xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 4b9d6057)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2020, George Amanakis. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2020, The FreeBSD Foundation [1]
32  *
33  * [1] Portions of this software were developed by Allan Jude
34  *     under sponsorship from the FreeBSD Foundation.
35  */
36 
37 /*
38  * DVA-based Adjustable Replacement Cache
39  *
40  * While much of the theory of operation used here is
41  * based on the self-tuning, low overhead replacement cache
42  * presented by Megiddo and Modha at FAST 2003, there are some
43  * significant differences:
44  *
45  * 1. The Megiddo and Modha model assumes any page is evictable.
46  * Pages in its cache cannot be "locked" into memory.  This makes
47  * the eviction algorithm simple: evict the last page in the list.
48  * This also make the performance characteristics easy to reason
49  * about.  Our cache is not so simple.  At any given moment, some
50  * subset of the blocks in the cache are un-evictable because we
51  * have handed out a reference to them.  Blocks are only evictable
52  * when there are no external references active.  This makes
53  * eviction far more problematic:  we choose to evict the evictable
54  * blocks that are the "lowest" in the list.
55  *
56  * There are times when it is not possible to evict the requested
57  * space.  In these circumstances we are unable to adjust the cache
58  * size.  To prevent the cache growing unbounded at these times we
59  * implement a "cache throttle" that slows the flow of new data
60  * into the cache until we can make space available.
61  *
62  * 2. The Megiddo and Modha model assumes a fixed cache size.
63  * Pages are evicted when the cache is full and there is a cache
64  * miss.  Our model has a variable sized cache.  It grows with
65  * high use, but also tries to react to memory pressure from the
66  * operating system: decreasing its size when system memory is
67  * tight.
68  *
69  * 3. The Megiddo and Modha model assumes a fixed page size. All
70  * elements of the cache are therefore exactly the same size.  So
71  * when adjusting the cache size following a cache miss, its simply
72  * a matter of choosing a single page to evict.  In our model, we
73  * have variable sized cache blocks (ranging from 512 bytes to
74  * 128K bytes).  We therefore choose a set of blocks to evict to make
75  * space for a cache miss that approximates as closely as possible
76  * the space used by the new block.
77  *
78  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79  * by N. Megiddo & D. Modha, FAST 2003
80  */
81 
82 /*
83  * The locking model:
84  *
85  * A new reference to a cache buffer can be obtained in two
86  * ways: 1) via a hash table lookup using the DVA as a key,
87  * or 2) via one of the ARC lists.  The arc_read() interface
88  * uses method 1, while the internal ARC algorithms for
89  * adjusting the cache use method 2.  We therefore provide two
90  * types of locks: 1) the hash table lock array, and 2) the
91  * ARC list locks.
92  *
93  * Buffers do not have their own mutexes, rather they rely on the
94  * hash table mutexes for the bulk of their protection (i.e. most
95  * fields in the arc_buf_hdr_t are protected by these mutexes).
96  *
97  * buf_hash_find() returns the appropriate mutex (held) when it
98  * locates the requested buffer in the hash table.  It returns
99  * NULL for the mutex if the buffer was not in the table.
100  *
101  * buf_hash_remove() expects the appropriate hash mutex to be
102  * already held before it is invoked.
103  *
104  * Each ARC state also has a mutex which is used to protect the
105  * buffer list associated with the state.  When attempting to
106  * obtain a hash table lock while holding an ARC list lock you
107  * must use: mutex_tryenter() to avoid deadlock.  Also note that
108  * the active state mutex must be held before the ghost state mutex.
109  *
110  * It as also possible to register a callback which is run when the
111  * metadata limit is reached and no buffers can be safely evicted.  In
112  * this case the arc user should drop a reference on some arc buffers so
113  * they can be reclaimed.  For example, when using the ZPL each dentry
114  * holds a references on a znode.  These dentries must be pruned before
115  * the arc buffer holding the znode can be safely evicted.
116  *
117  * Note that the majority of the performance stats are manipulated
118  * with atomic operations.
119  *
120  * The L2ARC uses the l2ad_mtx on each vdev for the following:
121  *
122  *	- L2ARC buflist creation
123  *	- L2ARC buflist eviction
124  *	- L2ARC write completion, which walks L2ARC buflists
125  *	- ARC header destruction, as it removes from L2ARC buflists
126  *	- ARC header release, as it removes from L2ARC buflists
127  */
128 
129 /*
130  * ARC operation:
131  *
132  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
133  * This structure can point either to a block that is still in the cache or to
134  * one that is only accessible in an L2 ARC device, or it can provide
135  * information about a block that was recently evicted. If a block is
136  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
137  * information to retrieve it from the L2ARC device. This information is
138  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
139  * that is in this state cannot access the data directly.
140  *
141  * Blocks that are actively being referenced or have not been evicted
142  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
143  * the arc_buf_hdr_t that will point to the data block in memory. A block can
144  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
145  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
146  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
147  *
148  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
149  * ability to store the physical data (b_pabd) associated with the DVA of the
150  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
151  * it will match its on-disk compression characteristics. This behavior can be
152  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
153  * compressed ARC functionality is disabled, the b_pabd will point to an
154  * uncompressed version of the on-disk data.
155  *
156  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
157  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
158  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
159  * consumer. The ARC will provide references to this data and will keep it
160  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
161  * data block and will evict any arc_buf_t that is no longer referenced. The
162  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
163  * "overhead_size" kstat.
164  *
165  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
166  * compressed form. The typical case is that consumers will want uncompressed
167  * data, and when that happens a new data buffer is allocated where the data is
168  * decompressed for them to use. Currently the only consumer who wants
169  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
170  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
171  * with the arc_buf_hdr_t.
172  *
173  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
174  * first one is owned by a compressed send consumer (and therefore references
175  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
176  * used by any other consumer (and has its own uncompressed copy of the data
177  * buffer).
178  *
179  *   arc_buf_hdr_t
180  *   +-----------+
181  *   | fields    |
182  *   | common to |
183  *   | L1- and   |
184  *   | L2ARC     |
185  *   +-----------+
186  *   | l2arc_buf_hdr_t
187  *   |           |
188  *   +-----------+
189  *   | l1arc_buf_hdr_t
190  *   |           |              arc_buf_t
191  *   | b_buf     +------------>+-----------+      arc_buf_t
192  *   | b_pabd    +-+           |b_next     +---->+-----------+
193  *   +-----------+ |           |-----------|     |b_next     +-->NULL
194  *                 |           |b_comp = T |     +-----------+
195  *                 |           |b_data     +-+   |b_comp = F |
196  *                 |           +-----------+ |   |b_data     +-+
197  *                 +->+------+               |   +-----------+ |
198  *        compressed  |      |               |                 |
199  *           data     |      |<--------------+                 | uncompressed
200  *                    +------+          compressed,            |     data
201  *                                        shared               +-->+------+
202  *                                         data                    |      |
203  *                                                                 |      |
204  *                                                                 +------+
205  *
206  * When a consumer reads a block, the ARC must first look to see if the
207  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
208  * arc_buf_t and either copies uncompressed data into a new data buffer from an
209  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
210  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
211  * hdr is compressed and the desired compression characteristics of the
212  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
213  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
214  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
215  * be anywhere in the hdr's list.
216  *
217  * The diagram below shows an example of an uncompressed ARC hdr that is
218  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
219  * the last element in the buf list):
220  *
221  *                arc_buf_hdr_t
222  *                +-----------+
223  *                |           |
224  *                |           |
225  *                |           |
226  *                +-----------+
227  * l2arc_buf_hdr_t|           |
228  *                |           |
229  *                +-----------+
230  * l1arc_buf_hdr_t|           |
231  *                |           |                 arc_buf_t    (shared)
232  *                |    b_buf  +------------>+---------+      arc_buf_t
233  *                |           |             |b_next   +---->+---------+
234  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
235  *                +-----------+ |           |         |     +---------+
236  *                              |           |b_data   +-+   |         |
237  *                              |           +---------+ |   |b_data   +-+
238  *                              +->+------+             |   +---------+ |
239  *                                 |      |             |               |
240  *                   uncompressed  |      |             |               |
241  *                        data     +------+             |               |
242  *                                    ^                 +->+------+     |
243  *                                    |       uncompressed |      |     |
244  *                                    |           data     |      |     |
245  *                                    |                    +------+     |
246  *                                    +---------------------------------+
247  *
248  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
249  * since the physical block is about to be rewritten. The new data contents
250  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
251  * it may compress the data before writing it to disk. The ARC will be called
252  * with the transformed data and will memcpy the transformed on-disk block into
253  * a newly allocated b_pabd. Writes are always done into buffers which have
254  * either been loaned (and hence are new and don't have other readers) or
255  * buffers which have been released (and hence have their own hdr, if there
256  * were originally other readers of the buf's original hdr). This ensures that
257  * the ARC only needs to update a single buf and its hdr after a write occurs.
258  *
259  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
260  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
261  * that when compressed ARC is enabled that the L2ARC blocks are identical
262  * to the on-disk block in the main data pool. This provides a significant
263  * advantage since the ARC can leverage the bp's checksum when reading from the
264  * L2ARC to determine if the contents are valid. However, if the compressed
265  * ARC is disabled, then the L2ARC's block must be transformed to look
266  * like the physical block in the main data pool before comparing the
267  * checksum and determining its validity.
268  *
269  * The L1ARC has a slightly different system for storing encrypted data.
270  * Raw (encrypted + possibly compressed) data has a few subtle differences from
271  * data that is just compressed. The biggest difference is that it is not
272  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
273  * The other difference is that encryption cannot be treated as a suggestion.
274  * If a caller would prefer compressed data, but they actually wind up with
275  * uncompressed data the worst thing that could happen is there might be a
276  * performance hit. If the caller requests encrypted data, however, we must be
277  * sure they actually get it or else secret information could be leaked. Raw
278  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
279  * may have both an encrypted version and a decrypted version of its data at
280  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
281  * copied out of this header. To avoid complications with b_pabd, raw buffers
282  * cannot be shared.
283  */
284 
285 #include <sys/spa.h>
286 #include <sys/zio.h>
287 #include <sys/spa_impl.h>
288 #include <sys/zio_compress.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/zfs_context.h>
291 #include <sys/arc.h>
292 #include <sys/zfs_refcount.h>
293 #include <sys/vdev.h>
294 #include <sys/vdev_impl.h>
295 #include <sys/dsl_pool.h>
296 #include <sys/multilist.h>
297 #include <sys/abd.h>
298 #include <sys/zil.h>
299 #include <sys/fm/fs/zfs.h>
300 #include <sys/callb.h>
301 #include <sys/kstat.h>
302 #include <sys/zthr.h>
303 #include <zfs_fletcher.h>
304 #include <sys/arc_impl.h>
305 #include <sys/trace_zfs.h>
306 #include <sys/aggsum.h>
307 #include <sys/wmsum.h>
308 #include <cityhash.h>
309 #include <sys/vdev_trim.h>
310 #include <sys/zfs_racct.h>
311 #include <sys/zstd/zstd.h>
312 
313 #ifndef _KERNEL
314 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
315 boolean_t arc_watch = B_FALSE;
316 #endif
317 
318 /*
319  * This thread's job is to keep enough free memory in the system, by
320  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
321  * arc_available_memory().
322  */
323 static zthr_t *arc_reap_zthr;
324 
325 /*
326  * This thread's job is to keep arc_size under arc_c, by calling
327  * arc_evict(), which improves arc_is_overflowing().
328  */
329 static zthr_t *arc_evict_zthr;
330 static arc_buf_hdr_t **arc_state_evict_markers;
331 static int arc_state_evict_marker_count;
332 
333 static kmutex_t arc_evict_lock;
334 static boolean_t arc_evict_needed = B_FALSE;
335 static clock_t arc_last_uncached_flush;
336 
337 /*
338  * Count of bytes evicted since boot.
339  */
340 static uint64_t arc_evict_count;
341 
342 /*
343  * List of arc_evict_waiter_t's, representing threads waiting for the
344  * arc_evict_count to reach specific values.
345  */
346 static list_t arc_evict_waiters;
347 
348 /*
349  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350  * the requested amount of data to be evicted.  For example, by default for
351  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352  * Since this is above 100%, it ensures that progress is made towards getting
353  * arc_size under arc_c.  Since this is finite, it ensures that allocations
354  * can still happen, even during the potentially long time that arc_size is
355  * more than arc_c.
356  */
357 static uint_t zfs_arc_eviction_pct = 200;
358 
359 /*
360  * The number of headers to evict in arc_evict_state_impl() before
361  * dropping the sublist lock and evicting from another sublist. A lower
362  * value means we're more likely to evict the "correct" header (i.e. the
363  * oldest header in the arc state), but comes with higher overhead
364  * (i.e. more invocations of arc_evict_state_impl()).
365  */
366 static uint_t zfs_arc_evict_batch_limit = 10;
367 
368 /* number of seconds before growing cache again */
369 uint_t arc_grow_retry = 5;
370 
371 /*
372  * Minimum time between calls to arc_kmem_reap_soon().
373  */
374 static const int arc_kmem_cache_reap_retry_ms = 1000;
375 
376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377 static int zfs_arc_overflow_shift = 8;
378 
379 /* log2(fraction of arc to reclaim) */
380 uint_t arc_shrink_shift = 7;
381 
382 /* percent of pagecache to reclaim arc to */
383 #ifdef _KERNEL
384 uint_t zfs_arc_pc_percent = 0;
385 #endif
386 
387 /*
388  * log2(fraction of ARC which must be free to allow growing).
389  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
390  * when reading a new block into the ARC, we will evict an equal-sized block
391  * from the ARC.
392  *
393  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
394  * we will still not allow it to grow.
395  */
396 uint_t		arc_no_grow_shift = 5;
397 
398 
399 /*
400  * minimum lifespan of a prefetch block in clock ticks
401  * (initialized in arc_init())
402  */
403 static uint_t		arc_min_prefetch_ms;
404 static uint_t		arc_min_prescient_prefetch_ms;
405 
406 /*
407  * If this percent of memory is free, don't throttle.
408  */
409 uint_t arc_lotsfree_percent = 10;
410 
411 /*
412  * The arc has filled available memory and has now warmed up.
413  */
414 boolean_t arc_warm;
415 
416 /*
417  * These tunables are for performance analysis.
418  */
419 uint64_t zfs_arc_max = 0;
420 uint64_t zfs_arc_min = 0;
421 static uint64_t zfs_arc_dnode_limit = 0;
422 static uint_t zfs_arc_dnode_reduce_percent = 10;
423 static uint_t zfs_arc_grow_retry = 0;
424 static uint_t zfs_arc_shrink_shift = 0;
425 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
426 
427 /*
428  * ARC dirty data constraints for arc_tempreserve_space() throttle:
429  * * total dirty data limit
430  * * anon block dirty limit
431  * * each pool's anon allowance
432  */
433 static const unsigned long zfs_arc_dirty_limit_percent = 50;
434 static const unsigned long zfs_arc_anon_limit_percent = 25;
435 static const unsigned long zfs_arc_pool_dirty_percent = 20;
436 
437 /*
438  * Enable or disable compressed arc buffers.
439  */
440 int zfs_compressed_arc_enabled = B_TRUE;
441 
442 /*
443  * Balance between metadata and data on ghost hits.  Values above 100
444  * increase metadata caching by proportionally reducing effect of ghost
445  * data hits on target data/metadata rate.
446  */
447 static uint_t zfs_arc_meta_balance = 500;
448 
449 /*
450  * Percentage that can be consumed by dnodes of ARC meta buffers.
451  */
452 static uint_t zfs_arc_dnode_limit_percent = 10;
453 
454 /*
455  * These tunables are Linux-specific
456  */
457 static uint64_t zfs_arc_sys_free = 0;
458 static uint_t zfs_arc_min_prefetch_ms = 0;
459 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
460 static uint_t zfs_arc_lotsfree_percent = 10;
461 
462 /*
463  * Number of arc_prune threads
464  */
465 static int zfs_arc_prune_task_threads = 1;
466 
467 /* The 7 states: */
468 arc_state_t ARC_anon;
469 arc_state_t ARC_mru;
470 arc_state_t ARC_mru_ghost;
471 arc_state_t ARC_mfu;
472 arc_state_t ARC_mfu_ghost;
473 arc_state_t ARC_l2c_only;
474 arc_state_t ARC_uncached;
475 
476 arc_stats_t arc_stats = {
477 	{ "hits",			KSTAT_DATA_UINT64 },
478 	{ "iohits",			KSTAT_DATA_UINT64 },
479 	{ "misses",			KSTAT_DATA_UINT64 },
480 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
481 	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
482 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
483 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
484 	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
485 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
486 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
487 	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
488 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
489 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
490 	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
491 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
492 	{ "mru_hits",			KSTAT_DATA_UINT64 },
493 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
494 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
495 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
496 	{ "uncached_hits",		KSTAT_DATA_UINT64 },
497 	{ "deleted",			KSTAT_DATA_UINT64 },
498 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
499 	{ "access_skip",		KSTAT_DATA_UINT64 },
500 	{ "evict_skip",			KSTAT_DATA_UINT64 },
501 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
502 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
503 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
504 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
505 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
506 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
507 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
508 	{ "hash_elements",		KSTAT_DATA_UINT64 },
509 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
510 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
511 	{ "hash_chains",		KSTAT_DATA_UINT64 },
512 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
513 	{ "meta",			KSTAT_DATA_UINT64 },
514 	{ "pd",				KSTAT_DATA_UINT64 },
515 	{ "pm",				KSTAT_DATA_UINT64 },
516 	{ "c",				KSTAT_DATA_UINT64 },
517 	{ "c_min",			KSTAT_DATA_UINT64 },
518 	{ "c_max",			KSTAT_DATA_UINT64 },
519 	{ "size",			KSTAT_DATA_UINT64 },
520 	{ "compressed_size",		KSTAT_DATA_UINT64 },
521 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
522 	{ "overhead_size",		KSTAT_DATA_UINT64 },
523 	{ "hdr_size",			KSTAT_DATA_UINT64 },
524 	{ "data_size",			KSTAT_DATA_UINT64 },
525 	{ "metadata_size",		KSTAT_DATA_UINT64 },
526 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
527 	{ "dnode_size",			KSTAT_DATA_UINT64 },
528 	{ "bonus_size",			KSTAT_DATA_UINT64 },
529 #if defined(COMPAT_FREEBSD11)
530 	{ "other_size",			KSTAT_DATA_UINT64 },
531 #endif
532 	{ "anon_size",			KSTAT_DATA_UINT64 },
533 	{ "anon_data",			KSTAT_DATA_UINT64 },
534 	{ "anon_metadata",		KSTAT_DATA_UINT64 },
535 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
536 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
537 	{ "mru_size",			KSTAT_DATA_UINT64 },
538 	{ "mru_data",			KSTAT_DATA_UINT64 },
539 	{ "mru_metadata",		KSTAT_DATA_UINT64 },
540 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
541 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
542 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
543 	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
544 	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
545 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
546 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
547 	{ "mfu_size",			KSTAT_DATA_UINT64 },
548 	{ "mfu_data",			KSTAT_DATA_UINT64 },
549 	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
550 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
551 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
552 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
553 	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
554 	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
555 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
556 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
557 	{ "uncached_size",		KSTAT_DATA_UINT64 },
558 	{ "uncached_data",		KSTAT_DATA_UINT64 },
559 	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
560 	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
561 	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
562 	{ "l2_hits",			KSTAT_DATA_UINT64 },
563 	{ "l2_misses",			KSTAT_DATA_UINT64 },
564 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
565 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
566 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
567 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
568 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
569 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
570 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
571 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
572 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
573 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
574 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
575 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
576 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
577 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
578 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
579 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
580 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
581 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
582 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
583 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
584 	{ "l2_size",			KSTAT_DATA_UINT64 },
585 	{ "l2_asize",			KSTAT_DATA_UINT64 },
586 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
587 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
588 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
589 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
590 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
591 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
592 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
593 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
594 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
595 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
596 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
597 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
598 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
599 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
600 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
601 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
602 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
603 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
604 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
605 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
606 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
607 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
608 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
609 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
610 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
611 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
612 	{ "arc_prune",			KSTAT_DATA_UINT64 },
613 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
614 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
615 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
616 	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
617 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
618 	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
619 	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
620 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
621 	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
622 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
623 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
624 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
625 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
626 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
627 };
628 
629 arc_sums_t arc_sums;
630 
631 #define	ARCSTAT_MAX(stat, val) {					\
632 	uint64_t m;							\
633 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
634 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
635 		continue;						\
636 }
637 
638 /*
639  * We define a macro to allow ARC hits/misses to be easily broken down by
640  * two separate conditions, giving a total of four different subtypes for
641  * each of hits and misses (so eight statistics total).
642  */
643 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
644 	if (cond1) {							\
645 		if (cond2) {						\
646 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
647 		} else {						\
648 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
649 		}							\
650 	} else {							\
651 		if (cond2) {						\
652 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
653 		} else {						\
654 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
655 		}							\
656 	}
657 
658 /*
659  * This macro allows us to use kstats as floating averages. Each time we
660  * update this kstat, we first factor it and the update value by
661  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
662  * average. This macro assumes that integer loads and stores are atomic, but
663  * is not safe for multiple writers updating the kstat in parallel (only the
664  * last writer's update will remain).
665  */
666 #define	ARCSTAT_F_AVG_FACTOR	3
667 #define	ARCSTAT_F_AVG(stat, value) \
668 	do { \
669 		uint64_t x = ARCSTAT(stat); \
670 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
671 		    (value) / ARCSTAT_F_AVG_FACTOR; \
672 		ARCSTAT(stat) = x; \
673 	} while (0)
674 
675 static kstat_t			*arc_ksp;
676 
677 /*
678  * There are several ARC variables that are critical to export as kstats --
679  * but we don't want to have to grovel around in the kstat whenever we wish to
680  * manipulate them.  For these variables, we therefore define them to be in
681  * terms of the statistic variable.  This assures that we are not introducing
682  * the possibility of inconsistency by having shadow copies of the variables,
683  * while still allowing the code to be readable.
684  */
685 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
686 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
687 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
688 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
689 
690 hrtime_t arc_growtime;
691 list_t arc_prune_list;
692 kmutex_t arc_prune_mtx;
693 taskq_t *arc_prune_taskq;
694 
695 #define	GHOST_STATE(state)	\
696 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
697 	(state) == arc_l2c_only)
698 
699 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
700 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
701 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
702 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
703 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
704 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
705 #define	HDR_COMPRESSION_ENABLED(hdr)	\
706 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
707 
708 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
709 #define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
710 #define	HDR_L2_READING(hdr)	\
711 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
712 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
713 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
714 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
715 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
716 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
717 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
718 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
719 
720 #define	HDR_ISTYPE_METADATA(hdr)	\
721 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
722 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
723 
724 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
725 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
726 #define	HDR_HAS_RABD(hdr)	\
727 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
728 	(hdr)->b_crypt_hdr.b_rabd != NULL)
729 #define	HDR_ENCRYPTED(hdr)	\
730 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
731 #define	HDR_AUTHENTICATED(hdr)	\
732 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
733 
734 /* For storing compression mode in b_flags */
735 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
736 
737 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
738 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
739 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
740 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
741 
742 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
743 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
744 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
745 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
746 
747 /*
748  * Other sizes
749  */
750 
751 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
752 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
753 
754 /*
755  * Hash table routines
756  */
757 
758 #define	BUF_LOCKS 2048
759 typedef struct buf_hash_table {
760 	uint64_t ht_mask;
761 	arc_buf_hdr_t **ht_table;
762 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
763 } buf_hash_table_t;
764 
765 static buf_hash_table_t buf_hash_table;
766 
767 #define	BUF_HASH_INDEX(spa, dva, birth) \
768 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
769 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
770 #define	HDR_LOCK(hdr) \
771 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
772 
773 uint64_t zfs_crc64_table[256];
774 
775 /*
776  * Level 2 ARC
777  */
778 
779 #define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
780 #define	L2ARC_HEADROOM		8			/* num of writes */
781 
782 /*
783  * If we discover during ARC scan any buffers to be compressed, we boost
784  * our headroom for the next scanning cycle by this percentage multiple.
785  */
786 #define	L2ARC_HEADROOM_BOOST	200
787 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
788 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
789 
790 /*
791  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
792  * and each of the state has two types: data and metadata.
793  */
794 #define	L2ARC_FEED_TYPES	4
795 
796 /* L2ARC Performance Tunables */
797 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
798 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
799 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
800 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
801 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
802 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
803 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
804 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
805 int l2arc_norw = B_FALSE;			/* no reads during writes */
806 static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
807 
808 /*
809  * L2ARC Internals
810  */
811 static list_t L2ARC_dev_list;			/* device list */
812 static list_t *l2arc_dev_list;			/* device list pointer */
813 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
814 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
815 static list_t L2ARC_free_on_write;		/* free after write buf list */
816 static list_t *l2arc_free_on_write;		/* free after write list ptr */
817 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
818 static uint64_t l2arc_ndev;			/* number of devices */
819 
820 typedef struct l2arc_read_callback {
821 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
822 	blkptr_t		l2rcb_bp;		/* original blkptr */
823 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
824 	int			l2rcb_flags;		/* original flags */
825 	abd_t			*l2rcb_abd;		/* temporary buffer */
826 } l2arc_read_callback_t;
827 
828 typedef struct l2arc_data_free {
829 	/* protected by l2arc_free_on_write_mtx */
830 	abd_t		*l2df_abd;
831 	size_t		l2df_size;
832 	arc_buf_contents_t l2df_type;
833 	list_node_t	l2df_list_node;
834 } l2arc_data_free_t;
835 
836 typedef enum arc_fill_flags {
837 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
838 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
839 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
840 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
841 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
842 } arc_fill_flags_t;
843 
844 typedef enum arc_ovf_level {
845 	ARC_OVF_NONE,			/* ARC within target size. */
846 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
847 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
848 } arc_ovf_level_t;
849 
850 static kmutex_t l2arc_feed_thr_lock;
851 static kcondvar_t l2arc_feed_thr_cv;
852 static uint8_t l2arc_thread_exit;
853 
854 static kmutex_t l2arc_rebuild_thr_lock;
855 static kcondvar_t l2arc_rebuild_thr_cv;
856 
857 enum arc_hdr_alloc_flags {
858 	ARC_HDR_ALLOC_RDATA = 0x1,
859 	ARC_HDR_USE_RESERVE = 0x4,
860 	ARC_HDR_ALLOC_LINEAR = 0x8,
861 };
862 
863 
864 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
865 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
866 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
867 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
868 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
869 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
870     const void *tag);
871 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
872 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
873 static void arc_hdr_destroy(arc_buf_hdr_t *);
874 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
875 static void arc_buf_watch(arc_buf_t *);
876 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
877 
878 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
879 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
880 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
881 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
882 
883 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
884 static void l2arc_read_done(zio_t *);
885 static void l2arc_do_free_on_write(void);
886 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
887     boolean_t state_only);
888 
889 static void arc_prune_async(uint64_t adjust);
890 
891 #define	l2arc_hdr_arcstats_increment(hdr) \
892 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
893 #define	l2arc_hdr_arcstats_decrement(hdr) \
894 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
895 #define	l2arc_hdr_arcstats_increment_state(hdr) \
896 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
897 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
898 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
899 
900 /*
901  * l2arc_exclude_special : A zfs module parameter that controls whether buffers
902  * 		present on special vdevs are eligibile for caching in L2ARC. If
903  * 		set to 1, exclude dbufs on special vdevs from being cached to
904  * 		L2ARC.
905  */
906 int l2arc_exclude_special = 0;
907 
908 /*
909  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
910  * 		metadata and data are cached from ARC into L2ARC.
911  */
912 static int l2arc_mfuonly = 0;
913 
914 /*
915  * L2ARC TRIM
916  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
917  * 		the current write size (l2arc_write_max) we should TRIM if we
918  * 		have filled the device. It is defined as a percentage of the
919  * 		write size. If set to 100 we trim twice the space required to
920  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
921  * 		It also enables TRIM of the whole L2ARC device upon creation or
922  * 		addition to an existing pool or if the header of the device is
923  * 		invalid upon importing a pool or onlining a cache device. The
924  * 		default is 0, which disables TRIM on L2ARC altogether as it can
925  * 		put significant stress on the underlying storage devices. This
926  * 		will vary depending of how well the specific device handles
927  * 		these commands.
928  */
929 static uint64_t l2arc_trim_ahead = 0;
930 
931 /*
932  * Performance tuning of L2ARC persistence:
933  *
934  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
935  * 		an L2ARC device (either at pool import or later) will attempt
936  * 		to rebuild L2ARC buffer contents.
937  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
938  * 		whether log blocks are written to the L2ARC device. If the L2ARC
939  * 		device is less than 1GB, the amount of data l2arc_evict()
940  * 		evicts is significant compared to the amount of restored L2ARC
941  * 		data. In this case do not write log blocks in L2ARC in order
942  * 		not to waste space.
943  */
944 static int l2arc_rebuild_enabled = B_TRUE;
945 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
946 
947 /* L2ARC persistence rebuild control routines. */
948 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
949 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
950 static int l2arc_rebuild(l2arc_dev_t *dev);
951 
952 /* L2ARC persistence read I/O routines. */
953 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
954 static int l2arc_log_blk_read(l2arc_dev_t *dev,
955     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
956     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
957     zio_t *this_io, zio_t **next_io);
958 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
959     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
960 static void l2arc_log_blk_fetch_abort(zio_t *zio);
961 
962 /* L2ARC persistence block restoration routines. */
963 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
964     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
965 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
966     l2arc_dev_t *dev);
967 
968 /* L2ARC persistence write I/O routines. */
969 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
970     l2arc_write_callback_t *cb);
971 
972 /* L2ARC persistence auxiliary routines. */
973 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
974     const l2arc_log_blkptr_t *lbp);
975 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
976     const arc_buf_hdr_t *ab);
977 boolean_t l2arc_range_check_overlap(uint64_t bottom,
978     uint64_t top, uint64_t check);
979 static void l2arc_blk_fetch_done(zio_t *zio);
980 static inline uint64_t
981     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
982 
983 /*
984  * We use Cityhash for this. It's fast, and has good hash properties without
985  * requiring any large static buffers.
986  */
987 static uint64_t
988 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
989 {
990 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
991 }
992 
993 #define	HDR_EMPTY(hdr)						\
994 	((hdr)->b_dva.dva_word[0] == 0 &&			\
995 	(hdr)->b_dva.dva_word[1] == 0)
996 
997 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
998 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
999 
1000 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1001 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1002 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1003 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1004 
1005 static void
1006 buf_discard_identity(arc_buf_hdr_t *hdr)
1007 {
1008 	hdr->b_dva.dva_word[0] = 0;
1009 	hdr->b_dva.dva_word[1] = 0;
1010 	hdr->b_birth = 0;
1011 }
1012 
1013 static arc_buf_hdr_t *
1014 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1015 {
1016 	const dva_t *dva = BP_IDENTITY(bp);
1017 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1018 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1019 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1020 	arc_buf_hdr_t *hdr;
1021 
1022 	mutex_enter(hash_lock);
1023 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1024 	    hdr = hdr->b_hash_next) {
1025 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1026 			*lockp = hash_lock;
1027 			return (hdr);
1028 		}
1029 	}
1030 	mutex_exit(hash_lock);
1031 	*lockp = NULL;
1032 	return (NULL);
1033 }
1034 
1035 /*
1036  * Insert an entry into the hash table.  If there is already an element
1037  * equal to elem in the hash table, then the already existing element
1038  * will be returned and the new element will not be inserted.
1039  * Otherwise returns NULL.
1040  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1041  */
1042 static arc_buf_hdr_t *
1043 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1044 {
1045 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1046 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1047 	arc_buf_hdr_t *fhdr;
1048 	uint32_t i;
1049 
1050 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1051 	ASSERT(hdr->b_birth != 0);
1052 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1053 
1054 	if (lockp != NULL) {
1055 		*lockp = hash_lock;
1056 		mutex_enter(hash_lock);
1057 	} else {
1058 		ASSERT(MUTEX_HELD(hash_lock));
1059 	}
1060 
1061 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1062 	    fhdr = fhdr->b_hash_next, i++) {
1063 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1064 			return (fhdr);
1065 	}
1066 
1067 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1068 	buf_hash_table.ht_table[idx] = hdr;
1069 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1070 
1071 	/* collect some hash table performance data */
1072 	if (i > 0) {
1073 		ARCSTAT_BUMP(arcstat_hash_collisions);
1074 		if (i == 1)
1075 			ARCSTAT_BUMP(arcstat_hash_chains);
1076 
1077 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1078 	}
1079 	uint64_t he = atomic_inc_64_nv(
1080 	    &arc_stats.arcstat_hash_elements.value.ui64);
1081 	ARCSTAT_MAX(arcstat_hash_elements_max, he);
1082 
1083 	return (NULL);
1084 }
1085 
1086 static void
1087 buf_hash_remove(arc_buf_hdr_t *hdr)
1088 {
1089 	arc_buf_hdr_t *fhdr, **hdrp;
1090 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1091 
1092 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1093 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1094 
1095 	hdrp = &buf_hash_table.ht_table[idx];
1096 	while ((fhdr = *hdrp) != hdr) {
1097 		ASSERT3P(fhdr, !=, NULL);
1098 		hdrp = &fhdr->b_hash_next;
1099 	}
1100 	*hdrp = hdr->b_hash_next;
1101 	hdr->b_hash_next = NULL;
1102 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1103 
1104 	/* collect some hash table performance data */
1105 	atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1106 
1107 	if (buf_hash_table.ht_table[idx] &&
1108 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1109 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1110 }
1111 
1112 /*
1113  * Global data structures and functions for the buf kmem cache.
1114  */
1115 
1116 static kmem_cache_t *hdr_full_cache;
1117 static kmem_cache_t *hdr_l2only_cache;
1118 static kmem_cache_t *buf_cache;
1119 
1120 static void
1121 buf_fini(void)
1122 {
1123 #if defined(_KERNEL)
1124 	/*
1125 	 * Large allocations which do not require contiguous pages
1126 	 * should be using vmem_free() in the linux kernel\
1127 	 */
1128 	vmem_free(buf_hash_table.ht_table,
1129 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1130 #else
1131 	kmem_free(buf_hash_table.ht_table,
1132 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1133 #endif
1134 	for (int i = 0; i < BUF_LOCKS; i++)
1135 		mutex_destroy(BUF_HASH_LOCK(i));
1136 	kmem_cache_destroy(hdr_full_cache);
1137 	kmem_cache_destroy(hdr_l2only_cache);
1138 	kmem_cache_destroy(buf_cache);
1139 }
1140 
1141 /*
1142  * Constructor callback - called when the cache is empty
1143  * and a new buf is requested.
1144  */
1145 static int
1146 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1147 {
1148 	(void) unused, (void) kmflag;
1149 	arc_buf_hdr_t *hdr = vbuf;
1150 
1151 	memset(hdr, 0, HDR_FULL_SIZE);
1152 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1153 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1154 #ifdef ZFS_DEBUG
1155 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1156 #endif
1157 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1158 	list_link_init(&hdr->b_l2hdr.b_l2node);
1159 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1160 
1161 	return (0);
1162 }
1163 
1164 static int
1165 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1166 {
1167 	(void) unused, (void) kmflag;
1168 	arc_buf_hdr_t *hdr = vbuf;
1169 
1170 	memset(hdr, 0, HDR_L2ONLY_SIZE);
1171 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1172 
1173 	return (0);
1174 }
1175 
1176 static int
1177 buf_cons(void *vbuf, void *unused, int kmflag)
1178 {
1179 	(void) unused, (void) kmflag;
1180 	arc_buf_t *buf = vbuf;
1181 
1182 	memset(buf, 0, sizeof (arc_buf_t));
1183 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1184 
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Destructor callback - called when a cached buf is
1190  * no longer required.
