1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
25  */
26 /*
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  */
29 
30 /*
31  * Copyright (c) 2016 by Delphix. All rights reserved.
32  */
33 
34 /*
35  * Fletcher Checksums
36  * ------------------
37  *
38  * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39  * recurrence relations:
40  *
41  *	a  = a    + f
42  *	 i    i-1    i-1
43  *
44  *	b  = b    + a
45  *	 i    i-1    i
46  *
47  *	c  = c    + b		(fletcher-4 only)
48  *	 i    i-1    i
49  *
50  *	d  = d    + c		(fletcher-4 only)
51  *	 i    i-1    i
52  *
53  * Where
54  *	a_0 = b_0 = c_0 = d_0 = 0
55  * and
56  *	f_0 .. f_(n-1) are the input data.
57  *
58  * Using standard techniques, these translate into the following series:
59  *
60  *	     __n_			     __n_
61  *	     \   |			     \   |
62  *	a  =  >     f			b  =  >     i * f
63  *	 n   /___|   n - i		 n   /___|	 n - i
64  *	     i = 1			     i = 1
65  *
66  *
67  *	     __n_			     __n_
68  *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
69  *	c  =  >     ------- f		d  =  >     ------------- f
70  *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
71  *	     i = 1			     i = 1
72  *
73  * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74  * Since the additions are done mod (2^64), errors in the high bits may not
75  * be noticed.  For this reason, fletcher-2 is deprecated.
76  *
77  * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78  * A conservative estimate of how big the buffer can get before we overflow
79  * can be estimated using f_i = 0xffffffff for all i:
80  *
81  * % bc
82  *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83  * 2264
84  *  quit
85  * %
86  *
87  * So blocks of up to 2k will not overflow.  Our largest block size is
88  * 128k, which has 32k 4-byte words, so we can compute the largest possible
89  * accumulators, then divide by 2^64 to figure the max amount of overflow:
90  *
91  * % bc
92  *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93  *  a/2^64;b/2^64;c/2^64;d/2^64
94  * 0
95  * 0
96  * 1365
97  * 11186858
98  *  quit
99  * %
100  *
101  * So a and b cannot overflow.  To make sure each bit of input has some
102  * effect on the contents of c and d, we can look at what the factors of
103  * the coefficients in the equations for c_n and d_n are.  The number of 2s
104  * in the factors determines the lowest set bit in the multiplier.  Running
105  * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106  * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
107  * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108  * even for 128k blocks.
109  *
110  * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111  * we could do our calculations mod (2^32 - 1) by adding in the carries
112  * periodically, and store the number of carries in the top 32-bits.
113  *
114  * --------------------
115  * Checksum Performance
116  * --------------------
117  *
118  * There are two interesting components to checksum performance: cached and
119  * uncached performance.  With cached data, fletcher-2 is about four times
120  * faster than fletcher-4.  With uncached data, the performance difference is
121  * negligible, since the cost of a cache fill dominates the processing time.
122  * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123  * efficient pass over the data.
124  *
125  * In normal operation, the data which is being checksummed is in a buffer
126  * which has been filled either by:
127  *
128  *	1. a compression step, which will be mostly cached, or
129  *	2. a memcpy() or copyin(), which will be uncached
130  *	   (because the copy is cache-bypassing).
131  *
132  * For both cached and uncached data, both fletcher checksums are much faster
133  * than sha-256, and slower than 'off', which doesn't touch the data at all.
