1 /*
2  * Implement fast Fletcher4 using superscalar pipelines.
3  *
4  * Use regular C code to compute
5  * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6  * and then combine the streams to form the final four checksum words.
7  * This implementation is a derivative of the AVX SIMD implementation by
8  * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9  *
10  * Copyright (C) 2016 Romain Dolbeau.
11  *
12  * Authors:
13  *	Romain Dolbeau <romain.dolbeau@atos.net>
14  *
15  * This software is available to you under a choice of one of two
16  * licenses.  You may choose to be licensed under the terms of the GNU
17  * General Public License (GPL) Version 2, available from the file
18  * COPYING in the main directory of this source tree, or the
19  * OpenIB.org BSD license below:
20  *
21  *     Redistribution and use in source and binary forms, with or
22  *     without modification, are permitted provided that the following
23  *     conditions are met:
24  *
25  *	- Redistributions of source code must retain the above
26  *	  copyright notice, this list of conditions and the following
27  *	  disclaimer.
28  *
29  *	- Redistributions in binary form must reproduce the above
30  *	  copyright notice, this list of conditions and the following
31  *	  disclaimer in the documentation and/or other materials
32  *	  provided with the distribution.
33  *
34  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41  * SOFTWARE.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/byteorder.h>
46 #include <sys/spa_checksum.h>
47 #include <sys/string.h>
48 #include <zfs_fletcher.h>
49 
50 static void
51 fletcher_4_superscalar_init(fletcher_4_ctx_t *ctx)
52 {
53 	memset(ctx->superscalar, 0, 4 * sizeof (zfs_fletcher_superscalar_t));
54 }
55 
56 static void
57 fletcher_4_superscalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
58 {
59 	uint64_t A, B, C, D;
60 	A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1];
61 	B = 2 * ctx->superscalar[1].v[0] + 2 * ctx->superscalar[1].v[1] -
62 	    ctx->superscalar[0].v[1];
63 	C = 4 * ctx->superscalar[2].v[0] - ctx->superscalar[1].v[0] +
64 	    4 * ctx->superscalar[2].v[1] - 3 * ctx->superscalar[1].v[1];
65 	D = 8 * ctx->superscalar[3].v[0] - 4 * ctx->superscalar[2].v[0] +
66 	    8 * ctx->superscalar[3].v[1] - 8 * ctx->superscalar[2].v[1] +
67 	    ctx->superscalar[1].v[1];
68 	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
69 }
70 
71 static void
72 fletcher_4_superscalar_native(fletcher_4_ctx_t *ctx,
73     const void *buf, uint64_t size)
74 {
75 	const uint32_t *ip = buf;
76 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
77 	uint64_t a, b, c, d;
78 	uint64_t a2, b2, c2, d2;
79 
80 	a = ctx->superscalar[0].v[0];
81 	b = ctx->superscalar[1].v[0];
82 	c = ctx->superscalar[2].v[0];
83 	d = ctx->superscalar[3].v[0];
84 	a2 = ctx->superscalar[0].v[1];
85 	b2 = ctx->superscalar[1].v[1];
86 	c2 = ctx->superscalar[2].v[1];
87 	d2 = ctx->superscalar[3].v[1];
88 
89 	do {
90 		a += ip[0];
91 		a2 += ip[1];
92 		b += a;
93 		b2 += a2;
94 		c += b;
95 		c2 += b2;
96 		d += c;
97 		d2 += c2;
98 	} while ((ip += 2) < ipend);
99 
100 	ctx->superscalar[0].v[0] = a;
101 	ctx->superscalar[1].v[0] = b;
102 	ctx->superscalar[2].v[0] = c;
103 	ctx->superscalar[3].v[0] = d;
104 	ctx->superscalar[0].v[1] = a2;
105 	ctx->superscalar[1].v[1] = b2;
106 	ctx->superscalar[2].v[1] = c2;
107 	ctx->superscalar[3].v[1] = d2;
108 }
109 
110 static void
111 fletcher_4_superscalar_byteswap(fletcher_4_ctx_t *ctx,
112     const void *buf, uint64_t size)
113 {
114 	const uint32_t *ip = buf;
115 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
116 	uint64_t a, b, c, d;
117 	uint64_t a2, b2, c2, d2;
118 
119 	a = ctx->superscalar[0].v[0];
120 	b = ctx->superscalar[1].v[0];
121 	c = ctx->superscalar[2].v[0];
122 	d = ctx->superscalar[3].v[0];
123 	a2 = ctx->superscalar[0].v[1];
124 	b2 = ctx->superscalar[1].v[1];
125 	c2 = ctx->superscalar[2].v[1];
126 	d2 = ctx->superscalar[3].v[1];
127 
128 	do {
129 		a += BSWAP_32(ip[0]);
130 		a2 += BSWAP_32(ip[1]);
131 		b += a;
132 		b2 += a2;
133 		c += b;
134 		c2 += b2;
135 		d += c;
136 		d2 += c2;
137 	} while ((ip += 2) < ipend);
138 
139 	ctx->superscalar[0].v[0] = a;
140 	ctx->superscalar[1].v[0] = b;
141 	ctx->superscalar[2].v[0] = c;
142 	ctx->superscalar[3].v[0] = d;
143 	ctx->superscalar[0].v[1] = a2;
144 	ctx->superscalar[1].v[1] = b2;
145 	ctx->superscalar[2].v[1] = c2;
146 	ctx->superscalar[3].v[1] = d2;
147 }
148 
149 static boolean_t fletcher_4_superscalar_valid(void)
150 {
151 	return (B_TRUE);
152 }
153 
154 const fletcher_4_ops_t fletcher_4_superscalar_ops = {
155 	.init_native = fletcher_4_superscalar_init,
156 	.compute_native = fletcher_4_superscalar_native,
157 	.fini_native = fletcher_4_superscalar_fini,
158 	.init_byteswap = fletcher_4_superscalar_init,
159 	.compute_byteswap = fletcher_4_superscalar_byteswap,
160 	.fini_byteswap = fletcher_4_superscalar_fini,
161 	.valid = fletcher_4_superscalar_valid,
162 	.uses_fpu = B_FALSE,
163 	.name = "superscalar"
164 };
165