1191  */
1192 static void
1193 hdr_full_dest(void *vbuf, void *unused)
1194 {
1195 	(void) unused;
1196 	arc_buf_hdr_t *hdr = vbuf;
1197 
1198 	ASSERT(HDR_EMPTY(hdr));
1199 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1200 #ifdef ZFS_DEBUG
1201 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1202 #endif
1203 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1204 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1205 }
1206 
1207 static void
1208 hdr_l2only_dest(void *vbuf, void *unused)
1209 {
1210 	(void) unused;
1211 	arc_buf_hdr_t *hdr = vbuf;
1212 
1213 	ASSERT(HDR_EMPTY(hdr));
1214 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1215 }
1216 
1217 static void
1218 buf_dest(void *vbuf, void *unused)
1219 {
1220 	(void) unused;
1221 	(void) vbuf;
1222 
1223 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1224 }
1225 
1226 static void
1227 buf_init(void)
1228 {
1229 	uint64_t *ct = NULL;
1230 	uint64_t hsize = 1ULL << 12;
1231 	int i, j;
1232 
1233 	/*
1234 	 * The hash table is big enough to fill all of physical memory
1235 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1236 	 * By default, the table will take up
1237 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1238 	 */
1239 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1240 		hsize <<= 1;
1241 retry:
1242 	buf_hash_table.ht_mask = hsize - 1;
1243 #if defined(_KERNEL)
1244 	/*
1245 	 * Large allocations which do not require contiguous pages
1246 	 * should be using vmem_alloc() in the linux kernel
1247 	 */
1248 	buf_hash_table.ht_table =
1249 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1250 #else
1251 	buf_hash_table.ht_table =
1252 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1253 #endif
1254 	if (buf_hash_table.ht_table == NULL) {
1255 		ASSERT(hsize > (1ULL << 8));
1256 		hsize >>= 1;
1257 		goto retry;
1258 	}
1259 
1260 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1261 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1262 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1263 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1264 	    NULL, NULL, 0);
1265 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1266 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1267 
1268 	for (i = 0; i < 256; i++)
1269 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1270 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1271 
1272 	for (i = 0; i < BUF_LOCKS; i++)
1273 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1274 }
1275 
1276 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1277 
1278 /*
1279  * This is the size that the buf occupies in memory. If the buf is compressed,
1280  * it will correspond to the compressed size. You should use this method of
1281  * getting the buf size unless you explicitly need the logical size.
1282  */
1283 uint64_t
1284 arc_buf_size(arc_buf_t *buf)
1285 {
1286 	return (ARC_BUF_COMPRESSED(buf) ?
1287 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1288 }
1289 
1290 uint64_t
1291 arc_buf_lsize(arc_buf_t *buf)
1292 {
1293 	return (HDR_GET_LSIZE(buf->b_hdr));
1294 }
1295 
1296 /*
1297  * This function will return B_TRUE if the buffer is encrypted in memory.
1298  * This buffer can be decrypted by calling arc_untransform().
1299  */
1300 boolean_t
1301 arc_is_encrypted(arc_buf_t *buf)
1302 {
1303 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1304 }
1305 
1306 /*
1307  * Returns B_TRUE if the buffer represents data that has not had its MAC
1308  * verified yet.
1309  */
1310 boolean_t
1311 arc_is_unauthenticated(arc_buf_t *buf)
1312 {
1313 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1314 }
1315 
1316 void
1317 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1318     uint8_t *iv, uint8_t *mac)
1319 {
1320 	arc_buf_hdr_t *hdr = buf->b_hdr;
1321 
1322 	ASSERT(HDR_PROTECTED(hdr));
1323 
1324 	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1325 	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1326 	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1327 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1328 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1329 }
1330 
1331 /*
1332  * Indicates how this buffer is compressed in memory. If it is not compressed
1333  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1334  * arc_untransform() as long as it is also unencrypted.
1335  */
1336 enum zio_compress
1337 arc_get_compression(arc_buf_t *buf)
1338 {
1339 	return (ARC_BUF_COMPRESSED(buf) ?
1340 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1341 }
1342 
1343 /*
1344  * Return the compression algorithm used to store this data in the ARC. If ARC
1345  * compression is enabled or this is an encrypted block, this will be the same
1346  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1347  */
1348 static inline enum zio_compress
1349 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1350 {
1351 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1352 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1353 }
1354 
1355 uint8_t
1356 arc_get_complevel(arc_buf_t *buf)
1357 {
1358 	return (buf->b_hdr->b_complevel);
1359 }
1360 
1361 static inline boolean_t
1362 arc_buf_is_shared(arc_buf_t *buf)
1363 {
1364 	boolean_t shared = (buf->b_data != NULL &&
1365 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1366 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1367 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1368 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1369 	EQUIV(shared, ARC_BUF_SHARED(buf));
1370 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1371 
1372 	/*
1373 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1374 	 * already being shared" requirement prevents us from doing that.
1375 	 */
1376 
1377 	return (shared);
1378 }
1379 
1380 /*
1381  * Free the checksum associated with this header. If there is no checksum, this
1382  * is a no-op.
1383  */
1384 static inline void
1385 arc_cksum_free(arc_buf_hdr_t *hdr)
1386 {
1387 #ifdef ZFS_DEBUG
1388 	ASSERT(HDR_HAS_L1HDR(hdr));
1389 
1390 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1391 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1392 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1393 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1394 	}
1395 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1396 #endif
1397 }
1398 
1399 /*
1400  * Return true iff at least one of the bufs on hdr is not compressed.
1401  * Encrypted buffers count as compressed.
1402  */
1403 static boolean_t
1404 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1405 {
1406 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1407 
1408 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1409 		if (!ARC_BUF_COMPRESSED(b)) {
1410 			return (B_TRUE);
1411 		}
1412 	}
1413 	return (B_FALSE);
1414 }
1415 
1416 
1417 /*
1418  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1419  * matches the checksum that is stored in the hdr. If there is no checksum,
1420  * or if the buf is compressed, this is a no-op.
1421  */
1422 static void
1423 arc_cksum_verify(arc_buf_t *buf)
1424 {
1425 #ifdef ZFS_DEBUG
1426 	arc_buf_hdr_t *hdr = buf->b_hdr;
1427 	zio_cksum_t zc;
1428 
1429 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1430 		return;
1431 
1432 	if (ARC_BUF_COMPRESSED(buf))
1433 		return;
1434 
1435 	ASSERT(HDR_HAS_L1HDR(hdr));
1436 
1437 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1438 
1439 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1440 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1441 		return;
1442 	}
1443 
1444 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1445 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1446 		panic("buffer modified while frozen!");
1447 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1448 #endif
1449 }
1450 
1451 /*
1452  * This function makes the assumption that data stored in the L2ARC
1453  * will be transformed exactly as it is in the main pool. Because of
1454  * this we can verify the checksum against the reading process's bp.
1455  */
1456 static boolean_t
1457 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1458 {
1459 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1460 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1461 
1462 	/*
1463 	 * Block pointers always store the checksum for the logical data.
1464 	 * If the block pointer has the gang bit set, then the checksum
1465 	 * it represents is for the reconstituted data and not for an
1466 	 * individual gang member. The zio pipeline, however, must be able to
1467 	 * determine the checksum of each of the gang constituents so it
1468 	 * treats the checksum comparison differently than what we need
1469 	 * for l2arc blocks. This prevents us from using the
1470 	 * zio_checksum_error() interface directly. Instead we must call the
1471 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1472 	 * generated using the correct checksum algorithm and accounts for the
1473 	 * logical I/O size and not just a gang fragment.
1474 	 */
1475 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1476 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1477 	    zio->io_offset, NULL) == 0);
1478 }
1479 
1480 /*
1481  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1482  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1483  * isn't modified later on. If buf is compressed or there is already a checksum
1484  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1485  */
1486 static void
1487 arc_cksum_compute(arc_buf_t *buf)
1488 {
1489 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1490 		return;
1491 
1492 #ifdef ZFS_DEBUG
1493 	arc_buf_hdr_t *hdr = buf->b_hdr;
1494 	ASSERT(HDR_HAS_L1HDR(hdr));
1495 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1496 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1497 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1498 		return;
1499 	}
1500 
1501 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1502 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1503 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1504 	    KM_SLEEP);
1505 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1506 	    hdr->b_l1hdr.b_freeze_cksum);
1507 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1508 #endif
1509 	arc_buf_watch(buf);
1510 }
1511 
1512 #ifndef _KERNEL
1513 void
1514 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1515 {
1516 	(void) sig, (void) unused;
1517 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1518 }
1519 #endif
1520 
1521 static void
1522 arc_buf_unwatch(arc_buf_t *buf)
1523 {
1524 #ifndef _KERNEL
1525 	if (arc_watch) {
1526 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1527 		    PROT_READ | PROT_WRITE));
1528 	}
1529 #else
1530 	(void) buf;
1531 #endif
1532 }
1533 
1534 static void
1535 arc_buf_watch(arc_buf_t *buf)
1536 {
1537 #ifndef _KERNEL
1538 	if (arc_watch)
1539 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1540 		    PROT_READ));
1541 #else
1542 	(void) buf;
1543 #endif
1544 }
1545 
1546 static arc_buf_contents_t
1547 arc_buf_type(arc_buf_hdr_t *hdr)
1548 {
1549 	arc_buf_contents_t type;
1550 	if (HDR_ISTYPE_METADATA(hdr)) {
1551 		type = ARC_BUFC_METADATA;
1552 	} else {
1553 		type = ARC_BUFC_DATA;
1554 	}
1555 	VERIFY3U(hdr->b_type, ==, type);
1556 	return (type);
1557 }
1558 
1559 boolean_t
1560 arc_is_metadata(arc_buf_t *buf)
1561 {
1562 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1563 }
1564 
1565 static uint32_t
1566 arc_bufc_to_flags(arc_buf_contents_t type)
1567 {
1568 	switch (type) {
1569 	case ARC_BUFC_DATA:
1570 		/* metadata field is 0 if buffer contains normal data */
1571 		return (0);
1572 	case ARC_BUFC_METADATA:
1573 		return (ARC_FLAG_BUFC_METADATA);
1574 	default:
1575 		break;
1576 	}
1577 	panic("undefined ARC buffer type!");
1578 	return ((uint32_t)-1);
1579 }
1580 
1581 void
1582 arc_buf_thaw(arc_buf_t *buf)
1583 {
1584 	arc_buf_hdr_t *hdr = buf->b_hdr;
1585 
1586 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1587 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1588 
1589 	arc_cksum_verify(buf);
1590 
1591 	/*
1592 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1593 	 */
1594 	if (ARC_BUF_COMPRESSED(buf))
1595 		return;
1596 
1597 	ASSERT(HDR_HAS_L1HDR(hdr));
1598 	arc_cksum_free(hdr);
1599 	arc_buf_unwatch(buf);
1600 }
1601 
1602 void
1603 arc_buf_freeze(arc_buf_t *buf)
1604 {
1605 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1606 		return;
1607 
1608 	if (ARC_BUF_COMPRESSED(buf))
1609 		return;
1610 
1611 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1612 	arc_cksum_compute(buf);
1613 }
1614 
1615 /*
1616  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1617  * the following functions should be used to ensure that the flags are
1618  * updated in a thread-safe way. When manipulating the flags either
1619  * the hash_lock must be held or the hdr must be undiscoverable. This
1620  * ensures that we're not racing with any other threads when updating
1621  * the flags.
1622  */
1623 static inline void
1624 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1625 {
1626 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1627 	hdr->b_flags |= flags;
1628 }
1629 
1630 static inline void
1631 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1632 {
1633 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1634 	hdr->b_flags &= ~flags;
1635 }
1636 
1637 /*
1638  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1639  * done in a special way since we have to clear and set bits
1640  * at the same time. Consumers that wish to set the compression bits
1641  * must use this function to ensure that the flags are updated in
1642  * thread-safe manner.
1643  */
1644 static void
1645 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1646 {
1647 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1648 
1649 	/*
1650 	 * Holes and embedded blocks will always have a psize = 0 so
1651 	 * we ignore the compression of the blkptr and set the
1652 	 * want to uncompress them. Mark them as uncompressed.
1653 	 */
1654 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1655 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1656 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1657 	} else {
1658 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1659 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1660 	}
1661 
1662 	HDR_SET_COMPRESS(hdr, cmp);
1663 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1664 }
1665 
1666 /*
1667  * Looks for another buf on the same hdr which has the data decompressed, copies
1668  * from it, and returns true. If no such buf exists, returns false.
1669  */
1670 static boolean_t
1671 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1672 {
1673 	arc_buf_hdr_t *hdr = buf->b_hdr;
1674 	boolean_t copied = B_FALSE;
1675 
1676 	ASSERT(HDR_HAS_L1HDR(hdr));
1677 	ASSERT3P(buf->b_data, !=, NULL);
1678 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1679 
1680 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1681 	    from = from->b_next) {
1682 		/* can't use our own data buffer */
1683 		if (from == buf) {
1684 			continue;
1685 		}
1686 
1687 		if (!ARC_BUF_COMPRESSED(from)) {
1688 			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1689 			copied = B_TRUE;
1690 			break;
1691 		}
1692 	}
1693 
1694 #ifdef ZFS_DEBUG
1695 	/*
1696 	 * There were no decompressed bufs, so there should not be a
1697 	 * checksum on the hdr either.
1698 	 */
1699 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1700 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1701 #endif
1702 
1703 	return (copied);
1704 }
1705 
1706 /*
1707  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1708  * This is used during l2arc reconstruction to make empty ARC buffers
1709  * which circumvent the regular disk->arc->l2arc path and instead come
1710  * into being in the reverse order, i.e. l2arc->arc.
1711  */
1712 static arc_buf_hdr_t *
1713 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1714     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1715     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1716     boolean_t prefetch, arc_state_type_t arcs_state)
1717 {
1718 	arc_buf_hdr_t	*hdr;
1719 
1720 	ASSERT(size != 0);
1721 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1722 	hdr->b_birth = birth;
1723 	hdr->b_type = type;
1724 	hdr->b_flags = 0;
1725 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1726 	HDR_SET_LSIZE(hdr, size);
1727 	HDR_SET_PSIZE(hdr, psize);
1728 	arc_hdr_set_compress(hdr, compress);
1729 	hdr->b_complevel = complevel;
1730 	if (protected)
1731 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1732 	if (prefetch)
1733 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1734 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1735 
1736 	hdr->b_dva = dva;
1737 
1738 	hdr->b_l2hdr.b_dev = dev;
1739 	hdr->b_l2hdr.b_daddr = daddr;
1740 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1741 
1742 	return (hdr);
1743 }
1744 
1745 /*
1746  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1747  */
1748 static uint64_t
1749 arc_hdr_size(arc_buf_hdr_t *hdr)
1750 {
1751 	uint64_t size;
1752 
1753 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1754 	    HDR_GET_PSIZE(hdr) > 0) {
1755 		size = HDR_GET_PSIZE(hdr);
1756 	} else {
1757 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1758 		size = HDR_GET_LSIZE(hdr);
1759 	}
1760 	return (size);
1761 }
1762 
1763 static int
1764 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1765 {
1766 	int ret;
1767 	uint64_t csize;
1768 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1769 	uint64_t psize = HDR_GET_PSIZE(hdr);
1770 	void *tmpbuf = NULL;
1771 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1772 
1773 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1774 	ASSERT(HDR_AUTHENTICATED(hdr));
1775 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1776 
1777 	/*
1778 	 * The MAC is calculated on the compressed data that is stored on disk.
1779 	 * However, if compressed arc is disabled we will only have the
1780 	 * decompressed data available to us now. Compress it into a temporary
1781 	 * abd so we can verify the MAC. The performance overhead of this will
1782 	 * be relatively low, since most objects in an encrypted objset will
1783 	 * be encrypted (instead of authenticated) anyway.
1784 	 */
1785 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1786 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1787 
1788 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1789 		    hdr->b_l1hdr.b_pabd, &tmpbuf, lsize, hdr->b_complevel);
1790 		ASSERT3P(tmpbuf, !=, NULL);
1791 		ASSERT3U(csize, <=, psize);
1792 		abd = abd_get_from_buf(tmpbuf, lsize);
1793 		abd_take_ownership_of_buf(abd, B_TRUE);
1794 		abd_zero_off(abd, csize, psize - csize);
1795 	}
1796 
1797 	/*
1798 	 * Authentication is best effort. We authenticate whenever the key is
1799 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1800 	 */
1801 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1802 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1803 		ASSERT3U(lsize, ==, psize);
1804 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1805 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1806 	} else {
1807 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1808 		    hdr->b_crypt_hdr.b_mac);
1809 	}
1810 
1811 	if (ret == 0)
1812 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1813 	else if (ret != ENOENT)
1814 		goto error;
1815 
1816 	if (tmpbuf != NULL)
1817 		abd_free(abd);
1818 
1819 	return (0);
1820 
1821 error:
1822 	if (tmpbuf != NULL)
1823 		abd_free(abd);
1824 
1825 	return (ret);
1826 }
1827 
1828 /*
1829  * This function will take a header that only has raw encrypted data in
1830  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1831  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1832  * also decompress the data.
1833  */
1834 static int
1835 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1836 {
1837 	int ret;
1838 	abd_t *cabd = NULL;
1839 	void *tmp = NULL;
1840 	boolean_t no_crypt = B_FALSE;
1841 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1842 
1843 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1844 	ASSERT(HDR_ENCRYPTED(hdr));
1845 
1846 	arc_hdr_alloc_abd(hdr, 0);
1847 
1848 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1849 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1850 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1851 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1852 	if (ret != 0)
1853 		goto error;
1854 
1855 	if (no_crypt) {
1856 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1857 		    HDR_GET_PSIZE(hdr));
1858 	}
1859 
1860 	/*
1861 	 * If this header has disabled arc compression but the b_pabd is
1862 	 * compressed after decrypting it, we need to decompress the newly
1863 	 * decrypted data.
1864 	 */
1865 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1866 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1867 		/*
1868 		 * We want to make sure that we are correctly honoring the
1869 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1870 		 * and then loan a buffer from it, rather than allocating a
1871 		 * linear buffer and wrapping it in an abd later.
1872 		 */
1873 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1874 		tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1875 
1876 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1877 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1878 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1879 		if (ret != 0) {
1880 			abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1881 			goto error;
1882 		}
1883 
1884 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1885 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1886 		    arc_hdr_size(hdr), hdr);
1887 		hdr->b_l1hdr.b_pabd = cabd;
1888 	}
1889 
1890 	return (0);
1891 
1892 error:
1893 	arc_hdr_free_abd(hdr, B_FALSE);
1894 	if (cabd != NULL)
1895 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1896 
1897 	return (ret);
1898 }
1899 
1900 /*
1901  * This function is called during arc_buf_fill() to prepare the header's
1902  * abd plaintext pointer for use. This involves authenticated protected
1903  * data and decrypting encrypted data into the plaintext abd.
1904  */
1905 static int
1906 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1907     const zbookmark_phys_t *zb, boolean_t noauth)
1908 {
1909 	int ret;
1910 
1911 	ASSERT(HDR_PROTECTED(hdr));
1912 
1913 	if (hash_lock != NULL)
1914 		mutex_enter(hash_lock);
1915 
1916 	if (HDR_NOAUTH(hdr) && !noauth) {
1917 		/*
1918 		 * The caller requested authenticated data but our data has
1919 		 * not been authenticated yet. Verify the MAC now if we can.
1920 		 */
1921 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1922 		if (ret != 0)
1923 			goto error;
1924 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1925 		/*
1926 		 * If we only have the encrypted version of the data, but the
1927 		 * unencrypted version was requested we take this opportunity
1928 		 * to store the decrypted version in the header for future use.
1929 		 */
1930 		ret = arc_hdr_decrypt(hdr, spa, zb);
1931 		if (ret != 0)
1932 			goto error;
1933 	}
1934 
1935 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1936 
1937 	if (hash_lock != NULL)
1938 		mutex_exit(hash_lock);
1939 
1940 	return (0);
1941 
1942 error:
1943 	if (hash_lock != NULL)
1944 		mutex_exit(hash_lock);
1945 
1946 	return (ret);
1947 }
1948 
1949 /*
1950  * This function is used by the dbuf code to decrypt bonus buffers in place.
1951  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1952  * block, so we use the hash lock here to protect against concurrent calls to
1953  * arc_buf_fill().
1954  */
1955 static void
1956 arc_buf_untransform_in_place(arc_buf_t *buf)
1957 {
1958 	arc_buf_hdr_t *hdr = buf->b_hdr;
1959 
1960 	ASSERT(HDR_ENCRYPTED(hdr));
1961 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1962 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1963 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1964 
1965 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1966 	    arc_buf_size(buf));
1967 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1968 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1969 }
1970 
1971 /*
1972  * Given a buf that has a data buffer attached to it, this function will
1973  * efficiently fill the buf with data of the specified compression setting from
1974  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1975  * are already sharing a data buf, no copy is performed.
1976  *
1977  * If the buf is marked as compressed but uncompressed data was requested, this
1978  * will allocate a new data buffer for the buf, remove that flag, and fill the
1979  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1980  * uncompressed data, and (since we haven't added support for it yet) if you
1981  * want compressed data your buf must already be marked as compressed and have
1982  * the correct-sized data buffer.
1983  */
1984 static int
1985 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1986     arc_fill_flags_t flags)
1987 {
1988 	int error = 0;
1989 	arc_buf_hdr_t *hdr = buf->b_hdr;
1990 	boolean_t hdr_compressed =
1991 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1992 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1993 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1994 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1995 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1996 
1997 	ASSERT3P(buf->b_data, !=, NULL);
1998 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1999 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2000 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2001 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2002 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2003 	IMPLY(encrypted, !arc_buf_is_shared(buf));
2004 
2005 	/*
2006 	 * If the caller wanted encrypted data we just need to copy it from
2007 	 * b_rabd and potentially byteswap it. We won't be able to do any
2008 	 * further transforms on it.
2009 	 */
2010 	if (encrypted) {
2011 		ASSERT(HDR_HAS_RABD(hdr));
2012 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2013 		    HDR_GET_PSIZE(hdr));
2014 		goto byteswap;
2015 	}
2016 
2017 	/*
2018 	 * Adjust encrypted and authenticated headers to accommodate
2019 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2020 	 * allowed to fail decryption due to keys not being loaded
2021 	 * without being marked as an IO error.
2022 	 */
2023 	if (HDR_PROTECTED(hdr)) {
2024 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2025 		    zb, !!(flags & ARC_FILL_NOAUTH));
2026 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2027 			return (error);
2028 		} else if (error != 0) {
2029 			if (hash_lock != NULL)
2030 				mutex_enter(hash_lock);
2031 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2032 			if (hash_lock != NULL)
2033 				mutex_exit(hash_lock);
2034 			return (error);
2035 		}
2036 	}
2037 
2038 	/*
2039 	 * There is a special case here for dnode blocks which are
2040 	 * decrypting their bonus buffers. These blocks may request to
2041 	 * be decrypted in-place. This is necessary because there may
2042 	 * be many dnodes pointing into this buffer and there is
2043 	 * currently no method to synchronize replacing the backing
2044 	 * b_data buffer and updating all of the pointers. Here we use
2045 	 * the hash lock to ensure there are no races. If the need
2046 	 * arises for other types to be decrypted in-place, they must
2047 	 * add handling here as well.
2048 	 */
2049 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2050 		ASSERT(!hdr_compressed);
2051 		ASSERT(!compressed);
2052 		ASSERT(!encrypted);
2053 
2054 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2055 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2056 
2057 			if (hash_lock != NULL)
2058 				mutex_enter(hash_lock);
2059 			arc_buf_untransform_in_place(buf);
2060 			if (hash_lock != NULL)
2061 				mutex_exit(hash_lock);
2062 
2063 			/* Compute the hdr's checksum if necessary */
2064 			arc_cksum_compute(buf);
2065 		}
2066 
2067 		return (0);
2068 	}
2069 
2070 	if (hdr_compressed == compressed) {
2071 		if (ARC_BUF_SHARED(buf)) {
2072 			ASSERT(arc_buf_is_shared(buf));
2073 		} else {
2074 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2075 			    arc_buf_size(buf));
2076 		}
2077 	} else {
2078 		ASSERT(hdr_compressed);
2079 		ASSERT(!compressed);
2080 
2081 		/*
2082 		 * If the buf is sharing its data with the hdr, unlink it and
2083 		 * allocate a new data buffer for the buf.
2084 		 */
2085 		if (ARC_BUF_SHARED(buf)) {
2086 			ASSERT(ARC_BUF_COMPRESSED(buf));
2087 
2088 			/* We need to give the buf its own b_data */
2089 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2090 			buf->b_data =
2091 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2092 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2093 
2094 			/* Previously overhead was 0; just add new overhead */
2095 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2096 		} else if (ARC_BUF_COMPRESSED(buf)) {
2097 			ASSERT(!arc_buf_is_shared(buf));
2098 
2099 			/* We need to reallocate the buf's b_data */
2100 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2101 			    buf);
2102 			buf->b_data =
2103 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2104 
2105 			/* We increased the size of b_data; update overhead */
2106 			ARCSTAT_INCR(arcstat_overhead_size,
2107 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2108 		}
2109 
2110 		/*
2111 		 * Regardless of the buf's previous compression settings, it
2112 		 * should not be compressed at the end of this function.
2113 		 */
2114 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2115 
2116 		/*
2117 		 * Try copying the data from another buf which already has a
2118 		 * decompressed version. If that's not possible, it's time to
2119 		 * bite the bullet and decompress the data from the hdr.
2120 		 */
2121 		if (arc_buf_try_copy_decompressed_data(buf)) {
2122 			/* Skip byteswapping and checksumming (already done) */
2123 			return (0);
2124 		} else {
2125 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2126 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2127 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2128 			    &hdr->b_complevel);
2129 
2130 			/*
2131 			 * Absent hardware errors or software bugs, this should
2132 			 * be impossible, but log it anyway so we can debug it.
2133 			 */
2134 			if (error != 0) {
2135 				zfs_dbgmsg(
2136 				    "hdr %px, compress %d, psize %d, lsize %d",
2137 				    hdr, arc_hdr_get_compress(hdr),
2138 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2139 				if (hash_lock != NULL)
2140 					mutex_enter(hash_lock);
2141 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2142 				if (hash_lock != NULL)
2143 					mutex_exit(hash_lock);
2144 				return (SET_ERROR(EIO));
2145 			}
2146 		}
2147 	}
2148 
2149 byteswap:
2150 	/* Byteswap the buf's data if necessary */
2151 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2152 		ASSERT(!HDR_SHARED_DATA(hdr));
2153 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2154 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2155 	}
2156 
2157 	/* Compute the hdr's checksum if necessary */
2158 	arc_cksum_compute(buf);
2159 
2160 	return (0);
2161 }
2162 
2163 /*
2164  * If this function is being called to decrypt an encrypted buffer or verify an
2165  * authenticated one, the key must be loaded and a mapping must be made
2166  * available in the keystore via spa_keystore_create_mapping() or one of its
2167  * callers.
2168  */
2169 int
2170 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2171     boolean_t in_place)
2172 {
2173 	int ret;
2174 	arc_fill_flags_t flags = 0;
2175 
2176 	if (in_place)
2177 		flags |= ARC_FILL_IN_PLACE;
2178 
2179 	ret = arc_buf_fill(buf, spa, zb, flags);
2180 	if (ret == ECKSUM) {
2181 		/*
2182 		 * Convert authentication and decryption errors to EIO
2183 		 * (and generate an ereport) before leaving the ARC.
2184 		 */
2185 		ret = SET_ERROR(EIO);
2186 		spa_log_error(spa, zb, &buf->b_hdr->b_birth);
2187 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2188 		    spa, NULL, zb, NULL, 0);
2189 	}
2190 
2191 	return (ret);
2192 }
2193 
2194 /*
2195  * Increment the amount of evictable space in the arc_state_t's refcount.
2196  * We account for the space used by the hdr and the arc buf individually
2197  * so that we can add and remove them from the refcount individually.
2198  */
2199 static void
2200 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2201 {
2202 	arc_buf_contents_t type = arc_buf_type(hdr);
2203 
2204 	ASSERT(HDR_HAS_L1HDR(hdr));
2205 
2206 	if (GHOST_STATE(state)) {
2207 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2208 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2209 		ASSERT(!HDR_HAS_RABD(hdr));
2210 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2211 		    HDR_GET_LSIZE(hdr), hdr);
2212 		return;
2213 	}
2214 
2215 	if (hdr->b_l1hdr.b_pabd != NULL) {
2216 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2217 		    arc_hdr_size(hdr), hdr);
2218 	}
2219 	if (HDR_HAS_RABD(hdr)) {
2220 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2221 		    HDR_GET_PSIZE(hdr), hdr);
2222 	}
2223 
2224 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2225 	    buf = buf->b_next) {
2226 		if (ARC_BUF_SHARED(buf))
2227 			continue;
2228 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2229 		    arc_buf_size(buf), buf);
2230 	}
2231 }
2232 
2233 /*
2234  * Decrement the amount of evictable space in the arc_state_t's refcount.
2235  * We account for the space used by the hdr and the arc buf individually
2236  * so that we can add and remove them from the refcount individually.
2237  */
2238 static void
2239 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2240 {
2241 	arc_buf_contents_t type = arc_buf_type(hdr);
2242 
2243 	ASSERT(HDR_HAS_L1HDR(hdr));
2244 
2245 	if (GHOST_STATE(state)) {
2246 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2247 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2248 		ASSERT(!HDR_HAS_RABD(hdr));
2249 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2250 		    HDR_GET_LSIZE(hdr), hdr);
2251 		return;
2252 	}
2253 
2254 	if (hdr->b_l1hdr.b_pabd != NULL) {
2255 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2256 		    arc_hdr_size(hdr), hdr);
2257 	}
2258 	if (HDR_HAS_RABD(hdr)) {
2259 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2260 		    HDR_GET_PSIZE(hdr), hdr);
2261 	}
2262 
2263 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2264 	    buf = buf->b_next) {
2265 		if (ARC_BUF_SHARED(buf))
2266 			continue;
2267 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2268 		    arc_buf_size(buf), buf);
2269 	}
2270 }
2271 
2272 /*
2273  * Add a reference to this hdr indicating that someone is actively
2274  * referencing that memory. When the refcount transitions from 0 to 1,
2275  * we remove it from the respective arc_state_t list to indicate that
2276  * it is not evictable.
2277  */
2278 static void
2279 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2280 {
2281 	arc_state_t *state = hdr->b_l1hdr.b_state;
2282 
2283 	ASSERT(HDR_HAS_L1HDR(hdr));
2284 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2285 		ASSERT(state == arc_anon);
2286 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2287 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2288 	}
2289 
2290 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2291 	    state != arc_anon && state != arc_l2c_only) {
2292 		/* We don't use the L2-only state list. */
2293 		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2294 		arc_evictable_space_decrement(hdr, state);
2295 	}
2296 }
2297 
2298 /*
2299  * Remove a reference from this hdr. When the reference transitions from
2300  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2301  * list making it eligible for eviction.
2302  */
2303 static int
2304 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2305 {
2306 	int cnt;
2307 	arc_state_t *state = hdr->b_l1hdr.b_state;
2308 
2309 	ASSERT(HDR_HAS_L1HDR(hdr));
2310 	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2311 	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2312 
2313 	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2314 		return (cnt);
2315 
2316 	if (state == arc_anon) {
2317 		arc_hdr_destroy(hdr);
2318 		return (0);
2319 	}
2320 	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2321 		arc_change_state(arc_anon, hdr);
2322 		arc_hdr_destroy(hdr);
2323 		return (0);
2324 	}
2325 	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2326 	arc_evictable_space_increment(hdr, state);
2327 	return (0);
2328 }
2329 
2330 /*
2331  * Returns detailed information about a specific arc buffer.  When the
2332  * state_index argument is set the function will calculate the arc header
2333  * list position for its arc state.  Since this requires a linear traversal
2334  * callers are strongly encourage not to do this.  However, it can be helpful
2335  * for targeted analysis so the functionality is provided.
2336  */
2337 void
2338 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2339 {
2340 	(void) state_index;
2341 	arc_buf_hdr_t *hdr = ab->b_hdr;
2342 	l1arc_buf_hdr_t *l1hdr = NULL;
2343 	l2arc_buf_hdr_t *l2hdr = NULL;
2344 	arc_state_t *state = NULL;
2345 
2346 	memset(abi, 0, sizeof (arc_buf_info_t));
2347 
2348 	if (hdr == NULL)
2349 		return;
2350 
2351 	abi->abi_flags = hdr->b_flags;
2352 
2353 	if (HDR_HAS_L1HDR(hdr)) {
2354 		l1hdr = &hdr->b_l1hdr;
2355 		state = l1hdr->b_state;
2356 	}
2357 	if (HDR_HAS_L2HDR(hdr))
2358 		l2hdr = &hdr->b_l2hdr;
2359 
2360 	if (l1hdr) {
2361 		abi->abi_bufcnt = 0;
2362 		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2363 			abi->abi_bufcnt++;
2364 		abi->abi_access = l1hdr->b_arc_access;
2365 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2366 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2367 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2368 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2369 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2370 	}
2371 
2372 	if (l2hdr) {
2373 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2374 		abi->abi_l2arc_hits = l2hdr->b_hits;
2375 	}
2376 
2377 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2378 	abi->abi_state_contents = arc_buf_type(hdr);
2379 	abi->abi_size = arc_hdr_size(hdr);
2380 }
2381 
2382 /*
2383  * Move the supplied buffer to the indicated state. The hash lock
2384  * for the buffer must be held by the caller.
2385  */
2386 static void
2387 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2388 {
2389 	arc_state_t *old_state;
2390 	int64_t refcnt;
2391 	boolean_t update_old, update_new;
2392 	arc_buf_contents_t type = arc_buf_type(hdr);
2393 
2394 	/*
2395 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2396 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2397 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2398 	 * destroying a header, in which case reallocating to add the L1 hdr is
2399 	 * pointless.
2400 	 */
2401 	if (HDR_HAS_L1HDR(hdr)) {
2402 		old_state = hdr->b_l1hdr.b_state;
2403 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2404 		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2405 		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2406 
2407 		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2408 		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2409 		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2410 		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2411 	} else {
2412 		old_state = arc_l2c_only;
2413 		refcnt = 0;
2414 		update_old = B_FALSE;
2415 	}
2416 	update_new = update_old;
2417 	if (GHOST_STATE(old_state))
2418 		update_old = B_TRUE;
2419 	if (GHOST_STATE(new_state))
2420 		update_new = B_TRUE;
2421 
2422 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2423 	ASSERT3P(new_state, !=, old_state);
2424 
2425 	/*
2426 	 * If this buffer is evictable, transfer it from the
2427 	 * old state list to the new state list.
2428 	 */
2429 	if (refcnt == 0) {
2430 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2431 			ASSERT(HDR_HAS_L1HDR(hdr));
2432 			/* remove_reference() saves on insert. */
2433 			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2434 				multilist_remove(&old_state->arcs_list[type],
2435 				    hdr);
2436 				arc_evictable_space_decrement(hdr, old_state);
2437 			}
2438 		}
2439 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2440 			/*
2441 			 * An L1 header always exists here, since if we're
2442 			 * moving to some L1-cached state (i.e. not l2c_only or
2443 			 * anonymous), we realloc the header to add an L1hdr
2444 			 * beforehand.