134  */
135 
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/spa.h>
140 #include <sys/simd.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
144 
145 #define	FLETCHER_MIN_SIMD_SIZE	64
146 
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150     const void *buf, uint64_t size);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152     const void *buf, uint64_t size);
153 static boolean_t fletcher_4_scalar_valid(void);
154 
155 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156 	.init_native = fletcher_4_scalar_init,
157 	.fini_native = fletcher_4_scalar_fini,
158 	.compute_native = fletcher_4_scalar_native,
159 	.init_byteswap = fletcher_4_scalar_init,
160 	.fini_byteswap = fletcher_4_scalar_fini,
161 	.compute_byteswap = fletcher_4_scalar_byteswap,
162 	.valid = fletcher_4_scalar_valid,
163 	.name = "scalar"
164 };
165 
166 static fletcher_4_ops_t fletcher_4_fastest_impl = {
167 	.name = "fastest",
168 	.valid = fletcher_4_scalar_valid
169 };
170 
171 static const fletcher_4_ops_t *fletcher_4_impls[] = {
172 	&fletcher_4_scalar_ops,
173 	&fletcher_4_superscalar_ops,
174 	&fletcher_4_superscalar4_ops,
175 #if defined(HAVE_SSE2)
176 	&fletcher_4_sse2_ops,
177 #endif
178 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
179 	&fletcher_4_ssse3_ops,
180 #endif
181 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
182 	&fletcher_4_avx2_ops,
183 #endif
184 #if defined(__x86_64) && defined(HAVE_AVX512F)
185 	&fletcher_4_avx512f_ops,
186 #endif
187 #if defined(__x86_64) && defined(HAVE_AVX512BW)
188 	&fletcher_4_avx512bw_ops,
189 #endif
190 #if defined(__aarch64__) && !defined(__FreeBSD__)
191 	&fletcher_4_aarch64_neon_ops,
192 #endif
193 };
194 
195 /* Hold all supported implementations */
196 static uint32_t fletcher_4_supp_impls_cnt = 0;
197 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
198 
199 /* Select fletcher4 implementation */
200 #define	IMPL_FASTEST	(UINT32_MAX)
201 #define	IMPL_CYCLE	(UINT32_MAX - 1)
202 #define	IMPL_SCALAR	(0)
203 
204 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
205 
206 #define	IMPL_READ(i)	(*(volatile uint32_t *) &(i))
207 
208 static struct fletcher_4_impl_selector {
209 	const char	*fis_name;
210 	uint32_t	fis_sel;
211 } fletcher_4_impl_selectors[] = {
212 	{ "cycle",	IMPL_CYCLE },
213 	{ "fastest",	IMPL_FASTEST },
214 	{ "scalar",	IMPL_SCALAR }
215 };
216 
217 #if defined(_KERNEL)
218 static kstat_t *fletcher_4_kstat;
219 
220 static struct fletcher_4_kstat {
221 	uint64_t native;
222 	uint64_t byteswap;
223 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
224 #endif
225 
226 /* Indicate that benchmark has been completed */
227 static boolean_t fletcher_4_initialized = B_FALSE;
228 
229 void
230 fletcher_init(zio_cksum_t *zcp)
231 {
232 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
233 }
234 
235 int
236 fletcher_2_incremental_native(void *buf, size_t size, void *data)
237 {
238 	zio_cksum_t *zcp = data;
239 
240 	const uint64_t *ip = buf;
241 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
242 	uint64_t a0, b0, a1, b1;
243 
244 	a0 = zcp->zc_word[0];
245 	a1 = zcp->zc_word[1];
246 	b0 = zcp->zc_word[2];
247 	b1 = zcp->zc_word[3];
248 
249 	for (; ip < ipend; ip += 2) {
250 		a0 += ip[0];
251 		a1 += ip[1];
252 		b0 += a0;
253 		b1 += a1;
254 	}
255 
256 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
257 	return (0);
258 }
259 
260 void
261 fletcher_2_native(const void *buf, uint64_t size,
262     const void *ctx_template, zio_cksum_t *zcp)
263 {
264 	(void) ctx_template;
265 	fletcher_init(zcp);
266 	(void) fletcher_2_incremental_native((void *) buf, size, zcp);
267 }
268 
269 int
270 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
