1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <linux/fs.h>
31 #include <sys/file.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_vnops.h>
36 #include <sys/zfs_project.h>
37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
38     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
39 #include <linux/pagemap.h>
40 #endif
41 #ifdef HAVE_FILE_FADVISE
42 #include <linux/fadvise.h>
43 #endif
44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
45 #include <linux/writeback.h>
46 #endif
47 
48 /*
49  * When using fallocate(2) to preallocate space, inflate the requested
50  * capacity check by 10% to account for the required metadata blocks.
51  */
52 static unsigned int zfs_fallocate_reserve_percent = 110;
53 
54 static int
55 zpl_open(struct inode *ip, struct file *filp)
56 {
57 	cred_t *cr = CRED();
58 	int error;
59 	fstrans_cookie_t cookie;
60 
61 	error = generic_file_open(ip, filp);
62 	if (error)
63 		return (error);
64 
65 	crhold(cr);
66 	cookie = spl_fstrans_mark();
67 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
68 	spl_fstrans_unmark(cookie);
69 	crfree(cr);
70 	ASSERT3S(error, <=, 0);
71 
72 	return (error);
73 }
74 
75 static int
76 zpl_release(struct inode *ip, struct file *filp)
77 {
78 	cred_t *cr = CRED();
79 	int error;
80 	fstrans_cookie_t cookie;
81 
82 	cookie = spl_fstrans_mark();
83 	if (ITOZ(ip)->z_atime_dirty)
84 		zfs_mark_inode_dirty(ip);
85 
86 	crhold(cr);
87 	error = -zfs_close(ip, filp->f_flags, cr);
88 	spl_fstrans_unmark(cookie);
89 	crfree(cr);
90 	ASSERT3S(error, <=, 0);
91 
92 	return (error);
93 }
94 
95 static int
96 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
97 {
98 	cred_t *cr = CRED();
99 	int error;
100 	fstrans_cookie_t cookie;
101 
102 	crhold(cr);
103 	cookie = spl_fstrans_mark();
104 	error = -zfs_readdir(file_inode(filp), ctx, cr);
105 	spl_fstrans_unmark(cookie);
106 	crfree(cr);
107 	ASSERT3S(error, <=, 0);
108 
109 	return (error);
110 }
111 
112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
113 static int
114 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
115 {
116 	zpl_dir_context_t ctx =
117 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
118 	int error;
119 
120 	error = zpl_iterate(filp, &ctx);
121 	filp->f_pos = ctx.pos;
122 
123 	return (error);
124 }
125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
126 
127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
128 /*
129  * Linux 2.6.35 - 3.0 API,
130  * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
131  * redundant.  The dentry is still accessible via filp->f_path.dentry,
132  * and we are guaranteed that filp will never be NULL.
133  */
134 static int
135 zpl_fsync(struct file *filp, int datasync)
136 {
137 	struct inode *inode = filp->f_mapping->host;
138 	cred_t *cr = CRED();
139 	int error;
140 	fstrans_cookie_t cookie;
141 
142 	crhold(cr);
143 	cookie = spl_fstrans_mark();
144 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
145 	spl_fstrans_unmark(cookie);
146 	crfree(cr);
147 	ASSERT3S(error, <=, 0);
148 
149 	return (error);
150 }
151 
152 #ifdef HAVE_FILE_AIO_FSYNC
153 static int
154 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
155 {
156 	return (zpl_fsync(kiocb->ki_filp, datasync));
157 }
158 #endif
159 
160 #elif defined(HAVE_FSYNC_RANGE)
161 /*
162  * Linux 3.1 API,
163  * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
164  * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
165  * lock is no longer held by the caller, for zfs we don't require the lock
166  * to be held so we don't acquire it.
167  */
168 static int
169 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
170 {
171 	struct inode *inode = filp->f_mapping->host;
172 	znode_t *zp = ITOZ(inode);
173 	zfsvfs_t *zfsvfs = ITOZSB(inode);
174 	cred_t *cr = CRED();
175 	int error;
176 	fstrans_cookie_t cookie;
177 
178 	/*
179 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
180 	 * tandem so that sync writes can detect if there are any non-sync
181 	 * writes going on and vice-versa. The "vice-versa" part to this logic
182 	 * is located in zfs_putpage() where non-sync writes check if there are
183 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
184 	 * we do a commit to complete the non-sync writes since the latter can
185 	 * potentially take several seconds to complete and thus block sync
186 	 * writes in the upcoming call to filemap_write_and_wait_range().
187 	 */
188 	atomic_inc_32(&zp->z_sync_writes_cnt);
189 	/*
190 	 * If the following check does not detect an overlapping non-sync write
191 	 * (say because it's just about to start), then it is guaranteed that
192 	 * the non-sync write will detect this sync write. This is because we
193 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
194 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
195 	 * zfs_putpage() respectively.