2445 			 */
2446 			ASSERT(HDR_HAS_L1HDR(hdr));
2447 			multilist_insert(&new_state->arcs_list[type], hdr);
2448 			arc_evictable_space_increment(hdr, new_state);
2449 		}
2450 	}
2451 
2452 	ASSERT(!HDR_EMPTY(hdr));
2453 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2454 		buf_hash_remove(hdr);
2455 
2456 	/* adjust state sizes (ignore arc_l2c_only) */
2457 
2458 	if (update_new && new_state != arc_l2c_only) {
2459 		ASSERT(HDR_HAS_L1HDR(hdr));
2460 		if (GHOST_STATE(new_state)) {
2461 
2462 			/*
2463 			 * When moving a header to a ghost state, we first
2464 			 * remove all arc buffers. Thus, we'll have no arc
2465 			 * buffer to use for the reference. As a result, we
2466 			 * use the arc header pointer for the reference.
2467 			 */
2468 			(void) zfs_refcount_add_many(
2469 			    &new_state->arcs_size[type],
2470 			    HDR_GET_LSIZE(hdr), hdr);
2471 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2472 			ASSERT(!HDR_HAS_RABD(hdr));
2473 		} else {
2474 
2475 			/*
2476 			 * Each individual buffer holds a unique reference,
2477 			 * thus we must remove each of these references one
2478 			 * at a time.
2479 			 */
2480 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2481 			    buf = buf->b_next) {
2482 
2483 				/*
2484 				 * When the arc_buf_t is sharing the data
2485 				 * block with the hdr, the owner of the
2486 				 * reference belongs to the hdr. Only
2487 				 * add to the refcount if the arc_buf_t is
2488 				 * not shared.
2489 				 */
2490 				if (ARC_BUF_SHARED(buf))
2491 					continue;
2492 
2493 				(void) zfs_refcount_add_many(
2494 				    &new_state->arcs_size[type],
2495 				    arc_buf_size(buf), buf);
2496 			}
2497 
2498 			if (hdr->b_l1hdr.b_pabd != NULL) {
2499 				(void) zfs_refcount_add_many(
2500 				    &new_state->arcs_size[type],
2501 				    arc_hdr_size(hdr), hdr);
2502 			}
2503 
2504 			if (HDR_HAS_RABD(hdr)) {
2505 				(void) zfs_refcount_add_many(
2506 				    &new_state->arcs_size[type],
2507 				    HDR_GET_PSIZE(hdr), hdr);
2508 			}
2509 		}
2510 	}
2511 
2512 	if (update_old && old_state != arc_l2c_only) {
2513 		ASSERT(HDR_HAS_L1HDR(hdr));
2514 		if (GHOST_STATE(old_state)) {
2515 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2516 			ASSERT(!HDR_HAS_RABD(hdr));
2517 
2518 			/*
2519 			 * When moving a header off of a ghost state,
2520 			 * the header will not contain any arc buffers.
2521 			 * We use the arc header pointer for the reference
2522 			 * which is exactly what we did when we put the
2523 			 * header on the ghost state.
2524 			 */
2525 
2526 			(void) zfs_refcount_remove_many(
2527 			    &old_state->arcs_size[type],
2528 			    HDR_GET_LSIZE(hdr), hdr);
2529 		} else {
2530 
2531 			/*
2532 			 * Each individual buffer holds a unique reference,
2533 			 * thus we must remove each of these references one
2534 			 * at a time.
2535 			 */
2536 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2537 			    buf = buf->b_next) {
2538 
2539 				/*
2540 				 * When the arc_buf_t is sharing the data
2541 				 * block with the hdr, the owner of the
2542 				 * reference belongs to the hdr. Only
2543 				 * add to the refcount if the arc_buf_t is
2544 				 * not shared.
2545 				 */
2546 				if (ARC_BUF_SHARED(buf))
2547 					continue;
2548 
2549 				(void) zfs_refcount_remove_many(
2550 				    &old_state->arcs_size[type],
2551 				    arc_buf_size(buf), buf);
2552 			}
2553 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2554 			    HDR_HAS_RABD(hdr));
2555 
2556 			if (hdr->b_l1hdr.b_pabd != NULL) {
2557 				(void) zfs_refcount_remove_many(
2558 				    &old_state->arcs_size[type],
2559 				    arc_hdr_size(hdr), hdr);
2560 			}
2561 
2562 			if (HDR_HAS_RABD(hdr)) {
2563 				(void) zfs_refcount_remove_many(
2564 				    &old_state->arcs_size[type],
2565 				    HDR_GET_PSIZE(hdr), hdr);
2566 			}
2567 		}
2568 	}
2569 
2570 	if (HDR_HAS_L1HDR(hdr)) {
2571 		hdr->b_l1hdr.b_state = new_state;
2572 
2573 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2574 			l2arc_hdr_arcstats_decrement_state(hdr);
2575 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2576 			l2arc_hdr_arcstats_increment_state(hdr);
2577 		}
2578 	}
2579 }
2580 
2581 void
2582 arc_space_consume(uint64_t space, arc_space_type_t type)
2583 {
2584 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2585 
2586 	switch (type) {
2587 	default:
2588 		break;
2589 	case ARC_SPACE_DATA:
2590 		ARCSTAT_INCR(arcstat_data_size, space);
2591 		break;
2592 	case ARC_SPACE_META:
2593 		ARCSTAT_INCR(arcstat_metadata_size, space);
2594 		break;
2595 	case ARC_SPACE_BONUS:
2596 		ARCSTAT_INCR(arcstat_bonus_size, space);
2597 		break;
2598 	case ARC_SPACE_DNODE:
2599 		ARCSTAT_INCR(arcstat_dnode_size, space);
2600 		break;
2601 	case ARC_SPACE_DBUF:
2602 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2603 		break;
2604 	case ARC_SPACE_HDRS:
2605 		ARCSTAT_INCR(arcstat_hdr_size, space);
2606 		break;
2607 	case ARC_SPACE_L2HDRS:
2608 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2609 		break;
2610 	case ARC_SPACE_ABD_CHUNK_WASTE:
2611 		/*
2612 		 * Note: this includes space wasted by all scatter ABD's, not
2613 		 * just those allocated by the ARC.  But the vast majority of
2614 		 * scatter ABD's come from the ARC, because other users are
2615 		 * very short-lived.
2616 		 */
2617 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2618 		break;
2619 	}
2620 
2621 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2622 		ARCSTAT_INCR(arcstat_meta_used, space);
2623 
2624 	aggsum_add(&arc_sums.arcstat_size, space);
2625 }
2626 
2627 void
2628 arc_space_return(uint64_t space, arc_space_type_t type)
2629 {
2630 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2631 
2632 	switch (type) {
2633 	default:
2634 		break;
2635 	case ARC_SPACE_DATA:
2636 		ARCSTAT_INCR(arcstat_data_size, -space);
2637 		break;
2638 	case ARC_SPACE_META:
2639 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2640 		break;
2641 	case ARC_SPACE_BONUS:
2642 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2643 		break;
2644 	case ARC_SPACE_DNODE:
2645 		ARCSTAT_INCR(arcstat_dnode_size, -space);
2646 		break;
2647 	case ARC_SPACE_DBUF:
2648 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2649 		break;
2650 	case ARC_SPACE_HDRS:
2651 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2652 		break;
2653 	case ARC_SPACE_L2HDRS:
2654 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2655 		break;
2656 	case ARC_SPACE_ABD_CHUNK_WASTE:
2657 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2658 		break;
2659 	}
2660 
2661 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2662 		ARCSTAT_INCR(arcstat_meta_used, -space);
2663 
2664 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2665 	aggsum_add(&arc_sums.arcstat_size, -space);
2666 }
2667 
2668 /*
2669  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2670  * with the hdr's b_pabd.
2671  */
2672 static boolean_t
2673 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2674 {
2675 	/*
2676 	 * The criteria for sharing a hdr's data are:
2677 	 * 1. the buffer is not encrypted
2678 	 * 2. the hdr's compression matches the buf's compression
2679 	 * 3. the hdr doesn't need to be byteswapped
2680 	 * 4. the hdr isn't already being shared
2681 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2682 	 *
2683 	 * Criterion #5 maintains the invariant that shared uncompressed
2684 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2685 	 * might ask, "if a compressed buf is allocated first, won't that be the
2686 	 * last thing in the list?", but in that case it's impossible to create
2687 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2688 	 * to have the compressed buf). You might also think that #3 is
2689 	 * sufficient to make this guarantee, however it's possible
2690 	 * (specifically in the rare L2ARC write race mentioned in
2691 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2692 	 * is shareable, but wasn't at the time of its allocation. Rather than
2693 	 * allow a new shared uncompressed buf to be created and then shuffle
2694 	 * the list around to make it the last element, this simply disallows
2695 	 * sharing if the new buf isn't the first to be added.
2696 	 */
2697 	ASSERT3P(buf->b_hdr, ==, hdr);
2698 	boolean_t hdr_compressed =
2699 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2700 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2701 	return (!ARC_BUF_ENCRYPTED(buf) &&
2702 	    buf_compressed == hdr_compressed &&
2703 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2704 	    !HDR_SHARED_DATA(hdr) &&
2705 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2706 }
2707 
2708 /*
2709  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2710  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2711  * copy was made successfully, or an error code otherwise.
2712  */
2713 static int
2714 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2715     const void *tag, boolean_t encrypted, boolean_t compressed,
2716     boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2717 {
2718 	arc_buf_t *buf;
2719 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2720 
2721 	ASSERT(HDR_HAS_L1HDR(hdr));
2722 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2723 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2724 	    hdr->b_type == ARC_BUFC_METADATA);
2725 	ASSERT3P(ret, !=, NULL);
2726 	ASSERT3P(*ret, ==, NULL);
2727 	IMPLY(encrypted, compressed);
2728 
2729 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2730 	buf->b_hdr = hdr;
2731 	buf->b_data = NULL;
2732 	buf->b_next = hdr->b_l1hdr.b_buf;
2733 	buf->b_flags = 0;
2734 
2735 	add_reference(hdr, tag);
2736 
2737 	/*
2738 	 * We're about to change the hdr's b_flags. We must either
2739 	 * hold the hash_lock or be undiscoverable.
2740 	 */
2741 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2742 
2743 	/*
2744 	 * Only honor requests for compressed bufs if the hdr is actually
2745 	 * compressed. This must be overridden if the buffer is encrypted since
2746 	 * encrypted buffers cannot be decompressed.
2747 	 */
2748 	if (encrypted) {
2749 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2750 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2751 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2752 	} else if (compressed &&
2753 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2754 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2755 		flags |= ARC_FILL_COMPRESSED;
2756 	}
2757 
2758 	if (noauth) {
2759 		ASSERT0(encrypted);
2760 		flags |= ARC_FILL_NOAUTH;
2761 	}
2762 
2763 	/*
2764 	 * If the hdr's data can be shared then we share the data buffer and
2765 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2766 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2767 	 * buffer to store the buf's data.
2768 	 *
2769 	 * There are two additional restrictions here because we're sharing
2770 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2771 	 * actively involved in an L2ARC write, because if this buf is used by
2772 	 * an arc_write() then the hdr's data buffer will be released when the
2773 	 * write completes, even though the L2ARC write might still be using it.
2774 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2775 	 * need to be ABD-aware.  It must be allocated via
2776 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2777 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2778 	 * page" buffers because the ABD code needs to handle freeing them
2779 	 * specially.
2780 	 */
2781 	boolean_t can_share = arc_can_share(hdr, buf) &&
2782 	    !HDR_L2_WRITING(hdr) &&
2783 	    hdr->b_l1hdr.b_pabd != NULL &&
2784 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2785 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2786 
2787 	/* Set up b_data and sharing */
2788 	if (can_share) {
2789 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2790 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2791 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2792 	} else {
2793 		buf->b_data =
2794 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2795 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2796 	}
2797 	VERIFY3P(buf->b_data, !=, NULL);
2798 
2799 	hdr->b_l1hdr.b_buf = buf;
2800 
2801 	/*
2802 	 * If the user wants the data from the hdr, we need to either copy or
2803 	 * decompress the data.
2804 	 */
2805 	if (fill) {
2806 		ASSERT3P(zb, !=, NULL);
2807 		return (arc_buf_fill(buf, spa, zb, flags));
2808 	}
2809 
2810 	return (0);
2811 }
2812 
2813 static const char *arc_onloan_tag = "onloan";
2814 
2815 static inline void
2816 arc_loaned_bytes_update(int64_t delta)
2817 {
2818 	atomic_add_64(&arc_loaned_bytes, delta);
2819 
2820 	/* assert that it did not wrap around */
2821 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2822 }
2823 
2824 /*
2825  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2826  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2827  * buffers must be returned to the arc before they can be used by the DMU or
2828  * freed.
2829  */
2830 arc_buf_t *
2831 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2832 {
2833 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2834 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2835 
2836 	arc_loaned_bytes_update(arc_buf_size(buf));
2837 
2838 	return (buf);
2839 }
2840 
2841 arc_buf_t *
2842 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2843     enum zio_compress compression_type, uint8_t complevel)
2844 {
2845 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2846 	    psize, lsize, compression_type, complevel);
2847 
2848 	arc_loaned_bytes_update(arc_buf_size(buf));
2849 
2850 	return (buf);
2851 }
2852 
2853 arc_buf_t *
2854 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2855     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2856     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2857     enum zio_compress compression_type, uint8_t complevel)
2858 {
2859 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2860 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2861 	    complevel);
2862 
2863 	atomic_add_64(&arc_loaned_bytes, psize);
2864 	return (buf);
2865 }
2866 
2867 
2868 /*
2869  * Return a loaned arc buffer to the arc.
2870  */
2871 void
2872 arc_return_buf(arc_buf_t *buf, const void *tag)
2873 {
2874 	arc_buf_hdr_t *hdr = buf->b_hdr;
2875 
2876 	ASSERT3P(buf->b_data, !=, NULL);
2877 	ASSERT(HDR_HAS_L1HDR(hdr));
2878 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2879 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2880 
2881 	arc_loaned_bytes_update(-arc_buf_size(buf));
2882 }
2883 
2884 /* Detach an arc_buf from a dbuf (tag) */
2885 void
2886 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2887 {
2888 	arc_buf_hdr_t *hdr = buf->b_hdr;
2889 
2890 	ASSERT3P(buf->b_data, !=, NULL);
2891 	ASSERT(HDR_HAS_L1HDR(hdr));
2892 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2893 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2894 
2895 	arc_loaned_bytes_update(arc_buf_size(buf));
2896 }
2897 
2898 static void
2899 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2900 {
2901 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2902 
2903 	df->l2df_abd = abd;
2904 	df->l2df_size = size;
2905 	df->l2df_type = type;
2906 	mutex_enter(&l2arc_free_on_write_mtx);
2907 	list_insert_head(l2arc_free_on_write, df);
2908 	mutex_exit(&l2arc_free_on_write_mtx);
2909 }
2910 
2911 static void
2912 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2913 {
2914 	arc_state_t *state = hdr->b_l1hdr.b_state;
2915 	arc_buf_contents_t type = arc_buf_type(hdr);
2916 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2917 
2918 	/* protected by hash lock, if in the hash table */
2919 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2920 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2921 		ASSERT(state != arc_anon && state != arc_l2c_only);
2922 
2923 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2924 		    size, hdr);
2925 	}
2926 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2927 	if (type == ARC_BUFC_METADATA) {
2928 		arc_space_return(size, ARC_SPACE_META);
2929 	} else {
2930 		ASSERT(type == ARC_BUFC_DATA);
2931 		arc_space_return(size, ARC_SPACE_DATA);
2932 	}
2933 
2934 	if (free_rdata) {
2935 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2936 	} else {
2937 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2938 	}
2939 }
2940 
2941 /*
2942  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2943  * data buffer, we transfer the refcount ownership to the hdr and update
2944  * the appropriate kstats.
2945  */
2946 static void
2947 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2948 {
2949 	ASSERT(arc_can_share(hdr, buf));
2950 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2951 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2952 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2953 
2954 	/*
2955 	 * Start sharing the data buffer. We transfer the
2956 	 * refcount ownership to the hdr since it always owns
2957 	 * the refcount whenever an arc_buf_t is shared.
2958 	 */
2959 	zfs_refcount_transfer_ownership_many(
2960 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2961 	    arc_hdr_size(hdr), buf, hdr);
2962 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2963 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2964 	    HDR_ISTYPE_METADATA(hdr));
2965 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2966 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2967 
2968 	/*
2969 	 * Since we've transferred ownership to the hdr we need
2970 	 * to increment its compressed and uncompressed kstats and
2971 	 * decrement the overhead size.
2972 	 */
2973 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2974 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2975 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2976 }
2977 
2978 static void
2979 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2980 {
2981 	ASSERT(arc_buf_is_shared(buf));
2982 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2983 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2984 
2985 	/*
2986 	 * We are no longer sharing this buffer so we need
2987 	 * to transfer its ownership to the rightful owner.
2988 	 */
2989 	zfs_refcount_transfer_ownership_many(
2990 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2991 	    arc_hdr_size(hdr), hdr, buf);
2992 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2993 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2994 	abd_free(hdr->b_l1hdr.b_pabd);
2995 	hdr->b_l1hdr.b_pabd = NULL;
2996 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2997 
2998 	/*
2999 	 * Since the buffer is no longer shared between
3000 	 * the arc buf and the hdr, count it as overhead.
3001 	 */
3002 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3003 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3004 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3005 }
3006 
3007 /*
3008  * Remove an arc_buf_t from the hdr's buf list and return the last
3009  * arc_buf_t on the list. If no buffers remain on the list then return
3010  * NULL.
3011  */
3012 static arc_buf_t *
3013 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3014 {
3015 	ASSERT(HDR_HAS_L1HDR(hdr));
3016 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3017 
3018 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3019 	arc_buf_t *lastbuf = NULL;
3020 
3021 	/*
3022 	 * Remove the buf from the hdr list and locate the last
3023 	 * remaining buffer on the list.
3024 	 */
3025 	while (*bufp != NULL) {
3026 		if (*bufp == buf)
3027 			*bufp = buf->b_next;
3028 
3029 		/*
3030 		 * If we've removed a buffer in the middle of
3031 		 * the list then update the lastbuf and update
3032 		 * bufp.
3033 		 */
3034 		if (*bufp != NULL) {
3035 			lastbuf = *bufp;
3036 			bufp = &(*bufp)->b_next;
3037 		}
3038 	}
3039 	buf->b_next = NULL;
3040 	ASSERT3P(lastbuf, !=, buf);
3041 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3042 
3043 	return (lastbuf);
3044 }
3045 
3046 /*
3047  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3048  * list and free it.
3049  */
3050 static void
3051 arc_buf_destroy_impl(arc_buf_t *buf)
3052 {
3053 	arc_buf_hdr_t *hdr = buf->b_hdr;
3054 
3055 	/*
3056 	 * Free up the data associated with the buf but only if we're not
3057 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3058 	 * hdr is responsible for doing the free.
3059 	 */
3060 	if (buf->b_data != NULL) {
3061 		/*
3062 		 * We're about to change the hdr's b_flags. We must either
3063 		 * hold the hash_lock or be undiscoverable.
3064 		 */
3065 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3066 
3067 		arc_cksum_verify(buf);
3068 		arc_buf_unwatch(buf);
3069 
3070 		if (ARC_BUF_SHARED(buf)) {
3071 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3072 		} else {
3073 			ASSERT(!arc_buf_is_shared(buf));
3074 			uint64_t size = arc_buf_size(buf);
3075 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3076 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3077 		}
3078 		buf->b_data = NULL;
3079 
3080 		/*
3081 		 * If we have no more encrypted buffers and we've already
3082 		 * gotten a copy of the decrypted data we can free b_rabd
3083 		 * to save some space.
3084 		 */
3085 		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3086 		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3087 			arc_buf_t *b;
3088 			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3089 				if (b != buf && ARC_BUF_ENCRYPTED(b))
3090 					break;
3091 			}
3092 			if (b == NULL)
3093 				arc_hdr_free_abd(hdr, B_TRUE);
3094 		}
3095 	}
3096 
3097 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3098 
3099 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3100 		/*
3101 		 * If the current arc_buf_t is sharing its data buffer with the
3102 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3103 		 * buffer at the end of the list. The shared buffer is always
3104 		 * the last one on the hdr's buffer list.
3105 		 *
3106 		 * There is an equivalent case for compressed bufs, but since
3107 		 * they aren't guaranteed to be the last buf in the list and
3108 		 * that is an exceedingly rare case, we just allow that space be
3109 		 * wasted temporarily. We must also be careful not to share
3110 		 * encrypted buffers, since they cannot be shared.
3111 		 */
3112 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3113 			/* Only one buf can be shared at once */
3114 			ASSERT(!arc_buf_is_shared(lastbuf));
3115 			/* hdr is uncompressed so can't have compressed buf */
3116 			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3117 
3118 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3119 			arc_hdr_free_abd(hdr, B_FALSE);
3120 
3121 			/*
3122 			 * We must setup a new shared block between the
3123 			 * last buffer and the hdr. The data would have
3124 			 * been allocated by the arc buf so we need to transfer
3125 			 * ownership to the hdr since it's now being shared.
3126 			 */
3127 			arc_share_buf(hdr, lastbuf);
3128 		}
3129 	} else if (HDR_SHARED_DATA(hdr)) {
3130 		/*
3131 		 * Uncompressed shared buffers are always at the end
3132 		 * of the list. Compressed buffers don't have the
3133 		 * same requirements. This makes it hard to
3134 		 * simply assert that the lastbuf is shared so
3135 		 * we rely on the hdr's compression flags to determine
3136 		 * if we have a compressed, shared buffer.
3137 		 */
3138 		ASSERT3P(lastbuf, !=, NULL);
3139 		ASSERT(arc_buf_is_shared(lastbuf) ||
3140 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3141 	}
3142 
3143 	/*
3144 	 * Free the checksum if we're removing the last uncompressed buf from
3145 	 * this hdr.
3146 	 */
3147 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3148 		arc_cksum_free(hdr);
3149 	}
3150 
3151 	/* clean up the buf */
3152 	buf->b_hdr = NULL;
3153 	kmem_cache_free(buf_cache, buf);
3154 }
3155 
3156 static void
3157 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3158 {
3159 	uint64_t size;
3160 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3161 
3162 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3163 	ASSERT(HDR_HAS_L1HDR(hdr));
3164 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3165 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3166 
3167 	if (alloc_rdata) {
3168 		size = HDR_GET_PSIZE(hdr);
3169 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3170 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3171 		    alloc_flags);
3172 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3173 		ARCSTAT_INCR(arcstat_raw_size, size);
3174 	} else {
3175 		size = arc_hdr_size(hdr);
3176 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3177 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3178 		    alloc_flags);
3179 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3180 	}
3181 
3182 	ARCSTAT_INCR(arcstat_compressed_size, size);
3183 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3184 }
3185 
3186 static void
3187 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3188 {
3189 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3190 
3191 	ASSERT(HDR_HAS_L1HDR(hdr));
3192 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3193 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3194 
3195 	/*
3196 	 * If the hdr is currently being written to the l2arc then
3197 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3198 	 * list. The l2arc will free the data once it's finished
3199 	 * writing it to the l2arc device.
3200 	 */
3201 	if (HDR_L2_WRITING(hdr)) {
3202 		arc_hdr_free_on_write(hdr, free_rdata);
3203 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3204 	} else if (free_rdata) {
3205 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3206 	} else {
3207 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3208 	}
3209 
3210 	if (free_rdata) {
3211 		hdr->b_crypt_hdr.b_rabd = NULL;
3212 		ARCSTAT_INCR(arcstat_raw_size, -size);
3213 	} else {
3214 		hdr->b_l1hdr.b_pabd = NULL;
3215 	}
3216 
3217 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3218 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3219 
3220 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3221 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3222 }
3223 
3224 /*
3225  * Allocate empty anonymous ARC header.  The header will get its identity
3226  * assigned and buffers attached later as part of read or write operations.
3227  *
3228  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3229  * inserts it into ARC hash to become globally visible and allocates physical
3230  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3231  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3232  * sharing one of them with the physical ABD buffer.
3233  *
3234  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3235  * data.  Then after compression and/or encryption arc_write_ready() allocates
3236  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3237  * buffer.  On disk write completion arc_write_done() assigns the header its
3238  * new identity (b_dva + b_birth) and inserts into ARC hash.
3239  *
3240  * In case of partial overwrite the old data is read first as described. Then
3241  * arc_release() either allocates new anonymous ARC header and moves the ARC
3242  * buffer to it, or reuses the old ARC header by discarding its identity and
3243  * removing it from ARC hash.  After buffer modification normal write process
3244  * follows as described.
3245  */
3246 static arc_buf_hdr_t *
3247 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3248     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3249     arc_buf_contents_t type)
3250 {
3251 	arc_buf_hdr_t *hdr;
3252 
3253 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3254 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3255 
3256 	ASSERT(HDR_EMPTY(hdr));
3257 #ifdef ZFS_DEBUG
3258 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3259 #endif
3260 	HDR_SET_PSIZE(hdr, psize);
3261 	HDR_SET_LSIZE(hdr, lsize);
3262 	hdr->b_spa = spa;
3263 	hdr->b_type = type;
3264 	hdr->b_flags = 0;
3265 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3266 	arc_hdr_set_compress(hdr, compression_type);
3267 	hdr->b_complevel = complevel;
3268 	if (protected)
3269 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3270 
3271 	hdr->b_l1hdr.b_state = arc_anon;
3272 	hdr->b_l1hdr.b_arc_access = 0;
3273 	hdr->b_l1hdr.b_mru_hits = 0;
3274 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3275 	hdr->b_l1hdr.b_mfu_hits = 0;
3276 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3277 	hdr->b_l1hdr.b_buf = NULL;
3278 
3279 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3280 
3281 	return (hdr);
3282 }
3283 
3284 /*
3285  * Transition between the two allocation states for the arc_buf_hdr struct.
3286  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3287  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3288  * version is used when a cache buffer is only in the L2ARC in order to reduce
3289  * memory usage.
3290  */
3291 static arc_buf_hdr_t *
3292 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3293 {
3294 	ASSERT(HDR_HAS_L2HDR(hdr));
3295 
3296 	arc_buf_hdr_t *nhdr;
3297 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3298 
3299 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3300 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3301 
3302 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3303 
3304 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3305 	buf_hash_remove(hdr);
3306 
3307 	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3308 
3309 	if (new == hdr_full_cache) {
3310 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3311 		/*
3312 		 * arc_access and arc_change_state need to be aware that a
3313 		 * header has just come out of L2ARC, so we set its state to
3314 		 * l2c_only even though it's about to change.
3315 		 */
3316 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3317 
3318 		/* Verify previous threads set to NULL before freeing */
3319 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3320 		ASSERT(!HDR_HAS_RABD(hdr));
3321 	} else {
3322 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3323 #ifdef ZFS_DEBUG
3324 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3325 #endif
3326 
3327 		/*
3328 		 * If we've reached here, We must have been called from
3329 		 * arc_evict_hdr(), as such we should have already been
3330 		 * removed from any ghost list we were previously on
3331 		 * (which protects us from racing with arc_evict_state),
3332 		 * thus no locking is needed during this check.
3333 		 */
3334 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3335 
3336 		/*
3337 		 * A buffer must not be moved into the arc_l2c_only
3338 		 * state if it's not finished being written out to the
3339 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3340 		 * might try to be accessed, even though it was removed.
3341 		 */
3342 		VERIFY(!HDR_L2_WRITING(hdr));
3343 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3344 		ASSERT(!HDR_HAS_RABD(hdr));
3345 
3346 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3347 	}
3348 	/*
3349 	 * The header has been reallocated so we need to re-insert it into any
3350 	 * lists it was on.
3351 	 */
3352 	(void) buf_hash_insert(nhdr, NULL);
3353 
3354 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3355 
3356 	mutex_enter(&dev->l2ad_mtx);
3357 
3358 	/*
3359 	 * We must place the realloc'ed header back into the list at
3360 	 * the same spot. Otherwise, if it's placed earlier in the list,
3361 	 * l2arc_write_buffers() could find it during the function's
3362 	 * write phase, and try to write it out to the l2arc.
3363 	 */
3364 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3365 	list_remove(&dev->l2ad_buflist, hdr);
3366 
3367 	mutex_exit(&dev->l2ad_mtx);
3368 
3369 	/*
3370 	 * Since we're using the pointer address as the tag when
3371 	 * incrementing and decrementing the l2ad_alloc refcount, we
3372 	 * must remove the old pointer (that we're about to destroy) and
3373 	 * add the new pointer to the refcount. Otherwise we'd remove
3374 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3375 	 */
3376 
3377 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3378 	    arc_hdr_size(hdr), hdr);
3379 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3380 	    arc_hdr_size(nhdr), nhdr);
3381 
3382 	buf_discard_identity(hdr);
3383 	kmem_cache_free(old, hdr);
3384 
3385 	return (nhdr);
3386 }
3387 
3388 /*
3389  * This function is used by the send / receive code to convert a newly
3390  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3391  * is also used to allow the root objset block to be updated without altering
3392  * its embedded MACs. Both block types will always be uncompressed so we do not
3393  * have to worry about compression type or psize.
3394  */
3395 void
3396 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3397     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3398     const uint8_t *mac)
3399 {
3400 	arc_buf_hdr_t *hdr = buf->b_hdr;
3401 
3402 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3403 	ASSERT(HDR_HAS_L1HDR(hdr));
3404 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3405 
3406 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3407 	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3408 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3409 	hdr->b_crypt_hdr.b_ot = ot;
3410 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3411 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3412 	if (!arc_hdr_has_uncompressed_buf(hdr))
3413 		arc_cksum_free(hdr);
3414 
3415 	if (salt != NULL)
3416 		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3417 	if (iv != NULL)
3418 		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3419 	if (mac != NULL)
3420 		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3421 }
3422 
3423 /*
3424  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3425  * The buf is returned thawed since we expect the consumer to modify it.
3426  */
3427 arc_buf_t *
3428 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3429     int32_t size)
3430 {
3431 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3432 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3433 
3434 	arc_buf_t *buf = NULL;
3435 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3436 	    B_FALSE, B_FALSE, &buf));
3437 	arc_buf_thaw(buf);
3438 
3439 	return (buf);
3440 }
3441 
3442 /*
3443  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3444  * for bufs containing metadata.
3445  */
3446 arc_buf_t *
3447 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3448     uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3449 {
3450 	ASSERT3U(lsize, >, 0);
3451 	ASSERT3U(lsize, >=, psize);
3452 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3453 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3454 
3455 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3456 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3457 
3458 	arc_buf_t *buf = NULL;
3459 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3460 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3461 	arc_buf_thaw(buf);
3462 
3463 	/*
3464 	 * To ensure that the hdr has the correct data in it if we call
3465 	 * arc_untransform() on this buf before it's been written to disk,
3466 	 * it's easiest if we just set up sharing between the buf and the hdr.
3467 	 */
3468 	arc_share_buf(hdr, buf);
3469 
3470 	return (buf);
3471 }
3472 
3473 arc_buf_t *
3474 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3475     boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3476     const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3477     enum zio_compress compression_type, uint8_t complevel)
3478 {
3479 	arc_buf_hdr_t *hdr;
3480 	arc_buf_t *buf;
3481 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3482 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3483 
3484 	ASSERT3U(lsize, >, 0);
3485 	ASSERT3U(lsize, >=, psize);
3486 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3487 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3488 
3489 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3490 	    compression_type, complevel, type);
3491 
3492 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3493 	hdr->b_crypt_hdr.b_ot = ot;
3494 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3495 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3496 	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3497 	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3498 	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3499 
3500 	/*
3501 	 * This buffer will be considered encrypted even if the ot is not an
3502 	 * encrypted type. It will become authenticated instead in
3503 	 * arc_write_ready().
3504 	 */
3505 	buf = NULL;
3506 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3507 	    B_FALSE, B_FALSE, &buf));
3508 	arc_buf_thaw(buf);
3509 
3510 	return (buf);
3511 }
3512 
3513 static void
3514 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3515     boolean_t state_only)
3516 {
3517 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3518 	l2arc_dev_t *dev = l2hdr->b_dev;
3519 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3520 	uint64_t psize = HDR_GET_PSIZE(hdr);
3521 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3522 	arc_buf_contents_t type = hdr->b_type;
3523 	int64_t lsize_s;
3524 	int64_t psize_s;
3525 	int64_t asize_s;
3526 
3527 	if (incr) {
3528 		lsize_s = lsize;
3529 		psize_s = psize;
3530 		asize_s = asize;
3531 	} else {
3532 		lsize_s = -lsize;
3533 		psize_s = -psize;
3534 		asize_s = -asize;
3535 	}
3536 
3537 	/* If the buffer is a prefetch, count it as such. */
3538 	if (HDR_PREFETCH(hdr)) {
3539 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3540 	} else {
3541 		/*
3542 		 * We use the value stored in the L2 header upon initial
3543 		 * caching in L2ARC. This value will be updated in case
3544 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3545 		 * metadata (log entry) cannot currently be updated. Having
3546 		 * the ARC state in the L2 header solves the problem of a
3547 		 * possibly absent L1 header (apparent in buffers restored
3548 		 * from persistent L2ARC).
3549 		 */
3550 		switch (hdr->b_l2hdr.b_arcs_state) {
3551 			case ARC_STATE_MRU_GHOST:
3552 			case ARC_STATE_MRU:
3553 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3554 				break;
3555 			case ARC_STATE_MFU_GHOST:
3556 			case ARC_STATE_MFU:
3557 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3558 				break;
3559 			default:
3560 				break;
3561 		}
3562 	}
3563 
3564 	if (state_only)
3565 		return;
3566 
3567 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3568 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3569 
3570 	switch (type) {
3571 		case ARC_BUFC_DATA:
3572 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3573 			break;
3574 		case ARC_BUFC_METADATA:
3575 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3576 			break;
3577 		default:
3578 			break;
3579 	}
3580 }
3581 
3582 
3583 static void
3584 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3585 {
3586 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3587 	l2arc_dev_t *dev = l2hdr->b_dev;
3588 	uint64_t psize = HDR_GET_PSIZE(hdr);
3589 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3590 
3591 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3592 	ASSERT(HDR_HAS_L2HDR(hdr));
3593 
3594 	list_remove(&dev->l2ad_buflist, hdr);
3595 
3596 	l2arc_hdr_arcstats_decrement(hdr);
3597 	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3598 
3599 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3600 	    hdr);
3601 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3602 }
3603 
3604 static void
3605 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3606 {
3607 	if (HDR_HAS_L1HDR(hdr)) {
3608 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3609 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3610 	}
3611 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3612 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3613 
3614 	if (HDR_HAS_L2HDR(hdr)) {
3615 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3616 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3617 
3618 		if (!buflist_held)
3619 			mutex_enter(&dev->l2ad_mtx);
3620 
3621 		/*
3622 		 * Even though we checked this conditional above, we
3623 		 * need to check this again now that we have the
3624 		 * l2ad_mtx. This is because we could be racing with
3625 		 * another thread calling l2arc_evict() which might have
3626 		 * destroyed this header's L2 portion as we were waiting
3627 		 * to acquire the l2ad_mtx. If that happens, we don't
3628 		 * want to re-destroy the header's L2 portion.
3629 		 */
3630 		if (HDR_HAS_L2HDR(hdr)) {
3631 
3632 			if (!HDR_EMPTY(hdr))
3633 				buf_discard_identity(hdr);
3634 
3635 			arc_hdr_l2hdr_destroy(hdr);
3636 		}
3637 
3638 		if (!buflist_held)
3639 			mutex_exit(&dev->l2ad_mtx);
3640 	}
3641 
3642 	/*
3643 	 * The header's identify can only be safely discarded once it is no
3644 	 * longer discoverable.  This requires removing it from the hash table
3645 	 * and the l2arc header list.  After this point the hash lock can not
3646 	 * be used to protect the header.