271 {
272 	zio_cksum_t *zcp = data;
273 
274 	const uint64_t *ip = buf;
275 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
276 	uint64_t a0, b0, a1, b1;
277 
278 	a0 = zcp->zc_word[0];
279 	a1 = zcp->zc_word[1];
280 	b0 = zcp->zc_word[2];
281 	b1 = zcp->zc_word[3];
282 
283 	for (; ip < ipend; ip += 2) {
284 		a0 += BSWAP_64(ip[0]);
285 		a1 += BSWAP_64(ip[1]);
286 		b0 += a0;
287 		b1 += a1;
288 	}
289 
290 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
291 	return (0);
292 }
293 
294 void
295 fletcher_2_byteswap(const void *buf, uint64_t size,
296     const void *ctx_template, zio_cksum_t *zcp)
297 {
298 	(void) ctx_template;
299 	fletcher_init(zcp);
300 	(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
301 }
302 
303 ZFS_NO_SANITIZE_UNDEFINED
304 static void
305 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
306 {
307 	ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
308 }
309 
310 ZFS_NO_SANITIZE_UNDEFINED
311 static void
312 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
313 {
314 	memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
315 }
316 
317 ZFS_NO_SANITIZE_UNDEFINED
318 static void
319 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
320     uint64_t size)
321 {
322 	const uint32_t *ip = buf;
323 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
324 	uint64_t a, b, c, d;
325 
326 	a = ctx->scalar.zc_word[0];
327 	b = ctx->scalar.zc_word[1];
328 	c = ctx->scalar.zc_word[2];
329 	d = ctx->scalar.zc_word[3];
330 
331 	for (; ip < ipend; ip++) {
332 		a += ip[0];
333 		b += a;
334 		c += b;
335 		d += c;
336 	}
337 
338 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
339 }
340 
341 ZFS_NO_SANITIZE_UNDEFINED
342 static void
343 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
344     uint64_t size)
345 {
346 	const uint32_t *ip = buf;
347 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
348 	uint64_t a, b, c, d;
349 
350 	a = ctx->scalar.zc_word[0];
351 	b = ctx->scalar.zc_word[1];
352 	c = ctx->scalar.zc_word[2];
353 	d = ctx->scalar.zc_word[3];
354 
355 	for (; ip < ipend; ip++) {
356 		a += BSWAP_32(ip[0]);
357 		b += a;
358 		c += b;
359 		d += c;
360 	}
361 
362 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
363 }
364 
365 static boolean_t
366 fletcher_4_scalar_valid(void)
367 {
368 	return (B_TRUE);
369 }
370 
371 int
372 fletcher_4_impl_set(const char *val)
373 {
374 	int err = -EINVAL;
375 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
376 	size_t i, val_len;
377 
378 	val_len = strlen(val);
379 	while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
380 		val_len--;
381 
382 	/* check mandatory implementations */
383 	for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
384 		const char *name = fletcher_4_impl_selectors[i].fis_name;
385 
386 		if (val_len == strlen(name) &&
387 		    strncmp(val, name, val_len) == 0) {
388 			impl = fletcher_4_impl_selectors[i].fis_sel;
389 			err = 0;
390 			break;
391 		}
392 	}
393 
394 	if (err != 0 && fletcher_4_initialized) {
395 		/* check all supported implementations */
396 		for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
397 			const char *name = fletcher_4_supp_impls[i]->name;
398 
399 			if (val_len == strlen(name) &&
400 			    strncmp(val, name, val_len) == 0) {
401 				impl = i;
402 				err = 0;
403 				break;
404 			}
405 		}
406 	}
407 
408 	if (err == 0) {
409 		atomic_swap_32(&fletcher_4_impl_chosen, impl);
410 		membar_producer();
411 	}
412 
413 	return (err);
414 }
415 
416 /*
417  * Returns the Fletcher 4 operations for checksums.   When a SIMD
418  * implementation is not allowed in the current context, then fallback
419  * to the fastest generic implementation.