196 	 */
197 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
198 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
199 			atomic_dec_32(&zp->z_sync_writes_cnt);
200 			return (error);
201 		}
202 		zil_commit(zfsvfs->z_log, zp->z_id);
203 		zpl_exit(zfsvfs, FTAG);
204 	}
205 
206 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
207 
208 	/*
209 	 * The sync write is not complete yet but we decrement
210 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
211 	 * it internally. If a non-sync write starts just after the decrement
212 	 * operation but before we call zfs_fsync(), it may not detect this
213 	 * overlapping sync write but it does not matter since we have already
214 	 * gone past filemap_write_and_wait_range() and we won't block due to
215 	 * the non-sync write.
216 	 */
217 	atomic_dec_32(&zp->z_sync_writes_cnt);
218 
219 	if (error)
220 		return (error);
221 
222 	crhold(cr);
223 	cookie = spl_fstrans_mark();
224 	error = -zfs_fsync(zp, datasync, cr);
225 	spl_fstrans_unmark(cookie);
226 	crfree(cr);
227 	ASSERT3S(error, <=, 0);
228 
229 	return (error);
230 }
231 
232 #ifdef HAVE_FILE_AIO_FSYNC
233 static int
234 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
235 {
236 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
237 }
238 #endif
239 
240 #else
241 #error "Unsupported fops->fsync() implementation"
242 #endif
243 
244 static inline int
245 zfs_io_flags(struct kiocb *kiocb)
246 {
247 	int flags = 0;
248 
249 #if defined(IOCB_DSYNC)
250 	if (kiocb->ki_flags & IOCB_DSYNC)
251 		flags |= O_DSYNC;
252 #endif
253 #if defined(IOCB_SYNC)
254 	if (kiocb->ki_flags & IOCB_SYNC)
255 		flags |= O_SYNC;
256 #endif
257 #if defined(IOCB_APPEND)
258 	if (kiocb->ki_flags & IOCB_APPEND)
259 		flags |= O_APPEND;
260 #endif
261 #if defined(IOCB_DIRECT)
262 	if (kiocb->ki_flags & IOCB_DIRECT)
263 		flags |= O_DIRECT;
264 #endif
265 	return (flags);
266 }
267 
268 /*
269  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
270  * is true.  This is needed since datasets with inherited "relatime" property
271  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
272  * `zfs set relatime=...`), which is what relatime test in VFS by
273  * relatime_need_update() is based on.
274  */
275 static inline void
276 zpl_file_accessed(struct file *filp)
277 {
278 	struct inode *ip = filp->f_mapping->host;
279 
280 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
281 		if (zfs_relatime_need_update(ip))
282 			file_accessed(filp);
283 	} else {
284 		file_accessed(filp);
285 	}
286 }
287 
288 #if defined(HAVE_VFS_RW_ITERATE)
289 
290 /*
291  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
292  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
293  * manipulate the iov_iter are available.  In which case the full iov_iter
294  * can be attached to the uio and correctly handled in the lower layers.
295  * Otherwise, for older kernels extract the iovec and pass it instead.
296  */
297 static void
298 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
299     loff_t pos, ssize_t count, size_t skip)
300 {
301 #if defined(HAVE_VFS_IOV_ITER)
302 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
303 #else
304 #ifdef HAVE_IOV_ITER_TYPE
305 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
306 	    iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
307 	    count, skip);
308 #else
309 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
310 	    to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
311 	    count, skip);
312 #endif
313 #endif
314 }
315 
316 static ssize_t
317 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
318 {
319 	cred_t *cr = CRED();
320 	fstrans_cookie_t cookie;
321 	struct file *filp = kiocb->ki_filp;
322 	ssize_t count = iov_iter_count(to);
323 	zfs_uio_t uio;
324 
325 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
326 
327 	crhold(cr);
328 	cookie = spl_fstrans_mark();
329 
330 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
331 	    filp->f_flags | zfs_io_flags(kiocb), cr);
332 
333 	spl_fstrans_unmark(cookie);
334 	crfree(cr);
335 
336 	if (error < 0)
337 		return (error);
338 
339 	ssize_t read = count - uio.uio_resid;
340 	kiocb->ki_pos += read;
341 
342 	zpl_file_accessed(filp);
343 
344 	return (read);
345 }
346 
347 static inline ssize_t
348 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
349     size_t *countp)
350 {
351 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
352 	ssize_t ret = generic_write_checks(kiocb, from);
353 	if (ret <= 0)
354 		return (ret);
355 
356 	*countp = ret;
357 #else
358 	struct file *file = kiocb->ki_filp;
359 	struct address_space *mapping = file->f_mapping;
360 	struct inode *ip = mapping->host;
361 	int isblk = S_ISBLK(ip->i_mode);
362 
363 	*countp = iov_iter_count(from);
364 	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
365 	if (ret)
366 		return (ret);
367 #endif
368 
369 	return (0);
370 }
371 
372 static ssize_t
373 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
374 {
375 	cred_t *cr = CRED();
376 	fstrans_cookie_t cookie;
377 	struct file *filp = kiocb->ki_filp;
378 	struct inode *ip = filp->f_mapping->host;
379 	zfs_uio_t uio;
380 	size_t count = 0;
381 	ssize_t ret;
382 
383 	ret = zpl_generic_write_checks(kiocb, from, &count);
