1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  */
24 
25 
26 #include <sys/zfs_znode.h>
27 #include <sys/zfs_vfsops.h>
28 #include <sys/zfs_vnops.h>
29 #include <sys/zfs_ctldir.h>
30 #include <sys/zpl.h>
31 
32 
33 static struct inode *
34 zpl_inode_alloc(struct super_block *sb)
35 {
36 	struct inode *ip;
37 
38 	VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
39 	inode_set_iversion(ip, 1);
40 
41 	return (ip);
42 }
43 
44 static void
45 zpl_inode_destroy(struct inode *ip)
46 {
47 	ASSERT(atomic_read(&ip->i_count) == 0);
48 	zfs_inode_destroy(ip);
49 }
50 
51 /*
52  * Called from __mark_inode_dirty() to reflect that something in the
53  * inode has changed.  We use it to ensure the znode system attributes
54  * are always strictly update to date with respect to the inode.
55  */
56 #ifdef HAVE_DIRTY_INODE_WITH_FLAGS
57 static void
58 zpl_dirty_inode(struct inode *ip, int flags)
59 {
60 	fstrans_cookie_t cookie;
61 
62 	cookie = spl_fstrans_mark();
63 	zfs_dirty_inode(ip, flags);
64 	spl_fstrans_unmark(cookie);
65 }
66 #else
67 static void
68 zpl_dirty_inode(struct inode *ip)
69 {
70 	fstrans_cookie_t cookie;
71 
72 	cookie = spl_fstrans_mark();
73 	zfs_dirty_inode(ip, 0);
74 	spl_fstrans_unmark(cookie);
75 }
76 #endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
77 
78 /*
79  * When ->drop_inode() is called its return value indicates if the
80  * inode should be evicted from the inode cache.  If the inode is
81  * unhashed and has no links the default policy is to evict it
82  * immediately.
83  *
84  * The ->evict_inode() callback must minimally truncate the inode pages,
85  * and call clear_inode().  For 2.6.35 and later kernels this will
86  * simply update the inode state, with the sync occurring before the
87  * truncate in evict().  For earlier kernels clear_inode() maps to
88  * end_writeback() which is responsible for completing all outstanding
89  * write back.  In either case, once this is done it is safe to cleanup
90  * any remaining inode specific data via zfs_inactive().
91  * remaining filesystem specific data.
92  */
93 static void
94 zpl_evict_inode(struct inode *ip)
95 {
96 	fstrans_cookie_t cookie;
97 
98 	cookie = spl_fstrans_mark();
99 	truncate_setsize(ip, 0);
100 	clear_inode(ip);
101 	zfs_inactive(ip);
102 	spl_fstrans_unmark(cookie);
103 }
104 
105 static void
106 zpl_put_super(struct super_block *sb)
107 {
108 	fstrans_cookie_t cookie;
109 	int error;
110 
111 	cookie = spl_fstrans_mark();
112 	error = -zfs_umount(sb);
113 	spl_fstrans_unmark(cookie);
114 	ASSERT3S(error, <=, 0);
115 }
116 
117 static int
118 zpl_sync_fs(struct super_block *sb, int wait)
119 {
120 	fstrans_cookie_t cookie;
121 	cred_t *cr = CRED();
122 	int error;
123 
124 	crhold(cr);
125 	cookie = spl_fstrans_mark();
126 	error = -zfs_sync(sb, wait, cr);
127 	spl_fstrans_unmark(cookie);
128 	crfree(cr);
129 	ASSERT3S(error, <=, 0);
130 
131 	return (error);
132 }
133 
134 static int
135 zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
136 {
137 	fstrans_cookie_t cookie;
138 	int error;
139 
140 	cookie = spl_fstrans_mark();
141 	error = -zfs_statvfs(dentry->d_inode, statp);
142 	spl_fstrans_unmark(cookie);
143 	ASSERT3S(error, <=, 0);
144 
145 	/*
146 	 * If required by a 32-bit system call, dynamically scale the
147 	 * block size up to 16MiB and decrease the block counts.  This
148 	 * allows for a maximum size of 64EiB to be reported.  The file
149 	 * counts must be artificially capped at 2^32-1.
