1 /*
2  * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
3  *
4  * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
5  * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6  * and then combine the streams to form the final four checksum words.
7  * This implementation is a derivative of the AVX SIMD implementation by
8  * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9  *
10  * Copyright (C) 2016 Tyler J. Stachecki.
11  *
12  * Authors:
13  *	Tyler J. Stachecki <stachecki.tyler@gmail.com>
14  *
15  * This software is available to you under a choice of one of two
16  * licenses.  You may choose to be licensed under the terms of the GNU
17  * General Public License (GPL) Version 2, available from the file
18  * COPYING in the main directory of this source tree, or the
19  * OpenIB.org BSD license below:
20  *
21  *     Redistribution and use in source and binary forms, with or
22  *     without modification, are permitted provided that the following
23  *     conditions are met:
24  *
25  *      - Redistributions of source code must retain the above
26  *        copyright notice, this list of conditions and the following
27  *        disclaimer.
28  *
29  *      - Redistributions in binary form must reproduce the above
30  *        copyright notice, this list of conditions and the following
31  *        disclaimer in the documentation and/or other materials
32  *        provided with the distribution.
33  *
34  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41  * SOFTWARE.
42  */
43 
44 #if defined(HAVE_SSE2)
45 
46 #include <sys/simd.h>
47 #include <sys/spa_checksum.h>
48 #include <sys/string.h>
49 #include <sys/byteorder.h>
50 #include <zfs_fletcher.h>
51 
52 static void
53 fletcher_4_sse2_init(fletcher_4_ctx_t *ctx)
54 {
55 	memset(ctx->sse, 0, 4 * sizeof (zfs_fletcher_sse_t));
56 }
57 
58 static void
59 fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
60 {
61 	uint64_t A, B, C, D;
62 
63 	/*
64 	 * The mixing matrix for checksum calculation is:
65 	 * a = a0 + a1
66 	 * b = 2b0 + 2b1 - a1
67 	 * c = 4c0 - b0 + 4c1 -3b1
68 	 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
69 	 *
70 	 * c and d are multiplied by 4 and 8, respectively,
71 	 * before spilling the vectors out to memory.
72 	 */
73 	A = ctx->sse[0].v[0] + ctx->sse[0].v[1];
74 	B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1];
75 	C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] -
76 	    3 * ctx->sse[1].v[1];
77 	D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] -
78 	    8 * ctx->sse[2].v[1] + ctx->sse[1].v[1];
79 
80 	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
81 }
82 
83 #define	FLETCHER_4_SSE_RESTORE_CTX(ctx)					\
84 {									\
85 	asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0]));	\
86 	asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1]));	\
87 	asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2]));	\
88 	asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3]));	\
89 }
90 
91 #define	FLETCHER_4_SSE_SAVE_CTX(ctx)					\
92 {									\
93 	asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0]));	\
94 	asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1]));	\
95 	asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2]));	\
96 	asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3]));	\
97 }
98 
99 static void
100 fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
101 {
102 	const uint64_t *ip = buf;
103 	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
104 
105 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
106 
107 	asm volatile("pxor %xmm4, %xmm4");
108 
109 	do {
110 		asm volatile("movdqu %0, %%xmm5" :: "m"(*ip));