384 	if (ret)
385 		return (ret);
386 
387 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
388 
389 	crhold(cr);
390 	cookie = spl_fstrans_mark();
391 
392 	int error = -zfs_write(ITOZ(ip), &uio,
393 	    filp->f_flags | zfs_io_flags(kiocb), cr);
394 
395 	spl_fstrans_unmark(cookie);
396 	crfree(cr);
397 
398 	if (error < 0)
399 		return (error);
400 
401 	ssize_t wrote = count - uio.uio_resid;
402 	kiocb->ki_pos += wrote;
403 
404 	return (wrote);
405 }
406 
407 #else /* !HAVE_VFS_RW_ITERATE */
408 
409 static ssize_t
410 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
411     unsigned long nr_segs, loff_t pos)
412 {
413 	cred_t *cr = CRED();
414 	fstrans_cookie_t cookie;
415 	struct file *filp = kiocb->ki_filp;
416 	size_t count;
417 	ssize_t ret;
418 
419 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
420 	if (ret)
421 		return (ret);
422 
423 	zfs_uio_t uio;
424 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
425 	    count, 0);
426 
427 	crhold(cr);
428 	cookie = spl_fstrans_mark();
429 
430 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
431 	    filp->f_flags | zfs_io_flags(kiocb), cr);
432 
433 	spl_fstrans_unmark(cookie);
434 	crfree(cr);
435 
436 	if (error < 0)
437 		return (error);
438 
439 	ssize_t read = count - uio.uio_resid;
440 	kiocb->ki_pos += read;
441 
442 	zpl_file_accessed(filp);
443 
444 	return (read);
445 }
446 
447 static ssize_t
448 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
449     unsigned long nr_segs, loff_t pos)
450 {
451 	cred_t *cr = CRED();
452 	fstrans_cookie_t cookie;
453 	struct file *filp = kiocb->ki_filp;
454 	struct inode *ip = filp->f_mapping->host;
455 	size_t count;
456 	ssize_t ret;
457 
458 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
459 	if (ret)
460 		return (ret);
461 
462 	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
463 	if (ret)
464 		return (ret);
465 
466 	kiocb->ki_pos = pos;
467 
468 	zfs_uio_t uio;
469 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
470 	    count, 0);
471 
472 	crhold(cr);
473 	cookie = spl_fstrans_mark();
474 
475 	int error = -zfs_write(ITOZ(ip), &uio,
476 	    filp->f_flags | zfs_io_flags(kiocb), cr);
477 
478 	spl_fstrans_unmark(cookie);
479 	crfree(cr);
480 
481 	if (error < 0)
482 		return (error);
483 
484 	ssize_t wrote = count - uio.uio_resid;
485 	kiocb->ki_pos += wrote;
486 
487 	return (wrote);
488 }
489 #endif /* HAVE_VFS_RW_ITERATE */
490 
491 #if defined(HAVE_VFS_RW_ITERATE)
492 static ssize_t
493 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
494 {
495 	if (rw == WRITE)
496 		return (zpl_iter_write(kiocb, iter));
497 	else
498 		return (zpl_iter_read(kiocb, iter));
499 }
500 #if defined(HAVE_VFS_DIRECT_IO_ITER)
501 static ssize_t
502 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
503 {
504 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
505 }
506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
507 static ssize_t
508 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
509 {
510 	ASSERT3S(pos, ==, kiocb->ki_pos);
511 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
512 }
513 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
514 static ssize_t
515 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
516 {
517 	ASSERT3S(pos, ==, kiocb->ki_pos);
518 	return (zpl_direct_IO_impl(rw, kiocb, iter));
519 }
520 #else
521 #error "Unknown direct IO interface"
522 #endif
523 
524 #else /* HAVE_VFS_RW_ITERATE */
525 
526 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
527 static ssize_t
528 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
529     loff_t pos, unsigned long nr_segs)
530 {
531 	if (rw == WRITE)
532 		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
533 	else
534 		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
535 }
536 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
537 static ssize_t
538 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
539 {
540 	const struct iovec *iovp = iov_iter_iovec(iter);
541 	unsigned long nr_segs = iter->nr_segs;
542 
543 	ASSERT3S(pos, ==, kiocb->ki_pos);
544 	if (rw == WRITE)
545 		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
546 	else
547 		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
548 }
549 #else
550 #error "Unknown direct IO interface"
551 #endif
552 
553 #endif /* HAVE_VFS_RW_ITERATE */
554 
555 static loff_t
556 zpl_llseek(struct file *filp, loff_t offset, int whence)
557 {
558 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
559 	fstrans_cookie_t cookie;
560 
561 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
562 		struct inode *ip = filp->f_mapping->host;
563 		loff_t maxbytes = ip->i_sb->s_maxbytes;
564 		loff_t error;
565 
566 		spl_inode_lock_shared(ip);
567 		cookie = spl_fstrans_mark();
568 		error = -zfs_holey(ITOZ(ip), whence, &offset);
569 		spl_fstrans_unmark(cookie);
570 		if (error == 0)
571 			error = lseek_execute(filp, ip, offset, maxbytes);
572 		spl_inode_unlock_shared(ip);
573 
574 		return (error);
575 	}
576 #endif /* SEEK_HOLE && SEEK_DATA */
577 
578 	return (generic_file_llseek(filp, offset, whence));
579 }
580 
581 /*
582  * It's worth taking a moment to describe how mmap is implemented
583  * for zfs because it differs considerably from other Linux filesystems.