420  */
421 static inline const fletcher_4_ops_t *
422 fletcher_4_impl_get(void)
423 {
424 	if (!kfpu_allowed())
425 		return (&fletcher_4_superscalar4_ops);
426 
427 	const fletcher_4_ops_t *ops = NULL;
428 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
429 
430 	switch (impl) {
431 	case IMPL_FASTEST:
432 		ASSERT(fletcher_4_initialized);
433 		ops = &fletcher_4_fastest_impl;
434 		break;
435 	case IMPL_CYCLE:
436 		/* Cycle through supported implementations */
437 		ASSERT(fletcher_4_initialized);
438 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
439 		static uint32_t cycle_count = 0;
440 		uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
441 		ops = fletcher_4_supp_impls[idx];
442 		break;
443 	default:
444 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
445 		ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
446 		ops = fletcher_4_supp_impls[impl];
447 		break;
448 	}
449 
450 	ASSERT3P(ops, !=, NULL);
451 
452 	return (ops);
453 }
454 
455 static inline void
456 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
457 {
458 	fletcher_4_ctx_t ctx;
459 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
460 
461 	ops->init_native(&ctx);
462 	ops->compute_native(&ctx, buf, size);
463 	ops->fini_native(&ctx, zcp);
464 }
465 
466 void
467 fletcher_4_native(const void *buf, uint64_t size,
468     const void *ctx_template, zio_cksum_t *zcp)
469 {
470 	(void) ctx_template;
471 	const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
472 
473 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
474 
475 	if (size == 0 || p2size == 0) {
476 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
477 
478 		if (size > 0)
479 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
480 			    buf, size);
481 	} else {
482 		fletcher_4_native_impl(buf, p2size, zcp);
483 
484 		if (p2size < size)
485 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
486 			    (char *)buf + p2size, size - p2size);
487 	}
488 }
489 
490 void
491 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
492 {
493 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
494 	fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
495 }
496 
497 static inline void
498 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
499 {
500 	fletcher_4_ctx_t ctx;
501 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
502 
503 	ops->init_byteswap(&ctx);
504 	ops->compute_byteswap(&ctx, buf, size);
505 	ops->fini_byteswap(&ctx, zcp);
506 }
507 
508 void
509 fletcher_4_byteswap(const void *buf, uint64_t size,
510     const void *ctx_template, zio_cksum_t *zcp)
511 {
512 	(void) ctx_template;
513 	const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
514 
515 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
516 
517 	if (size == 0 || p2size == 0) {
518 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
519 
520 		if (size > 0)
521 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
522 			    buf, size);
523 	} else {
524 		fletcher_4_byteswap_impl(buf, p2size, zcp);
525 
526 		if (p2size < size)
527 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
528 			    (char *)buf + p2size, size - p2size);
529 	}
530 }
531 
532 /* Incremental Fletcher 4 */
533 
534 #define	ZFS_FLETCHER_4_INC_MAX_SIZE	(8ULL << 20)
535 
536 static inline void
537 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
538     const zio_cksum_t *nzcp)
539 {
540 	const uint64_t c1 = size / sizeof (uint32_t);
541 	const uint64_t c2 = c1 * (c1 + 1) / 2;
542 	const uint64_t c3 = c2 * (c1 + 2) / 3;
543 
544 	/*
545 	 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
546 	 * reason we split incremental fletcher4 computation of large buffers
547 	 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
548 	 */
549 	ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
550 
551 	zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
552 	    c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
553 	zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
554 	    c2 * zcp->zc_word[0];
555 	zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
556 	zcp->zc_word[0] += nzcp->zc_word[0];
557 }
558 
559 static inline void
560 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
561     zio_cksum_t *zcp)
562 {
563 	while (size > 0) {
564 		zio_cksum_t nzc;
565 		uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
566 
567 		if (native)
568 			fletcher_4_native(buf, len, NULL, &nzc);
569 		else
570 			fletcher_4_byteswap(buf, len, NULL, &nzc);
571 
572 		fletcher_4_incremental_combine(zcp, len, &nzc);
573 
574 		size -= len;
575 		buf += len;
576 	}
577 }
578 
579 int
