1 /*
2  * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
3  *
4  * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
5  * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6  * and then combine the streams to form the final four checksum words.
7  * This implementation is a derivative of the AVX SIMD implementation by
8  * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9  *
10  * Copyright (C) 2016 Tyler J. Stachecki.
11  *
12  * Authors:
13  *	Tyler J. Stachecki <stachecki.tyler@gmail.com>
14  *
15  * This software is available to you under a choice of one of two
16  * licenses.  You may choose to be licensed under the terms of the GNU
17  * General Public License (GPL) Version 2, available from the file
18  * COPYING in the main directory of this source tree, or the
19  * OpenIB.org BSD license below:
20  *
21  *     Redistribution and use in source and binary forms, with or
22  *     without modification, are permitted provided that the following
23  *     conditions are met:
24  *
25  *      - Redistributions of source code must retain the above
26  *        copyright notice, this list of conditions and the following
27  *        disclaimer.
28  *
29  *      - Redistributions in binary form must reproduce the above
30  *        copyright notice, this list of conditions and the following
31  *        disclaimer in the documentation and/or other materials
32  *        provided with the distribution.
33  *
34  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41  * SOFTWARE.
42  */
43 
44 #if defined(HAVE_SSE2)
45 
46 #include <sys/simd.h>
47 #include <sys/spa_checksum.h>
48 #include <sys/byteorder.h>
49 #include <sys/strings.h>
50 #include <zfs_fletcher.h>
51 
52 ZFS_NO_SANITIZE_UNDEFINED
53 static void
54 fletcher_4_sse2_init(fletcher_4_ctx_t *ctx)
55 {
56 	bzero(ctx->sse, 4 * sizeof (zfs_fletcher_sse_t));
57 }
58 
59 ZFS_NO_SANITIZE_UNDEFINED
60 static void
61 fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
62 {
63 	uint64_t A, B, C, D;
64 
65 	/*
66 	 * The mixing matrix for checksum calculation is:
67 	 * a = a0 + a1
68 	 * b = 2b0 + 2b1 - a1
69 	 * c = 4c0 - b0 + 4c1 -3b1
70 	 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
71 	 *
72 	 * c and d are multiplied by 4 and 8, respectively,
73 	 * before spilling the vectors out to memory.
74 	 */
75 	A = ctx->sse[0].v[0] + ctx->sse[0].v[1];
76 	B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1];
77 	C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] -
78 	    3 * ctx->sse[1].v[1];
79 	D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] -
80 	    8 * ctx->sse[2].v[1] + ctx->sse[1].v[1];
81 
82 	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
83 }
84 
85 #define	FLETCHER_4_SSE_RESTORE_CTX(ctx)					\
86 {									\
87 	asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0]));	\
88 	asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1]));	\
89 	asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2]));	\
90 	asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3]));	\
91 }
92 
93 #define	FLETCHER_4_SSE_SAVE_CTX(ctx)					\
94 {									\
95 	asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0]));	\
96 	asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1]));	\
97 	asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2]));	\
98 	asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3]));	\
99 }
100 
101 static void
102 fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
103 {
104 	const uint64_t *ip = buf;
105 	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
106 
107 	kfpu_begin();
108 
109 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
110 
111 	asm volatile("pxor %xmm4, %xmm4");
112 
113 	for (; ip < ipend; ip += 2) {
114 		asm volatile("movdqu %0, %%xmm5" :: "m"(*ip));