584  * However, this issue is handled the same way under OpenSolaris.
585  *
586  * The issue is that by design zfs bypasses the Linux page cache and
587  * leaves all caching up to the ARC.  This has been shown to work
588  * well for the common read(2)/write(2) case.  However, mmap(2)
589  * is problem because it relies on being tightly integrated with the
590  * page cache.  To handle this we cache mmap'ed files twice, once in
591  * the ARC and a second time in the page cache.  The code is careful
592  * to keep both copies synchronized.
593  *
594  * When a file with an mmap'ed region is written to using write(2)
595  * both the data in the ARC and existing pages in the page cache
596  * are updated.  For a read(2) data will be read first from the page
597  * cache then the ARC if needed.  Neither a write(2) or read(2) will
598  * will ever result in new pages being added to the page cache.
599  *
600  * New pages are added to the page cache only via .readpage() which
601  * is called when the vfs needs to read a page off disk to back the
602  * virtual memory region.  These pages may be modified without
603  * notifying the ARC and will be written out periodically via
604  * .writepage().  This will occur due to either a sync or the usual
605  * page aging behavior.  Note because a read(2) of a mmap'ed file
606  * will always check the page cache first even when the ARC is out
607  * of date correct data will still be returned.
608  *
609  * While this implementation ensures correct behavior it does have
610  * have some drawbacks.  The most obvious of which is that it
611  * increases the required memory footprint when access mmap'ed
612  * files.  It also adds additional complexity to the code keeping
613  * both caches synchronized.
614  *
615  * Longer term it may be possible to cleanly resolve this wart by
616  * mapping page cache pages directly on to the ARC buffers.  The
617  * Linux address space operations are flexible enough to allow
618  * selection of which pages back a particular index.  The trick
619  * would be working out the details of which subsystem is in
620  * charge, the ARC, the page cache, or both.  It may also prove
621  * helpful to move the ARC buffers to a scatter-gather lists
622  * rather than a vmalloc'ed region.
623  */
624 static int
625 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
626 {
627 	struct inode *ip = filp->f_mapping->host;
628 	znode_t *zp = ITOZ(ip);
629 	int error;
630 	fstrans_cookie_t cookie;
631 
632 	cookie = spl_fstrans_mark();
633 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
634 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
635 	spl_fstrans_unmark(cookie);
636 	if (error)
637 		return (error);
638 
639 	error = generic_file_mmap(filp, vma);
640 	if (error)
641 		return (error);
642 
643 	mutex_enter(&zp->z_lock);
644 	zp->z_is_mapped = B_TRUE;
645 	mutex_exit(&zp->z_lock);
646 
647 	return (error);
648 }
649 
650 /*
651  * Populate a page with data for the Linux page cache.  This function is
652  * only used to support mmap(2).  There will be an identical copy of the
653  * data in the ARC which is kept up to date via .write() and .writepage().
654  */
655 static inline int
656 zpl_readpage_common(struct page *pp)
657 {
658 	struct inode *ip;
659 	struct page *pl[1];
660 	int error = 0;
661 	fstrans_cookie_t cookie;
662 
663 	ASSERT(PageLocked(pp));
664 	ip = pp->mapping->host;
665 	pl[0] = pp;
666 
667 	cookie = spl_fstrans_mark();
668 	error = -zfs_getpage(ip, pl, 1);
669 	spl_fstrans_unmark(cookie);
670 
671 	if (error) {
672 		SetPageError(pp);
673 		ClearPageUptodate(pp);
674 	} else {
675 		ClearPageError(pp);
676 		SetPageUptodate(pp);
677 		flush_dcache_page(pp);
678 	}
679 
680 	unlock_page(pp);
681 	return (error);
682 }
683 
684 #ifdef HAVE_VFS_READ_FOLIO
685 static int
686 zpl_read_folio(struct file *filp, struct folio *folio)
687 {
688 	return (zpl_readpage_common(&folio->page));
689 }
690 #else
691 static int
692 zpl_readpage(struct file *filp, struct page *pp)
693 {
694 	return (zpl_readpage_common(pp));
695 }
696 #endif
697 
698 static int
699 zpl_readpage_filler(void *data, struct page *pp)
700 {
701 	return (zpl_readpage_common(pp));
702 }
703 
704 /*
705  * Populate a set of pages with data for the Linux page cache.  This
706  * function will only be called for read ahead and never for demand
707  * paging.  For simplicity, the code relies on read_cache_pages() to
708  * correctly lock each page for IO and call zpl_readpage().