580 fletcher_4_incremental_native(void *buf, size_t size, void *data)
581 {
582 	zio_cksum_t *zcp = data;
583 	/* Use scalar impl to directly update cksum of small blocks */
584 	if (size < SPA_MINBLOCKSIZE)
585 		fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
586 	else
587 		fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
588 	return (0);
589 }
590 
591 int
592 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
593 {
594 	zio_cksum_t *zcp = data;
595 	/* Use scalar impl to directly update cksum of small blocks */
596 	if (size < SPA_MINBLOCKSIZE)
597 		fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
598 	else
599 		fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
600 	return (0);
601 }
602 
603 #if defined(_KERNEL)
604 /*
605  * Fletcher 4 kstats
606  */
607 static int
608 fletcher_4_kstat_headers(char *buf, size_t size)
609 {
610 	ssize_t off = 0;
611 
612 	off += snprintf(buf + off, size, "%-17s", "implementation");
613 	off += snprintf(buf + off, size - off, "%-15s", "native");
614 	(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
615 
616 	return (0);
617 }
618 
619 static int
620 fletcher_4_kstat_data(char *buf, size_t size, void *data)
621 {
622 	struct fletcher_4_kstat *fastest_stat =
623 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
624 	struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
625 	ssize_t off = 0;
626 
627 	if (curr_stat == fastest_stat) {
628 		off += snprintf(buf + off, size - off, "%-17s", "fastest");
629 		off += snprintf(buf + off, size - off, "%-15s",
630 		    fletcher_4_supp_impls[fastest_stat->native]->name);
631 		off += snprintf(buf + off, size - off, "%-15s\n",
632 		    fletcher_4_supp_impls[fastest_stat->byteswap]->name);
633 	} else {
634 		ptrdiff_t id = curr_stat - fletcher_4_stat_data;
635 
636 		off += snprintf(buf + off, size - off, "%-17s",
637 		    fletcher_4_supp_impls[id]->name);
638 		off += snprintf(buf + off, size - off, "%-15llu",
639 		    (u_longlong_t)curr_stat->native);
640 		off += snprintf(buf + off, size - off, "%-15llu\n",
641 		    (u_longlong_t)curr_stat->byteswap);
642 	}
643 
644 	return (0);
645 }
646 
647 static void *
648 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
649 {
650 	if (n <= fletcher_4_supp_impls_cnt)
651 		ksp->ks_private = (void *) (fletcher_4_stat_data + n);
652 	else
653 		ksp->ks_private = NULL;
654 
655 	return (ksp->ks_private);
656 }
657 #endif
658 
659 #define	FLETCHER_4_FASTEST_FN_COPY(type, src)				  \
660 {									  \
661 	fletcher_4_fastest_impl.init_ ## type = src->init_ ## type;	  \
662 	fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type;	  \
663 	fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
664 }
665 
666 #define	FLETCHER_4_BENCH_NS	(MSEC2NSEC(1))		/* 1ms */
667 
668 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
669 					zio_cksum_t *);
670 
671 #if defined(_KERNEL)
672 static void
673 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
674 {
675 
676 	struct fletcher_4_kstat *fastest_stat =
677 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
678 	hrtime_t start;
679 	uint64_t run_bw, run_time_ns, best_run = 0;
680 	zio_cksum_t zc;
681 	uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
682 
683 	fletcher_checksum_func_t *fletcher_4_test = native ?
684 	    fletcher_4_native : fletcher_4_byteswap;
685 
686 	for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
687 		struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
688 		uint64_t run_count = 0;
689 
690 		/* temporary set an implementation */
691 		fletcher_4_impl_chosen = i;
692 
693 		kpreempt_disable();
694 		start = gethrtime();
695 		do {
696 			for (l = 0; l < 32; l++, run_count++)
697 				fletcher_4_test(data, data_size, NULL, &zc);
698 
699 			run_time_ns = gethrtime() - start;
700 		} while (run_time_ns < FLETCHER_4_BENCH_NS);
701 		kpreempt_enable();
702 
703 		run_bw = data_size * run_count * NANOSEC;
704 		run_bw /= run_time_ns;	/* B/s */
705 
706 		if (native)
707 			stat->native = run_bw;
708 		else
709 			stat->byteswap = run_bw;
710 
711 		if (run_bw > best_run) {
712 			best_run = run_bw;
713 
714 			if (native) {
715 				fastest_stat->native = i;
716 				FLETCHER_4_FASTEST_FN_COPY(native,
717 				    fletcher_4_supp_impls[i]);
718 			} else {
719 				fastest_stat->byteswap = i;
720 				FLETCHER_4_FASTEST_FN_COPY(byteswap,
721 				    fletcher_4_supp_impls[i]);
722 			}
723 		}
724 	}
725 
726 	/* restore original selection */
727 	atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
728 }
729 #endif /* _KERNEL */
730 
731 /*
732  * Initialize and benchmark all supported implementations.
