOU race. Neither
865  * are things we can fix without modifying the kernel-userland interface, which
866  * is outside of our jurisdiction.
867  */
868 
869 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
870 
871 static int
872 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
873 {
874 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
875 	xoptattr_t *xoap;
876 
877 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
878 	    ZFS_PROJINHERIT_FL))
879 		return (-EOPNOTSUPP);
880 
881 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
882 		return (-EACCES);
883 
884 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
885 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
886 	    !capable(CAP_LINUX_IMMUTABLE))
887 		return (-EPERM);
888 
889 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
890 		return (-EACCES);
891 
892 	xva_init(xva);
893 	xoap = xva_getxoptattr(xva);
894 
895 	XVA_SET_REQ(xva, XAT_IMMUTABLE);
896 	if (ioctl_flags & FS_IMMUTABLE_FL)
897 		xoap->xoa_immutable = B_TRUE;
898 
899 	XVA_SET_REQ(xva, XAT_APPENDONLY);
900 	if (ioctl_flags & FS_APPEND_FL)
901 		xoap->xoa_appendonly = B_TRUE;
902 
903 	XVA_SET_REQ(xva, XAT_NODUMP);
904 	if (ioctl_flags & FS_NODUMP_FL)
905 		xoap->xoa_nodump = B_TRUE;
906 
907 	XVA_SET_REQ(xva, XAT_PROJINHERIT);
908 	if (ioctl_flags & ZFS_PROJINHERIT_FL)
909 		xoap->xoa_projinherit = B_TRUE;
910 
911 	return (0);
912 }
913 
914 static int
915 zpl_ioctl_setflags(struct file *filp, void __user *arg)
916 {
917 	struct inode *ip = file_inode(filp);
918 	uint32_t flags;
919 	cred_t *cr = CRED();
920 	xvattr_t xva;
921 	int err;
922 	fstrans_cookie_t cookie;
923 
924 	if (copy_from_user(&flags, arg, sizeof (flags)))
925 		return (-EFAULT);
926 
927 	err = __zpl_ioctl_setflags(ip, flags, &xva);
928 	if (err)
929 		return (err);
930 
931 	crhold(cr);
932 	cookie = spl_fstrans_mark();
933 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
934 	spl_fstrans_unmark(cookie);
935 	crfree(cr);
936 
937 	return (err);
938 }
939 
940 static int
941 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
942 {
943 	zfsxattr_t fsx = { 0 };
944 	struct inode *ip = file_inode(filp);
945 	int err;
946 
947 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
948 	fsx.fsx_projid = ITOZ(ip)->z_projid;
949 	err = copy_to_user(arg, &fsx, sizeof (fsx));
950 
951 	return (err);
952 }
953 
954 static int
955 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
956 {
957 	struct inode *ip = file_inode(filp);
958 	zfsxattr_t fsx;
959 	cred_t *cr = CRED();
960 	xvattr_t xva;
961 	xoptattr_t *xoap;
962 	int err;
963 	fstrans_cookie_t cookie;
964 
965 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
966 		return (-EFAULT);
967 
968 	if (!zpl_is_valid_projid(fsx.fsx_projid))
969 		return (-EINVAL);
970 
971 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
972 	if (err)
973 		return (err);
974 
975 	xoap = xva_getxoptattr(&xva);
976 	XVA_SET_REQ(&xva, XAT_PROJID);
977 	xoap->xoa_projid = fsx.fsx_projid;
978 
979 	crhold(cr);
980 	cookie = spl_fstrans_mark();
981 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
982 	spl_fstrans_unmark(cookie);
983 	crfree(cr);
984 
985 	return (err);
986 }
987 
988 static long
989 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
990 {
991 	switch (cmd) {
992 	case FS_IOC_GETFLAGS:
993 		return (zpl_ioctl_getflags(filp, (void *)arg));
994 	case FS_IOC_SETFLAGS:
995 		return (zpl_ioctl_setflags(filp, (void *)arg));
996 	case ZFS_IOC_FSGETXATTR:
997 		return (zpl_ioctl_getxattr(filp, (void *)arg));
998 	case ZFS_IOC_FSSETXATTR:
999 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1000 	default:
1001 		return (-ENOTTY);
1002 	}
1003 }
1004 
1005 #ifdef CONFIG_COMPAT
1006 static long
1007 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1008 {
1009 	switch (cmd) {
1010 	case FS_IOC32_GETFLAGS:
1011 		cmd = FS_IOC_GETFLAGS;
1012 		break;
1013 	case FS_IOC32_SETFLAGS:
1014 		cmd = FS_IOC_SETFLAGS;
1015 		break;
1016 	default:
1017 		return (-ENOTTY);
1018 	}
1019 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1020 }
1021 #endif /* CONFIG_COMPAT */
1022 
1023 
1024 const struct address_space_operations zpl_address_space_operations = {
1025 	.readpages	= zpl_readpages,
1026 	.readpage	= zpl_readpage,
1027 	.writepage	= zpl_writepage,
1028 	.writepages	= zpl_writepages,
1029 	.direct_IO	= zpl_direct_IO,
1030 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1031 	.set_page_dirty = __set_page_dirty_nobuffers,
1032 #endif
1033 };
1034 
1035 const struct file_operations zpl_file_operations = {
1036 	.open		= zpl_open,
1037 	.release	= zpl_release,
1038 	.llseek		= zpl_llseek,
1039 #ifdef HAVE_VFS_RW_ITERATE
1040 #ifdef HAVE_NEW_SYNC_READ
1041 	.read		= new_sync_read,
1042 	.write		= new_sync_write,
1043 #endif
1044 	.read_iter	= zpl_iter_read,
1045 	.write_iter	= zpl_iter_write,
1046 #ifdef HAVE_VFS_IOV_ITER
1047 	.splice_read	= generic_file_splice_read,
1048 	.splice_write	= iter_file_splice_write,
1049 #endif
1050 #else
1051 	.read		= do_sync_read,
1052 	.write		= do_sync_write,
1053 	.aio_read	= zpl_aio_read,
1054 	.aio_write	= zpl_aio_write,
1055 #endif
1056 	.mmap		= zpl_mmap,
1057 	.fsync		= zpl_fsync,
1058 #ifdef HAVE_FILE_AIO_FSYNC
1059 	.aio_fsync	= zpl_aio_fsync,
1060 #endif
1061 	.fallocate	= zpl_fallocate,
1062 	.unlocked_ioctl	= zpl_ioctl,
1063 #ifdef CONFIG_COMPAT
1064 	.compat_ioctl	= zpl_compat_ioctl,
1065 #endif
1066 };
1067 
1068 const struct file_operations zpl_dir_file_operations = {
1069 	.llseek		= generic_file_llseek,
1070 	.read		= generic_read_dir,
1071 #if defined(HAVE_VFS_ITERATE_SHARED)
1072 	.iterate_shared	= zpl_iterate,
1073 #elif defined(HAVE_VFS_ITERATE)
1074 	.iterate	= zpl_iterate,
1075 #else
1076 	.readdir	= zpl_readdir,
1077 #endif
1078 	.fsync		= zpl_fsync,
1079 	.unlocked_ioctl = zpl_ioctl,
1080 #ifdef CONFIG_COMPAT
1081 	.compat_ioctl   = zpl_compat_ioctl,
1082 #endif
1083 };
1084 
1085 /* BEGIN CSTYLED */
1086 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1087 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1088     "Percentage of length to use for the available capacity check");
1089 /* END CSTYLED */
1090