3647 	 */
3648 	if (!HDR_EMPTY(hdr))
3649 		buf_discard_identity(hdr);
3650 
3651 	if (HDR_HAS_L1HDR(hdr)) {
3652 		arc_cksum_free(hdr);
3653 
3654 		while (hdr->b_l1hdr.b_buf != NULL)
3655 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3656 
3657 		if (hdr->b_l1hdr.b_pabd != NULL)
3658 			arc_hdr_free_abd(hdr, B_FALSE);
3659 
3660 		if (HDR_HAS_RABD(hdr))
3661 			arc_hdr_free_abd(hdr, B_TRUE);
3662 	}
3663 
3664 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3665 	if (HDR_HAS_L1HDR(hdr)) {
3666 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3667 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3668 #ifdef ZFS_DEBUG
3669 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3670 #endif
3671 		kmem_cache_free(hdr_full_cache, hdr);
3672 	} else {
3673 		kmem_cache_free(hdr_l2only_cache, hdr);
3674 	}
3675 }
3676 
3677 void
3678 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3679 {
3680 	arc_buf_hdr_t *hdr = buf->b_hdr;
3681 
3682 	if (hdr->b_l1hdr.b_state == arc_anon) {
3683 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3684 		ASSERT(ARC_BUF_LAST(buf));
3685 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3686 		VERIFY0(remove_reference(hdr, tag));
3687 		return;
3688 	}
3689 
3690 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3691 	mutex_enter(hash_lock);
3692 
3693 	ASSERT3P(hdr, ==, buf->b_hdr);
3694 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3695 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3696 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3697 	ASSERT3P(buf->b_data, !=, NULL);
3698 
3699 	arc_buf_destroy_impl(buf);
3700 	(void) remove_reference(hdr, tag);
3701 	mutex_exit(hash_lock);
3702 }
3703 
3704 /*
3705  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3706  * state of the header is dependent on its state prior to entering this
3707  * function. The following transitions are possible:
3708  *
3709  *    - arc_mru -> arc_mru_ghost
3710  *    - arc_mfu -> arc_mfu_ghost
3711  *    - arc_mru_ghost -> arc_l2c_only
3712  *    - arc_mru_ghost -> deleted
3713  *    - arc_mfu_ghost -> arc_l2c_only
3714  *    - arc_mfu_ghost -> deleted
3715  *    - arc_uncached -> deleted
3716  *
3717  * Return total size of evicted data buffers for eviction progress tracking.
3718  * When evicting from ghost states return logical buffer size to make eviction
3719  * progress at the same (or at least comparable) rate as from non-ghost states.
3720  *
3721  * Return *real_evicted for actual ARC size reduction to wake up threads
3722  * waiting for it.  For non-ghost states it includes size of evicted data
3723  * buffers (the headers are not freed there).  For ghost states it includes
3724  * only the evicted headers size.
3725  */
3726 static int64_t
3727 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3728 {
3729 	arc_state_t *evicted_state, *state;
3730 	int64_t bytes_evicted = 0;
3731 	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3732 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3733 
3734 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3735 	ASSERT(HDR_HAS_L1HDR(hdr));
3736 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3737 	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3738 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3739 
3740 	*real_evicted = 0;
3741 	state = hdr->b_l1hdr.b_state;
3742 	if (GHOST_STATE(state)) {
3743 
3744 		/*
3745 		 * l2arc_write_buffers() relies on a header's L1 portion
3746 		 * (i.e. its b_pabd field) during it's write phase.
3747 		 * Thus, we cannot push a header onto the arc_l2c_only
3748 		 * state (removing its L1 piece) until the header is
3749 		 * done being written to the l2arc.
3750 		 */
3751 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3752 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3753 			return (bytes_evicted);
3754 		}
3755 
3756 		ARCSTAT_BUMP(arcstat_deleted);
3757 		bytes_evicted += HDR_GET_LSIZE(hdr);
3758 
3759 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3760 
3761 		if (HDR_HAS_L2HDR(hdr)) {
3762 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3763 			ASSERT(!HDR_HAS_RABD(hdr));
3764 			/*
3765 			 * This buffer is cached on the 2nd Level ARC;
3766 			 * don't destroy the header.
3767 			 */
3768 			arc_change_state(arc_l2c_only, hdr);
3769 			/*
3770 			 * dropping from L1+L2 cached to L2-only,
3771 			 * realloc to remove the L1 header.
3772 			 */
3773 			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3774 			    hdr_l2only_cache);
3775 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3776 		} else {
3777 			arc_change_state(arc_anon, hdr);
3778 			arc_hdr_destroy(hdr);
3779 			*real_evicted += HDR_FULL_SIZE;
3780 		}
3781 		return (bytes_evicted);
3782 	}
3783 
3784 	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3785 	evicted_state = (state == arc_uncached) ? arc_anon :
3786 	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3787 
3788 	/* prefetch buffers have a minimum lifespan */
3789 	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3790 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3791 	    MSEC_TO_TICK(min_lifetime)) {
3792 		ARCSTAT_BUMP(arcstat_evict_skip);
3793 		return (bytes_evicted);
3794 	}
3795 
3796 	if (HDR_HAS_L2HDR(hdr)) {
3797 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3798 	} else {
3799 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3800 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3801 			    HDR_GET_LSIZE(hdr));
3802 
3803 			switch (state->arcs_state) {
3804 				case ARC_STATE_MRU:
3805 					ARCSTAT_INCR(
3806 					    arcstat_evict_l2_eligible_mru,
3807 					    HDR_GET_LSIZE(hdr));
3808 					break;
3809 				case ARC_STATE_MFU:
3810 					ARCSTAT_INCR(
3811 					    arcstat_evict_l2_eligible_mfu,
3812 					    HDR_GET_LSIZE(hdr));
3813 					break;
3814 				default:
3815 					break;
3816 			}
3817 		} else {
3818 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3819 			    HDR_GET_LSIZE(hdr));
3820 		}
3821 	}
3822 
3823 	bytes_evicted += arc_hdr_size(hdr);
3824 	*real_evicted += arc_hdr_size(hdr);
3825 
3826 	/*
3827 	 * If this hdr is being evicted and has a compressed buffer then we
3828 	 * discard it here before we change states.  This ensures that the
3829 	 * accounting is updated correctly in arc_free_data_impl().
3830 	 */
3831 	if (hdr->b_l1hdr.b_pabd != NULL)
3832 		arc_hdr_free_abd(hdr, B_FALSE);
3833 
3834 	if (HDR_HAS_RABD(hdr))
3835 		arc_hdr_free_abd(hdr, B_TRUE);
3836 
3837 	arc_change_state(evicted_state, hdr);
3838 	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3839 	if (evicted_state == arc_anon) {
3840 		arc_hdr_destroy(hdr);
3841 		*real_evicted += HDR_FULL_SIZE;
3842 	} else {
3843 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3844 	}
3845 
3846 	return (bytes_evicted);
3847 }
3848 
3849 static void
3850 arc_set_need_free(void)
3851 {
3852 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3853 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3854 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3855 	if (aw == NULL) {
3856 		arc_need_free = MAX(-remaining, 0);
3857 	} else {
3858 		arc_need_free =
3859 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3860 	}
3861 }
3862 
3863 static uint64_t
3864 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3865     uint64_t spa, uint64_t bytes)
3866 {
3867 	multilist_sublist_t *mls;
3868 	uint64_t bytes_evicted = 0, real_evicted = 0;
3869 	arc_buf_hdr_t *hdr;
3870 	kmutex_t *hash_lock;
3871 	uint_t evict_count = zfs_arc_evict_batch_limit;
3872 
3873 	ASSERT3P(marker, !=, NULL);
3874 
3875 	mls = multilist_sublist_lock(ml, idx);
3876 
3877 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3878 	    hdr = multilist_sublist_prev(mls, marker)) {
3879 		if ((evict_count == 0) || (bytes_evicted >= bytes))
3880 			break;
3881 
3882 		/*
3883 		 * To keep our iteration location, move the marker
3884 		 * forward. Since we're not holding hdr's hash lock, we
3885 		 * must be very careful and not remove 'hdr' from the
3886 		 * sublist. Otherwise, other consumers might mistake the
3887 		 * 'hdr' as not being on a sublist when they call the
3888 		 * multilist_link_active() function (they all rely on
3889 		 * the hash lock protecting concurrent insertions and
3890 		 * removals). multilist_sublist_move_forward() was
3891 		 * specifically implemented to ensure this is the case
3892 		 * (only 'marker' will be removed and re-inserted).
3893 		 */
3894 		multilist_sublist_move_forward(mls, marker);
3895 
3896 		/*
3897 		 * The only case where the b_spa field should ever be
3898 		 * zero, is the marker headers inserted by
3899 		 * arc_evict_state(). It's possible for multiple threads
3900 		 * to be calling arc_evict_state() concurrently (e.g.
3901 		 * dsl_pool_close() and zio_inject_fault()), so we must
3902 		 * skip any markers we see from these other threads.
3903 		 */
3904 		if (hdr->b_spa == 0)
3905 			continue;
3906 
3907 		/* we're only interested in evicting buffers of a certain spa */
3908 		if (spa != 0 && hdr->b_spa != spa) {
3909 			ARCSTAT_BUMP(arcstat_evict_skip);
3910 			continue;
3911 		}
3912 
3913 		hash_lock = HDR_LOCK(hdr);
3914 
3915 		/*
3916 		 * We aren't calling this function from any code path
3917 		 * that would already be holding a hash lock, so we're
3918 		 * asserting on this assumption to be defensive in case
3919 		 * this ever changes. Without this check, it would be
3920 		 * possible to incorrectly increment arcstat_mutex_miss
3921 		 * below (e.g. if the code changed such that we called
3922 		 * this function with a hash lock held).
3923 		 */
3924 		ASSERT(!MUTEX_HELD(hash_lock));
3925 
3926 		if (mutex_tryenter(hash_lock)) {
3927 			uint64_t revicted;
3928 			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3929 			mutex_exit(hash_lock);
3930 
3931 			bytes_evicted += evicted;
3932 			real_evicted += revicted;
3933 
3934 			/*
3935 			 * If evicted is zero, arc_evict_hdr() must have
3936 			 * decided to skip this header, don't increment
3937 			 * evict_count in this case.
3938 			 */
3939 			if (evicted != 0)
3940 				evict_count--;
3941 
3942 		} else {
3943 			ARCSTAT_BUMP(arcstat_mutex_miss);
3944 		}
3945 	}
3946 
3947 	multilist_sublist_unlock(mls);
3948 
3949 	/*
3950 	 * Increment the count of evicted bytes, and wake up any threads that
3951 	 * are waiting for the count to reach this value.  Since the list is
3952 	 * ordered by ascending aew_count, we pop off the beginning of the
3953 	 * list until we reach the end, or a waiter that's past the current
3954 	 * "count".  Doing this outside the loop reduces the number of times
3955 	 * we need to acquire the global arc_evict_lock.
3956 	 *
3957 	 * Only wake when there's sufficient free memory in the system
3958 	 * (specifically, arc_sys_free/2, which by default is a bit more than
3959 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
3960 	 */
3961 	mutex_enter(&arc_evict_lock);
3962 	arc_evict_count += real_evicted;
3963 
3964 	if (arc_free_memory() > arc_sys_free / 2) {
3965 		arc_evict_waiter_t *aw;
3966 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3967 		    aw->aew_count <= arc_evict_count) {
3968 			list_remove(&arc_evict_waiters, aw);
3969 			cv_broadcast(&aw->aew_cv);
3970 		}
3971 	}
3972 	arc_set_need_free();
3973 	mutex_exit(&arc_evict_lock);
3974 
3975 	/*
3976 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3977 	 * if the average cached block is small), eviction can be on-CPU for
3978 	 * many seconds.  To ensure that other threads that may be bound to
3979 	 * this CPU are able to make progress, make a voluntary preemption
3980 	 * call here.
3981 	 */
3982 	kpreempt(KPREEMPT_SYNC);
3983 
3984 	return (bytes_evicted);
3985 }
3986 
3987 /*
3988  * Allocate an array of buffer headers used as placeholders during arc state
3989  * eviction.
3990  */
3991 static arc_buf_hdr_t **
3992 arc_state_alloc_markers(int count)
3993 {
3994 	arc_buf_hdr_t **markers;
3995 
3996 	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
3997 	for (int i = 0; i < count; i++) {
3998 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3999 
4000 		/*
4001 		 * A b_spa of 0 is used to indicate that this header is
4002 		 * a marker. This fact is used in arc_evict_state_impl().
4003 		 */
4004 		markers[i]->b_spa = 0;
4005 
4006 	}
4007 	return (markers);
4008 }
4009 
4010 static void
4011 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4012 {
4013 	for (int i = 0; i < count; i++)
4014 		kmem_cache_free(hdr_full_cache, markers[i]);
4015 	kmem_free(markers, sizeof (*markers) * count);
4016 }
4017 
4018 /*
4019  * Evict buffers from the given arc state, until we've removed the
4020  * specified number of bytes. Move the removed buffers to the
4021  * appropriate evict state.
4022  *
4023  * This function makes a "best effort". It skips over any buffers
4024  * it can't get a hash_lock on, and so, may not catch all candidates.
4025  * It may also return without evicting as much space as requested.
4026  *
4027  * If bytes is specified using the special value ARC_EVICT_ALL, this
4028  * will evict all available (i.e. unlocked and evictable) buffers from
4029  * the given arc state; which is used by arc_flush().
4030  */
4031 static uint64_t
4032 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4033     uint64_t bytes)
4034 {
4035 	uint64_t total_evicted = 0;
4036 	multilist_t *ml = &state->arcs_list[type];
4037 	int num_sublists;
4038 	arc_buf_hdr_t **markers;
4039 
4040 	num_sublists = multilist_get_num_sublists(ml);
4041 
4042 	/*
4043 	 * If we've tried to evict from each sublist, made some
4044 	 * progress, but still have not hit the target number of bytes
4045 	 * to evict, we want to keep trying. The markers allow us to
4046 	 * pick up where we left off for each individual sublist, rather
4047 	 * than starting from the tail each time.
4048 	 */
4049 	if (zthr_iscurthread(arc_evict_zthr)) {
4050 		markers = arc_state_evict_markers;
4051 		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4052 	} else {
4053 		markers = arc_state_alloc_markers(num_sublists);
4054 	}
4055 	for (int i = 0; i < num_sublists; i++) {
4056 		multilist_sublist_t *mls;
4057 
4058 		mls = multilist_sublist_lock(ml, i);
4059 		multilist_sublist_insert_tail(mls, markers[i]);
4060 		multilist_sublist_unlock(mls);
4061 	}
4062 
4063 	/*
4064 	 * While we haven't hit our target number of bytes to evict, or
4065 	 * we're evicting all available buffers.
4066 	 */
4067 	while (total_evicted < bytes) {
4068 		int sublist_idx = multilist_get_random_index(ml);
4069 		uint64_t scan_evicted = 0;
4070 
4071 		/*
4072 		 * Start eviction using a randomly selected sublist,
4073 		 * this is to try and evenly balance eviction across all
4074 		 * sublists. Always starting at the same sublist
4075 		 * (e.g. index 0) would cause evictions to favor certain
4076 		 * sublists over others.
4077 		 */
4078 		for (int i = 0; i < num_sublists; i++) {
4079 			uint64_t bytes_remaining;
4080 			uint64_t bytes_evicted;
4081 
4082 			if (total_evicted < bytes)
4083 				bytes_remaining = bytes - total_evicted;
4084 			else
4085 				break;
4086 
4087 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4088 			    markers[sublist_idx], spa, bytes_remaining);
4089 
4090 			scan_evicted += bytes_evicted;
4091 			total_evicted += bytes_evicted;
4092 
4093 			/* we've reached the end, wrap to the beginning */
4094 			if (++sublist_idx >= num_sublists)
4095 				sublist_idx = 0;
4096 		}
4097 
4098 		/*
4099 		 * If we didn't evict anything during this scan, we have
4100 		 * no reason to believe we'll evict more during another
4101 		 * scan, so break the loop.
4102 		 */
4103 		if (scan_evicted == 0) {
4104 			/* This isn't possible, let's make that obvious */
4105 			ASSERT3S(bytes, !=, 0);
4106 
4107 			/*
4108 			 * When bytes is ARC_EVICT_ALL, the only way to
4109 			 * break the loop is when scan_evicted is zero.
4110 			 * In that case, we actually have evicted enough,
4111 			 * so we don't want to increment the kstat.
4112 			 */
4113 			if (bytes != ARC_EVICT_ALL) {
4114 				ASSERT3S(total_evicted, <, bytes);
4115 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4116 			}
4117 
4118 			break;
4119 		}
4120 	}
4121 
4122 	for (int i = 0; i < num_sublists; i++) {
4123 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4124 		multilist_sublist_remove(mls, markers[i]);
4125 		multilist_sublist_unlock(mls);
4126 	}
4127 	if (markers != arc_state_evict_markers)
4128 		arc_state_free_markers(markers, num_sublists);
4129 
4130 	return (total_evicted);
4131 }
4132 
4133 /*
4134  * Flush all "evictable" data of the given type from the arc state
4135  * specified. This will not evict any "active" buffers (i.e. referenced).
4136  *
4137  * When 'retry' is set to B_FALSE, the function will make a single pass
4138  * over the state and evict any buffers that it can. Since it doesn't
4139  * continually retry the eviction, it might end up leaving some buffers
4140  * in the ARC due to lock misses.
4141  *
4142  * When 'retry' is set to B_TRUE, the function will continually retry the
4143  * eviction until *all* evictable buffers have been removed from the
4144  * state. As a result, if concurrent insertions into the state are
4145  * allowed (e.g. if the ARC isn't shutting down), this function might
4146  * wind up in an infinite loop, continually trying to evict buffers.
4147  */
4148 static uint64_t
4149 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4150     boolean_t retry)
4151 {
4152 	uint64_t evicted = 0;
4153 
4154 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4155 		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4156 
4157 		if (!retry)
4158 			break;
4159 	}
4160 
4161 	return (evicted);
4162 }
4163 
4164 /*
4165  * Evict the specified number of bytes from the state specified. This
4166  * function prevents us from trying to evict more from a state's list
4167  * than is "evictable", and to skip evicting altogether when passed a
4168  * negative value for "bytes". In contrast, arc_evict_state() will
4169  * evict everything it can, when passed a negative value for "bytes".
4170  */
4171 static uint64_t
4172 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4173 {
4174 	uint64_t delta;
4175 
4176 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4177 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4178 		    bytes);
4179 		return (arc_evict_state(state, type, 0, delta));
4180 	}
4181 
4182 	return (0);
4183 }
4184 
4185 /*
4186  * Adjust specified fraction, taking into account initial ghost state(s) size,
4187  * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4188  * decreasing it, plus a balance factor, controlling the decrease rate, used
4189  * to balance metadata vs data.
4190  */
4191 static uint64_t
4192 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4193     uint_t balance)
4194 {
4195 	if (total < 8 || up + down == 0)
4196 		return (frac);
4197 
4198 	/*
4199 	 * We should not have more ghost hits than ghost size, but they
4200 	 * may get close.  Restrict maximum adjustment in that case.
4201 	 */
4202 	if (up + down >= total / 4) {
4203 		uint64_t scale = (up + down) / (total / 8);
4204 		up /= scale;
4205 		down /= scale;
4206 	}
4207 
4208 	/* Get maximal dynamic range by choosing optimal shifts. */
4209 	int s = highbit64(total);
4210 	s = MIN(64 - s, 32);
4211 
4212 	uint64_t ofrac = (1ULL << 32) - frac;
4213 
4214 	if (frac >= 4 * ofrac)
4215 		up /= frac / (2 * ofrac + 1);
4216 	up = (up << s) / (total >> (32 - s));
4217 	if (ofrac >= 4 * frac)
4218 		down /= ofrac / (2 * frac + 1);
4219 	down = (down << s) / (total >> (32 - s));
4220 	down = down * 100 / balance;
4221 
4222 	return (frac + up - down);
4223 }
4224 
4225 /*
4226  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4227  */
4228 static uint64_t
4229 arc_evict(void)
4230 {
4231 	uint64_t asize, bytes, total_evicted = 0;
4232 	int64_t e, mrud, mrum, mfud, mfum, w;
4233 	static uint64_t ogrd, ogrm, ogfd, ogfm;
4234 	static uint64_t gsrd, gsrm, gsfd, gsfm;
4235 	uint64_t ngrd, ngrm, ngfd, ngfm;
4236 
4237 	/* Get current size of ARC states we can evict from. */
4238 	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4239 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4240 	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4241 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4242 	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4243 	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4244 	uint64_t d = mrud + mfud;
4245 	uint64_t m = mrum + mfum;
4246 	uint64_t t = d + m;
4247 
4248 	/* Get ARC ghost hits since last eviction. */
4249 	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4250 	uint64_t grd = ngrd - ogrd;
4251 	ogrd = ngrd;
4252 	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4253 	uint64_t grm = ngrm - ogrm;
4254 	ogrm = ngrm;
4255 	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4256 	uint64_t gfd = ngfd - ogfd;
4257 	ogfd = ngfd;
4258 	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4259 	uint64_t gfm = ngfm - ogfm;
4260 	ogfm = ngfm;
4261 
4262 	/* Adjust ARC states balance based on ghost hits. */
4263 	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4264 	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4265 	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4266 	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4267 
4268 	asize = aggsum_value(&arc_sums.arcstat_size);
4269 	int64_t wt = t - (asize - arc_c);
4270 
4271 	/*
4272 	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4273 	 * target is not evictable or if they go over arc_dnode_limit.
4274 	 */
4275 	int64_t prune = 0;
4276 	int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4277 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4278 	if (zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4279 	    zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) -
4280 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) -
4281 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]) >
4282 	    w * 3 / 4) {
4283 		prune = dn / sizeof (dnode_t) *
4284 		    zfs_arc_dnode_reduce_percent / 100;
4285 	} else if (dn > arc_dnode_limit) {
4286 		prune = (dn - arc_dnode_limit) / sizeof (dnode_t) *
4287 		    zfs_arc_dnode_reduce_percent / 100;
4288 	}
4289 	if (prune > 0)
4290 		arc_prune_async(prune);
4291 
4292 	/* Evict MRU metadata. */
4293 	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4294 	e = MIN((int64_t)(asize - arc_c), (int64_t)(mrum - w));
4295 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4296 	total_evicted += bytes;
4297 	mrum -= bytes;
4298 	asize -= bytes;
4299 
4300 	/* Evict MFU metadata. */
4301 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4302 	e = MIN((int64_t)(asize - arc_c), (int64_t)(m - w));
4303 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4304 	total_evicted += bytes;
4305 	mfum -= bytes;
4306 	asize -= bytes;
4307 
4308 	/* Evict MRU data. */
4309 	wt -= m - total_evicted;
4310 	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4311 	e = MIN((int64_t)(asize - arc_c), (int64_t)(mrud - w));
4312 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4313 	total_evicted += bytes;
4314 	mrud -= bytes;
4315 	asize -= bytes;
4316 
4317 	/* Evict MFU data. */
4318 	e = asize - arc_c;
4319 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4320 	mfud -= bytes;
4321 	total_evicted += bytes;
4322 
4323 	/*
4324 	 * Evict ghost lists
4325 	 *
4326 	 * Size of each state's ghost list represents how much that state
4327 	 * may grow by shrinking the other states.  Would it need to shrink
4328 	 * other states to zero (that is unlikely), its ghost size would be
4329 	 * equal to sum of other three state sizes.  But excessive ghost
4330 	 * size may result in false ghost hits (too far back), that may
4331 	 * never result in real cache hits if several states are competing.
4332 	 * So choose some arbitraty point of 1/2 of other state sizes.
4333 	 */
4334 	gsrd = (mrum + mfud + mfum) / 2;
4335 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4336 	    gsrd;
4337 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4338 
4339 	gsrm = (mrud + mfud + mfum) / 2;
4340 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4341 	    gsrm;
4342 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4343 
4344 	gsfd = (mrud + mrum + mfum) / 2;
4345 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4346 	    gsfd;
4347 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4348 
4349 	gsfm = (mrud + mrum + mfud) / 2;
4350 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4351 	    gsfm;
4352 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4353 
4354 	return (total_evicted);
4355 }
4356 
4357 void
4358 arc_flush(spa_t *spa, boolean_t retry)
4359 {
4360 	uint64_t guid = 0;
4361 
4362 	/*
4363 	 * If retry is B_TRUE, a spa must not be specified since we have
4364 	 * no good way to determine if all of a spa's buffers have been
4365 	 * evicted from an arc state.
4366 	 */
4367 	ASSERT(!retry || spa == NULL);
4368 
4369 	if (spa != NULL)
4370 		guid = spa_load_guid(spa);
4371 
4372 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4373 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4374 
4375 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4376 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4377 
4378 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4379 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4380 
4381 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4382 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4383 
4384 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4385 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4386 }
4387 
4388 void
4389 arc_reduce_target_size(int64_t to_free)
4390 {
4391 	uint64_t c = arc_c;
4392 
4393 	if (c <= arc_c_min)
4394 		return;
4395 
4396 	/*
4397 	 * All callers want the ARC to actually evict (at least) this much
4398 	 * memory.  Therefore we reduce from the lower of the current size and
4399 	 * the target size.  This way, even if arc_c is much higher than
4400 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4401 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4402 	 * will evict.
4403 	 */
4404 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4405 	if (asize < c)
4406 		to_free += c - asize;
4407 	arc_c = MAX((int64_t)c - to_free, (int64_t)arc_c_min);
4408 
4409 	/* See comment in arc_evict_cb_check() on why lock+flag */
4410 	mutex_enter(&arc_evict_lock);
4411 	arc_evict_needed = B_TRUE;
4412 	mutex_exit(&arc_evict_lock);
4413 	zthr_wakeup(arc_evict_zthr);
4414 }
4415 
4416 /*
4417  * Determine if the system is under memory pressure and is asking
4418  * to reclaim memory. A return value of B_TRUE indicates that the system
4419  * is under memory pressure and that the arc should adjust accordingly.
4420  */
4421 boolean_t
4422 arc_reclaim_needed(void)
4423 {
4424 	return (arc_available_memory() < 0);
4425 }
4426 
4427 void
4428 arc_kmem_reap_soon(void)
4429 {
4430 	size_t			i;
4431 	kmem_cache_t		*prev_cache = NULL;
4432 	kmem_cache_t		*prev_data_cache = NULL;
4433 
4434 #ifdef _KERNEL
4435 #if defined(_ILP32)
4436 	/*
4437 	 * Reclaim unused memory from all kmem caches.
4438 	 */
4439 	kmem_reap();
4440 #endif
4441 #endif
4442 
4443 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4444 #if defined(_ILP32)
4445 		/* reach upper limit of cache size on 32-bit */
4446 		if (zio_buf_cache[i] == NULL)
4447 			break;
4448 #endif
4449 		if (zio_buf_cache[i] != prev_cache) {
4450 			prev_cache = zio_buf_cache[i];
4451 			kmem_cache_reap_now(zio_buf_cache[i]);
4452 		}
4453 		if (zio_data_buf_cache[i] != prev_data_cache) {
4454 			prev_data_cache = zio_data_buf_cache[i];
4455 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4456 		}
4457 	}
4458 	kmem_cache_reap_now(buf_cache);
4459 	kmem_cache_reap_now(hdr_full_cache);
4460 	kmem_cache_reap_now(hdr_l2only_cache);
4461 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4462 	abd_cache_reap_now();
4463 }
4464 
4465 static boolean_t
4466 arc_evict_cb_check(void *arg, zthr_t *zthr)
4467 {
4468 	(void) arg, (void) zthr;
4469 
4470 #ifdef ZFS_DEBUG
4471 	/*
4472 	 * This is necessary in order to keep the kstat information
4473 	 * up to date for tools that display kstat data such as the
4474 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4475 	 * typically do not call kstat's update function, but simply
4476 	 * dump out stats from the most recent update.  Without
4477 	 * this call, these commands may show stale stats for the
4478 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4479 	 * with this call, the data might be out of date if the
4480 	 * evict thread hasn't been woken recently; but that should
4481 	 * suffice.  The arc_state_t structures can be queried
4482 	 * directly if more accurate information is needed.
4483 	 */
4484 	if (arc_ksp != NULL)
4485 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4486 #endif
4487 
4488 	/*
4489 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4490 	 * evict, rather than checking if we are overflowing here, so that we
4491 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4492 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4493 	 * checked, we need to wake it up.  We could broadcast the CV here,
4494 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4495 	 * would need to use a mutex to ensure that this function doesn't
4496 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4497 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4498 	 * would necessarily be incorrect with respect to the zthr_lock,
4499 	 * which is held before this function is called, and is held by
4500 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4501 	 */
4502 	if (arc_evict_needed)
4503 		return (B_TRUE);
4504 
4505 	/*
4506 	 * If we have buffers in uncached state, evict them periodically.
4507 	 */
4508 	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4509 	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4510 	    ddi_get_lbolt() - arc_last_uncached_flush >
4511 	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4512 }
4513 
4514 /*
4515  * Keep arc_size under arc_c by running arc_evict which evicts data
4516  * from the ARC.
4517  */
4518 static void
4519 arc_evict_cb(void *arg, zthr_t *zthr)
4520 {
4521 	(void) arg;
4522 
4523 	uint64_t evicted = 0;
4524 	fstrans_cookie_t cookie = spl_fstrans_mark();
4525 
4526 	/* Always try to evict from uncached state. */
4527 	arc_last_uncached_flush = ddi_get_lbolt();
4528 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4529 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4530 
4531 	/* Evict from other states only if told to. */
4532 	if (arc_evict_needed)
4533 		evicted += arc_evict();
4534 
4535 	/*
4536 	 * If evicted is zero, we couldn't evict anything
4537 	 * via arc_evict(). This could be due to hash lock
4538 	 * collisions, but more likely due to the majority of
4539 	 * arc buffers being unevictable. Therefore, even if
4540 	 * arc_size is above arc_c, another pass is unlikely to
4541 	 * be helpful and could potentially cause us to enter an
4542 	 * infinite loop.  Additionally, zthr_iscancelled() is
4543 	 * checked here so that if the arc is shutting down, the
4544 	 * broadcast will wake any remaining arc evict waiters.
4545 	 *
4546 	 * Note we cancel using zthr instead of arc_evict_zthr
4547 	 * because the latter may not yet be initializd when the
4548 	 * callback is first invoked.
4549 	 */
4550 	mutex_enter(&arc_evict_lock);
4551 	arc_evict_needed = !zthr_iscancelled(zthr) &&
4552 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4553 	if (!arc_evict_needed) {
4554 		/*
4555 		 * We're either no longer overflowing, or we
4556 		 * can't evict anything more, so we should wake
4557 		 * arc_get_data_impl() sooner.
4558 		 */
4559 		arc_evict_waiter_t *aw;
4560 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4561 			cv_broadcast(&aw->aew_cv);
4562 		}
4563 		arc_set_need_free();
4564 	}
4565 	mutex_exit(&arc_evict_lock);
4566 	spl_fstrans_unmark(cookie);
4567 }
4568 
4569 static boolean_t
4570 arc_reap_cb_check(void *arg, zthr_t *zthr)
4571 {
4572 	(void) arg, (void) zthr;
4573 
4574 	int64_t free_memory = arc_available_memory();
4575 	static int reap_cb_check_counter = 0;
4576 
4577 	/*
4578 	 * If a kmem reap is already active, don't schedule more.  We must
4579 	 * check for this because kmem_cache_reap_soon() won't actually
4580 	 * block on the cache being reaped (this is to prevent callers from
4581 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4582 	 * on a system with many, many full magazines, can take minutes).
4583 	 */
4584 	if (!kmem_cache_reap_active() && free_memory < 0) {
4585 
4586 		arc_no_grow = B_TRUE;
4587 		arc_warm = B_TRUE;
4588 		/*
4589 		 * Wait at least zfs_grow_retry (default 5) seconds
4590 		 * before considering growing.
4591 		 */
4592 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4593 		return (B_TRUE);
4594 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4595 		arc_no_grow = B_TRUE;
4596 	} else if (gethrtime() >= arc_growtime) {
4597 		arc_no_grow = B_FALSE;
4598 	}
4599 
4600 	/*
4601 	 * Called unconditionally every 60 seconds to reclaim unused
4602 	 * zstd compression and decompression context. This is done
4603 	 * here to avoid the need for an independent thread.
4604 	 */
4605 	if (!((reap_cb_check_counter++) % 60))
4606 		zfs_zstd_cache_reap_now();
4607 
4608 	return (B_FALSE);
4609 }
4610 
4611 /*
4612  * Keep enough free memory in the system by reaping the ARC's kmem
4613  * caches.  To cause more slabs to be reapable, we may reduce the
4614  * target size of the cache (arc_c), causing the arc_evict_cb()
4615  * to free more buffers.
4616  */
4617 static void
4618 arc_reap_cb(void *arg, zthr_t *zthr)
4619 {
4620 	(void) arg, (void) zthr;
4621 
4622 	int64_t free_memory;
4623 	fstrans_cookie_t cookie = spl_fstrans_mark();
4624 
4625 	/*
4626 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4627 	 */
4628 	arc_kmem_reap_soon();
4629 
4630 	/*
4631 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4632 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4633 	 * end up in a situation where we spend lots of time reaping
4634 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4635 	 * subsequent free memory check a chance of finding that the
4636 	 * asynchronous reap has already freed enough memory, and we don't
4637 	 * need to call arc_reduce_target_size().
4638 	 */
4639 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4640 
4641 	/*
4642 	 * Reduce the target size as needed to maintain the amount of free
4643 	 * memory in the system at a fraction of the arc_size (1/128th by
4644 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4645 	 * target arc_size by the deficit amount plus the fractional
4646 	 * amount.  If free memory is positive but less than the fractional
4647 	 * amount, reduce by what is needed to hit the fractional amount.
4648 	 */
4649 	free_memory = arc_available_memory();
4650 
4651 	int64_t can_free = arc_c - arc_c_min;
4652 	if (can_free > 0) {
4653 		int64_t to_free = (can_free >> arc_shrink_shift) - free_memory;
4654 		if (to_free > 0)
4655 			arc_reduce_target_size(to_free);
4656 	}
4657 	spl_fstrans_unmark(cookie);
4658 }
4659 
4660 #ifdef _KERNEL
4661 /*
4662  * Determine the amount of memory eligible for eviction contained in the
4663  * ARC. All clean data reported by the ghost lists can always be safely
4664  * evicted. Due to arc_c_min, the same does not hold for all clean data
4665  * contained by the regular mru and mfu lists.
4666  *
4667  * In the case of the regular mru and mfu lists, we need to report as
4668  * much clean data as possible, such that evicting that same reported
4669  * data will not bring arc_size below arc_c_min. Thus, in certain
4670  * circumstances, the total amount of clean data in the mru and mfu
4671  * lists might not actually be evictable.
4672  *
4673  * The following two distinct cases are accounted for:
4674  *
4675  * 1. The sum of the amount of dirty data contained by both the mru and
4676  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4677  *    is greater than or equal to arc_c_min.
4678  *    (i.e. amount of dirty data >= arc_c_min)
4679  *
4680  *    This is the easy case; all clean data contained by the mru and mfu
4681  *    lists is evictable. Evicting all clean data can only drop arc_size
4682  *    to the amount of dirty data, which is greater than arc_c_min.
4683  *
4684  * 2. The sum of the amount of dirty data contained by both the mru and
4685  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4686  *    is less than arc_c_min.
4687  *    (i.e. arc_c_min > amount of dirty data)
4688  *
4689  *    2.1. arc_size is greater than or equal arc_c_min.
4690  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
4691  *
4692  *         In this case, not all clean data from the regular mru and mfu
4693  *         lists is actually evictable; we must leave enough clean data
4694  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
4695  *         evictable data from the two lists combined, is exactly the
4696  *         difference between arc_size and arc_c_min.