709  */
710 #ifdef HAVE_VFS_READPAGES
711 static int
712 zpl_readpages(struct file *filp, struct address_space *mapping,
713     struct list_head *pages, unsigned nr_pages)
714 {
715 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
716 }
717 #else
718 static void
719 zpl_readahead(struct readahead_control *ractl)
720 {
721 	struct page *page;
722 
723 	while ((page = readahead_page(ractl)) != NULL) {
724 		int ret;
725 
726 		ret = zpl_readpage_filler(NULL, page);
727 		put_page(page);
728 		if (ret)
729 			break;
730 	}
731 }
732 #endif
733 
734 static int
735 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
736 {
737 	boolean_t *for_sync = data;
738 	fstrans_cookie_t cookie;
739 
740 	ASSERT(PageLocked(pp));
741 	ASSERT(!PageWriteback(pp));
742 
743 	cookie = spl_fstrans_mark();
744 	(void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
745 	spl_fstrans_unmark(cookie);
746 
747 	return (0);
748 }
749 
750 static int
751 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
752 {
753 	znode_t		*zp = ITOZ(mapping->host);
754 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
755 	enum writeback_sync_modes sync_mode;
756 	int result;
757 
758 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
759 		return (result);
760 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
761 		wbc->sync_mode = WB_SYNC_ALL;
762 	zpl_exit(zfsvfs, FTAG);
763 	sync_mode = wbc->sync_mode;
764 
765 	/*
766 	 * We don't want to run write_cache_pages() in SYNC mode here, because
767 	 * that would make putpage() wait for a single page to be committed to
768 	 * disk every single time, resulting in atrocious performance. Instead
769 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
770 	 * and then we commit it all in one go.
771 	 */
772 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
773 	wbc->sync_mode = WB_SYNC_NONE;
774 	result = write_cache_pages(mapping, wbc, zpl_putpage, &for_sync);
775 	if (sync_mode != wbc->sync_mode) {
776 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
777 			return (result);
778 		if (zfsvfs->z_log != NULL)
779 			zil_commit(zfsvfs->z_log, zp->z_id);
780 		zpl_exit(zfsvfs, FTAG);
781 
782 		/*
783 		 * We need to call write_cache_pages() again (we can't just
784 		 * return after the commit) because the previous call in
785 		 * non-SYNC mode does not guarantee that we got all the dirty
786 		 * pages (see the implementation of write_cache_pages() for
787 		 * details). That being said, this is a no-op in most cases.
788 		 */
789 		wbc->sync_mode = sync_mode;
790 		result = write_cache_pages(mapping, wbc, zpl_putpage,
791 		    &for_sync);
792 	}
793 	return (result);
794 }
795 
796 /*
797  * Write out dirty pages to the ARC, this function is only required to
798  * support mmap(2).  Mapped pages may be dirtied by memory operations
799  * which never call .write().  These dirty pages are kept in sync with
800  * the ARC buffers via this hook.
801  */
802 static int
803 zpl_writepage(struct page *pp, struct writeback_control *wbc)
804 {
805 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
806 		wbc->sync_mode = WB_SYNC_ALL;
807 
808 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
809 
810 	return (zpl_putpage(pp, wbc, &for_sync));
811 }
812 
813 /*
814  * The flag combination which matches the behavior of zfs_space() is
815  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
816  * flag was introduced in the 2.6.38 kernel.
817  *
818  * The original mode=0 (allocate space) behavior can be reasonably emulated
819  * by checking if enough space exists and creating a sparse file, as real
820  * persistent space reservation is not possible due to COW, snapshots, etc.
821  */
822 static long
823 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
824 {
825 	cred_t *cr = CRED();
826 	loff_t olen;
827 	fstrans_cookie_t cookie;
828 	int error = 0;
829 
830 	int test_mode = FALLOC_FL_PUNCH_HOLE;
831 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
832 	test_mode |= FALLOC_FL_ZERO_RANGE;
833 #endif
834 
835 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
836 		return (-EOPNOTSUPP);
837 
838 	if (offset < 0 || len <= 0)
839 		return (-EINVAL);
840 
841 	spl_inode_lock(ip);
842 	olen = i_size_read(ip);
843 
844 	crhold(cr);
845 	cookie = spl_fstrans_mark();
846 	if (mode & (test_mode)) {
847 		flock64_t bf;
848 
849 		if (mode & FALLOC_FL_KEEP_SIZE) {
850 			if (offset > olen)
851 				goto out_unmark;
852 
853 			if (offset + len > olen)
854 				len = olen - offset;
855 		}
856 		bf.l_type = F_WRLCK;
857 		bf.l_whence = SEEK_SET;
858 		bf.l_start = offset;
859 		bf.l_len = len;
860 		bf.l_pid = 0;
861 
862 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
863 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
864 		unsigned int percent = zfs_fallocate_reserve_percent;
865 		struct kstatfs statfs;
866 
867 		/* Legacy mode, disable fallocate compatibility. */
868 		if (percent == 0) {
869 			error = -EOPNOTSUPP;
870 			goto out_unmark;
871 		}
872 
873 		/*
874 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
875 		 * also checks project quota limits, which are relevant here.