150 	 */
151 	if (unlikely(zpl_is_32bit_api())) {
152 		while (statp->f_blocks > UINT32_MAX &&
153 		    statp->f_bsize < SPA_MAXBLOCKSIZE) {
154 			statp->f_frsize <<= 1;
155 			statp->f_bsize <<= 1;
156 
157 			statp->f_blocks >>= 1;
158 			statp->f_bfree >>= 1;
159 			statp->f_bavail >>= 1;
160 		}
161 
162 		uint64_t usedobjs = statp->f_files - statp->f_ffree;
163 		statp->f_ffree = MIN(statp->f_ffree, UINT32_MAX - usedobjs);
164 		statp->f_files = statp->f_ffree + usedobjs;
165 	}
166 
167 	return (error);
168 }
169 
170 static int
171 zpl_remount_fs(struct super_block *sb, int *flags, char *data)
172 {
173 	zfs_mnt_t zm = { .mnt_osname = NULL, .mnt_data = data };
174 	fstrans_cookie_t cookie;
175 	int error;
176 
177 	cookie = spl_fstrans_mark();
178 	error = -zfs_remount(sb, flags, &zm);
179 	spl_fstrans_unmark(cookie);
180 	ASSERT3S(error, <=, 0);
181 
182 	return (error);
183 }
184 
185 static int
186 __zpl_show_devname(struct seq_file *seq, zfsvfs_t *zfsvfs)
187 {
188 	ZPL_ENTER(zfsvfs);
189 
190 	char *fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
191 	dmu_objset_name(zfsvfs->z_os, fsname);
192 
193 	for (int i = 0; fsname[i] != 0; i++) {
194 		/*
195 		 * Spaces in the dataset name must be converted to their
196 		 * octal escape sequence for getmntent(3) to correctly
197 		 * parse then fsname portion of /proc/self/mounts.
198 		 */
199 		if (fsname[i] == ' ') {
200 			seq_puts(seq, "\\040");
201 		} else {
202 			seq_putc(seq, fsname[i]);
203 		}
204 	}
205 
206 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
207 
208 	ZPL_EXIT(zfsvfs);
209 
210 	return (0);
211 }
212 
213 static int
214 zpl_show_devname(struct seq_file *seq, struct dentry *root)
215 {
216 	return (__zpl_show_devname(seq, root->d_sb->s_fs_info));
217 }
218 
219 static int
220 __zpl_show_options(struct seq_file *seq, zfsvfs_t *zfsvfs)
221 {
222 	seq_printf(seq, ",%s",
223 	    zfsvfs->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
224 
225 #ifdef CONFIG_FS_POSIX_ACL
226 	switch (zfsvfs->z_acl_type) {
227 	case ZFS_ACLTYPE_POSIX:
228 		seq_puts(seq, ",posixacl");
229 		break;
230 	default:
231 		seq_puts(seq, ",noacl");
232 		break;
233 	}
234 #endif /* CONFIG_FS_POSIX_ACL */
235 
236 	return (0);
237 }
238 
239 static int
240 zpl_show_options(struct seq_file *seq, struct dentry *root)
241 {
242 	return (__zpl_show_options(seq, root->d_sb->s_fs_info));
243 }
244 
245 static int
246 zpl_fill_super(struct super_block *sb, void *data, int silent)
247 {
248 	zfs_mnt_t *zm = (zfs_mnt_t *)data;
249 	fstrans_cookie_t cookie;
250 	int error;
251 
252 	cookie = spl_fstrans_mark();
253 	error = -zfs_domount(sb, zm, silent);
254 	spl_fstrans_unmark(cookie);
255 	ASSERT3S(error, <=, 0);
256 
257 	return (error);
258 }
259 
260 static int
261 zpl_test_super(struct super_block *s, void *data)
262 {
263 	zfsvfs_t *zfsvfs = s->s_fs_info;
264 	objset_t *os = data;
265 
266 	if (zfsvfs == NULL)
267 		return (0);
268 
269 	return (os == zfsvfs->z_os);
270 }
271 
272 static struct super_block *
273 zpl_mount_impl(struct file_system_type *fs_type, int flags, zfs_mnt_t *zm)
274 {
275 	struct super_block *s;
276 	objset_t *os;
277 	int err;
278 
279 	err = dmu_objset_hold(zm->mnt_osname, FTAG, &os);
280 	if (err)
281 		return (ERR_PTR(-err));
282 
283 	/*
284 	 * The dsl pool lock must be released prior to calling sget().