4697  *
4698  *    2.2. arc_size is less than arc_c_min
4699  *         (i.e. arc_c_min > arc_size > amount of dirty data)
4700  *
4701  *         In this case, none of the data contained in the mru and mfu
4702  *         lists is evictable, even if it's clean. Since arc_size is
4703  *         already below arc_c_min, evicting any more would only
4704  *         increase this negative difference.
4705  */
4706 
4707 #endif /* _KERNEL */
4708 
4709 /*
4710  * Adapt arc info given the number of bytes we are trying to add and
4711  * the state that we are coming from.  This function is only called
4712  * when we are adding new content to the cache.
4713  */
4714 static void
4715 arc_adapt(uint64_t bytes)
4716 {
4717 	/*
4718 	 * Wake reap thread if we do not have any available memory
4719 	 */
4720 	if (arc_reclaim_needed()) {
4721 		zthr_wakeup(arc_reap_zthr);
4722 		return;
4723 	}
4724 
4725 	if (arc_no_grow)
4726 		return;
4727 
4728 	if (arc_c >= arc_c_max)
4729 		return;
4730 
4731 	/*
4732 	 * If we're within (2 * maxblocksize) bytes of the target
4733 	 * cache size, increment the target cache size
4734 	 */
4735 	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4736 	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
4737 		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4738 		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4739 			arc_c = arc_c_max;
4740 	}
4741 }
4742 
4743 /*
4744  * Check if arc_size has grown past our upper threshold, determined by
4745  * zfs_arc_overflow_shift.
4746  */
4747 static arc_ovf_level_t
4748 arc_is_overflowing(boolean_t use_reserve)
4749 {
4750 	/* Always allow at least one block of overflow */
4751 	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4752 	    arc_c >> zfs_arc_overflow_shift);
4753 
4754 	/*
4755 	 * We just compare the lower bound here for performance reasons. Our
4756 	 * primary goals are to make sure that the arc never grows without
4757 	 * bound, and that it can reach its maximum size. This check
4758 	 * accomplishes both goals. The maximum amount we could run over by is
4759 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4760 	 * in the ARC. In practice, that's in the tens of MB, which is low
4761 	 * enough to be safe.
4762 	 */
4763 	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
4764 	    arc_c - overflow / 2;
4765 	if (!use_reserve)
4766 		overflow /= 2;
4767 	return (over < 0 ? ARC_OVF_NONE :
4768 	    over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4769 }
4770 
4771 static abd_t *
4772 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4773     int alloc_flags)
4774 {
4775 	arc_buf_contents_t type = arc_buf_type(hdr);
4776 
4777 	arc_get_data_impl(hdr, size, tag, alloc_flags);
4778 	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4779 		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4780 	else
4781 		return (abd_alloc(size, type == ARC_BUFC_METADATA));
4782 }
4783 
4784 static void *
4785 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4786 {
4787 	arc_buf_contents_t type = arc_buf_type(hdr);
4788 
4789 	arc_get_data_impl(hdr, size, tag, 0);
4790 	if (type == ARC_BUFC_METADATA) {
4791 		return (zio_buf_alloc(size));
4792 	} else {
4793 		ASSERT(type == ARC_BUFC_DATA);
4794 		return (zio_data_buf_alloc(size));
4795 	}
4796 }
4797 
4798 /*
4799  * Wait for the specified amount of data (in bytes) to be evicted from the
4800  * ARC, and for there to be sufficient free memory in the system.  Waiting for
4801  * eviction ensures that the memory used by the ARC decreases.  Waiting for
4802  * free memory ensures that the system won't run out of free pages, regardless
4803  * of ARC behavior and settings.  See arc_lowmem_init().
4804  */
4805 void
4806 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
4807 {
4808 	switch (arc_is_overflowing(use_reserve)) {
4809 	case ARC_OVF_NONE:
4810 		return;
4811 	case ARC_OVF_SOME:
4812 		/*
4813 		 * This is a bit racy without taking arc_evict_lock, but the
4814 		 * worst that can happen is we either call zthr_wakeup() extra
4815 		 * time due to race with other thread here, or the set flag
4816 		 * get cleared by arc_evict_cb(), which is unlikely due to
4817 		 * big hysteresis, but also not important since at this level
4818 		 * of overflow the eviction is purely advisory.  Same time
4819 		 * taking the global lock here every time without waiting for
4820 		 * the actual eviction creates a significant lock contention.
4821 		 */
4822 		if (!arc_evict_needed) {
4823 			arc_evict_needed = B_TRUE;
4824 			zthr_wakeup(arc_evict_zthr);
4825 		}
4826 		return;
4827 	case ARC_OVF_SEVERE:
4828 	default:
4829 	{
4830 		arc_evict_waiter_t aw;
4831 		list_link_init(&aw.aew_node);
4832 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4833 
4834 		uint64_t last_count = 0;
4835 		mutex_enter(&arc_evict_lock);
4836 		if (!list_is_empty(&arc_evict_waiters)) {
4837 			arc_evict_waiter_t *last =
4838 			    list_tail(&arc_evict_waiters);
4839 			last_count = last->aew_count;
4840 		} else if (!arc_evict_needed) {
4841 			arc_evict_needed = B_TRUE;
4842 			zthr_wakeup(arc_evict_zthr);
4843 		}
4844 		/*
4845 		 * Note, the last waiter's count may be less than
4846 		 * arc_evict_count if we are low on memory in which
4847 		 * case arc_evict_state_impl() may have deferred
4848 		 * wakeups (but still incremented arc_evict_count).
4849 		 */
4850 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
4851 
4852 		list_insert_tail(&arc_evict_waiters, &aw);
4853 
4854 		arc_set_need_free();
4855 
4856 		DTRACE_PROBE3(arc__wait__for__eviction,
4857 		    uint64_t, amount,
4858 		    uint64_t, arc_evict_count,
4859 		    uint64_t, aw.aew_count);
4860 
4861 		/*
4862 		 * We will be woken up either when arc_evict_count reaches
4863 		 * aew_count, or when the ARC is no longer overflowing and
4864 		 * eviction completes.
4865 		 * In case of "false" wakeup, we will still be on the list.
4866 		 */
4867 		do {
4868 			cv_wait(&aw.aew_cv, &arc_evict_lock);
4869 		} while (list_link_active(&aw.aew_node));
4870 		mutex_exit(&arc_evict_lock);
4871 
4872 		cv_destroy(&aw.aew_cv);
4873 	}
4874 	}
4875 }
4876 
4877 /*
4878  * Allocate a block and return it to the caller. If we are hitting the
4879  * hard limit for the cache size, we must sleep, waiting for the eviction
4880  * thread to catch up. If we're past the target size but below the hard
4881  * limit, we'll only signal the reclaim thread and continue on.
4882  */
4883 static void
4884 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4885     int alloc_flags)
4886 {
4887 	arc_adapt(size);
4888 
4889 	/*
4890 	 * If arc_size is currently overflowing, we must be adding data
4891 	 * faster than we are evicting.  To ensure we don't compound the
4892 	 * problem by adding more data and forcing arc_size to grow even
4893 	 * further past it's target size, we wait for the eviction thread to
4894 	 * make some progress.  We also wait for there to be sufficient free
4895 	 * memory in the system, as measured by arc_free_memory().
4896 	 *
4897 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4898 	 * requested size to be evicted.  This should be more than 100%, to
4899 	 * ensure that that progress is also made towards getting arc_size
4900 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
4901 	 */
4902 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
4903 	    alloc_flags & ARC_HDR_USE_RESERVE);
4904 
4905 	arc_buf_contents_t type = arc_buf_type(hdr);
4906 	if (type == ARC_BUFC_METADATA) {
4907 		arc_space_consume(size, ARC_SPACE_META);
4908 	} else {
4909 		arc_space_consume(size, ARC_SPACE_DATA);
4910 	}
4911 
4912 	/*
4913 	 * Update the state size.  Note that ghost states have a
4914 	 * "ghost size" and so don't need to be updated.
4915 	 */
4916 	arc_state_t *state = hdr->b_l1hdr.b_state;
4917 	if (!GHOST_STATE(state)) {
4918 
4919 		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
4920 		    tag);
4921 
4922 		/*
4923 		 * If this is reached via arc_read, the link is
4924 		 * protected by the hash lock. If reached via
4925 		 * arc_buf_alloc, the header should not be accessed by
4926 		 * any other thread. And, if reached via arc_read_done,
4927 		 * the hash lock will protect it if it's found in the
4928 		 * hash table; otherwise no other thread should be
4929 		 * trying to [add|remove]_reference it.
4930 		 */
4931 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4932 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4933 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
4934 			    size, tag);
4935 		}
4936 	}
4937 }
4938 
4939 static void
4940 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
4941     const void *tag)
4942 {
4943 	arc_free_data_impl(hdr, size, tag);
4944 	abd_free(abd);
4945 }
4946 
4947 static void
4948 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
4949 {
4950 	arc_buf_contents_t type = arc_buf_type(hdr);
4951 
4952 	arc_free_data_impl(hdr, size, tag);
4953 	if (type == ARC_BUFC_METADATA) {
4954 		zio_buf_free(buf, size);
4955 	} else {
4956 		ASSERT(type == ARC_BUFC_DATA);
4957 		zio_data_buf_free(buf, size);
4958 	}
4959 }
4960 
4961 /*
4962  * Free the arc data buffer.
4963  */
4964 static void
4965 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4966 {
4967 	arc_state_t *state = hdr->b_l1hdr.b_state;
4968 	arc_buf_contents_t type = arc_buf_type(hdr);
4969 
4970 	/* protected by hash lock, if in the hash table */
4971 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4972 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4973 		ASSERT(state != arc_anon && state != arc_l2c_only);
4974 
4975 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
4976 		    size, tag);
4977 	}
4978 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
4979 
4980 	VERIFY3U(hdr->b_type, ==, type);
4981 	if (type == ARC_BUFC_METADATA) {
4982 		arc_space_return(size, ARC_SPACE_META);
4983 	} else {
4984 		ASSERT(type == ARC_BUFC_DATA);
4985 		arc_space_return(size, ARC_SPACE_DATA);
4986 	}
4987 }
4988 
4989 /*
4990  * This routine is called whenever a buffer is accessed.
4991  */
4992 static void
4993 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
4994 {
4995 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
4996 	ASSERT(HDR_HAS_L1HDR(hdr));
4997 
4998 	/*
4999 	 * Update buffer prefetch status.
5000 	 */
5001 	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5002 	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5003 	if (was_prefetch != now_prefetch) {
5004 		if (was_prefetch) {
5005 			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5006 			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5007 			    prefetch);
5008 		}
5009 		if (HDR_HAS_L2HDR(hdr))
5010 			l2arc_hdr_arcstats_decrement_state(hdr);
5011 		if (was_prefetch) {
5012 			arc_hdr_clear_flags(hdr,
5013 			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5014 		} else {
5015 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5016 		}
5017 		if (HDR_HAS_L2HDR(hdr))
5018 			l2arc_hdr_arcstats_increment_state(hdr);
5019 	}
5020 	if (now_prefetch) {
5021 		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5022 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5023 			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5024 		} else {
5025 			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5026 		}
5027 	}
5028 	if (arc_flags & ARC_FLAG_L2CACHE)
5029 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5030 
5031 	clock_t now = ddi_get_lbolt();
5032 	if (hdr->b_l1hdr.b_state == arc_anon) {
5033 		arc_state_t	*new_state;
5034 		/*
5035 		 * This buffer is not in the cache, and does not appear in
5036 		 * our "ghost" lists.  Add it to the MRU or uncached state.
5037 		 */
5038 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5039 		hdr->b_l1hdr.b_arc_access = now;
5040 		if (HDR_UNCACHED(hdr)) {
5041 			new_state = arc_uncached;
5042 			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5043 			    hdr);
5044 		} else {
5045 			new_state = arc_mru;
5046 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5047 		}
5048 		arc_change_state(new_state, hdr);
5049 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5050 		/*
5051 		 * This buffer has been accessed once recently and either
5052 		 * its read is still in progress or it is in the cache.
5053 		 */
5054 		if (HDR_IO_IN_PROGRESS(hdr)) {
5055 			hdr->b_l1hdr.b_arc_access = now;
5056 			return;
5057 		}
5058 		hdr->b_l1hdr.b_mru_hits++;
5059 		ARCSTAT_BUMP(arcstat_mru_hits);
5060 
5061 		/*
5062 		 * If the previous access was a prefetch, then it already
5063 		 * handled possible promotion, so nothing more to do for now.
5064 		 */
5065 		if (was_prefetch) {
5066 			hdr->b_l1hdr.b_arc_access = now;
5067 			return;
5068 		}
5069 
5070 		/*
5071 		 * If more than ARC_MINTIME have passed from the previous
5072 		 * hit, promote the buffer to the MFU state.
5073 		 */
5074 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5075 		    ARC_MINTIME)) {
5076 			hdr->b_l1hdr.b_arc_access = now;
5077 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5078 			arc_change_state(arc_mfu, hdr);
5079 		}
5080 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5081 		arc_state_t	*new_state;
5082 		/*
5083 		 * This buffer has been accessed once recently, but was
5084 		 * evicted from the cache.  Would we have bigger MRU, it
5085 		 * would be an MRU hit, so handle it the same way, except
5086 		 * we don't need to check the previous access time.
5087 		 */
5088 		hdr->b_l1hdr.b_mru_ghost_hits++;
5089 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5090 		hdr->b_l1hdr.b_arc_access = now;
5091 		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5092 		    arc_hdr_size(hdr));
5093 		if (was_prefetch) {
5094 			new_state = arc_mru;
5095 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5096 		} else {
5097 			new_state = arc_mfu;
5098 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5099 		}
5100 		arc_change_state(new_state, hdr);
5101 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5102 		/*
5103 		 * This buffer has been accessed more than once and either
5104 		 * still in the cache or being restored from one of ghosts.
5105 		 */
5106 		if (!HDR_IO_IN_PROGRESS(hdr)) {
5107 			hdr->b_l1hdr.b_mfu_hits++;
5108 			ARCSTAT_BUMP(arcstat_mfu_hits);
5109 		}
5110 		hdr->b_l1hdr.b_arc_access = now;
5111 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5112 		/*
5113 		 * This buffer has been accessed more than once recently, but
5114 		 * has been evicted from the cache.  Would we have bigger MFU
5115 		 * it would stay in cache, so move it back to MFU state.
5116 		 */
5117 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5118 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5119 		hdr->b_l1hdr.b_arc_access = now;
5120 		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5121 		    arc_hdr_size(hdr));
5122 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5123 		arc_change_state(arc_mfu, hdr);
5124 	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5125 		/*
5126 		 * This buffer is uncacheable, but we got a hit.  Probably
5127 		 * a demand read after prefetch.  Nothing more to do here.
5128 		 */
5129 		if (!HDR_IO_IN_PROGRESS(hdr))
5130 			ARCSTAT_BUMP(arcstat_uncached_hits);
5131 		hdr->b_l1hdr.b_arc_access = now;
5132 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5133 		/*
5134 		 * This buffer is on the 2nd Level ARC and was not accessed
5135 		 * for a long time, so treat it as new and put into MRU.
5136 		 */
5137 		hdr->b_l1hdr.b_arc_access = now;
5138 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5139 		arc_change_state(arc_mru, hdr);
5140 	} else {
5141 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5142 		    hdr->b_l1hdr.b_state);
5143 	}
5144 }
5145 
5146 /*
5147  * This routine is called by dbuf_hold() to update the arc_access() state
5148  * which otherwise would be skipped for entries in the dbuf cache.
5149  */
5150 void
5151 arc_buf_access(arc_buf_t *buf)
5152 {
5153 	arc_buf_hdr_t *hdr = buf->b_hdr;
5154 
5155 	/*
5156 	 * Avoid taking the hash_lock when possible as an optimization.
5157 	 * The header must be checked again under the hash_lock in order
5158 	 * to handle the case where it is concurrently being released.
5159 	 */
5160 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5161 		return;
5162 
5163 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5164 	mutex_enter(hash_lock);
5165 
5166 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5167 		mutex_exit(hash_lock);
5168 		ARCSTAT_BUMP(arcstat_access_skip);
5169 		return;
5170 	}
5171 
5172 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5173 	    hdr->b_l1hdr.b_state == arc_mfu ||
5174 	    hdr->b_l1hdr.b_state == arc_uncached);
5175 
5176 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5177 	arc_access(hdr, 0, B_TRUE);
5178 	mutex_exit(hash_lock);
5179 
5180 	ARCSTAT_BUMP(arcstat_hits);
5181 	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5182 	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5183 }
5184 
5185 /* a generic arc_read_done_func_t which you can use */
5186 void
5187 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5188     arc_buf_t *buf, void *arg)
5189 {
5190 	(void) zio, (void) zb, (void) bp;
5191 
5192 	if (buf == NULL)
5193 		return;
5194 
5195 	memcpy(arg, buf->b_data, arc_buf_size(buf));
5196 	arc_buf_destroy(buf, arg);
5197 }
5198 
5199 /* a generic arc_read_done_func_t */
5200 void
5201 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5202     arc_buf_t *buf, void *arg)
5203 {
5204 	(void) zb, (void) bp;
5205 	arc_buf_t **bufp = arg;
5206 
5207 	if (buf == NULL) {
5208 		ASSERT(zio == NULL || zio->io_error != 0);
5209 		*bufp = NULL;
5210 	} else {
5211 		ASSERT(zio == NULL || zio->io_error == 0);
5212 		*bufp = buf;
5213 		ASSERT(buf->b_data != NULL);
5214 	}
5215 }
5216 
5217 static void
5218 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5219 {
5220 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5221 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5222 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5223 	} else {
5224 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5225 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5226 			    BP_GET_COMPRESS(bp));
5227 		}
5228 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5229 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5230 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5231 	}
5232 }
5233 
5234 static void
5235 arc_read_done(zio_t *zio)
5236 {
5237 	blkptr_t 	*bp = zio->io_bp;
5238 	arc_buf_hdr_t	*hdr = zio->io_private;
5239 	kmutex_t	*hash_lock = NULL;
5240 	arc_callback_t	*callback_list;
5241 	arc_callback_t	*acb;
5242 
5243 	/*
5244 	 * The hdr was inserted into hash-table and removed from lists
5245 	 * prior to starting I/O.  We should find this header, since
5246 	 * it's in the hash table, and it should be legit since it's
5247 	 * not possible to evict it during the I/O.  The only possible
5248 	 * reason for it not to be found is if we were freed during the
5249 	 * read.
5250 	 */
5251 	if (HDR_IN_HASH_TABLE(hdr)) {
5252 		arc_buf_hdr_t *found;
5253 
5254 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5255 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5256 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5257 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5258 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5259 
5260 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5261 
5262 		ASSERT((found == hdr &&
5263 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5264 		    (found == hdr && HDR_L2_READING(hdr)));
5265 		ASSERT3P(hash_lock, !=, NULL);
5266 	}
5267 
5268 	if (BP_IS_PROTECTED(bp)) {
5269 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5270 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5271 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5272 		    hdr->b_crypt_hdr.b_iv);
5273 
5274 		if (zio->io_error == 0) {
5275 			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5276 				void *tmpbuf;
5277 
5278 				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5279 				    sizeof (zil_chain_t));
5280 				zio_crypt_decode_mac_zil(tmpbuf,
5281 				    hdr->b_crypt_hdr.b_mac);
5282 				abd_return_buf(zio->io_abd, tmpbuf,
5283 				    sizeof (zil_chain_t));
5284 			} else {
5285 				zio_crypt_decode_mac_bp(bp,
5286 				    hdr->b_crypt_hdr.b_mac);
5287 			}
5288 		}
5289 	}
5290 
5291 	if (zio->io_error == 0) {
5292 		/* byteswap if necessary */
5293 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5294 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5295 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5296 			} else {
5297 				hdr->b_l1hdr.b_byteswap =
5298 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5299 			}
5300 		} else {
5301 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5302 		}
5303 		if (!HDR_L2_READING(hdr)) {
5304 			hdr->b_complevel = zio->io_prop.zp_complevel;
5305 		}
5306 	}
5307 
5308 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5309 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5310 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5311 
5312 	callback_list = hdr->b_l1hdr.b_acb;
5313 	ASSERT3P(callback_list, !=, NULL);
5314 	hdr->b_l1hdr.b_acb = NULL;
5315 
5316 	/*
5317 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5318 	 * make a buf containing the data according to the parameters which were
5319 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5320 	 * aren't needlessly decompressing the data multiple times.
5321 	 */
5322 	int callback_cnt = 0;
5323 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5324 
5325 		/* We need the last one to call below in original order. */
5326 		callback_list = acb;
5327 
5328 		if (!acb->acb_done || acb->acb_nobuf)
5329 			continue;
5330 
5331 		callback_cnt++;
5332 
5333 		if (zio->io_error != 0)
5334 			continue;
5335 
5336 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5337 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5338 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5339 		    &acb->acb_buf);
5340 
5341 		/*
5342 		 * Assert non-speculative zios didn't fail because an
5343 		 * encryption key wasn't loaded
5344 		 */
5345 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5346 		    error != EACCES);
5347 
5348 		/*
5349 		 * If we failed to decrypt, report an error now (as the zio
5350 		 * layer would have done if it had done the transforms).
5351 		 */
5352 		if (error == ECKSUM) {
5353 			ASSERT(BP_IS_PROTECTED(bp));
5354 			error = SET_ERROR(EIO);
5355 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5356 				spa_log_error(zio->io_spa, &acb->acb_zb,
5357 				    &zio->io_bp->blk_birth);
5358 				(void) zfs_ereport_post(
5359 				    FM_EREPORT_ZFS_AUTHENTICATION,
5360 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5361 			}
5362 		}
5363 
5364 		if (error != 0) {
5365 			/*
5366 			 * Decompression or decryption failed.  Set
5367 			 * io_error so that when we call acb_done
5368 			 * (below), we will indicate that the read
5369 			 * failed. Note that in the unusual case
5370 			 * where one callback is compressed and another
5371 			 * uncompressed, we will mark all of them
5372 			 * as failed, even though the uncompressed
5373 			 * one can't actually fail.  In this case,
5374 			 * the hdr will not be anonymous, because
5375 			 * if there are multiple callbacks, it's
5376 			 * because multiple threads found the same
5377 			 * arc buf in the hash table.
5378 			 */
5379 			zio->io_error = error;
5380 		}
5381 	}
5382 
5383 	/*
5384 	 * If there are multiple callbacks, we must have the hash lock,
5385 	 * because the only way for multiple threads to find this hdr is
5386 	 * in the hash table.  This ensures that if there are multiple
5387 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5388 	 * we couldn't use arc_buf_destroy() in the error case below.
5389 	 */
5390 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5391 
5392 	if (zio->io_error == 0) {
5393 		arc_hdr_verify(hdr, zio->io_bp);
5394 	} else {
5395 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5396 		if (hdr->b_l1hdr.b_state != arc_anon)
5397 			arc_change_state(arc_anon, hdr);
5398 		if (HDR_IN_HASH_TABLE(hdr))
5399 			buf_hash_remove(hdr);
5400 	}
5401 
5402 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5403 	(void) remove_reference(hdr, hdr);
5404 
5405 	if (hash_lock != NULL)
5406 		mutex_exit(hash_lock);
5407 
5408 	/* execute each callback and free its structure */
5409 	while ((acb = callback_list) != NULL) {
5410 		if (acb->acb_done != NULL) {
5411 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5412 				/*
5413 				 * If arc_buf_alloc_impl() fails during
5414 				 * decompression, the buf will still be
5415 				 * allocated, and needs to be freed here.
5416 				 */
5417 				arc_buf_destroy(acb->acb_buf,
5418 				    acb->acb_private);
5419 				acb->acb_buf = NULL;
5420 			}
5421 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5422 			    acb->acb_buf, acb->acb_private);
5423 		}
5424 
5425 		if (acb->acb_zio_dummy != NULL) {
5426 			acb->acb_zio_dummy->io_error = zio->io_error;
5427 			zio_nowait(acb->acb_zio_dummy);
5428 		}
5429 
5430 		callback_list = acb->acb_prev;
5431 		if (acb->acb_wait) {
5432 			mutex_enter(&acb->acb_wait_lock);
5433 			acb->acb_wait_error = zio->io_error;
5434 			acb->acb_wait = B_FALSE;
5435 			cv_signal(&acb->acb_wait_cv);
5436 			mutex_exit(&acb->acb_wait_lock);
5437 			/* acb will be freed by the waiting thread. */
5438 		} else {
5439 			kmem_free(acb, sizeof (arc_callback_t));
5440 		}
5441 	}
5442 }
5443 
5444 /*
5445  * "Read" the block at the specified DVA (in bp) via the
5446  * cache.  If the block is found in the cache, invoke the provided
5447  * callback immediately and return.  Note that the `zio' parameter
5448  * in the callback will be NULL in this case, since no IO was
5449  * required.  If the block is not in the cache pass the read request
5450  * on to the spa with a substitute callback function, so that the
5451  * requested block will be added to the cache.
5452  *
5453  * If a read request arrives for a block that has a read in-progress,
5454  * either wait for the in-progress read to complete (and return the
5455  * results); or, if this is a read with a "done" func, add a record
5456  * to the read to invoke the "done" func when the read completes,
5457  * and return; or just return.
5458  *
5459  * arc_read_done() will invoke all the requested "done" functions
5460  * for readers of this block.
5461  */
5462 int
5463 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5464     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5465     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5466 {
5467 	arc_buf_hdr_t *hdr = NULL;
5468 	kmutex_t *hash_lock = NULL;
5469 	zio_t *rzio;
5470 	uint64_t guid = spa_load_guid(spa);
5471 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5472 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5473 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5474 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5475 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5476 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5477 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5478 	arc_buf_t *buf = NULL;
5479 	int rc = 0;
5480 
5481 	ASSERT(!embedded_bp ||
5482 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5483 	ASSERT(!BP_IS_HOLE(bp));
5484 	ASSERT(!BP_IS_REDACTED(bp));
5485 
5486 	/*
5487 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5488 	 * expect to call the DMU interfaces will set it when created.  System
5489 	 * calls are similarly handled by setting/cleaning the bit in the
5490 	 * registered callback (module/os/.../zfs/zpl_*).
5491 	 *
5492 	 * External consumers such as Lustre which call the exported DMU
5493 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5494 	 * on the hash_lock always set and clear the bit.
5495 	 */
5496 	fstrans_cookie_t cookie = spl_fstrans_mark();
5497 top:
5498 	/*
5499 	 * Verify the block pointer contents are reasonable.  This should
5500 	 * always be the case since the blkptr is protected by a checksum.
5501 	 * However, if there is damage it's desirable to detect this early
5502 	 * and treat it as a checksum error.  This allows an alternate blkptr
5503 	 * to be tried when one is available (e.g. ditto blocks).
5504 	 */
5505 	if (!zfs_blkptr_verify(spa, bp, (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5506 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5507 		rc = SET_ERROR(ECKSUM);
5508 		goto done;
5509 	}
5510 
5511 	if (!embedded_bp) {
5512 		/*
5513 		 * Embedded BP's have no DVA and require no I/O to "read".
5514 		 * Create an anonymous arc buf to back it.
5515 		 */
5516 		hdr = buf_hash_find(guid, bp, &hash_lock);
5517 	}
5518 
5519 	/*
5520 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5521 	 * we maintain encrypted data separately from compressed / uncompressed
5522 	 * data. If the user is requesting raw encrypted data and we don't have
5523 	 * that in the header we will read from disk to guarantee that we can
5524 	 * get it even if the encryption keys aren't loaded.
5525 	 */
5526 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5527 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5528 		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5529 
5530 		if (HDR_IO_IN_PROGRESS(hdr)) {
5531 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5532 				mutex_exit(hash_lock);
5533 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5534 				rc = SET_ERROR(ENOENT);
5535 				goto done;
5536 			}
5537 
5538 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5539 			ASSERT3P(head_zio, !=, NULL);
5540 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5541 			    priority == ZIO_PRIORITY_SYNC_READ) {
5542 				/*
5543 				 * This is a sync read that needs to wait for
5544 				 * an in-flight async read. Request that the
5545 				 * zio have its priority upgraded.
5546 				 */
5547 				zio_change_priority(head_zio, priority);
5548 				DTRACE_PROBE1(arc__async__upgrade__sync,
5549 				    arc_buf_hdr_t *, hdr);
5550 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5551 			}
5552 
5553 			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5554 			arc_access(hdr, *arc_flags, B_FALSE);
5555 
5556 			/*
5557 			 * If there are multiple threads reading the same block
5558 			 * and that block is not yet in the ARC, then only one
5559 			 * thread will do the physical I/O and all other
5560 			 * threads will wait until that I/O completes.
5561 			 * Synchronous reads use the acb_wait_cv whereas nowait
5562 			 * reads register a callback. Both are signalled/called
5563 			 * in arc_read_done.
5564 			 *
5565 			 * Errors of the physical I/O may need to be propagated.
5566 			 * Synchronous read errors are returned here from
5567 			 * arc_read_done via acb_wait_error.  Nowait reads
5568 			 * attach the acb_zio_dummy zio to pio and
5569 			 * arc_read_done propagates the physical I/O's io_error
5570 			 * to acb_zio_dummy, and thereby to pio.
5571 			 */
5572 			arc_callback_t *acb = NULL;
5573 			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5574 				acb = kmem_zalloc(sizeof (arc_callback_t),
5575 				    KM_SLEEP);
5576 				acb->acb_done = done;
5577 				acb->acb_private = private;
5578 				acb->acb_compressed = compressed_read;
5579 				acb->acb_encrypted = encrypted_read;
5580 				acb->acb_noauth = noauth_read;
5581 				acb->acb_nobuf = no_buf;
5582 				if (*arc_flags & ARC_FLAG_WAIT) {
5583 					acb->acb_wait = B_TRUE;
5584 					mutex_init(&acb->acb_wait_lock, NULL,
5585 					    MUTEX_DEFAULT, NULL);
5586 					cv_init(&acb->acb_wait_cv, NULL,
5587 					    CV_DEFAULT, NULL);
5588 				}
5589 				acb->acb_zb = *zb;
5590 				if (pio != NULL) {
5591 					acb->acb_zio_dummy = zio_null(pio,
5592 					    spa, NULL, NULL, NULL, zio_flags);
5593 				}
5594 				acb->acb_zio_head = head_zio;
5595 				acb->acb_next = hdr->b_l1hdr.b_acb;
5596 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5597 				hdr->b_l1hdr.b_acb = acb;
5598 			}
5599 			mutex_exit(hash_lock);
5600 
5601 			ARCSTAT_BUMP(arcstat_iohits);
5602 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5603 			    demand, prefetch, is_data, data, metadata, iohits);
5604 
5605 			if (*arc_flags & ARC_FLAG_WAIT) {
5606 				mutex_enter(&acb->acb_wait_lock);
5607 				while (acb->acb_wait) {
5608 					cv_wait(&acb->acb_wait_cv,
5609 					    &acb->acb_wait_lock);
5610 				}
5611 				rc = acb->acb_wait_error;
5612 				mutex_exit(&acb->acb_wait_lock);
5613 				mutex_destroy(&acb->acb_wait_lock);
5614 				cv_destroy(&acb->acb_wait_cv);
5615 				kmem_free(acb, sizeof (arc_callback_t));
5616 			}
5617 			goto out;
5618 		}
5619 
5620 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5621 		    hdr->b_l1hdr.b_state == arc_mfu ||
5622 		    hdr->b_l1hdr.b_state == arc_uncached);
5623 
5624 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5625 		arc_access(hdr, *arc_flags, B_TRUE);
5626 
5627 		if (done && !no_buf) {
5628 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5629 
5630 			/* Get a buf with the desired data in it. */
5631 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5632 			    encrypted_read, compressed_read, noauth_read,
5633 			    B_TRUE, &buf);
5634 			if (rc == ECKSUM) {
5635 				/*
5636 				 * Convert authentication and decryption errors
5637 				 * to EIO (and generate an ereport if needed)
5638 				 * before leaving the ARC.
5639 				 */
5640 				rc = SET_ERROR(EIO);
5641 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5642 					spa_log_error(spa, zb, &hdr->b_birth);
5643 					(void) zfs_ereport_post(
5644 					    FM_EREPORT_ZFS_AUTHENTICATION,
5645 					    spa, NULL, zb, NULL, 0);
5646 				}
5647 			}
5648 			if (rc != 0) {
5649 				arc_buf_destroy_impl(buf);
5650 				buf = NULL;
5651 				(void) remove_reference(hdr, private);
5652 			}
5653 
5654 			/* assert any errors weren't due to unloaded keys */
5655 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5656 			    rc != EACCES);
5657 		}
5658 		mutex_exit(hash_lock);
5659 		ARCSTAT_BUMP(arcstat_hits);
5660 		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5661 		    demand, prefetch, is_data, data, metadata, hits);
5662 		*arc_flags |= ARC_FLAG_CACHED;
5663 		goto done;
5664 	} else {
5665 		uint64_t lsize = BP_GET_LSIZE(bp);
5666 		uint64_t psize = BP_GET_PSIZE(bp);
5667 		arc_callback_t *acb;
5668 		vdev_t *vd = NULL;
5669 		uint64_t addr = 0;
5670 		boolean_t devw = B_FALSE;
5671 		uint64_t size;
5672 		abd_t *hdr_abd;
5673 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5674 		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5675 
5676 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5677 			if (hash_lock != NULL)
5678 				mutex_exit(hash_lock);
5679 			rc = SET_ERROR(ENOENT);
5680 			goto done;
5681 		}
5682 
5683 		if (hdr == NULL) {
5684 			/*
5685 			 * This block is not in the cache or it has
5686 			 * embedded data.
5687 			 */
5688 			arc_buf_hdr_t *exists = NULL;
5689 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5690 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5691 
5692 			if (!embedded_bp) {
5693 				hdr->b_dva = *BP_IDENTITY(bp);
5694 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5695 				exists = buf_hash_insert(hdr, &hash_lock);
5696 			}
5697 			if (exists != NULL) {
5698 				/* somebody beat us to the hash insert */
5699 				mutex_exit(hash_lock);
5700 				buf_discard_identity(hdr);
5701 				arc_hdr_destroy(hdr);
5702 				goto top; /* restart the IO request */
5703 			}
5704 		} else {
5705 			/*
5706 			 * This block is in the ghost cache or encrypted data
5707 			 * was requested and we didn't have it. If it was
5708 			 * L2-only (and thus didn't have an L1 hdr),
5709 			 * we realloc the header to add an L1 hdr.
5710 			 */
5711 			if (!HDR_HAS_L1HDR(hdr)) {
5712 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5713 				    hdr_full_cache);
5714 			}
5715 
5716 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5717 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5718 				ASSERT(!HDR_HAS_RABD(hdr));
5719 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5720 				ASSERT0(zfs_refcount_count(
5721 				    &hdr->b_l1hdr.b_refcnt));
5722 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5723 #ifdef ZFS_DEBUG
5724 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5725 #endif
5726 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
5727 				/*
5728 				 * If this header already had an IO in progress
5729 				 * and we are performing another IO to fetch
5730 				 * encrypted data we must wait until the first
5731 				 * IO completes so as not to confuse
5732 				 * arc_read_done(). This should be very rare
5733 				 * and so the performance impact shouldn't
5734 				 * matter.