876 		 */
877 		error = zfs_statvfs(ip, &statfs);
878 		if (error)
879 			goto out_unmark;
880 
881 		/*
882 		 * Shrink available space a bit to account for overhead/races.
883 		 * We know the product previously fit into availbytes from
884 		 * dmu_objset_space(), so the smaller product will also fit.
885 		 */
886 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
887 			error = -ENOSPC;
888 			goto out_unmark;
889 		}
890 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
891 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
892 	}
893 out_unmark:
894 	spl_fstrans_unmark(cookie);
895 	spl_inode_unlock(ip);
896 
897 	crfree(cr);
898 
899 	return (error);
900 }
901 
902 static long
903 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
904 {
905 	return zpl_fallocate_common(file_inode(filp),
906 	    mode, offset, len);
907 }
908 
909 static int
910 zpl_ioctl_getversion(struct file *filp, void __user *arg)
911 {
912 	uint32_t generation = file_inode(filp)->i_generation;
913 
914 	return (copy_to_user(arg, &generation, sizeof (generation)));
915 }
916 
917 #ifdef HAVE_FILE_FADVISE
918 static int
919 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
920 {
921 	struct inode *ip = file_inode(filp);
922 	znode_t *zp = ITOZ(ip);
923 	zfsvfs_t *zfsvfs = ITOZSB(ip);
924 	objset_t *os = zfsvfs->z_os;
925 	int error = 0;
926 
927 	if (S_ISFIFO(ip->i_mode))
928 		return (-ESPIPE);
929 
930 	if (offset < 0 || len < 0)
931 		return (-EINVAL);
932 
933 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
934 		return (error);
935 
936 	switch (advice) {
937 	case POSIX_FADV_SEQUENTIAL:
938 	case POSIX_FADV_WILLNEED:
939 #ifdef HAVE_GENERIC_FADVISE
940 		if (zn_has_cached_data(zp))
941 			error = generic_fadvise(filp, offset, len, advice);
942 #endif
943 		/*
944 		 * Pass on the caller's size directly, but note that
945 		 * dmu_prefetch_max will effectively cap it.  If there
946 		 * really is a larger sequential access pattern, perhaps
947 		 * dmu_zfetch will detect it.
948 		 */
949 		if (len == 0)
950 			len = i_size_read(ip) - offset;
951 
952 		dmu_prefetch(os, zp->z_id, 0, offset, len,
953 		    ZIO_PRIORITY_ASYNC_READ);
954 		break;
955 	case POSIX_FADV_NORMAL:
956 	case POSIX_FADV_RANDOM:
957 	case POSIX_FADV_DONTNEED:
958 	case POSIX_FADV_NOREUSE:
959 		/* ignored for now */
960 		break;
961 	default:
962 		error = -EINVAL;
963 		break;
964 	}
965 
966 	zfs_exit(zfsvfs, FTAG);
967 
968 	return (error);
969 }
970 #endif /* HAVE_FILE_FADVISE */
971 
972 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
973 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
974 
975 static uint32_t
976 __zpl_ioctl_getflags(struct inode *ip)
977 {
978 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
979 	uint32_t ioctl_flags = 0;
980 
981 	if (zfs_flags & ZFS_IMMUTABLE)
982 		ioctl_flags |= FS_IMMUTABLE_FL;
983 
984 	if (zfs_flags & ZFS_APPENDONLY)
985 		ioctl_flags |= FS_APPEND_FL;
986 
987 	if (zfs_flags & ZFS_NODUMP)
988 		ioctl_flags |= FS_NODUMP_FL;
989 
990 	if (zfs_flags & ZFS_PROJINHERIT)
991 		ioctl_flags |= ZFS_PROJINHERIT_FL;
992 
993 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
994 }
995 
996 /*
997  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
998  * attributes common to both Linux and Solaris are mapped.
999  */
1000 static int
1001 zpl_ioctl_getflags(struct file *filp, void __user *arg)
1002 {
1003 	uint32_t flags;
1004 	int err;
1005 
1006 	flags = __zpl_ioctl_getflags(file_inode(filp));
1007 	err = copy_to_user(arg, &flags, sizeof (flags));
1008 
1009 	return (err);
1010 }
1011 
1012 /*
1013  * fchange() is a helper macro to detect if we have been asked to change a
1014  * flag. This is ugly, but the requirement that we do this is a consequence of
1015  * how the Linux file attribute interface was designed. Another consequence is
1016  * that concurrent modification of files suffers from a TOCTOU race. Neither
1017  * are things we can fix without modifying the kernel-userland interface, which
1018  * is outside of our jurisdiction.