733  */
734 static void
735 fletcher_4_benchmark(void)
736 {
737 	fletcher_4_ops_t *curr_impl;
738 	int i, c;
739 
740 	/* Move supported implementations into fletcher_4_supp_impls */
741 	for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
742 		curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
743 
744 		if (curr_impl->valid && curr_impl->valid())
745 			fletcher_4_supp_impls[c++] = curr_impl;
746 	}
747 	membar_producer();	/* complete fletcher_4_supp_impls[] init */
748 	fletcher_4_supp_impls_cnt = c;	/* number of supported impl */
749 
750 #if defined(_KERNEL)
751 	static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
752 	char *databuf = vmem_alloc(data_size, KM_SLEEP);
753 
754 	for (i = 0; i < data_size / sizeof (uint64_t); i++)
755 		((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
756 
757 	fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
758 	fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
759 
760 	vmem_free(databuf, data_size);
761 #else
762 	/*
763 	 * Skip the benchmark in user space to avoid impacting libzpool
764 	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
765 	 * is assumed to be the fastest and used by default.
766 	 */
767 	memcpy(&fletcher_4_fastest_impl,
768 	    fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
769 	    sizeof (fletcher_4_fastest_impl));
770 	fletcher_4_fastest_impl.name = "fastest";
771 	membar_producer();
772 #endif /* _KERNEL */
773 }
774 
775 void
776 fletcher_4_init(void)
777 {
778 	/* Determine the fastest available implementation. */
779 	fletcher_4_benchmark();
780 
781 #if defined(_KERNEL)
782 	/* Install kstats for all implementations */
783 	fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
784 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
785 	if (fletcher_4_kstat != NULL) {
786 		fletcher_4_kstat->ks_data = NULL;
787 		fletcher_4_kstat->ks_ndata = UINT32_MAX;
788 		kstat_set_raw_ops(fletcher_4_kstat,
789 		    fletcher_4_kstat_headers,
790 		    fletcher_4_kstat_data,
791 		    fletcher_4_kstat_addr);
792 		kstat_install(fletcher_4_kstat);
793 	}
794 #endif
795 
796 	/* Finish initialization */
797 	fletcher_4_initialized = B_TRUE;
798 }
799 
800 void
801 fletcher_4_fini(void)
802 {
803 #if defined(_KERNEL)
804 	if (fletcher_4_kstat != NULL) {
805 		kstat_delete(fletcher_4_kstat);
806 		fletcher_4_kstat = NULL;
807 	}
808 #endif
809 }
810 
811 /* ABD adapters */
812 
813 static void
814 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
815 {
816 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
817 	cdp->acd_private = (void *) ops;
818 
819 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
820 		ops->init_native(cdp->acd_ctx);
821 	else
822 		ops->init_byteswap(cdp->acd_ctx);
823 }
824 
825 static void
826 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
827 {
828 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
829 
830 	ASSERT(ops);
831 
832 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
833 		ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
834 	else
835 		ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
836 }
837 
838 static void
839 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
840     zio_abd_checksum_data_t *cdp)
841 {
842 	zio_cksum_t *zcp = cdp->acd_zcp;
843 
844 	ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
845 
846 	abd_fletcher_4_fini(cdp);
847 	cdp->acd_private = (void *)&fletcher_4_scalar_ops;
848 
849 	if (native)
850 		fletcher_4_incremental_native(data, size, zcp);
851 	else
852 		fletcher_4_incremental_byteswap(data, size, zcp);
853 }
854 
855 static int
856 abd_fletcher_4_iter(void *data, size_t size, void *private)
857 {
858 	zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