111 		asm volatile("movdqa %xmm5, %xmm6");
112 		asm volatile("punpckldq %xmm4, %xmm5");
113 		asm volatile("punpckhdq %xmm4, %xmm6");
114 		asm volatile("paddq %xmm5, %xmm0");
115 		asm volatile("paddq %xmm0, %xmm1");
116 		asm volatile("paddq %xmm1, %xmm2");
117 		asm volatile("paddq %xmm2, %xmm3");
118 		asm volatile("paddq %xmm6, %xmm0");
119 		asm volatile("paddq %xmm0, %xmm1");
120 		asm volatile("paddq %xmm1, %xmm2");
121 		asm volatile("paddq %xmm2, %xmm3");
122 	} while ((ip += 2) < ipend);
123 
124 	FLETCHER_4_SSE_SAVE_CTX(ctx);
125 }
126 
127 static void
128 fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
129 {
130 	const uint32_t *ip = buf;
131 	const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
132 
133 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
134 
135 	do {
136 		uint32_t scratch1 = BSWAP_32(ip[0]);
137 		uint32_t scratch2 = BSWAP_32(ip[1]);
138 		asm volatile("movd %0, %%xmm5" :: "r"(scratch1));
139 		asm volatile("movd %0, %%xmm6" :: "r"(scratch2));
140 		asm volatile("punpcklqdq %xmm6, %xmm5");
141 		asm volatile("paddq %xmm5, %xmm0");
142 		asm volatile("paddq %xmm0, %xmm1");
143 		asm volatile("paddq %xmm1, %xmm2");
144 		asm volatile("paddq %xmm2, %xmm3");
145 	} while ((ip += 2) < ipend);
146 
147 	FLETCHER_4_SSE_SAVE_CTX(ctx);
148 }
149 
150 static boolean_t fletcher_4_sse2_valid(void)
151 {
152 	return (kfpu_allowed() && zfs_sse2_available());
153 }
154 
155 const fletcher_4_ops_t fletcher_4_sse2_ops = {
156 	.init_native = fletcher_4_sse2_init,
157 	.fini_native = fletcher_4_sse2_fini,
158 	.compute_native = fletcher_4_sse2_native,
159 	.init_byteswap = fletcher_4_sse2_init,
160 	.fini_byteswap = fletcher_4_sse2_fini,
161 	.compute_byteswap = fletcher_4_sse2_byteswap,
162 	.valid = fletcher_4_sse2_valid,
163 	.uses_fpu = B_TRUE,
164 	.name = "sse2"
165 };
166 
167 #endif /* defined(HAVE_SSE2) */
168 
169 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
170 static void
171 fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
172 {
173 	static const zfs_fletcher_sse_t mask = {
174 		.v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
175 	};
176 
177 	const uint64_t *ip = buf;
178 	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
179 
180 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
181 
182 	asm volatile("movdqu %0, %%xmm7"::"m" (mask));
183 	asm volatile("pxor %xmm4, %xmm4");
184 
185 	do {
186 		asm volatile("movdqu %0, %%xmm5"::"m" (*ip));
187 		asm volatile("pshufb %xmm7, %xmm5");
188 		asm volatile("movdqa %xmm5, %xmm6");
189 		asm volatile("punpckldq %xmm4, %xmm5");
190 		asm volatile("punpckhdq %xmm4, %xmm6");
191 		asm volatile("paddq %xmm5, %xmm0");
192 		asm volatile("paddq %xmm0, %xmm1");
193 		asm volatile("paddq %xmm1, %xmm2");
194 		asm volatile("paddq %xmm2, %xmm3");
195 		asm volatile("paddq %xmm6, %xmm0");
196 		asm volatile("paddq %xmm0, %xmm1");
197 		asm volatile("paddq %xmm1, %xmm2");
198 		asm volatile("paddq %xmm2, %xmm3");
199 	} while ((ip += 2) < ipend);
200 
201 	FLETCHER_4_SSE_SAVE_CTX(ctx);
202 }
203 
204 static boolean_t fletcher_4_ssse3_valid(void)
205 {
206 	return (kfpu_allowed() && zfs_sse2_available() &&
207 	    zfs_ssse3_available());
208 }
209 
210 const fletcher_4_ops_t fletcher_4_ssse3_ops = {
211 	.init_native = fletcher_4_sse2_init,
212 	.fini_native = fletcher_4_sse2_fini,
213 	.compute_native = fletcher_4_sse2_native,
214 	.init_byteswap = fletcher_4_sse2_init,
215 	.fini_byteswap = fletcher_4_sse2_fini,
216 	.compute_byteswap = fletcher_4_ssse3_byteswap,
217 	.valid = fletcher_4_ssse3_valid,
218 	.uses_fpu = B_TRUE,
219 	.name = "ssse3"
220 };
221 
222 #endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */
223