1019  */
1020 
1021 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
1022 
1023 static int
1024 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
1025 {
1026 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1027 	xoptattr_t *xoap;
1028 
1029 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
1030 	    ZFS_PROJINHERIT_FL))
1031 		return (-EOPNOTSUPP);
1032 
1033 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
1034 		return (-EACCES);
1035 
1036 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
1037 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
1038 	    !capable(CAP_LINUX_IMMUTABLE))
1039 		return (-EPERM);
1040 
1041 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1042 		return (-EACCES);
1043 
1044 	xva_init(xva);
1045 	xoap = xva_getxoptattr(xva);
1046 
1047 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
1048 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
1049 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
1050 		XVA_SET_REQ(xva, (xflag));	\
1051 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1052 	}	\
1053 } while (0)
1054 
1055 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
1056 	    xoap->xoa_immutable);
1057 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
1058 	    xoap->xoa_appendonly);
1059 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
1060 	    xoap->xoa_nodump);
1061 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
1062 	    xoap->xoa_projinherit);
1063 
1064 #undef	FLAG_CHANGE
1065 
1066 	return (0);
1067 }
1068 
1069 static int
1070 zpl_ioctl_setflags(struct file *filp, void __user *arg)
1071 {
1072 	struct inode *ip = file_inode(filp);
1073 	uint32_t flags;
1074 	cred_t *cr = CRED();
1075 	xvattr_t xva;
1076 	int err;
1077 	fstrans_cookie_t cookie;
1078 
1079 	if (copy_from_user(&flags, arg, sizeof (flags)))
1080 		return (-EFAULT);
1081 
1082 	err = __zpl_ioctl_setflags(ip, flags, &xva);
1083 	if (err)
1084 		return (err);
1085 
1086 	crhold(cr);
1087 	cookie = spl_fstrans_mark();
1088 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns);
1089 	spl_fstrans_unmark(cookie);
1090 	crfree(cr);
1091 
1092 	return (err);
1093 }
1094 
1095 static int
1096 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
1097 {
1098 	zfsxattr_t fsx = { 0 };
1099 	struct inode *ip = file_inode(filp);
1100 	int err;
1101 
1102 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
1103 	fsx.fsx_projid = ITOZ(ip)->z_projid;
1104 	err = copy_to_user(arg, &fsx, sizeof (fsx));
1105 
1106 	return (err);
1107 }
1108 
1109 static int
1110 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
1111 {
1112 	struct inode *ip = file_inode(filp);
1113 	zfsxattr_t fsx;
1114 	cred_t *cr = CRED();
1115 	xvattr_t xva;
1116 	xoptattr_t *xoap;
1117 	int err;
1118 	fstrans_cookie_t cookie;
1119 
1120 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
1121 		return (-EFAULT);
1122 
1123 	if (!zpl_is_valid_projid(fsx.fsx_projid))
1124 		return (-EINVAL);
1125 
1126 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
1127 	if (err)
1128 		return (err);
1129 
1130 	xoap = xva_getxoptattr(&xva);
1131 	XVA_SET_REQ(&xva, XAT_PROJID);
1132 	xoap->xoa_projid = fsx.fsx_projid;
1133 
1134 	crhold(cr);
1135 	cookie = spl_fstrans_mark();
1136 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns);
1137 	spl_fstrans_unmark(cookie);
1138 	crfree(cr);
1139 
1140 	return (err);
1141 }
1142 
1143 /*
1144  * Expose Additional File Level Attributes of ZFS.
1145  */
1146 static int
1147 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
1148 {
1149 	struct inode *ip = file_inode(filp);
1150 	uint64_t dosflags = ITOZ(ip)->z_pflags;
1151 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
1152 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
1153 
1154 	return (err);
1155 }
1156 
1157 static int
1158 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1159 {
1160 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1161 	xoptattr_t *xoap;
1162 
1163 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1164 		return (-EOPNOTSUPP);
1165 
1166 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1167 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1168 	    !capable(CAP_LINUX_IMMUTABLE))
1169 		return (-EPERM);
1170 
1171 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1172 		return (-EACCES);
1173 
1174 	xva_init(xva);
1175 	xoap = xva_getxoptattr(xva);
1176 
1177 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
1178 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
1179 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
1180 		XVA_SET_REQ(xva, (xflag));	\
1181 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1182 	}	\
1183 } while (0)
1184 
1185 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1186 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1187 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1188 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1189 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1190 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1191 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1192 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1193 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1194 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1195 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1196 
1197 #undef	FLAG_CHANGE
1198 
1199 	return (0);
1200 }
1201 
1202 /*
1203  * Set Additional File Level Attributes of ZFS.