859 	fletcher_4_ctx_t *ctx = cdp->acd_ctx;
860 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
861 	boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
862 	uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
863 
864 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
865 
866 	if (asize > 0) {
867 		if (native)
868 			ops->compute_native(ctx, data, asize);
869 		else
870 			ops->compute_byteswap(ctx, data, asize);
871 
872 		size -= asize;
873 		data = (char *)data + asize;
874 	}
875 
876 	if (size > 0) {
877 		ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
878 		/* At this point we have to switch to scalar impl */
879 		abd_fletcher_4_simd2scalar(native, data, size, cdp);
880 	}
881 
882 	return (0);
883 }
884 
885 zio_abd_checksum_func_t fletcher_4_abd_ops = {
886 	.acf_init = abd_fletcher_4_init,
887 	.acf_fini = abd_fletcher_4_fini,
888 	.acf_iter = abd_fletcher_4_iter
889 };
890 
891 #if defined(_KERNEL)
892 
893 #define	IMPL_FMT(impl, i)	(((impl) == (i)) ? "[%s] " : "%s ")
894 
895 #if defined(__linux__)
896 
897 static int
898 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
899 {
900 	const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
901 	char *fmt;
902 	int cnt = 0;
903 
904 	/* list fastest */
905 	fmt = IMPL_FMT(impl, IMPL_FASTEST);
906 	cnt += sprintf(buffer + cnt, fmt, "fastest");
907 
908 	/* list all supported implementations */
909 	for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
910 		fmt = IMPL_FMT(impl, i);
911 		cnt += sprintf(buffer + cnt, fmt,
912 		    fletcher_4_supp_impls[i]->name);
913 	}
914 
915 	return (cnt);
916 }
917 
918 static int
919 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
920 {
921 	return (fletcher_4_impl_set(val));
922 }
923 
924 #else
925 
926 #include <sys/sbuf.h>
927 
928 static int
929 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
930 {
931 	int err;
932 
933 	if (req->newptr == NULL) {
934 		const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
935 		const int init_buflen = 64;
936 		const char *fmt;
937 		struct sbuf *s;
938 
939 		s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
940 
941 		/* list fastest */
942 		fmt = IMPL_FMT(impl, IMPL_FASTEST);
943 		(void) sbuf_printf(s, fmt, "fastest");
944 
945 		/* list all supported implementations */
946 		for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
947 			fmt = IMPL_FMT(impl, i);
948 			(void) sbuf_printf(s, fmt,
949 			    fletcher_4_supp_impls[i]->name);
950 		}
951 
952 		err = sbuf_finish(s);
953 		sbuf_delete(s);
954 
955 		return (err);
956 	}
957 
958 	char buf[16];
959 
960 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
961 	if (err)
962 		return (err);
963 	return (-fletcher_4_impl_set(buf));
964 }
965 
966 #endif
967 
968 #undef IMPL_FMT
969 
970 /*
971  * Choose a fletcher 4 implementation in ZFS.
972  * Users can choose "cycle" to exercise all implementations, but this is
973  * for testing purpose therefore it can only be set in user space.
974  */
975 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
976     fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
977 	"Select fletcher 4 implementation.");
978 
979 EXPORT_SYMBOL(fletcher_init);
980 EXPORT_SYMBOL(fletcher_2_incremental_native);
981 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
982 EXPORT_SYMBOL(fletcher_4_init);
983 EXPORT_SYMBOL(fletcher_4_fini);
984 EXPORT_SYMBOL(fletcher_2_native);
985 EXPORT_SYMBOL(fletcher_2_byteswap);
986 EXPORT_SYMBOL(fletcher_4_native);
987 EXPORT_SYMBOL(fletcher_4_native_varsize);
988 EXPORT_SYMBOL(fletcher_4_byteswap);
989 EXPORT_SYMBOL(fletcher_4_incremental_native);
990 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
991 EXPORT_SYMBOL(fletcher_4_abd_ops);
992 #endif
993