5735 				 */
5736 				arc_callback_t *acb = kmem_zalloc(
5737 				    sizeof (arc_callback_t), KM_SLEEP);
5738 				acb->acb_wait = B_TRUE;
5739 				mutex_init(&acb->acb_wait_lock, NULL,
5740 				    MUTEX_DEFAULT, NULL);
5741 				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5742 				    NULL);
5743 				acb->acb_zio_head =
5744 				    hdr->b_l1hdr.b_acb->acb_zio_head;
5745 				acb->acb_next = hdr->b_l1hdr.b_acb;
5746 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5747 				hdr->b_l1hdr.b_acb = acb;
5748 				mutex_exit(hash_lock);
5749 				mutex_enter(&acb->acb_wait_lock);
5750 				while (acb->acb_wait) {
5751 					cv_wait(&acb->acb_wait_cv,
5752 					    &acb->acb_wait_lock);
5753 				}
5754 				mutex_exit(&acb->acb_wait_lock);
5755 				mutex_destroy(&acb->acb_wait_lock);
5756 				cv_destroy(&acb->acb_wait_cv);
5757 				kmem_free(acb, sizeof (arc_callback_t));
5758 				goto top;
5759 			}
5760 		}
5761 		if (*arc_flags & ARC_FLAG_UNCACHED) {
5762 			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5763 			if (!encrypted_read)
5764 				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5765 		}
5766 
5767 		/*
5768 		 * Take additional reference for IO_IN_PROGRESS.  It stops
5769 		 * arc_access() from putting this header without any buffers
5770 		 * and so other references but obviously nonevictable onto
5771 		 * the evictable list of MRU or MFU state.
5772 		 */
5773 		add_reference(hdr, hdr);
5774 		if (!embedded_bp)
5775 			arc_access(hdr, *arc_flags, B_FALSE);
5776 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5777 		arc_hdr_alloc_abd(hdr, alloc_flags);
5778 		if (encrypted_read) {
5779 			ASSERT(HDR_HAS_RABD(hdr));
5780 			size = HDR_GET_PSIZE(hdr);
5781 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
5782 			zio_flags |= ZIO_FLAG_RAW;
5783 		} else {
5784 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5785 			size = arc_hdr_size(hdr);
5786 			hdr_abd = hdr->b_l1hdr.b_pabd;
5787 
5788 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5789 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5790 			}
5791 
5792 			/*
5793 			 * For authenticated bp's, we do not ask the ZIO layer
5794 			 * to authenticate them since this will cause the entire
5795 			 * IO to fail if the key isn't loaded. Instead, we
5796 			 * defer authentication until arc_buf_fill(), which will
5797 			 * verify the data when the key is available.
5798 			 */
5799 			if (BP_IS_AUTHENTICATED(bp))
5800 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5801 		}
5802 
5803 		if (BP_IS_AUTHENTICATED(bp))
5804 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5805 		if (BP_GET_LEVEL(bp) > 0)
5806 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5807 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5808 
5809 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5810 		acb->acb_done = done;
5811 		acb->acb_private = private;
5812 		acb->acb_compressed = compressed_read;
5813 		acb->acb_encrypted = encrypted_read;
5814 		acb->acb_noauth = noauth_read;
5815 		acb->acb_zb = *zb;
5816 
5817 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5818 		hdr->b_l1hdr.b_acb = acb;
5819 
5820 		if (HDR_HAS_L2HDR(hdr) &&
5821 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5822 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5823 			addr = hdr->b_l2hdr.b_daddr;
5824 			/*
5825 			 * Lock out L2ARC device removal.
5826 			 */
5827 			if (vdev_is_dead(vd) ||
5828 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5829 				vd = NULL;
5830 		}
5831 
5832 		/*
5833 		 * We count both async reads and scrub IOs as asynchronous so
5834 		 * that both can be upgraded in the event of a cache hit while
5835 		 * the read IO is still in-flight.
5836 		 */
5837 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
5838 		    priority == ZIO_PRIORITY_SCRUB)
5839 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5840 		else
5841 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5842 
5843 		/*
5844 		 * At this point, we have a level 1 cache miss or a blkptr
5845 		 * with embedded data.  Try again in L2ARC if possible.
5846 		 */
5847 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5848 
5849 		/*
5850 		 * Skip ARC stat bump for block pointers with embedded
5851 		 * data. The data are read from the blkptr itself via
5852 		 * decode_embedded_bp_compressed().
5853 		 */
5854 		if (!embedded_bp) {
5855 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
5856 			    blkptr_t *, bp, uint64_t, lsize,
5857 			    zbookmark_phys_t *, zb);
5858 			ARCSTAT_BUMP(arcstat_misses);
5859 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5860 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
5861 			    metadata, misses);
5862 			zfs_racct_read(size, 1);
5863 		}
5864 
5865 		/* Check if the spa even has l2 configured */
5866 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
5867 		    spa->spa_l2cache.sav_count > 0;
5868 
5869 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
5870 			/*
5871 			 * Read from the L2ARC if the following are true:
5872 			 * 1. The L2ARC vdev was previously cached.
5873 			 * 2. This buffer still has L2ARC metadata.
5874 			 * 3. This buffer isn't currently writing to the L2ARC.
5875 			 * 4. The L2ARC entry wasn't evicted, which may
5876 			 *    also have invalidated the vdev.
5877 			 */
5878 			if (HDR_HAS_L2HDR(hdr) &&
5879 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
5880 				l2arc_read_callback_t *cb;
5881 				abd_t *abd;
5882 				uint64_t asize;
5883 
5884 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5885 				ARCSTAT_BUMP(arcstat_l2_hits);
5886 				hdr->b_l2hdr.b_hits++;
5887 
5888 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5889 				    KM_SLEEP);
5890 				cb->l2rcb_hdr = hdr;
5891 				cb->l2rcb_bp = *bp;
5892 				cb->l2rcb_zb = *zb;
5893 				cb->l2rcb_flags = zio_flags;
5894 
5895 				/*
5896 				 * When Compressed ARC is disabled, but the
5897 				 * L2ARC block is compressed, arc_hdr_size()
5898 				 * will have returned LSIZE rather than PSIZE.
5899 				 */
5900 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
5901 				    !HDR_COMPRESSION_ENABLED(hdr) &&
5902 				    HDR_GET_PSIZE(hdr) != 0) {
5903 					size = HDR_GET_PSIZE(hdr);
5904 				}
5905 
5906 				asize = vdev_psize_to_asize(vd, size);
5907 				if (asize != size) {
5908 					abd = abd_alloc_for_io(asize,
5909 					    HDR_ISTYPE_METADATA(hdr));
5910 					cb->l2rcb_abd = abd;
5911 				} else {
5912 					abd = hdr_abd;
5913 				}
5914 
5915 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5916 				    addr + asize <= vd->vdev_psize -
5917 				    VDEV_LABEL_END_SIZE);
5918 
5919 				/*
5920 				 * l2arc read.  The SCL_L2ARC lock will be
5921 				 * released by l2arc_read_done().
5922 				 * Issue a null zio if the underlying buffer
5923 				 * was squashed to zero size by compression.
5924 				 */
5925 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
5926 				    ZIO_COMPRESS_EMPTY);
5927 				rzio = zio_read_phys(pio, vd, addr,
5928 				    asize, abd,
5929 				    ZIO_CHECKSUM_OFF,
5930 				    l2arc_read_done, cb, priority,
5931 				    zio_flags | ZIO_FLAG_CANFAIL |
5932 				    ZIO_FLAG_DONT_PROPAGATE |
5933 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5934 				acb->acb_zio_head = rzio;
5935 
5936 				if (hash_lock != NULL)
5937 					mutex_exit(hash_lock);
5938 
5939 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5940 				    zio_t *, rzio);
5941 				ARCSTAT_INCR(arcstat_l2_read_bytes,
5942 				    HDR_GET_PSIZE(hdr));
5943 
5944 				if (*arc_flags & ARC_FLAG_NOWAIT) {
5945 					zio_nowait(rzio);
5946 					goto out;
5947 				}
5948 
5949 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5950 				if (zio_wait(rzio) == 0)
5951 					goto out;
5952 
5953 				/* l2arc read error; goto zio_read() */
5954 				if (hash_lock != NULL)
5955 					mutex_enter(hash_lock);
5956 			} else {
5957 				DTRACE_PROBE1(l2arc__miss,
5958 				    arc_buf_hdr_t *, hdr);
5959 				ARCSTAT_BUMP(arcstat_l2_misses);
5960 				if (HDR_L2_WRITING(hdr))
5961 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5962 				spa_config_exit(spa, SCL_L2ARC, vd);
5963 			}
5964 		} else {
5965 			if (vd != NULL)
5966 				spa_config_exit(spa, SCL_L2ARC, vd);
5967 
5968 			/*
5969 			 * Only a spa with l2 should contribute to l2
5970 			 * miss stats.  (Including the case of having a
5971 			 * faulted cache device - that's also a miss.)
5972 			 */
5973 			if (spa_has_l2) {
5974 				/*
5975 				 * Skip ARC stat bump for block pointers with
5976 				 * embedded data. The data are read from the
5977 				 * blkptr itself via
5978 				 * decode_embedded_bp_compressed().
5979 				 */
5980 				if (!embedded_bp) {
5981 					DTRACE_PROBE1(l2arc__miss,
5982 					    arc_buf_hdr_t *, hdr);
5983 					ARCSTAT_BUMP(arcstat_l2_misses);
5984 				}
5985 			}
5986 		}
5987 
5988 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
5989 		    arc_read_done, hdr, priority, zio_flags, zb);
5990 		acb->acb_zio_head = rzio;
5991 
5992 		if (hash_lock != NULL)
5993 			mutex_exit(hash_lock);
5994 
5995 		if (*arc_flags & ARC_FLAG_WAIT) {
5996 			rc = zio_wait(rzio);
5997 			goto out;
5998 		}
5999 
6000 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6001 		zio_nowait(rzio);
6002 	}
6003 
6004 out:
6005 	/* embedded bps don't actually go to disk */
6006 	if (!embedded_bp)
6007 		spa_read_history_add(spa, zb, *arc_flags);
6008 	spl_fstrans_unmark(cookie);
6009 	return (rc);
6010 
6011 done:
6012 	if (done)
6013 		done(NULL, zb, bp, buf, private);
6014 	if (pio && rc != 0) {
6015 		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6016 		zio->io_error = rc;
6017 		zio_nowait(zio);
6018 	}
6019 	goto out;
6020 }
6021 
6022 arc_prune_t *
6023 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6024 {
6025 	arc_prune_t *p;
6026 
6027 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6028 	p->p_pfunc = func;
6029 	p->p_private = private;
6030 	list_link_init(&p->p_node);
6031 	zfs_refcount_create(&p->p_refcnt);
6032 
6033 	mutex_enter(&arc_prune_mtx);
6034 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6035 	list_insert_head(&arc_prune_list, p);
6036 	mutex_exit(&arc_prune_mtx);
6037 
6038 	return (p);
6039 }
6040 
6041 void
6042 arc_remove_prune_callback(arc_prune_t *p)
6043 {
6044 	boolean_t wait = B_FALSE;
6045 	mutex_enter(&arc_prune_mtx);
6046 	list_remove(&arc_prune_list, p);
6047 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6048 		wait = B_TRUE;
6049 	mutex_exit(&arc_prune_mtx);
6050 
6051 	/* wait for arc_prune_task to finish */
6052 	if (wait)
6053 		taskq_wait_outstanding(arc_prune_taskq, 0);
6054 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6055 	zfs_refcount_destroy(&p->p_refcnt);
6056 	kmem_free(p, sizeof (*p));
6057 }
6058 
6059 /*
6060  * Helper function for arc_prune_async() it is responsible for safely
6061  * handling the execution of a registered arc_prune_func_t.
6062  */
6063 static void
6064 arc_prune_task(void *ptr)
6065 {
6066 	arc_prune_t *ap = (arc_prune_t *)ptr;
6067 	arc_prune_func_t *func = ap->p_pfunc;
6068 
6069 	if (func != NULL)
6070 		func(ap->p_adjust, ap->p_private);
6071 
6072 	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6073 }
6074 
6075 /*
6076  * Notify registered consumers they must drop holds on a portion of the ARC
6077  * buffers they reference.  This provides a mechanism to ensure the ARC can
6078  * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6079  *
6080  * This operation is performed asynchronously so it may be safely called
6081  * in the context of the arc_reclaim_thread().  A reference is taken here
6082  * for each registered arc_prune_t and the arc_prune_task() is responsible
6083  * for releasing it once the registered arc_prune_func_t has completed.
6084  */
6085 static void
6086 arc_prune_async(uint64_t adjust)
6087 {
6088 	arc_prune_t *ap;
6089 
6090 	mutex_enter(&arc_prune_mtx);
6091 	for (ap = list_head(&arc_prune_list); ap != NULL;
6092 	    ap = list_next(&arc_prune_list, ap)) {
6093 
6094 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6095 			continue;
6096 
6097 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6098 		ap->p_adjust = adjust;
6099 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6100 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6101 			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6102 			continue;
6103 		}
6104 		ARCSTAT_BUMP(arcstat_prune);
6105 	}
6106 	mutex_exit(&arc_prune_mtx);
6107 }
6108 
6109 /*
6110  * Notify the arc that a block was freed, and thus will never be used again.
6111  */
6112 void
6113 arc_freed(spa_t *spa, const blkptr_t *bp)
6114 {
6115 	arc_buf_hdr_t *hdr;
6116 	kmutex_t *hash_lock;
6117 	uint64_t guid = spa_load_guid(spa);
6118 
6119 	ASSERT(!BP_IS_EMBEDDED(bp));
6120 
6121 	hdr = buf_hash_find(guid, bp, &hash_lock);
6122 	if (hdr == NULL)
6123 		return;
6124 
6125 	/*
6126 	 * We might be trying to free a block that is still doing I/O
6127 	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6128 	 * dmu_sync-ed block). A block may also have a reference if it is
6129 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6130 	 * have written the new block to its final resting place on disk but
6131 	 * without the dedup flag set. This would have left the hdr in the MRU
6132 	 * state and discoverable. When the txg finally syncs it detects that
6133 	 * the block was overridden in open context and issues an override I/O.
6134 	 * Since this is a dedup block, the override I/O will determine if the
6135 	 * block is already in the DDT. If so, then it will replace the io_bp
6136 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6137 	 * reaches the done callback, dbuf_write_override_done, it will
6138 	 * check to see if the io_bp and io_bp_override are identical.
6139 	 * If they are not, then it indicates that the bp was replaced with
6140 	 * the bp in the DDT and the override bp is freed. This allows
6141 	 * us to arrive here with a reference on a block that is being
6142 	 * freed. So if we have an I/O in progress, or a reference to
6143 	 * this hdr, then we don't destroy the hdr.
6144 	 */
6145 	if (!HDR_HAS_L1HDR(hdr) ||
6146 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6147 		arc_change_state(arc_anon, hdr);
6148 		arc_hdr_destroy(hdr);
6149 		mutex_exit(hash_lock);
6150 	} else {
6151 		mutex_exit(hash_lock);
6152 	}
6153 
6154 }
6155 
6156 /*
6157  * Release this buffer from the cache, making it an anonymous buffer.  This
6158  * must be done after a read and prior to modifying the buffer contents.
6159  * If the buffer has more than one reference, we must make
6160  * a new hdr for the buffer.
6161  */
6162 void
6163 arc_release(arc_buf_t *buf, const void *tag)
6164 {
6165 	arc_buf_hdr_t *hdr = buf->b_hdr;
6166 
6167 	/*
6168 	 * It would be nice to assert that if its DMU metadata (level >
6169 	 * 0 || it's the dnode file), then it must be syncing context.
6170 	 * But we don't know that information at this level.
6171 	 */
6172 
6173 	ASSERT(HDR_HAS_L1HDR(hdr));
6174 
6175 	/*
6176 	 * We don't grab the hash lock prior to this check, because if
6177 	 * the buffer's header is in the arc_anon state, it won't be
6178 	 * linked into the hash table.
6179 	 */
6180 	if (hdr->b_l1hdr.b_state == arc_anon) {
6181 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6182 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6183 		ASSERT(!HDR_HAS_L2HDR(hdr));
6184 
6185 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6186 		ASSERT(ARC_BUF_LAST(buf));
6187 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6188 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6189 
6190 		hdr->b_l1hdr.b_arc_access = 0;
6191 
6192 		/*
6193 		 * If the buf is being overridden then it may already
6194 		 * have a hdr that is not empty.
6195 		 */
6196 		buf_discard_identity(hdr);
6197 		arc_buf_thaw(buf);
6198 
6199 		return;
6200 	}
6201 
6202 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6203 	mutex_enter(hash_lock);
6204 
6205 	/*
6206 	 * This assignment is only valid as long as the hash_lock is
6207 	 * held, we must be careful not to reference state or the
6208 	 * b_state field after dropping the lock.
6209 	 */
6210 	arc_state_t *state = hdr->b_l1hdr.b_state;
6211 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6212 	ASSERT3P(state, !=, arc_anon);
6213 
6214 	/* this buffer is not on any list */
6215 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6216 
6217 	if (HDR_HAS_L2HDR(hdr)) {
6218 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6219 
6220 		/*
6221 		 * We have to recheck this conditional again now that
6222 		 * we're holding the l2ad_mtx to prevent a race with
6223 		 * another thread which might be concurrently calling
6224 		 * l2arc_evict(). In that case, l2arc_evict() might have
6225 		 * destroyed the header's L2 portion as we were waiting
6226 		 * to acquire the l2ad_mtx.
6227 		 */
6228 		if (HDR_HAS_L2HDR(hdr))
6229 			arc_hdr_l2hdr_destroy(hdr);
6230 
6231 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6232 	}
6233 
6234 	/*
6235 	 * Do we have more than one buf?
6236 	 */
6237 	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6238 		arc_buf_hdr_t *nhdr;
6239 		uint64_t spa = hdr->b_spa;
6240 		uint64_t psize = HDR_GET_PSIZE(hdr);
6241 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6242 		boolean_t protected = HDR_PROTECTED(hdr);
6243 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6244 		arc_buf_contents_t type = arc_buf_type(hdr);
6245 		VERIFY3U(hdr->b_type, ==, type);
6246 
6247 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6248 		VERIFY3S(remove_reference(hdr, tag), >, 0);
6249 
6250 		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6251 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6252 			ASSERT(ARC_BUF_LAST(buf));
6253 		}
6254 
6255 		/*
6256 		 * Pull the data off of this hdr and attach it to
6257 		 * a new anonymous hdr. Also find the last buffer
6258 		 * in the hdr's buffer list.
6259 		 */
6260 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6261 		ASSERT3P(lastbuf, !=, NULL);
6262 
6263 		/*
6264 		 * If the current arc_buf_t and the hdr are sharing their data
6265 		 * buffer, then we must stop sharing that block.
6266 		 */
6267 		if (ARC_BUF_SHARED(buf)) {
6268 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6269 			ASSERT(!arc_buf_is_shared(lastbuf));
6270 
6271 			/*
6272 			 * First, sever the block sharing relationship between
6273 			 * buf and the arc_buf_hdr_t.
6274 			 */
6275 			arc_unshare_buf(hdr, buf);
6276 
6277 			/*
6278 			 * Now we need to recreate the hdr's b_pabd. Since we
6279 			 * have lastbuf handy, we try to share with it, but if
6280 			 * we can't then we allocate a new b_pabd and copy the
6281 			 * data from buf into it.
6282 			 */
6283 			if (arc_can_share(hdr, lastbuf)) {
6284 				arc_share_buf(hdr, lastbuf);
6285 			} else {
6286 				arc_hdr_alloc_abd(hdr, 0);
6287 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6288 				    buf->b_data, psize);
6289 			}
6290 			VERIFY3P(lastbuf->b_data, !=, NULL);
6291 		} else if (HDR_SHARED_DATA(hdr)) {
6292 			/*
6293 			 * Uncompressed shared buffers are always at the end
6294 			 * of the list. Compressed buffers don't have the
6295 			 * same requirements. This makes it hard to
6296 			 * simply assert that the lastbuf is shared so
6297 			 * we rely on the hdr's compression flags to determine
6298 			 * if we have a compressed, shared buffer.
6299 			 */
6300 			ASSERT(arc_buf_is_shared(lastbuf) ||
6301 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6302 			ASSERT(!arc_buf_is_shared(buf));
6303 		}
6304 
6305 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6306 		ASSERT3P(state, !=, arc_l2c_only);
6307 
6308 		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6309 		    arc_buf_size(buf), buf);
6310 
6311 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6312 			ASSERT3P(state, !=, arc_l2c_only);
6313 			(void) zfs_refcount_remove_many(
6314 			    &state->arcs_esize[type],
6315 			    arc_buf_size(buf), buf);
6316 		}
6317 
6318 		arc_cksum_verify(buf);
6319 		arc_buf_unwatch(buf);
6320 
6321 		/* if this is the last uncompressed buf free the checksum */
6322 		if (!arc_hdr_has_uncompressed_buf(hdr))
6323 			arc_cksum_free(hdr);
6324 
6325 		mutex_exit(hash_lock);
6326 
6327 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6328 		    compress, hdr->b_complevel, type);
6329 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6330 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6331 		VERIFY3U(nhdr->b_type, ==, type);
6332 		ASSERT(!HDR_SHARED_DATA(nhdr));
6333 
6334 		nhdr->b_l1hdr.b_buf = buf;
6335 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6336 		buf->b_hdr = nhdr;
6337 
6338 		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6339 		    arc_buf_size(buf), buf);
6340 	} else {
6341 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6342 		/* protected by hash lock, or hdr is on arc_anon */
6343 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6344 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6345 		hdr->b_l1hdr.b_mru_hits = 0;
6346 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6347 		hdr->b_l1hdr.b_mfu_hits = 0;
6348 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6349 		arc_change_state(arc_anon, hdr);
6350 		hdr->b_l1hdr.b_arc_access = 0;
6351 
6352 		mutex_exit(hash_lock);
6353 		buf_discard_identity(hdr);
6354 		arc_buf_thaw(buf);
6355 	}
6356 }
6357 
6358 int
6359 arc_released(arc_buf_t *buf)
6360 {
6361 	return (buf->b_data != NULL &&
6362 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6363 }
6364 
6365 #ifdef ZFS_DEBUG
6366 int
6367 arc_referenced(arc_buf_t *buf)
6368 {
6369 	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6370 }
6371 #endif
6372 
6373 static void
6374 arc_write_ready(zio_t *zio)
6375 {
6376 	arc_write_callback_t *callback = zio->io_private;
6377 	arc_buf_t *buf = callback->awcb_buf;
6378 	arc_buf_hdr_t *hdr = buf->b_hdr;
6379 	blkptr_t *bp = zio->io_bp;
6380 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6381 	fstrans_cookie_t cookie = spl_fstrans_mark();
6382 
6383 	ASSERT(HDR_HAS_L1HDR(hdr));
6384 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6385 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6386 
6387 	/*
6388 	 * If we're reexecuting this zio because the pool suspended, then
6389 	 * cleanup any state that was previously set the first time the
6390 	 * callback was invoked.
6391 	 */
6392 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6393 		arc_cksum_free(hdr);
6394 		arc_buf_unwatch(buf);
6395 		if (hdr->b_l1hdr.b_pabd != NULL) {
6396 			if (ARC_BUF_SHARED(buf)) {
6397 				arc_unshare_buf(hdr, buf);
6398 			} else {
6399 				ASSERT(!arc_buf_is_shared(buf));
6400 				arc_hdr_free_abd(hdr, B_FALSE);
6401 			}
6402 		}
6403 
6404 		if (HDR_HAS_RABD(hdr))
6405 			arc_hdr_free_abd(hdr, B_TRUE);
6406 	}
6407 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6408 	ASSERT(!HDR_HAS_RABD(hdr));
6409 	ASSERT(!HDR_SHARED_DATA(hdr));
6410 	ASSERT(!arc_buf_is_shared(buf));
6411 
6412 	callback->awcb_ready(zio, buf, callback->awcb_private);
6413 
6414 	if (HDR_IO_IN_PROGRESS(hdr)) {
6415 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6416 	} else {
6417 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6418 		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6419 	}
6420 
6421 	if (BP_IS_PROTECTED(bp)) {
6422 		/* ZIL blocks are written through zio_rewrite */
6423 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6424 
6425 		if (BP_SHOULD_BYTESWAP(bp)) {
6426 			if (BP_GET_LEVEL(bp) > 0) {
6427 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6428 			} else {
6429 				hdr->b_l1hdr.b_byteswap =
6430 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6431 			}
6432 		} else {
6433 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6434 		}
6435 
6436 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6437 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6438 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6439 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6440 		    hdr->b_crypt_hdr.b_iv);
6441 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6442 	} else {
6443 		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6444 	}
6445 
6446 	/*
6447 	 * If this block was written for raw encryption but the zio layer
6448 	 * ended up only authenticating it, adjust the buffer flags now.
6449 	 */
6450 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6451 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6452 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6453 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6454 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6455 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6456 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6457 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6458 	}
6459 
6460 	/* this must be done after the buffer flags are adjusted */
6461 	arc_cksum_compute(buf);
6462 
6463 	enum zio_compress compress;
6464 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6465 		compress = ZIO_COMPRESS_OFF;
6466 	} else {
6467 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6468 		compress = BP_GET_COMPRESS(bp);
6469 	}
6470 	HDR_SET_PSIZE(hdr, psize);
6471 	arc_hdr_set_compress(hdr, compress);
6472 	hdr->b_complevel = zio->io_prop.zp_complevel;
6473 
6474 	if (zio->io_error != 0 || psize == 0)
6475 		goto out;
6476 
6477 	/*
6478 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6479 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6480 	 * we want is available from the zio, otherwise we can take it from
6481 	 * the buf.
6482 	 *
6483 	 * We might be able to share the buf's data with the hdr here. However,
6484 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6485 	 * lot of shareable data. As a compromise, we check whether scattered
6486 	 * ABDs are allowed, and assume that if they are then the user wants
6487 	 * the ARC to be primarily filled with them regardless of the data being
6488 	 * written. Therefore, if they're allowed then we allocate one and copy
6489 	 * the data into it; otherwise, we share the data directly if we can.
6490 	 */
6491 	if (ARC_BUF_ENCRYPTED(buf)) {
6492 		ASSERT3U(psize, >, 0);
6493 		ASSERT(ARC_BUF_COMPRESSED(buf));
6494 		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6495 		    ARC_HDR_USE_RESERVE);
6496 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6497 	} else if (!(HDR_UNCACHED(hdr) ||
6498 	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6499 	    !arc_can_share(hdr, buf)) {
6500 		/*
6501 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6502 		 * user may have disabled compressed ARC, thus we must check the
6503 		 * hdr's compression setting rather than the io_bp's.
6504 		 */
6505 		if (BP_IS_ENCRYPTED(bp)) {
6506 			ASSERT3U(psize, >, 0);
6507 			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6508 			    ARC_HDR_USE_RESERVE);
6509 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6510 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6511 		    !ARC_BUF_COMPRESSED(buf)) {
6512 			ASSERT3U(psize, >, 0);
6513 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6514 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6515 		} else {
6516 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6517 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6518 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6519 			    arc_buf_size(buf));
6520 		}
6521 	} else {
6522 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6523 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6524 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6525 		ASSERT(ARC_BUF_LAST(buf));
6526 
6527 		arc_share_buf(hdr, buf);
6528 	}
6529 
6530 out:
6531 	arc_hdr_verify(hdr, bp);
6532 	spl_fstrans_unmark(cookie);
6533 }
6534 
6535 static void
6536 arc_write_children_ready(zio_t *zio)
6537 {
6538 	arc_write_callback_t *callback = zio->io_private;
6539 	arc_buf_t *buf = callback->awcb_buf;
6540 
6541 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6542 }
6543 
6544 static void
6545 arc_write_done(zio_t *zio)
6546 {
6547 	arc_write_callback_t *callback = zio->io_private;
6548 	arc_buf_t *buf = callback->awcb_buf;
6549 	arc_buf_hdr_t *hdr = buf->b_hdr;
6550 
6551 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6552 
6553 	if (zio->io_error == 0) {
6554 		arc_hdr_verify(hdr, zio->io_bp);
6555 
6556 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6557 			buf_discard_identity(hdr);
6558 		} else {
6559 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6560 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6561 		}
6562 	} else {
6563 		ASSERT(HDR_EMPTY(hdr));
6564 	}
6565 
6566 	/*
6567 	 * If the block to be written was all-zero or compressed enough to be
6568 	 * embedded in the BP, no write was performed so there will be no
6569 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6570 	 * (and uncached).
6571 	 */
6572 	if (!HDR_EMPTY(hdr)) {
6573 		arc_buf_hdr_t *exists;
6574 		kmutex_t *hash_lock;
6575 
6576 		ASSERT3U(zio->io_error, ==, 0);
6577 
6578 		arc_cksum_verify(buf);
6579 
6580 		exists = buf_hash_insert(hdr, &hash_lock);
6581 		if (exists != NULL) {
6582 			/*
6583 			 * This can only happen if we overwrite for
6584 			 * sync-to-convergence, because we remove
6585 			 * buffers from the hash table when we arc_free().
6586 			 */
6587 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6588 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6589 					panic("bad overwrite, hdr=%p exists=%p",
6590 					    (void *)hdr, (void *)exists);
6591 				ASSERT(zfs_refcount_is_zero(
6592 				    &exists->b_l1hdr.b_refcnt));
6593 				arc_change_state(arc_anon, exists);
6594 				arc_hdr_destroy(exists);
6595 				mutex_exit(hash_lock);
6596 				exists = buf_hash_insert(hdr, &hash_lock);
6597 				ASSERT3P(exists, ==, NULL);
6598 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6599 				/* nopwrite */
6600 				ASSERT(zio->io_prop.zp_nopwrite);
6601 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6602 					panic("bad nopwrite, hdr=%p exists=%p",
6603 					    (void *)hdr, (void *)exists);
6604 			} else {
6605 				/* Dedup */
6606 				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6607 				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6608 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6609 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6610 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6611 			}
6612 		}
6613 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6614 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6615 		/* if it's not anon, we are doing a scrub */
6616 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6617 			arc_access(hdr, 0, B_FALSE);
6618 		mutex_exit(hash_lock);
6619 	} else {
6620 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6621 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6622 	}
6623 
6624 	callback->awcb_done(zio, buf, callback->awcb_private);
6625 
6626 	abd_free(zio->io_abd);
6627 	kmem_free(callback, sizeof (arc_write_callback_t));
6628 }
6629 
6630 zio_t *
6631 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6632     blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6633     const zio_prop_t *zp, arc_write_done_func_t *ready,
6634     arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6635     void *private, zio_priority_t priority, int zio_flags,
6636     const zbookmark_phys_t *zb)
6637 {
6638 	arc_buf_hdr_t *hdr = buf->b_hdr;
6639 	arc_write_callback_t *callback;
6640 	zio_t *zio;
6641 	zio_prop_t localprop = *zp;
6642 
6643 	ASSERT3P(ready, !=, NULL);
6644 	ASSERT3P(done, !=, NULL);
6645 	ASSERT(!HDR_IO_ERROR(hdr));
6646 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6647 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6648 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6649 	if (uncached)
6650 		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6651 	else if (l2arc)
6652 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6653 
6654 	if (ARC_BUF_ENCRYPTED(buf)) {
6655 		ASSERT(ARC_BUF_COMPRESSED(buf));
6656 		localprop.zp_encrypt = B_TRUE;
6657 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6658 		localprop.zp_complevel = hdr->b_complevel;
6659 		localprop.zp_byteorder =
6660 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6661 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6662 		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6663 		    ZIO_DATA_SALT_LEN);
6664 		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6665 		    ZIO_DATA_IV_LEN);
6666 		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6667 		    ZIO_DATA_MAC_LEN);
6668 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6669 			localprop.zp_nopwrite = B_FALSE;
6670 			localprop.zp_copies =
6671 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6672 		}
6673 		zio_flags |= ZIO_FLAG_RAW;
6674 	} else if (ARC_BUF_COMPRESSED(buf)) {
6675 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6676 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6677 		localprop.zp_complevel = hdr->b_complevel;
6678 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6679 	}
6680 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6681 	callback->awcb_ready = ready;
6682 	callback->awcb_children_ready = children_ready;
6683 	callback->awcb_done = done;
6684 	callback->awcb_private = private;
6685 	callback->awcb_buf = buf;
6686 
6687 	/*
6688 	 * The hdr's b_pabd is now stale, free it now. A new data block
6689 	 * will be allocated when the zio pipeline calls arc_write_ready().
6690 	 */
6691 	if (hdr->b_l1hdr.b_pabd != NULL) {
6692 		/*
6693 		 * If the buf is currently sharing the data block with
6694 		 * the hdr then we need to break that relationship here.
6695 		 * The hdr will remain with a NULL data pointer and the
6696 		 * buf will take sole ownership of the block.
6697 		 */
6698 		if (ARC_BUF_SHARED(buf)) {
6699 			arc_unshare_buf(hdr, buf);
6700 		} else {
6701 			ASSERT(!arc_buf_is_shared(buf));
6702 			arc_hdr_free_abd(hdr, B_FALSE);
6703 		}
6704 		VERIFY3P(buf->b_data, !=, NULL);
6705 	}
6706 
6707 	if (HDR_HAS_RABD(hdr))
6708 		arc_hdr_free_abd(hdr, B_TRUE);
6709 
6710 	if (!(zio_flags & ZIO_FLAG_RAW))
6711 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6712 
6713 	ASSERT(!arc_buf_is_shared(buf));
6714 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6715 
6716 	zio = zio_write(pio, spa, txg, bp,
6717 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6718 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6719 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6720 	    arc_write_done, callback, priority, zio_flags, zb);
6721 
6722 	return (zio);
6723 }
6724 
6725 void
6726 arc_tempreserve_clear(uint64_t reserve)
6727 {
6728 	atomic_add_64(&arc_tempreserve, -reserve);
6729 	ASSERT((int64_t)arc_tempreserve >= 0);
6730 }
6731 
6732 int
6733 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6734 {
6735 	int error;
6736 	uint64_t anon_size;
6737 
6738 	if (!arc_no_grow &&
6739 	    reserve > arc_c/4 &&
6740 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6741 		arc_c = MIN(arc_c_max, reserve * 4);
6742 
6743 	/*
6744 	 * Throttle when the calculated memory footprint for the TXG
6745 	 * exceeds the target ARC size.
6746 	 */
6747 	if (reserve > arc_c) {
6748 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6749 		return (SET_ERROR(ERESTART));
6750 	}
6751 
6752 	/*
6753 	 * Don't count loaned bufs as in flight dirty data to prevent long
6754 	 * network delays from blocking transactions that are ready to be
6755 	 * assigned to a txg.
6756 	 */
6757 
6758 	/* assert that it has not wrapped around */
6759 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6760 
6761 	anon_size = MAX((int64_t)
6762 	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6763 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6764 	    arc_loaned_bytes), 0);
6765 
6766 	/*
6767 	 * Writes will, almost always, require additional memory allocations
6768 	 * in order to compress/encrypt/etc the data.  We therefore need to
6769 	 * make sure that there is sufficient available memory for this.
6770 	 */
6771 	error = arc_memory_throttle(spa, reserve, txg);
6772 	if (error != 0)
6773 		return (error);
6774 
6775 	/*
6776 	 * Throttle writes when the amount of dirty data in the cache
6777 	 * gets too large.  We try to keep the cache less than half full
6778 	 * of dirty blocks so that our sync times don't grow too large.
6779 	 *
6780 	 * In the case of one pool being built on another pool, we want
6781 	 * to make sure we don't end up throttling the lower (backing)
6782 	 * pool when the upper pool is the majority contributor to dirty
6783 	 * data. To insure we make forward progress during throttling, we
6784 	 * also check the current pool's net dirty data and only throttle
6785 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6786 	 * data in the cache.
6787 	 *
6788 	 * Note: if two requests come in concurrently, we might let them
6789 	 * both succeed, when one of them should fail.  Not a huge deal.