1204  */
1205 static int
1206 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1207 {
1208 	struct inode *ip = file_inode(filp);
1209 	uint64_t dosflags;
1210 	cred_t *cr = CRED();
1211 	xvattr_t xva;
1212 	int err;
1213 	fstrans_cookie_t cookie;
1214 
1215 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1216 		return (-EFAULT);
1217 
1218 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1219 	if (err)
1220 		return (err);
1221 
1222 	crhold(cr);
1223 	cookie = spl_fstrans_mark();
1224 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns);
1225 	spl_fstrans_unmark(cookie);
1226 	crfree(cr);
1227 
1228 	return (err);
1229 }
1230 
1231 static long
1232 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1233 {
1234 	switch (cmd) {
1235 	case FS_IOC_GETVERSION:
1236 		return (zpl_ioctl_getversion(filp, (void *)arg));
1237 	case FS_IOC_GETFLAGS:
1238 		return (zpl_ioctl_getflags(filp, (void *)arg));
1239 	case FS_IOC_SETFLAGS:
1240 		return (zpl_ioctl_setflags(filp, (void *)arg));
1241 	case ZFS_IOC_FSGETXATTR:
1242 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1243 	case ZFS_IOC_FSSETXATTR:
1244 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1245 	case ZFS_IOC_GETDOSFLAGS:
1246 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1247 	case ZFS_IOC_SETDOSFLAGS:
1248 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1249 	default:
1250 		return (-ENOTTY);
1251 	}
1252 }
1253 
1254 #ifdef CONFIG_COMPAT
1255 static long
1256 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1257 {
1258 	switch (cmd) {
1259 	case FS_IOC32_GETVERSION:
1260 		cmd = FS_IOC_GETVERSION;
1261 		break;
1262 	case FS_IOC32_GETFLAGS:
1263 		cmd = FS_IOC_GETFLAGS;
1264 		break;
1265 	case FS_IOC32_SETFLAGS:
1266 		cmd = FS_IOC_SETFLAGS;
1267 		break;
1268 	default:
1269 		return (-ENOTTY);
1270 	}
1271 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1272 }
1273 #endif /* CONFIG_COMPAT */
1274 
1275 
1276 const struct address_space_operations zpl_address_space_operations = {
1277 #ifdef HAVE_VFS_READPAGES
1278 	.readpages	= zpl_readpages,
1279 #else
1280 	.readahead	= zpl_readahead,
1281 #endif
1282 #ifdef HAVE_VFS_READ_FOLIO
1283 	.read_folio	= zpl_read_folio,
1284 #else
1285 	.readpage	= zpl_readpage,
1286 #endif
1287 	.writepage	= zpl_writepage,
1288 	.writepages	= zpl_writepages,
1289 	.direct_IO	= zpl_direct_IO,
1290 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1291 	.set_page_dirty = __set_page_dirty_nobuffers,
1292 #endif
1293 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1294 	.dirty_folio	= filemap_dirty_folio,
1295 #endif
1296 };
1297 
1298 const struct file_operations zpl_file_operations = {
1299 	.open		= zpl_open,
1300 	.release	= zpl_release,
1301 	.llseek		= zpl_llseek,
1302 #ifdef HAVE_VFS_RW_ITERATE
1303 #ifdef HAVE_NEW_SYNC_READ
1304 	.read		= new_sync_read,
1305 	.write		= new_sync_write,
1306 #endif
1307 	.read_iter	= zpl_iter_read,
1308 	.write_iter	= zpl_iter_write,
1309 #ifdef HAVE_VFS_IOV_ITER
1310 	.splice_read	= generic_file_splice_read,
1311 	.splice_write	= iter_file_splice_write,
1312 #endif
1313 #else
1314 	.read		= do_sync_read,
1315 	.write		= do_sync_write,
1316 	.aio_read	= zpl_aio_read,
1317 	.aio_write	= zpl_aio_write,
1318 #endif
1319 	.mmap		= zpl_mmap,
1320 	.fsync		= zpl_fsync,
1321 #ifdef HAVE_FILE_AIO_FSYNC
1322 	.aio_fsync	= zpl_aio_fsync,
1323 #endif
1324 	.fallocate	= zpl_fallocate,
1325 #ifdef HAVE_FILE_FADVISE
1326 	.fadvise	= zpl_fadvise,
1327 #endif
1328 	.unlocked_ioctl	= zpl_ioctl,
1329 #ifdef CONFIG_COMPAT
1330 	.compat_ioctl	= zpl_compat_ioctl,
1331 #endif
1332 };
1333 
1334 const struct file_operations zpl_dir_file_operations = {
1335 	.llseek		= generic_file_llseek,
1336 	.read		= generic_read_dir,
1337 #if defined(HAVE_VFS_ITERATE_SHARED)
1338 	.iterate_shared	= zpl_iterate,
1339 #elif defined(HAVE_VFS_ITERATE)
1340 	.iterate	= zpl_iterate,
1341 #else
1342 	.readdir	= zpl_readdir,
1343 #endif
1344 	.fsync		= zpl_fsync,
1345 	.unlocked_ioctl = zpl_ioctl,
1346 #ifdef CONFIG_COMPAT
1347 	.compat_ioctl   = zpl_compat_ioctl,
1348 #endif
1349 };
1350 
1351 /* CSTYLED */
1352 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1353 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1354 	"Percentage of length to use for the available capacity check");
1355