285 	 * It is possible sget() may block on the lock in grab_super()
286 	 * while deactivate_super() holds that same lock and waits for
287 	 * a txg sync.  If the dsl_pool lock is held over sget()
288 	 * this can prevent the pool sync and cause a deadlock.
289 	 */
290 	dsl_dataset_long_hold(dmu_objset_ds(os), FTAG);
291 	dsl_pool_rele(dmu_objset_pool(os), FTAG);
292 
293 	s = sget(fs_type, zpl_test_super, set_anon_super, flags, os);
294 
295 	dsl_dataset_long_rele(dmu_objset_ds(os), FTAG);
296 	dsl_dataset_rele(dmu_objset_ds(os), FTAG);
297 
298 	if (IS_ERR(s))
299 		return (ERR_CAST(s));
300 
301 	if (s->s_root == NULL) {
302 		err = zpl_fill_super(s, zm, flags & SB_SILENT ? 1 : 0);
303 		if (err) {
304 			deactivate_locked_super(s);
305 			return (ERR_PTR(err));
306 		}
307 		s->s_flags |= SB_ACTIVE;
308 	} else if ((flags ^ s->s_flags) & SB_RDONLY) {
309 		deactivate_locked_super(s);
310 		return (ERR_PTR(-EBUSY));
311 	}
312 
313 	return (s);
314 }
315 
316 static struct dentry *
317 zpl_mount(struct file_system_type *fs_type, int flags,
318     const char *osname, void *data)
319 {
320 	zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
321 
322 	struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
323 	if (IS_ERR(sb))
324 		return (ERR_CAST(sb));
325 
326 	return (dget(sb->s_root));
327 }
328 
329 static void
330 zpl_kill_sb(struct super_block *sb)
331 {
332 	zfs_preumount(sb);
333 	kill_anon_super(sb);
334 }
335 
336 void
337 zpl_prune_sb(int64_t nr_to_scan, void *arg)
338 {
339 	struct super_block *sb = (struct super_block *)arg;
340 	int objects = 0;
341 
342 	(void) -zfs_prune(sb, nr_to_scan, &objects);
343 }
344 
345 const struct super_operations zpl_super_operations = {
346 	.alloc_inode		= zpl_inode_alloc,
347 	.destroy_inode		= zpl_inode_destroy,
348 	.dirty_inode		= zpl_dirty_inode,
349 	.write_inode		= NULL,
350 	.evict_inode		= zpl_evict_inode,
351 	.put_super		= zpl_put_super,
352 	.sync_fs		= zpl_sync_fs,
353 	.statfs			= zpl_statfs,
354 	.remount_fs		= zpl_remount_fs,
355 	.show_devname		= zpl_show_devname,
356 	.show_options		= zpl_show_options,
357 	.show_stats		= NULL,
358 };
359 
360 struct file_system_type zpl_fs_type = {
361 	.owner			= THIS_MODULE,
362 	.name			= ZFS_DRIVER,
363 	.mount			= zpl_mount,
364 	.kill_sb		= zpl_kill_sb,
365 };
366