6790 	 */
6791 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6792 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6793 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
6794 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
6795 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
6796 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6797 #ifdef ZFS_DEBUG
6798 		uint64_t meta_esize = zfs_refcount_count(
6799 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6800 		uint64_t data_esize =
6801 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6802 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6803 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6804 		    (u_longlong_t)arc_tempreserve >> 10,
6805 		    (u_longlong_t)meta_esize >> 10,
6806 		    (u_longlong_t)data_esize >> 10,
6807 		    (u_longlong_t)reserve >> 10,
6808 		    (u_longlong_t)rarc_c >> 10);
6809 #endif
6810 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6811 		return (SET_ERROR(ERESTART));
6812 	}
6813 	atomic_add_64(&arc_tempreserve, reserve);
6814 	return (0);
6815 }
6816 
6817 static void
6818 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6819     kstat_named_t *data, kstat_named_t *metadata,
6820     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6821 {
6822 	data->value.ui64 =
6823 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
6824 	metadata->value.ui64 =
6825 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
6826 	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
6827 	evict_data->value.ui64 =
6828 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6829 	evict_metadata->value.ui64 =
6830 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6831 }
6832 
6833 static int
6834 arc_kstat_update(kstat_t *ksp, int rw)
6835 {
6836 	arc_stats_t *as = ksp->ks_data;
6837 
6838 	if (rw == KSTAT_WRITE)
6839 		return (SET_ERROR(EACCES));
6840 
6841 	as->arcstat_hits.value.ui64 =
6842 	    wmsum_value(&arc_sums.arcstat_hits);
6843 	as->arcstat_iohits.value.ui64 =
6844 	    wmsum_value(&arc_sums.arcstat_iohits);
6845 	as->arcstat_misses.value.ui64 =
6846 	    wmsum_value(&arc_sums.arcstat_misses);
6847 	as->arcstat_demand_data_hits.value.ui64 =
6848 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
6849 	as->arcstat_demand_data_iohits.value.ui64 =
6850 	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
6851 	as->arcstat_demand_data_misses.value.ui64 =
6852 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
6853 	as->arcstat_demand_metadata_hits.value.ui64 =
6854 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
6855 	as->arcstat_demand_metadata_iohits.value.ui64 =
6856 	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
6857 	as->arcstat_demand_metadata_misses.value.ui64 =
6858 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
6859 	as->arcstat_prefetch_data_hits.value.ui64 =
6860 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
6861 	as->arcstat_prefetch_data_iohits.value.ui64 =
6862 	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
6863 	as->arcstat_prefetch_data_misses.value.ui64 =
6864 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
6865 	as->arcstat_prefetch_metadata_hits.value.ui64 =
6866 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
6867 	as->arcstat_prefetch_metadata_iohits.value.ui64 =
6868 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
6869 	as->arcstat_prefetch_metadata_misses.value.ui64 =
6870 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
6871 	as->arcstat_mru_hits.value.ui64 =
6872 	    wmsum_value(&arc_sums.arcstat_mru_hits);
6873 	as->arcstat_mru_ghost_hits.value.ui64 =
6874 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
6875 	as->arcstat_mfu_hits.value.ui64 =
6876 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
6877 	as->arcstat_mfu_ghost_hits.value.ui64 =
6878 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
6879 	as->arcstat_uncached_hits.value.ui64 =
6880 	    wmsum_value(&arc_sums.arcstat_uncached_hits);
6881 	as->arcstat_deleted.value.ui64 =
6882 	    wmsum_value(&arc_sums.arcstat_deleted);
6883 	as->arcstat_mutex_miss.value.ui64 =
6884 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
6885 	as->arcstat_access_skip.value.ui64 =
6886 	    wmsum_value(&arc_sums.arcstat_access_skip);
6887 	as->arcstat_evict_skip.value.ui64 =
6888 	    wmsum_value(&arc_sums.arcstat_evict_skip);
6889 	as->arcstat_evict_not_enough.value.ui64 =
6890 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
6891 	as->arcstat_evict_l2_cached.value.ui64 =
6892 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
6893 	as->arcstat_evict_l2_eligible.value.ui64 =
6894 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
6895 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
6896 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
6897 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
6898 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
6899 	as->arcstat_evict_l2_ineligible.value.ui64 =
6900 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
6901 	as->arcstat_evict_l2_skip.value.ui64 =
6902 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
6903 	as->arcstat_hash_collisions.value.ui64 =
6904 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
6905 	as->arcstat_hash_chains.value.ui64 =
6906 	    wmsum_value(&arc_sums.arcstat_hash_chains);
6907 	as->arcstat_size.value.ui64 =
6908 	    aggsum_value(&arc_sums.arcstat_size);
6909 	as->arcstat_compressed_size.value.ui64 =
6910 	    wmsum_value(&arc_sums.arcstat_compressed_size);
6911 	as->arcstat_uncompressed_size.value.ui64 =
6912 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
6913 	as->arcstat_overhead_size.value.ui64 =
6914 	    wmsum_value(&arc_sums.arcstat_overhead_size);
6915 	as->arcstat_hdr_size.value.ui64 =
6916 	    wmsum_value(&arc_sums.arcstat_hdr_size);
6917 	as->arcstat_data_size.value.ui64 =
6918 	    wmsum_value(&arc_sums.arcstat_data_size);
6919 	as->arcstat_metadata_size.value.ui64 =
6920 	    wmsum_value(&arc_sums.arcstat_metadata_size);
6921 	as->arcstat_dbuf_size.value.ui64 =
6922 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
6923 #if defined(COMPAT_FREEBSD11)
6924 	as->arcstat_other_size.value.ui64 =
6925 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
6926 	    wmsum_value(&arc_sums.arcstat_dnode_size) +
6927 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
6928 #endif
6929 
6930 	arc_kstat_update_state(arc_anon,
6931 	    &as->arcstat_anon_size,
6932 	    &as->arcstat_anon_data,
6933 	    &as->arcstat_anon_metadata,
6934 	    &as->arcstat_anon_evictable_data,
6935 	    &as->arcstat_anon_evictable_metadata);
6936 	arc_kstat_update_state(arc_mru,
6937 	    &as->arcstat_mru_size,
6938 	    &as->arcstat_mru_data,
6939 	    &as->arcstat_mru_metadata,
6940 	    &as->arcstat_mru_evictable_data,
6941 	    &as->arcstat_mru_evictable_metadata);
6942 	arc_kstat_update_state(arc_mru_ghost,
6943 	    &as->arcstat_mru_ghost_size,
6944 	    &as->arcstat_mru_ghost_data,
6945 	    &as->arcstat_mru_ghost_metadata,
6946 	    &as->arcstat_mru_ghost_evictable_data,
6947 	    &as->arcstat_mru_ghost_evictable_metadata);
6948 	arc_kstat_update_state(arc_mfu,
6949 	    &as->arcstat_mfu_size,
6950 	    &as->arcstat_mfu_data,
6951 	    &as->arcstat_mfu_metadata,
6952 	    &as->arcstat_mfu_evictable_data,
6953 	    &as->arcstat_mfu_evictable_metadata);
6954 	arc_kstat_update_state(arc_mfu_ghost,
6955 	    &as->arcstat_mfu_ghost_size,
6956 	    &as->arcstat_mfu_ghost_data,
6957 	    &as->arcstat_mfu_ghost_metadata,
6958 	    &as->arcstat_mfu_ghost_evictable_data,
6959 	    &as->arcstat_mfu_ghost_evictable_metadata);
6960 	arc_kstat_update_state(arc_uncached,
6961 	    &as->arcstat_uncached_size,
6962 	    &as->arcstat_uncached_data,
6963 	    &as->arcstat_uncached_metadata,
6964 	    &as->arcstat_uncached_evictable_data,
6965 	    &as->arcstat_uncached_evictable_metadata);
6966 
6967 	as->arcstat_dnode_size.value.ui64 =
6968 	    wmsum_value(&arc_sums.arcstat_dnode_size);
6969 	as->arcstat_bonus_size.value.ui64 =
6970 	    wmsum_value(&arc_sums.arcstat_bonus_size);
6971 	as->arcstat_l2_hits.value.ui64 =
6972 	    wmsum_value(&arc_sums.arcstat_l2_hits);
6973 	as->arcstat_l2_misses.value.ui64 =
6974 	    wmsum_value(&arc_sums.arcstat_l2_misses);
6975 	as->arcstat_l2_prefetch_asize.value.ui64 =
6976 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
6977 	as->arcstat_l2_mru_asize.value.ui64 =
6978 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
6979 	as->arcstat_l2_mfu_asize.value.ui64 =
6980 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
6981 	as->arcstat_l2_bufc_data_asize.value.ui64 =
6982 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
6983 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
6984 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
6985 	as->arcstat_l2_feeds.value.ui64 =
6986 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
6987 	as->arcstat_l2_rw_clash.value.ui64 =
6988 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
6989 	as->arcstat_l2_read_bytes.value.ui64 =
6990 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
6991 	as->arcstat_l2_write_bytes.value.ui64 =
6992 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
6993 	as->arcstat_l2_writes_sent.value.ui64 =
6994 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
6995 	as->arcstat_l2_writes_done.value.ui64 =
6996 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
6997 	as->arcstat_l2_writes_error.value.ui64 =
6998 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
6999 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7000 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7001 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7002 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7003 	as->arcstat_l2_evict_reading.value.ui64 =
7004 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7005 	as->arcstat_l2_evict_l1cached.value.ui64 =
7006 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7007 	as->arcstat_l2_free_on_write.value.ui64 =
7008 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7009 	as->arcstat_l2_abort_lowmem.value.ui64 =
7010 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7011 	as->arcstat_l2_cksum_bad.value.ui64 =
7012 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7013 	as->arcstat_l2_io_error.value.ui64 =
7014 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7015 	as->arcstat_l2_lsize.value.ui64 =
7016 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7017 	as->arcstat_l2_psize.value.ui64 =
7018 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7019 	as->arcstat_l2_hdr_size.value.ui64 =
7020 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7021 	as->arcstat_l2_log_blk_writes.value.ui64 =
7022 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7023 	as->arcstat_l2_log_blk_asize.value.ui64 =
7024 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7025 	as->arcstat_l2_log_blk_count.value.ui64 =
7026 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7027 	as->arcstat_l2_rebuild_success.value.ui64 =
7028 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7029 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7030 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7031 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7032 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7033 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7034 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7035 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7036 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7037 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7038 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7039 	as->arcstat_l2_rebuild_size.value.ui64 =
7040 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7041 	as->arcstat_l2_rebuild_asize.value.ui64 =
7042 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7043 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7044 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7045 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7046 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7047 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7048 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7049 	as->arcstat_memory_throttle_count.value.ui64 =
7050 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7051 	as->arcstat_memory_direct_count.value.ui64 =
7052 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7053 	as->arcstat_memory_indirect_count.value.ui64 =
7054 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7055 
7056 	as->arcstat_memory_all_bytes.value.ui64 =
7057 	    arc_all_memory();
7058 	as->arcstat_memory_free_bytes.value.ui64 =
7059 	    arc_free_memory();
7060 	as->arcstat_memory_available_bytes.value.i64 =
7061 	    arc_available_memory();
7062 
7063 	as->arcstat_prune.value.ui64 =
7064 	    wmsum_value(&arc_sums.arcstat_prune);
7065 	as->arcstat_meta_used.value.ui64 =
7066 	    wmsum_value(&arc_sums.arcstat_meta_used);
7067 	as->arcstat_async_upgrade_sync.value.ui64 =
7068 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7069 	as->arcstat_predictive_prefetch.value.ui64 =
7070 	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7071 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7072 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7073 	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7074 	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7075 	as->arcstat_prescient_prefetch.value.ui64 =
7076 	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7077 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7078 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7079 	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7080 	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7081 	as->arcstat_raw_size.value.ui64 =
7082 	    wmsum_value(&arc_sums.arcstat_raw_size);
7083 	as->arcstat_cached_only_in_progress.value.ui64 =
7084 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7085 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7086 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7087 
7088 	return (0);
7089 }
7090 
7091 /*
7092  * This function *must* return indices evenly distributed between all
7093  * sublists of the multilist. This is needed due to how the ARC eviction
7094  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7095  * distributed between all sublists and uses this assumption when
7096  * deciding which sublist to evict from and how much to evict from it.
7097  */
7098 static unsigned int
7099 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7100 {
7101 	arc_buf_hdr_t *hdr = obj;
7102 
7103 	/*
7104 	 * We rely on b_dva to generate evenly distributed index
7105 	 * numbers using buf_hash below. So, as an added precaution,
7106 	 * let's make sure we never add empty buffers to the arc lists.
7107 	 */
7108 	ASSERT(!HDR_EMPTY(hdr));
7109 
7110 	/*
7111 	 * The assumption here, is the hash value for a given
7112 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7113 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7114 	 * Thus, we don't need to store the header's sublist index
7115 	 * on insertion, as this index can be recalculated on removal.
7116 	 *
7117 	 * Also, the low order bits of the hash value are thought to be
7118 	 * distributed evenly. Otherwise, in the case that the multilist
7119 	 * has a power of two number of sublists, each sublists' usage
7120 	 * would not be evenly distributed. In this context full 64bit
7121 	 * division would be a waste of time, so limit it to 32 bits.
7122 	 */
7123 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7124 	    multilist_get_num_sublists(ml));
7125 }
7126 
7127 static unsigned int
7128 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7129 {
7130 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7131 }
7132 
7133 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7134 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7135 		cmn_err(CE_WARN,				\
7136 		    "ignoring tunable %s (using %llu instead)",	\
7137 		    (#tuning), (u_longlong_t)(value));	\
7138 	}							\
7139 } while (0)
7140 
7141 /*
7142  * Called during module initialization and periodically thereafter to
7143  * apply reasonable changes to the exposed performance tunings.  Can also be
7144  * called explicitly by param_set_arc_*() functions when ARC tunables are
7145  * updated manually.  Non-zero zfs_* values which differ from the currently set
7146  * values will be applied.
7147  */
7148 void
7149 arc_tuning_update(boolean_t verbose)
7150 {
7151 	uint64_t allmem = arc_all_memory();
7152 
7153 	/* Valid range: 32M - <arc_c_max> */
7154 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7155 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7156 	    (zfs_arc_min <= arc_c_max)) {
7157 		arc_c_min = zfs_arc_min;
7158 		arc_c = MAX(arc_c, arc_c_min);
7159 	}
7160 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7161 
7162 	/* Valid range: 64M - <all physical memory> */
7163 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7164 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7165 	    (zfs_arc_max > arc_c_min)) {
7166 		arc_c_max = zfs_arc_max;
7167 		arc_c = MIN(arc_c, arc_c_max);
7168 		if (arc_dnode_limit > arc_c_max)
7169 			arc_dnode_limit = arc_c_max;
7170 	}
7171 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7172 
7173 	/* Valid range: 0 - <all physical memory> */
7174 	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7175 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7176 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7177 
7178 	/* Valid range: 1 - N */
7179 	if (zfs_arc_grow_retry)
7180 		arc_grow_retry = zfs_arc_grow_retry;
7181 
7182 	/* Valid range: 1 - N */
7183 	if (zfs_arc_shrink_shift) {
7184 		arc_shrink_shift = zfs_arc_shrink_shift;
7185 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7186 	}
7187 
7188 	/* Valid range: 1 - N ms */
7189 	if (zfs_arc_min_prefetch_ms)
7190 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7191 
7192 	/* Valid range: 1 - N ms */
7193 	if (zfs_arc_min_prescient_prefetch_ms) {
7194 		arc_min_prescient_prefetch_ms =
7195 		    zfs_arc_min_prescient_prefetch_ms;
7196 	}
7197 
7198 	/* Valid range: 0 - 100 */
7199 	if (zfs_arc_lotsfree_percent <= 100)
7200 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7201 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7202 	    verbose);
7203 
7204 	/* Valid range: 0 - <all physical memory> */
7205 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7206 		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7207 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7208 }
7209 
7210 static void
7211 arc_state_multilist_init(multilist_t *ml,
7212     multilist_sublist_index_func_t *index_func, int *maxcountp)
7213 {
7214 	multilist_create(ml, sizeof (arc_buf_hdr_t),
7215 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7216 	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7217 }
7218 
7219 static void
7220 arc_state_init(void)
7221 {
7222 	int num_sublists = 0;
7223 
7224 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7225 	    arc_state_multilist_index_func, &num_sublists);
7226 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7227 	    arc_state_multilist_index_func, &num_sublists);
7228 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7229 	    arc_state_multilist_index_func, &num_sublists);
7230 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7231 	    arc_state_multilist_index_func, &num_sublists);
7232 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7233 	    arc_state_multilist_index_func, &num_sublists);
7234 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7235 	    arc_state_multilist_index_func, &num_sublists);
7236 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7237 	    arc_state_multilist_index_func, &num_sublists);
7238 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7239 	    arc_state_multilist_index_func, &num_sublists);
7240 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7241 	    arc_state_multilist_index_func, &num_sublists);
7242 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7243 	    arc_state_multilist_index_func, &num_sublists);
7244 
7245 	/*
7246 	 * L2 headers should never be on the L2 state list since they don't
7247 	 * have L1 headers allocated.  Special index function asserts that.
7248 	 */
7249 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7250 	    arc_state_l2c_multilist_index_func, &num_sublists);
7251 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7252 	    arc_state_l2c_multilist_index_func, &num_sublists);
7253 
7254 	/*
7255 	 * Keep track of the number of markers needed to reclaim buffers from
7256 	 * any ARC state.  The markers will be pre-allocated so as to minimize
7257 	 * the number of memory allocations performed by the eviction thread.
7258 	 */
7259 	arc_state_evict_marker_count = num_sublists;
7260 
7261 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7262 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7263 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7264 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7265 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7266 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7267 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7268 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7269 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7270 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7271 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7272 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7273 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7274 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7275 
7276 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7277 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7278 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7279 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7280 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7281 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7282 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7283 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7284 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7285 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7286 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7287 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7288 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7289 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7290 
7291 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7292 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7293 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7294 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7295 
7296 	wmsum_init(&arc_sums.arcstat_hits, 0);
7297 	wmsum_init(&arc_sums.arcstat_iohits, 0);
7298 	wmsum_init(&arc_sums.arcstat_misses, 0);
7299 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7300 	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7301 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7302 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7303 	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7304 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7305 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7306 	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7307 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7308 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7309 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7310 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7311 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7312 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7313 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7314 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7315 	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7316 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7317 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7318 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7319 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7320 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7321 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7322 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7323 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7324 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7325 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7326 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7327 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7328 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7329 	aggsum_init(&arc_sums.arcstat_size, 0);
7330 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7331 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7332 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7333 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7334 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7335 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7336 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7337 	wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7338 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7339 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7340 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7341 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7342 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7343 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7344 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7345 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7346 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7347 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7348 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7349 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7350 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7351 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7352 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7353 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7354 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7355 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7356 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7357 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7358 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7359 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7360 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7361 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7362 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7363 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7364 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7365 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7366 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7367 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7368 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7369 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7370 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7371 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7372 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7373 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7374 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7375 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7376 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7377 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7378 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7379 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7380 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7381 	wmsum_init(&arc_sums.arcstat_prune, 0);
7382 	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7383 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7384 	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7385 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7386 	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7387 	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7388 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7389 	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7390 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7391 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7392 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7393 
7394 	arc_anon->arcs_state = ARC_STATE_ANON;
7395 	arc_mru->arcs_state = ARC_STATE_MRU;
7396 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7397 	arc_mfu->arcs_state = ARC_STATE_MFU;
7398 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7399 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7400 	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7401 }
7402 
7403 static void
7404 arc_state_fini(void)
7405 {
7406 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7407 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7408 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7409 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7410 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7411 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7412 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7413 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7414 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7415 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7416 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7417 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7418 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7419 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7420 
7421 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7422 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7423 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7424 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7425 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7426 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7427 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7428 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7429 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7430 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7431 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7432 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7433 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7434 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7435 
7436 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7437 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7438 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7439 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7440 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7441 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7442 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7443 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7444 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7445 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7446 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7447 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7448 
7449 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7450 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7451 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7452 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7453 
7454 	wmsum_fini(&arc_sums.arcstat_hits);
7455 	wmsum_fini(&arc_sums.arcstat_iohits);
7456 	wmsum_fini(&arc_sums.arcstat_misses);
7457 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7458 	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7459 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7460 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7461 	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7462 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7463 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7464 	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7465 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7466 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7467 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7468 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7469 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7470 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7471 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7472 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7473 	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7474 	wmsum_fini(&arc_sums.arcstat_deleted);
7475 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7476 	wmsum_fini(&arc_sums.arcstat_access_skip);
7477 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7478 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7479 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7480 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7481 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7482 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7483 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7484 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7485 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7486 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7487 	aggsum_fini(&arc_sums.arcstat_size);
7488 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7489 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7490 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7491 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7492 	wmsum_fini(&arc_sums.arcstat_data_size);
7493 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7494 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7495 	wmsum_fini(&arc_sums.arcstat_dnode_size);
7496 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7497 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7498 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7499 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7500 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7501 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7502 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7503 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7504 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7505 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7506 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7507 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7508 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7509 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7510 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7511 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7512 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7513 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7514 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7515 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7516 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7517 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7518 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7519 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7520 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7521 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7522 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7523 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7524 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7525 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7526 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7527 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7528 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7529 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7530 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7531 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7532 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7533 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7534 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7535 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7536 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7537 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7538 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7539 	wmsum_fini(&arc_sums.arcstat_prune);
7540 	wmsum_fini(&arc_sums.arcstat_meta_used);
7541 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7542 	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7543 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7544 	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7545 	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7546 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7547 	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7548 	wmsum_fini(&arc_sums.arcstat_raw_size);
7549 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7550 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7551 }
7552 
7553 uint64_t
7554 arc_target_bytes(void)
7555 {
7556 	return (arc_c);
7557 }
7558 
7559 void
7560 arc_set_limits(uint64_t allmem)
7561 {
7562 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7563 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7564 
7565 	/* How to set default max varies by platform. */
7566 	arc_c_max = arc_default_max(arc_c_min, allmem);
7567 }
7568 void
7569 arc_init(void)
7570 {
7571 	uint64_t percent, allmem = arc_all_memory();
7572 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7573 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7574 	    offsetof(arc_evict_waiter_t, aew_node));
7575 
7576 	arc_min_prefetch_ms = 1000;
7577 	arc_min_prescient_prefetch_ms = 6000;
7578 
7579 #if defined(_KERNEL)
7580 	arc_lowmem_init();
7581 #endif
7582 
7583 	arc_set_limits(allmem);
7584 
7585 #ifdef _KERNEL
7586 	/*
7587 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7588 	 * environment before the module was loaded, don't block setting the
7589 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7590 	 * to a lower value.
7591 	 * zfs_arc_min will be handled by arc_tuning_update().
7592 	 */
7593 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7594 	    zfs_arc_max < allmem) {
7595 		arc_c_max = zfs_arc_max;
7596 		if (arc_c_min >= arc_c_max) {
7597 			arc_c_min = MAX(zfs_arc_max / 2,
7598 			    2ULL << SPA_MAXBLOCKSHIFT);
7599 		}
7600 	}
7601 #else
7602 	/*
7603 	 * In userland, there's only the memory pressure that we artificially
7604 	 * create (see arc_available_memory()).  Don't let arc_c get too
7605 	 * small, because it can cause transactions to be larger than
7606 	 * arc_c, causing arc_tempreserve_space() to fail.
7607 	 */
7608 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7609 #endif
7610 
7611 	arc_c = arc_c_min;
7612 	/*
7613 	 * 32-bit fixed point fractions of metadata from total ARC size,
7614 	 * MRU data from all data and MRU metadata from all metadata.
7615 	 */
7616 	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
7617 	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
7618 	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
7619 
7620 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7621 	arc_dnode_limit = arc_c_max * percent / 100;
7622 
7623 	/* Apply user specified tunings */
7624 	arc_tuning_update(B_TRUE);
7625 
7626 	/* if kmem_flags are set, lets try to use less memory */
7627 	if (kmem_debugging())
7628 		arc_c = arc_c / 2;
7629 	if (arc_c < arc_c_min)
7630 		arc_c = arc_c_min;
7631 
7632 	arc_register_hotplug();
7633 
7634 	arc_state_init();
7635 
7636 	buf_init();
7637 
7638 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7639 	    offsetof(arc_prune_t, p_node));
7640 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7641 
7642 	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7643 	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7644 
7645 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7646 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7647 
7648 	if (arc_ksp != NULL) {
7649 		arc_ksp->ks_data = &arc_stats;
7650 		arc_ksp->ks_update = arc_kstat_update;
7651 		kstat_install(arc_ksp);
7652 	}
7653 
7654 	arc_state_evict_markers =
7655 	    arc_state_alloc_markers(arc_state_evict_marker_count);
7656 	arc_evict_zthr = zthr_create_timer("arc_evict",
7657 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7658 	arc_reap_zthr = zthr_create_timer("arc_reap",
7659 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7660 
7661 	arc_warm = B_FALSE;
7662 
7663 	/*
7664 	 * Calculate maximum amount of dirty data per pool.
7665 	 *
7666 	 * If it has been set by a module parameter, take that.
7667 	 * Otherwise, use a percentage of physical memory defined by
7668 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7669 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7670 	 */
7671 #ifdef __LP64__
7672 	if (zfs_dirty_data_max_max == 0)
7673 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7674 		    allmem * zfs_dirty_data_max_max_percent / 100);
7675 #else
7676 	if (zfs_dirty_data_max_max == 0)
7677 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7678 		    allmem * zfs_dirty_data_max_max_percent / 100);
7679 #endif
7680 
7681 	if (zfs_dirty_data_max == 0) {
7682 		zfs_dirty_data_max = allmem *
7683 		    zfs_dirty_data_max_percent / 100;
7684 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7685 		    zfs_dirty_data_max_max);
7686 	}
7687 
7688 	if (zfs_wrlog_data_max == 0) {
7689 
7690 		/*
7691 		 * dp_wrlog_total is reduced for each txg at the end of
7692 		 * spa_sync(). However, dp_dirty_total is reduced every time
7693 		 * a block is written out. Thus under normal operation,
7694 		 * dp_wrlog_total could grow 2 times as big as
7695 		 * zfs_dirty_data_max.
7696 		 */
7697 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7698 	}
7699 }
7700 
7701 void
7702 arc_fini(void)
7703 {
7704 	arc_prune_t *p;
7705 
7706 #ifdef _KERNEL
7707 	arc_lowmem_fini();
7708 #endif /* _KERNEL */
7709 
7710 	/* Use B_TRUE to ensure *all* buffers are evicted */
7711 	arc_flush(NULL, B_TRUE);
7712 
7713 	if (arc_ksp != NULL) {
7714 		kstat_delete(arc_ksp);
7715 		arc_ksp = NULL;
7716 	}
7717 
7718 	taskq_wait(arc_prune_taskq);
7719 	taskq_destroy(arc_prune_taskq);
7720 
7721 	mutex_enter(&arc_prune_mtx);
7722 	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7723 		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7724 		zfs_refcount_destroy(&p->p_refcnt);
7725 		kmem_free(p, sizeof (*p));
7726 	}
7727 	mutex_exit(&arc_prune_mtx);
7728 
7729 	list_destroy(&arc_prune_list);
7730 	mutex_destroy(&arc_prune_mtx);
7731 
7732 	(void) zthr_cancel(arc_evict_zthr);
7733 	(void) zthr_cancel(arc_reap_zthr);
7734 	arc_state_free_markers(arc_state_evict_markers,
7735 	    arc_state_evict_marker_count);
7736 
7737 	mutex_destroy(&arc_evict_lock);
7738 	list_destroy(&arc_evict_waiters);
7739 
7740 	/*
7741 	 * Free any buffers that were tagged for destruction.  This needs
7742 	 * to occur before arc_state_fini() runs and destroys the aggsum
7743 	 * values which are updated when freeing scatter ABDs.
7744 	 */
7745 	l2arc_do_free_on_write();
7746 
7747 	/*
7748 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7749 	 * trigger the release of kmem magazines, which can callback to
7750 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7751 	 */
7752 	buf_fini();
7753 	arc_state_fini();
7754 
7755 	arc_unregister_hotplug();
7756 
7757 	/*
7758 	 * We destroy the zthrs after all the ARC state has been
7759 	 * torn down to avoid the case of them receiving any
7760 	 * wakeup() signals after they are destroyed.
7761 	 */
7762 	zthr_destroy(arc_evict_zthr);
7763 	zthr_destroy(arc_reap_zthr);
7764 
7765 	ASSERT0(arc_loaned_bytes);
7766 }
7767 
7768 /*
7769  * Level 2 ARC
7770  *
7771  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7772  * It uses dedicated storage devices to hold cached data, which are populated
7773  * using large infrequent writes.  The main role of this cache is to boost
7774  * the performance of random read workloads.  The intended L2ARC devices
7775  * include short-stroked disks, solid state disks, and other media with
7776  * substantially faster read latency than disk.
7777  *
7778  *                 +-----------------------+
7779  *                 |         ARC           |
7780  *                 +-----------------------+
7781  *                    |         ^     ^
7782  *                    |         |     |
7783  *      l2arc_feed_thread()    arc_read()
7784  *                    |         |     |
7785  *                    |  l2arc read   |
7786  *                    V         |     |
7787  *               +---------------+    |
7788  *               |     L2ARC     |    |
7789  *               +---------------+    |
7790  *                   |    ^           |
7791  *          l2arc_write() |           |
7792  *                   |    |           |
7793  *                   V    |           |
7794  *                 +-------+      +-------+
7795  *                 | vdev  |      | vdev  |
7796  *                 | cache |      | cache |
7797  *                 +-------+      +-------+
7798  *                 +=========+     .-----.
7799  *                 :  L2ARC  :    |-_____-|
7800  *                 : devices :    | Disks |
7801  *                 +=========+    `-_____-'
7802  *
7803  * Read requests are satisfied from the following sources, in order:
7804  *
7805  *	1) ARC
7806  *	2) vdev cache of L2ARC devices
7807  *	3) L2ARC devices
7808  *	4) vdev cache of disks
7809  *	5) disks
7810  *
7811  * Some L2ARC device types exhibit extremely slow write performance.
7812  * To accommodate for this there are some significant differences between
7813  * the L2ARC and traditional cache design:
7814  *
7815  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7816  * the ARC behave as usual, freeing buffers and placing headers on ghost
7817  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7818  * this would add inflated write latencies for all ARC memory pressure.
7819  *
7820  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7821  * It does this by periodically scanning buffers from the eviction-end of
7822  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7823  * not already there. It scans until a headroom of buffers is satisfied,
7824  * which itself is a buffer for ARC eviction. If a compressible buffer is
7825  * found during scanning and selected for writing to an L2ARC device, we
7826  * temporarily boost scanning headroom during the next scan cycle to make
7827  * sure we adapt to compression effects (which might significantly reduce
7828  * the data volume we write to L2ARC). The thread that does this is
7829  * l2arc_feed_thread(), illustrated below; example sizes are included to
7830  * provide a better sense of ratio than this diagram:
7831  *
7832  *	       head -->                        tail
7833  *	        +---------------------+----------+
7834  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7835  *	        +---------------------+----------+   |   o L2ARC eligible
7836  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7837  *	        +---------------------+----------+   |
7838  *	             15.9 Gbytes      ^ 32 Mbytes    |
7839  *	                           headroom          |
7840  *	                                      l2arc_feed_thread()
7841  *	                                             |
7842  *	                 l2arc write hand <--[oooo]--'
7843  *	                         |           8 Mbyte
7844  *	                         |          write max
7845  *	                         V
7846  *		  +==============================+
7847  *	L2ARC dev |####|#|###|###|    |####| ... |
7848  *	          +==============================+
7849  *	                     32 Gbytes
7850  *
7851  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7852  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7853  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7854  * safe to say that this is an uncommon case, since buffers at the end of
7855  * the ARC lists have moved there due to inactivity.
7856  *
7857  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7858  * then the L2ARC simply misses copying some buffers.  This serves as a
7859  * pressure valve to prevent heavy read workloads from both stalling the ARC
7860  * with waits and clogging the L2ARC with writes.  This also helps prevent
7861  * the potential for the L2ARC to churn if it attempts to cache content too
7862  * quickly, such as during backups of the entire pool.
7863  *
7864  * 5. After system boot and before the ARC has filled main memory, there are
7865  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7866  * lists can remain mostly static.  Instead of searching from tail of these
7867  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7868  * for eligible buffers, greatly increasing its chance of finding them.
7869  *
7870  * The L2ARC device write speed is also boosted during this time so that
7871  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7872  * there are no L2ARC reads, and no fear of degrading read performance
7873  * through increased writes.
7874  *
7875  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7876  * the vdev queue can aggregate them into larger and fewer writes.  Each
7877  * device is written to in a rotor fashion, sweeping writes through
7878  * available space then repeating.
7879  *
7880  * 7. The L2ARC does not store dirty content.  It never needs to flush
7881  * write buffers back to disk based storage.
7882  *
7883  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7884  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7885  *
7886  * The performance of the L2ARC can be tweaked by a number of tunables, which
7887  * may be necessary for different workloads:
7888  *
7889  *	l2arc_write_max		max write bytes per interval
7890  *	l2arc_write_boost	extra write bytes during device warmup
7891  *	l2arc_noprefetch	skip caching prefetched buffers
7892  *	l2arc_headroom		number of max device writes to precache
7893  *	l2arc_headroom_boost	when we find compressed buffers during ARC
7894  *				scanning, we multiply headroom by this
7895  *				percentage factor for the next scan cycle,
7896  *				since more compressed buffers are likely to
7897  *				be present
7898  *	l2arc_feed_secs		seconds between L2ARC writing
7899  *
7900  * Tunables may be removed or added as future performance improvements are
7901  * integrated, and also may become zpool properties.
7902  *
7903  * There are three key functions that control how the L2ARC warms up:
7904  *
7905  *	l2arc_write_eligible()	check if a buffer is eligible to cache
7906  *	l2arc_write_size()	calculate how much to write
7907  *	l2arc_write_interval()	calculate sleep delay between writes
7908  *
7909  * These three functions determine what to write, how much, and how quickly
7910  * to send writes.
7911  *
7912  * L2ARC persistence:
7913  *
7914  * When writing buffers to L2ARC, we periodically add some metadata to
7915  * make sure we can pick them up after reboot, thus dramatically reducing
7916  * the impact that any downtime has on the performance of storage systems
7917  * with large caches.
7918  *
7919  * The implementation works fairly simply by integrating the following two
7920  * modifications:
7921  *
7922  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7923  *    which is an additional piece of metadata which describes what's been
7924  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7925  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7926  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7927  *    time-wise and offset-wise interleaved, but that is an optimization rather
7928  *    than for correctness. The log block also includes a pointer to the
7929  *    previous block in its chain.
7930  *
7931  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7932  *    for our header bookkeeping purposes. This contains a device header,
7933  *    which contains our top-level reference structures. We update it each
7934  *    time we write a new log block, so that we're able to locate it in the
7935  *    L2ARC device. If this write results in an inconsistent device header
7936  *    (e.g. due to power failure), we detect this by verifying the header's
7937  *    checksum and simply fail to reconstruct the L2ARC after reboot.
7938  *
7939  * Implementation diagram:
7940  *
7941  * +=== L2ARC device (not to scale) ======================================+
7942  * |       ___two newest log block pointers__.__________                  |
7943  * |      /                                   \dh_start_lbps[1]           |
7944  * |	 /				       \         \dh_start_lbps[0]|
7945  * |.___/__.                                    V         V               |
7946  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7947  * ||   hdr|      ^         /^       /^        /         /                |
7948  * |+------+  ...--\-------/  \-----/--\------/         /                 |
7949  * |                \--------------/    \--------------/                  |
7950  * +======================================================================+
7951  *
7952  * As can be seen on the diagram, rather than using a simple linked list,
7953  * we use a pair of linked lists with alternating elements. This is a
7954  * performance enhancement due to the fact that we only find out the
7955  * address of the next log block access once the current block has been
7956  * completely read in. Obviously, this hurts performance, because we'd be
7957  * keeping the device's I/O queue at only a 1 operation deep, thus
7958  * incurring a large amount of I/O round-trip latency. Having two lists
7959  * allows us to fetch two log blocks ahead of where we are currently
7960  * rebuilding L2ARC buffers.