115 		asm volatile("movdqa %xmm5, %xmm6");
116 		asm volatile("punpckldq %xmm4, %xmm5");
117 		asm volatile("punpckhdq %xmm4, %xmm6");
118 		asm volatile("paddq %xmm5, %xmm0");
119 		asm volatile("paddq %xmm0, %xmm1");
120 		asm volatile("paddq %xmm1, %xmm2");
121 		asm volatile("paddq %xmm2, %xmm3");
122 		asm volatile("paddq %xmm6, %xmm0");
123 		asm volatile("paddq %xmm0, %xmm1");
124 		asm volatile("paddq %xmm1, %xmm2");
125 		asm volatile("paddq %xmm2, %xmm3");
126 	}
127 
128 	FLETCHER_4_SSE_SAVE_CTX(ctx);
129 
130 	kfpu_end();
131 }
132 
133 static void
134 fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
135 {
136 	const uint32_t *ip = buf;
137 	const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
138 
139 	kfpu_begin();
140 
141 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
142 
143 	for (; ip < ipend; ip += 2) {
144 		uint32_t scratch1 = BSWAP_32(ip[0]);
145 		uint32_t scratch2 = BSWAP_32(ip[1]);
146 		asm volatile("movd %0, %%xmm5" :: "r"(scratch1));
147 		asm volatile("movd %0, %%xmm6" :: "r"(scratch2));
148 		asm volatile("punpcklqdq %xmm6, %xmm5");
149 		asm volatile("paddq %xmm5, %xmm0");
150 		asm volatile("paddq %xmm0, %xmm1");
151 		asm volatile("paddq %xmm1, %xmm2");
152 		asm volatile("paddq %xmm2, %xmm3");
153 	}
154 
155 	FLETCHER_4_SSE_SAVE_CTX(ctx);
156 
157 	kfpu_end();
158 }
159 
160 static boolean_t fletcher_4_sse2_valid(void)
161 {
162 	return (kfpu_allowed() && zfs_sse2_available());
163 }
164 
165 const fletcher_4_ops_t fletcher_4_sse2_ops = {
166 	.init_native = fletcher_4_sse2_init,
167 	.fini_native = fletcher_4_sse2_fini,
168 	.compute_native = fletcher_4_sse2_native,
169 	.init_byteswap = fletcher_4_sse2_init,
170 	.fini_byteswap = fletcher_4_sse2_fini,
171 	.compute_byteswap = fletcher_4_sse2_byteswap,
172 	.valid = fletcher_4_sse2_valid,
173 	.name = "sse2"
174 };
175 
176 #endif /* defined(HAVE_SSE2) */
177 
178 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
179 static void
180 fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
181 {
182 	static const zfs_fletcher_sse_t mask = {
183 		.v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
184 	};
185 
186 	const uint64_t *ip = buf;
187 	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
188 
189 	kfpu_begin();
190 
191 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
192 
193 	asm volatile("movdqu %0, %%xmm7"::"m" (mask));
194 	asm volatile("pxor %xmm4, %xmm4");
195 
196 	for (; ip < ipend; ip += 2) {
197 		asm volatile("movdqu %0, %%xmm5"::"m" (*ip));
198 		asm volatile("pshufb %xmm7, %xmm5");
199 		asm volatile("movdqa %xmm5, %xmm6");
200 		asm volatile("punpckldq %xmm4, %xmm5");
201 		asm volatile("punpckhdq %xmm4, %xmm6");
202 		asm volatile("paddq %xmm5, %xmm0");
203 		asm volatile("paddq %xmm0, %xmm1");
204 		asm volatile("paddq %xmm1, %xmm2");
205 		asm volatile("paddq %xmm2, %xmm3");
206 		asm volatile("paddq %xmm6, %xmm0");
207 		asm volatile("paddq %xmm0, %xmm1");
208 		asm volatile("paddq %xmm1, %xmm2");
209 		asm volatile("paddq %xmm2, %xmm3");
210 	}
211 
212 	FLETCHER_4_SSE_SAVE_CTX(ctx);
213 
214 	kfpu_end();
215 }
216 
217 static boolean_t fletcher_4_ssse3_valid(void)
218 {
219 	return (kfpu_allowed() && zfs_sse2_available() &&
220 	    zfs_ssse3_available());
221 }
222 
223 const fletcher_4_ops_t fletcher_4_ssse3_ops = {
224 	.init_native = fletcher_4_sse2_init,
225 	.fini_native = fletcher_4_sse2_fini,
226 	.compute_native = fletcher_4_sse2_native,
227 	.init_byteswap = fletcher_4_sse2_init,
228 	.fini_byteswap = fletcher_4_sse2_fini,
229 	.compute_byteswap = fletcher_4_ssse3_byteswap,
230 	.valid = fletcher_4_ssse3_valid,
231 	.name = "ssse3"
232 };
233 
234 #endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */
235