7961  *
7962  * On-device data structures:
7963  *
7964  * L2ARC device header:	l2arc_dev_hdr_phys_t
7965  * L2ARC log block:	l2arc_log_blk_phys_t
7966  *
7967  * L2ARC reconstruction:
7968  *
7969  * When writing data, we simply write in the standard rotary fashion,
7970  * evicting buffers as we go and simply writing new data over them (writing
7971  * a new log block every now and then). This obviously means that once we
7972  * loop around the end of the device, we will start cutting into an already
7973  * committed log block (and its referenced data buffers), like so:
7974  *
7975  *    current write head__       __old tail
7976  *                        \     /
7977  *                        V    V
7978  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7979  *                         ^    ^^^^^^^^^___________________________________
7980  *                         |                                                \
7981  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7982  *
7983  * When importing the pool, we detect this situation and use it to stop
7984  * our scanning process (see l2arc_rebuild).
7985  *
7986  * There is one significant caveat to consider when rebuilding ARC contents
7987  * from an L2ARC device: what about invalidated buffers? Given the above
7988  * construction, we cannot update blocks which we've already written to amend
7989  * them to remove buffers which were invalidated. Thus, during reconstruction,
7990  * we might be populating the cache with buffers for data that's not on the
7991  * main pool anymore, or may have been overwritten!
7992  *
7993  * As it turns out, this isn't a problem. Every arc_read request includes
7994  * both the DVA and, crucially, the birth TXG of the BP the caller is
7995  * looking for. So even if the cache were populated by completely rotten
7996  * blocks for data that had been long deleted and/or overwritten, we'll
7997  * never actually return bad data from the cache, since the DVA with the
7998  * birth TXG uniquely identify a block in space and time - once created,
7999  * a block is immutable on disk. The worst thing we have done is wasted
8000  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8001  * entries that will get dropped from the l2arc as it is being updated
8002  * with new blocks.
8003  *
8004  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8005  * hand are not restored. This is done by saving the offset (in bytes)
8006  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8007  * into account when restoring buffers.
8008  */
8009 
8010 static boolean_t
8011 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8012 {
8013 	/*
8014 	 * A buffer is *not* eligible for the L2ARC if it:
8015 	 * 1. belongs to a different spa.
8016 	 * 2. is already cached on the L2ARC.
8017 	 * 3. has an I/O in progress (it may be an incomplete read).
8018 	 * 4. is flagged not eligible (zfs property).
8019 	 */
8020 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8021 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8022 		return (B_FALSE);
8023 
8024 	return (B_TRUE);
8025 }
8026 
8027 static uint64_t
8028 l2arc_write_size(l2arc_dev_t *dev)
8029 {
8030 	uint64_t size;
8031 
8032 	/*
8033 	 * Make sure our globals have meaningful values in case the user
8034 	 * altered them.
8035 	 */
8036 	size = l2arc_write_max;
8037 	if (size == 0) {
8038 		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8039 		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8040 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8041 	}
8042 
8043 	if (arc_warm == B_FALSE)
8044 		size += l2arc_write_boost;
8045 
8046 	/* We need to add in the worst case scenario of log block overhead. */
8047 	size += l2arc_log_blk_overhead(size, dev);
8048 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8049 		/*
8050 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8051 		 * times the writesize, whichever is greater.
8052 		 */
8053 		size += MAX(64 * 1024 * 1024,
8054 		    (size * l2arc_trim_ahead) / 100);
8055 	}
8056 
8057 	/*
8058 	 * Make sure the write size does not exceed the size of the cache
8059 	 * device. This is important in l2arc_evict(), otherwise infinite
8060 	 * iteration can occur.
8061 	 */
8062 	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8063 
8064 	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8065 
8066 	return (size);
8067 
8068 }
8069 
8070 static clock_t
8071 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8072 {
8073 	clock_t interval, next, now;
8074 
8075 	/*
8076 	 * If the ARC lists are busy, increase our write rate; if the
8077 	 * lists are stale, idle back.  This is achieved by checking
8078 	 * how much we previously wrote - if it was more than half of
8079 	 * what we wanted, schedule the next write much sooner.
8080 	 */
8081 	if (l2arc_feed_again && wrote > (wanted / 2))
8082 		interval = (hz * l2arc_feed_min_ms) / 1000;
8083 	else
8084 		interval = hz * l2arc_feed_secs;
8085 
8086 	now = ddi_get_lbolt();
8087 	next = MAX(now, MIN(now + interval, began + interval));
8088 
8089 	return (next);
8090 }
8091 
8092 /*
8093  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8094  * If a device is returned, this also returns holding the spa config lock.
8095  */
8096 static l2arc_dev_t *
8097 l2arc_dev_get_next(void)
8098 {
8099 	l2arc_dev_t *first, *next = NULL;
8100 
8101 	/*
8102 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8103 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8104 	 * both locks will be dropped and a spa config lock held instead.
8105 	 */
8106 	mutex_enter(&spa_namespace_lock);
8107 	mutex_enter(&l2arc_dev_mtx);
8108 
8109 	/* if there are no vdevs, there is nothing to do */
8110 	if (l2arc_ndev == 0)
8111 		goto out;
8112 
8113 	first = NULL;
8114 	next = l2arc_dev_last;
8115 	do {
8116 		/* loop around the list looking for a non-faulted vdev */
8117 		if (next == NULL) {
8118 			next = list_head(l2arc_dev_list);
8119 		} else {
8120 			next = list_next(l2arc_dev_list, next);
8121 			if (next == NULL)
8122 				next = list_head(l2arc_dev_list);
8123 		}
8124 
8125 		/* if we have come back to the start, bail out */
8126 		if (first == NULL)
8127 			first = next;
8128 		else if (next == first)
8129 			break;
8130 
8131 		ASSERT3P(next, !=, NULL);
8132 	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8133 	    next->l2ad_trim_all);
8134 
8135 	/* if we were unable to find any usable vdevs, return NULL */
8136 	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8137 	    next->l2ad_trim_all)
8138 		next = NULL;
8139 
8140 	l2arc_dev_last = next;
8141 
8142 out:
8143 	mutex_exit(&l2arc_dev_mtx);
8144 
8145 	/*
8146 	 * Grab the config lock to prevent the 'next' device from being
8147 	 * removed while we are writing to it.
8148 	 */
8149 	if (next != NULL)
8150 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8151 	mutex_exit(&spa_namespace_lock);
8152 
8153 	return (next);
8154 }
8155 
8156 /*
8157  * Free buffers that were tagged for destruction.
8158  */
8159 static void
8160 l2arc_do_free_on_write(void)
8161 {
8162 	l2arc_data_free_t *df;
8163 
8164 	mutex_enter(&l2arc_free_on_write_mtx);
8165 	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8166 		ASSERT3P(df->l2df_abd, !=, NULL);
8167 		abd_free(df->l2df_abd);
8168 		kmem_free(df, sizeof (l2arc_data_free_t));
8169 	}
8170 	mutex_exit(&l2arc_free_on_write_mtx);
8171 }
8172 
8173 /*
8174  * A write to a cache device has completed.  Update all headers to allow
8175  * reads from these buffers to begin.
8176  */
8177 static void
8178 l2arc_write_done(zio_t *zio)
8179 {
8180 	l2arc_write_callback_t	*cb;
8181 	l2arc_lb_abd_buf_t	*abd_buf;
8182 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8183 	l2arc_dev_t		*dev;
8184 	l2arc_dev_hdr_phys_t	*l2dhdr;
8185 	list_t			*buflist;
8186 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8187 	kmutex_t		*hash_lock;
8188 	int64_t			bytes_dropped = 0;
8189 
8190 	cb = zio->io_private;
8191 	ASSERT3P(cb, !=, NULL);
8192 	dev = cb->l2wcb_dev;
8193 	l2dhdr = dev->l2ad_dev_hdr;
8194 	ASSERT3P(dev, !=, NULL);
8195 	head = cb->l2wcb_head;
8196 	ASSERT3P(head, !=, NULL);
8197 	buflist = &dev->l2ad_buflist;
8198 	ASSERT3P(buflist, !=, NULL);
8199 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8200 	    l2arc_write_callback_t *, cb);
8201 
8202 	/*
8203 	 * All writes completed, or an error was hit.
8204 	 */
8205 top:
8206 	mutex_enter(&dev->l2ad_mtx);
8207 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8208 		hdr_prev = list_prev(buflist, hdr);
8209 
8210 		hash_lock = HDR_LOCK(hdr);
8211 
8212 		/*
8213 		 * We cannot use mutex_enter or else we can deadlock
8214 		 * with l2arc_write_buffers (due to swapping the order
8215 		 * the hash lock and l2ad_mtx are taken).
8216 		 */
8217 		if (!mutex_tryenter(hash_lock)) {
8218 			/*
8219 			 * Missed the hash lock. We must retry so we
8220 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8221 			 */
8222 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8223 
8224 			/*
8225 			 * We don't want to rescan the headers we've
8226 			 * already marked as having been written out, so
8227 			 * we reinsert the head node so we can pick up
8228 			 * where we left off.
8229 			 */
8230 			list_remove(buflist, head);
8231 			list_insert_after(buflist, hdr, head);
8232 
8233 			mutex_exit(&dev->l2ad_mtx);
8234 
8235 			/*
8236 			 * We wait for the hash lock to become available
8237 			 * to try and prevent busy waiting, and increase
8238 			 * the chance we'll be able to acquire the lock
8239 			 * the next time around.
8240 			 */
8241 			mutex_enter(hash_lock);
8242 			mutex_exit(hash_lock);
8243 			goto top;
8244 		}
8245 
8246 		/*
8247 		 * We could not have been moved into the arc_l2c_only
8248 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8249 		 * bit being set. Let's just ensure that's being enforced.
8250 		 */
8251 		ASSERT(HDR_HAS_L1HDR(hdr));
8252 
8253 		/*
8254 		 * Skipped - drop L2ARC entry and mark the header as no
8255 		 * longer L2 eligibile.
8256 		 */
8257 		if (zio->io_error != 0) {
8258 			/*
8259 			 * Error - drop L2ARC entry.
8260 			 */
8261 			list_remove(buflist, hdr);
8262 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8263 
8264 			uint64_t psize = HDR_GET_PSIZE(hdr);
8265 			l2arc_hdr_arcstats_decrement(hdr);
8266 
8267 			bytes_dropped +=
8268 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8269 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8270 			    arc_hdr_size(hdr), hdr);
8271 		}
8272 
8273 		/*
8274 		 * Allow ARC to begin reads and ghost list evictions to
8275 		 * this L2ARC entry.
8276 		 */
8277 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8278 
8279 		mutex_exit(hash_lock);
8280 	}
8281 
8282 	/*
8283 	 * Free the allocated abd buffers for writing the log blocks.
8284 	 * If the zio failed reclaim the allocated space and remove the
8285 	 * pointers to these log blocks from the log block pointer list
8286 	 * of the L2ARC device.
8287 	 */
8288 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8289 		abd_free(abd_buf->abd);
8290 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8291 		if (zio->io_error != 0) {
8292 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8293 			/*
8294 			 * L2BLK_GET_PSIZE returns aligned size for log
8295 			 * blocks.
8296 			 */
8297 			uint64_t asize =
8298 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8299 			bytes_dropped += asize;
8300 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8301 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8302 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8303 			    lb_ptr_buf);
8304 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8305 			    lb_ptr_buf);
8306 			kmem_free(lb_ptr_buf->lb_ptr,
8307 			    sizeof (l2arc_log_blkptr_t));
8308 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8309 		}
8310 	}
8311 	list_destroy(&cb->l2wcb_abd_list);
8312 
8313 	if (zio->io_error != 0) {
8314 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8315 
8316 		/*
8317 		 * Restore the lbps array in the header to its previous state.
8318 		 * If the list of log block pointers is empty, zero out the
8319 		 * log block pointers in the device header.
8320 		 */
8321 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8322 		for (int i = 0; i < 2; i++) {
8323 			if (lb_ptr_buf == NULL) {
8324 				/*
8325 				 * If the list is empty zero out the device
8326 				 * header. Otherwise zero out the second log
8327 				 * block pointer in the header.
8328 				 */
8329 				if (i == 0) {
8330 					memset(l2dhdr, 0,
8331 					    dev->l2ad_dev_hdr_asize);
8332 				} else {
8333 					memset(&l2dhdr->dh_start_lbps[i], 0,
8334 					    sizeof (l2arc_log_blkptr_t));
8335 				}
8336 				break;
8337 			}
8338 			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8339 			    sizeof (l2arc_log_blkptr_t));
8340 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8341 			    lb_ptr_buf);
8342 		}
8343 	}
8344 
8345 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8346 	list_remove(buflist, head);
8347 	ASSERT(!HDR_HAS_L1HDR(head));
8348 	kmem_cache_free(hdr_l2only_cache, head);
8349 	mutex_exit(&dev->l2ad_mtx);
8350 
8351 	ASSERT(dev->l2ad_vdev != NULL);
8352 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8353 
8354 	l2arc_do_free_on_write();
8355 
8356 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8357 }
8358 
8359 static int
8360 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8361 {
8362 	int ret;
8363 	spa_t *spa = zio->io_spa;
8364 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8365 	blkptr_t *bp = zio->io_bp;
8366 	uint8_t salt[ZIO_DATA_SALT_LEN];
8367 	uint8_t iv[ZIO_DATA_IV_LEN];
8368 	uint8_t mac[ZIO_DATA_MAC_LEN];
8369 	boolean_t no_crypt = B_FALSE;
8370 
8371 	/*
8372 	 * ZIL data is never be written to the L2ARC, so we don't need
8373 	 * special handling for its unique MAC storage.
8374 	 */
8375 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8376 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8377 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8378 
8379 	/*
8380 	 * If the data was encrypted, decrypt it now. Note that
8381 	 * we must check the bp here and not the hdr, since the
8382 	 * hdr does not have its encryption parameters updated
8383 	 * until arc_read_done().
8384 	 */
8385 	if (BP_IS_ENCRYPTED(bp)) {
8386 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8387 		    ARC_HDR_USE_RESERVE);
8388 
8389 		zio_crypt_decode_params_bp(bp, salt, iv);
8390 		zio_crypt_decode_mac_bp(bp, mac);
8391 
8392 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8393 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8394 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8395 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8396 		if (ret != 0) {
8397 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8398 			goto error;
8399 		}
8400 
8401 		/*
8402 		 * If we actually performed decryption, replace b_pabd
8403 		 * with the decrypted data. Otherwise we can just throw
8404 		 * our decryption buffer away.
8405 		 */
8406 		if (!no_crypt) {
8407 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8408 			    arc_hdr_size(hdr), hdr);
8409 			hdr->b_l1hdr.b_pabd = eabd;
8410 			zio->io_abd = eabd;
8411 		} else {
8412 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8413 		}
8414 	}
8415 
8416 	/*
8417 	 * If the L2ARC block was compressed, but ARC compression
8418 	 * is disabled we decompress the data into a new buffer and
8419 	 * replace the existing data.
8420 	 */
8421 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8422 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8423 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8424 		    ARC_HDR_USE_RESERVE);
8425 		void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8426 
8427 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8428 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8429 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8430 		if (ret != 0) {
8431 			abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8432 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8433 			goto error;
8434 		}
8435 
8436 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8437 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8438 		    arc_hdr_size(hdr), hdr);
8439 		hdr->b_l1hdr.b_pabd = cabd;
8440 		zio->io_abd = cabd;
8441 		zio->io_size = HDR_GET_LSIZE(hdr);
8442 	}
8443 
8444 	return (0);
8445 
8446 error:
8447 	return (ret);
8448 }
8449 
8450 
8451 /*
8452  * A read to a cache device completed.  Validate buffer contents before
8453  * handing over to the regular ARC routines.
8454  */
8455 static void
8456 l2arc_read_done(zio_t *zio)
8457 {
8458 	int tfm_error = 0;
8459 	l2arc_read_callback_t *cb = zio->io_private;
8460 	arc_buf_hdr_t *hdr;
8461 	kmutex_t *hash_lock;
8462 	boolean_t valid_cksum;
8463 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8464 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8465 
8466 	ASSERT3P(zio->io_vd, !=, NULL);
8467 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8468 
8469 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8470 
8471 	ASSERT3P(cb, !=, NULL);
8472 	hdr = cb->l2rcb_hdr;
8473 	ASSERT3P(hdr, !=, NULL);
8474 
8475 	hash_lock = HDR_LOCK(hdr);
8476 	mutex_enter(hash_lock);
8477 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8478 
8479 	/*
8480 	 * If the data was read into a temporary buffer,
8481 	 * move it and free the buffer.
8482 	 */
8483 	if (cb->l2rcb_abd != NULL) {
8484 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8485 		if (zio->io_error == 0) {
8486 			if (using_rdata) {
8487 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8488 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8489 			} else {
8490 				abd_copy(hdr->b_l1hdr.b_pabd,
8491 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8492 			}
8493 		}
8494 
8495 		/*
8496 		 * The following must be done regardless of whether
8497 		 * there was an error:
8498 		 * - free the temporary buffer
8499 		 * - point zio to the real ARC buffer
8500 		 * - set zio size accordingly
8501 		 * These are required because zio is either re-used for
8502 		 * an I/O of the block in the case of the error
8503 		 * or the zio is passed to arc_read_done() and it
8504 		 * needs real data.
8505 		 */
8506 		abd_free(cb->l2rcb_abd);
8507 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8508 
8509 		if (using_rdata) {
8510 			ASSERT(HDR_HAS_RABD(hdr));
8511 			zio->io_abd = zio->io_orig_abd =
8512 			    hdr->b_crypt_hdr.b_rabd;
8513 		} else {
8514 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8515 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8516 		}
8517 	}
8518 
8519 	ASSERT3P(zio->io_abd, !=, NULL);
8520 
8521 	/*
8522 	 * Check this survived the L2ARC journey.
8523 	 */
8524 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8525 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8526 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8527 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8528 	zio->io_prop.zp_complevel = hdr->b_complevel;
8529 
8530 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8531 
8532 	/*
8533 	 * b_rabd will always match the data as it exists on disk if it is
8534 	 * being used. Therefore if we are reading into b_rabd we do not
8535 	 * attempt to untransform the data.
8536 	 */
8537 	if (valid_cksum && !using_rdata)
8538 		tfm_error = l2arc_untransform(zio, cb);
8539 
8540 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8541 	    !HDR_L2_EVICTED(hdr)) {
8542 		mutex_exit(hash_lock);
8543 		zio->io_private = hdr;
8544 		arc_read_done(zio);
8545 	} else {
8546 		/*
8547 		 * Buffer didn't survive caching.  Increment stats and
8548 		 * reissue to the original storage device.
8549 		 */
8550 		if (zio->io_error != 0) {
8551 			ARCSTAT_BUMP(arcstat_l2_io_error);
8552 		} else {
8553 			zio->io_error = SET_ERROR(EIO);
8554 		}
8555 		if (!valid_cksum || tfm_error != 0)
8556 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8557 
8558 		/*
8559 		 * If there's no waiter, issue an async i/o to the primary
8560 		 * storage now.  If there *is* a waiter, the caller must
8561 		 * issue the i/o in a context where it's OK to block.
8562 		 */
8563 		if (zio->io_waiter == NULL) {
8564 			zio_t *pio = zio_unique_parent(zio);
8565 			void *abd = (using_rdata) ?
8566 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8567 
8568 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8569 
8570 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8571 			    abd, zio->io_size, arc_read_done,
8572 			    hdr, zio->io_priority, cb->l2rcb_flags,
8573 			    &cb->l2rcb_zb);
8574 
8575 			/*
8576 			 * Original ZIO will be freed, so we need to update
8577 			 * ARC header with the new ZIO pointer to be used
8578 			 * by zio_change_priority() in arc_read().
8579 			 */
8580 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8581 			    acb != NULL; acb = acb->acb_next)
8582 				acb->acb_zio_head = zio;
8583 
8584 			mutex_exit(hash_lock);
8585 			zio_nowait(zio);
8586 		} else {
8587 			mutex_exit(hash_lock);
8588 		}
8589 	}
8590 
8591 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8592 }
8593 
8594 /*
8595  * This is the list priority from which the L2ARC will search for pages to
8596  * cache.  This is used within loops (0..3) to cycle through lists in the
8597  * desired order.  This order can have a significant effect on cache
8598  * performance.
8599  *
8600  * Currently the metadata lists are hit first, MFU then MRU, followed by
8601  * the data lists.  This function returns a locked list, and also returns
8602  * the lock pointer.
8603  */
8604 static multilist_sublist_t *
8605 l2arc_sublist_lock(int list_num)
8606 {
8607 	multilist_t *ml = NULL;
8608 	unsigned int idx;
8609 
8610 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8611 
8612 	switch (list_num) {
8613 	case 0:
8614 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8615 		break;
8616 	case 1:
8617 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8618 		break;
8619 	case 2:
8620 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8621 		break;
8622 	case 3:
8623 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8624 		break;
8625 	default:
8626 		return (NULL);
8627 	}
8628 
8629 	/*
8630 	 * Return a randomly-selected sublist. This is acceptable
8631 	 * because the caller feeds only a little bit of data for each
8632 	 * call (8MB). Subsequent calls will result in different
8633 	 * sublists being selected.
8634 	 */
8635 	idx = multilist_get_random_index(ml);
8636 	return (multilist_sublist_lock(ml, idx));
8637 }
8638 
8639 /*
8640  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8641  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8642  * overhead in processing to make sure there is enough headroom available
8643  * when writing buffers.
8644  */
8645 static inline uint64_t
8646 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8647 {
8648 	if (dev->l2ad_log_entries == 0) {
8649 		return (0);
8650 	} else {
8651 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8652 
8653 		uint64_t log_blocks = (log_entries +
8654 		    dev->l2ad_log_entries - 1) /
8655 		    dev->l2ad_log_entries;
8656 
8657 		return (vdev_psize_to_asize(dev->l2ad_vdev,
8658 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8659 	}
8660 }
8661 
8662 /*
8663  * Evict buffers from the device write hand to the distance specified in
8664  * bytes. This distance may span populated buffers, it may span nothing.
8665  * This is clearing a region on the L2ARC device ready for writing.
8666  * If the 'all' boolean is set, every buffer is evicted.
8667  */
8668 static void
8669 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8670 {
8671 	list_t *buflist;
8672 	arc_buf_hdr_t *hdr, *hdr_prev;
8673 	kmutex_t *hash_lock;
8674 	uint64_t taddr;
8675 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8676 	vdev_t *vd = dev->l2ad_vdev;
8677 	boolean_t rerun;
8678 
8679 	buflist = &dev->l2ad_buflist;
8680 
8681 top:
8682 	rerun = B_FALSE;
8683 	if (dev->l2ad_hand + distance > dev->l2ad_end) {
8684 		/*
8685 		 * When there is no space to accommodate upcoming writes,
8686 		 * evict to the end. Then bump the write and evict hands
8687 		 * to the start and iterate. This iteration does not
8688 		 * happen indefinitely as we make sure in
8689 		 * l2arc_write_size() that when the write hand is reset,
8690 		 * the write size does not exceed the end of the device.
8691 		 */
8692 		rerun = B_TRUE;
8693 		taddr = dev->l2ad_end;
8694 	} else {
8695 		taddr = dev->l2ad_hand + distance;
8696 	}
8697 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8698 	    uint64_t, taddr, boolean_t, all);
8699 
8700 	if (!all) {
8701 		/*
8702 		 * This check has to be placed after deciding whether to
8703 		 * iterate (rerun).
8704 		 */
8705 		if (dev->l2ad_first) {
8706 			/*
8707 			 * This is the first sweep through the device. There is
8708 			 * nothing to evict. We have already trimmmed the
8709 			 * whole device.
8710 			 */
8711 			goto out;
8712 		} else {
8713 			/*
8714 			 * Trim the space to be evicted.
8715 			 */
8716 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8717 			    l2arc_trim_ahead > 0) {
8718 				/*
8719 				 * We have to drop the spa_config lock because
8720 				 * vdev_trim_range() will acquire it.
8721 				 * l2ad_evict already accounts for the label
8722 				 * size. To prevent vdev_trim_ranges() from
8723 				 * adding it again, we subtract it from
8724 				 * l2ad_evict.
8725 				 */
8726 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8727 				vdev_trim_simple(vd,
8728 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8729 				    taddr - dev->l2ad_evict);
8730 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8731 				    RW_READER);
8732 			}
8733 
8734 			/*
8735 			 * When rebuilding L2ARC we retrieve the evict hand
8736 			 * from the header of the device. Of note, l2arc_evict()
8737 			 * does not actually delete buffers from the cache
8738 			 * device, but trimming may do so depending on the
8739 			 * hardware implementation. Thus keeping track of the
8740 			 * evict hand is useful.
8741 			 */
8742 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8743 		}
8744 	}
8745 
8746 retry:
8747 	mutex_enter(&dev->l2ad_mtx);
8748 	/*
8749 	 * We have to account for evicted log blocks. Run vdev_space_update()
8750 	 * on log blocks whose offset (in bytes) is before the evicted offset
8751 	 * (in bytes) by searching in the list of pointers to log blocks
8752 	 * present in the L2ARC device.
8753 	 */
8754 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8755 	    lb_ptr_buf = lb_ptr_buf_prev) {
8756 
8757 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8758 
8759 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
8760 		uint64_t asize = L2BLK_GET_PSIZE(
8761 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
8762 
8763 		/*
8764 		 * We don't worry about log blocks left behind (ie
8765 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8766 		 * will never write more than l2arc_evict() evicts.
8767 		 */
8768 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8769 			break;
8770 		} else {
8771 			vdev_space_update(vd, -asize, 0, 0);
8772 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8773 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8774 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8775 			    lb_ptr_buf);
8776 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8777 			    lb_ptr_buf);
8778 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8779 			kmem_free(lb_ptr_buf->lb_ptr,
8780 			    sizeof (l2arc_log_blkptr_t));
8781 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8782 		}
8783 	}
8784 
8785 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8786 		hdr_prev = list_prev(buflist, hdr);
8787 
8788 		ASSERT(!HDR_EMPTY(hdr));
8789 		hash_lock = HDR_LOCK(hdr);
8790 
8791 		/*
8792 		 * We cannot use mutex_enter or else we can deadlock
8793 		 * with l2arc_write_buffers (due to swapping the order
8794 		 * the hash lock and l2ad_mtx are taken).
8795 		 */
8796 		if (!mutex_tryenter(hash_lock)) {
8797 			/*
8798 			 * Missed the hash lock.  Retry.
8799 			 */
8800 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8801 			mutex_exit(&dev->l2ad_mtx);
8802 			mutex_enter(hash_lock);
8803 			mutex_exit(hash_lock);
8804 			goto retry;
8805 		}
8806 
8807 		/*
8808 		 * A header can't be on this list if it doesn't have L2 header.
8809 		 */
8810 		ASSERT(HDR_HAS_L2HDR(hdr));
8811 
8812 		/* Ensure this header has finished being written. */
8813 		ASSERT(!HDR_L2_WRITING(hdr));
8814 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8815 
8816 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8817 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8818 			/*
8819 			 * We've evicted to the target address,
8820 			 * or the end of the device.
8821 			 */
8822 			mutex_exit(hash_lock);
8823 			break;
8824 		}
8825 
8826 		if (!HDR_HAS_L1HDR(hdr)) {
8827 			ASSERT(!HDR_L2_READING(hdr));
8828 			/*
8829 			 * This doesn't exist in the ARC.  Destroy.
8830 			 * arc_hdr_destroy() will call list_remove()
8831 			 * and decrement arcstat_l2_lsize.
8832 			 */
8833 			arc_change_state(arc_anon, hdr);
8834 			arc_hdr_destroy(hdr);
8835 		} else {
8836 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8837 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8838 			/*
8839 			 * Invalidate issued or about to be issued
8840 			 * reads, since we may be about to write
8841 			 * over this location.
8842 			 */
8843 			if (HDR_L2_READING(hdr)) {
8844 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8845 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8846 			}
8847 
8848 			arc_hdr_l2hdr_destroy(hdr);
8849 		}
8850 		mutex_exit(hash_lock);
8851 	}
8852 	mutex_exit(&dev->l2ad_mtx);
8853 
8854 out:
8855 	/*
8856 	 * We need to check if we evict all buffers, otherwise we may iterate
8857 	 * unnecessarily.
8858 	 */
8859 	if (!all && rerun) {
8860 		/*
8861 		 * Bump device hand to the device start if it is approaching the
8862 		 * end. l2arc_evict() has already evicted ahead for this case.
8863 		 */
8864 		dev->l2ad_hand = dev->l2ad_start;
8865 		dev->l2ad_evict = dev->l2ad_start;
8866 		dev->l2ad_first = B_FALSE;
8867 		goto top;
8868 	}
8869 
8870 	if (!all) {
8871 		/*
8872 		 * In case of cache device removal (all) the following
8873 		 * assertions may be violated without functional consequences
8874 		 * as the device is about to be removed.
8875 		 */
8876 		ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8877 		if (!dev->l2ad_first)
8878 			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8879 	}
8880 }
8881 
8882 /*
8883  * Handle any abd transforms that might be required for writing to the L2ARC.
8884  * If successful, this function will always return an abd with the data
8885  * transformed as it is on disk in a new abd of asize bytes.
8886  */
8887 static int
8888 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8889     abd_t **abd_out)
8890 {
8891 	int ret;
8892 	void *tmp = NULL;
8893 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8894 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8895 	uint64_t psize = HDR_GET_PSIZE(hdr);
8896 	uint64_t size = arc_hdr_size(hdr);
8897 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8898 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8899 	dsl_crypto_key_t *dck = NULL;
8900 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8901 	boolean_t no_crypt = B_FALSE;
8902 
8903 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8904 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
8905 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8906 	ASSERT3U(psize, <=, asize);
8907 
8908 	/*
8909 	 * If this data simply needs its own buffer, we simply allocate it
8910 	 * and copy the data. This may be done to eliminate a dependency on a
8911 	 * shared buffer or to reallocate the buffer to match asize.
8912 	 */
8913 	if (HDR_HAS_RABD(hdr) && asize != psize) {
8914 		ASSERT3U(asize, >=, psize);
8915 		to_write = abd_alloc_for_io(asize, ismd);
8916 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8917 		if (psize != asize)
8918 			abd_zero_off(to_write, psize, asize - psize);
8919 		goto out;
8920 	}
8921 
8922 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8923 	    !HDR_ENCRYPTED(hdr)) {
8924 		ASSERT3U(size, ==, psize);
8925 		to_write = abd_alloc_for_io(asize, ismd);
8926 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8927 		if (size != asize)
8928 			abd_zero_off(to_write, size, asize - size);
8929 		goto out;
8930 	}
8931 
8932 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8933 		/*
8934 		 * In some cases, we can wind up with size > asize, so
8935 		 * we need to opt for the larger allocation option here.
8936 		 *
8937 		 * (We also need abd_return_buf_copy in all cases because
8938 		 * it's an ASSERT() to modify the buffer before returning it
8939 		 * with arc_return_buf(), and all the compressors
8940 		 * write things before deciding to fail compression in nearly
8941 		 * every case.)
8942 		 */
8943 		uint64_t bufsize = MAX(size, asize);
8944 		cabd = abd_alloc_for_io(bufsize, ismd);
8945 		tmp = abd_borrow_buf(cabd, bufsize);
8946 
8947 		psize = zio_compress_data(compress, to_write, &tmp, size,
8948 		    hdr->b_complevel);
8949 
8950 		if (psize >= asize) {
8951 			psize = HDR_GET_PSIZE(hdr);
8952 			abd_return_buf_copy(cabd, tmp, bufsize);
8953 			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
8954 			to_write = cabd;
8955 			abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
8956 			if (psize != asize)
8957 				abd_zero_off(to_write, psize, asize - psize);
8958 			goto encrypt;
8959 		}
8960 		ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8961 		if (psize < asize)
8962 			memset((char *)tmp + psize, 0, bufsize - psize);
8963 		psize = HDR_GET_PSIZE(hdr);
8964 		abd_return_buf_copy(cabd, tmp, bufsize);
8965 		to_write = cabd;
8966 	}
8967 
8968 encrypt:
8969 	if (HDR_ENCRYPTED(hdr)) {
8970 		eabd = abd_alloc_for_io(asize, ismd);
8971 
8972 		/*
8973 		 * If the dataset was disowned before the buffer
8974 		 * made it to this point, the key to re-encrypt
8975 		 * it won't be available. In this case we simply
8976 		 * won't write the buffer to the L2ARC.
8977 		 */
8978 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8979 		    FTAG, &dck);
8980 		if (ret != 0)
8981 			goto error;
8982 
8983 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8984 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8985 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8986 		    &no_crypt);
8987 		if (ret != 0)
8988 			goto error;
8989 
8990 		if (no_crypt)
8991 			abd_copy(eabd, to_write, psize);
8992 
8993 		if (psize != asize)
8994 			abd_zero_off(eabd, psize, asize - psize);
8995 
8996 		/* assert that the MAC we got here matches the one we saved */
8997 		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8998 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8999 
9000 		if (to_write == cabd)
9001 			abd_free(cabd);
9002 
9003 		to_write = eabd;
9004 	}
9005 
9006 out:
9007 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9008 	*abd_out = to_write;
9009 	return (0);
9010 
9011 error:
9012 	if (dck != NULL)
9013 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9014 	if (cabd != NULL)
9015 		abd_free(cabd);
9016 	if (eabd != NULL)
9017 		abd_free(eabd);
9018 
9019 	*abd_out = NULL;
9020 	return (ret);
9021 }
9022 
9023 static void
9024 l2arc_blk_fetch_done(zio_t *zio)
9025 {
9026 	l2arc_read_callback_t *cb;
9027 
9028 	cb = zio->io_private;
9029 	if (cb->l2rcb_abd != NULL)
9030 		abd_free(cb->l2rcb_abd);
9031 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9032 }
9033 
9034 /*
9035  * Find and write ARC buffers to the L2ARC device.
9036  *
9037  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9038  * for reading until they have completed writing.
9039  * The headroom_boost is an in-out parameter used to maintain headroom boost
9040  * state between calls to this function.
9041  *
9042  * Returns the number of bytes actually written (which may be smaller than
9043  * the delta by which the device hand has changed due to alignment and the
9044  * writing of log blocks).
9045  */
9046 static uint64_t
9047 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9048 {
9049 	arc_buf_hdr_t 		*hdr, *hdr_prev, *head;
9050 	uint64_t 		write_asize, write_psize, write_lsize, headroom;
9051 	boolean_t		full;
9052 	l2arc_write_callback_t	*cb = NULL;
9053 	zio_t 			*pio, *wzio;
9054 	uint64_t 		guid = spa_load_guid(spa);
9055 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9056 
9057 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9058 
9059 	pio = NULL;
9060 	write_lsize = write_asize = write_psize = 0;
9061 	full = B_FALSE;
9062 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9063 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9064 
9065 	/*
9066 	 * Copy buffers for L2ARC writing.
9067 	 */
9068 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9069 		/*
9070 		 * If pass == 1 or 3, we cache MRU metadata and data
9071 		 * respectively.
9072 		 */
9073 		if (l2arc_mfuonly) {
9074 			if (pass == 1 || pass == 3)
9075 				continue;
9076 		}
9077 
9078 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9079 		uint64_t passed_sz = 0;
9080 
9081 		VERIFY3P(mls, !=, NULL);
9082 
9083 		/*
9084 		 * L2ARC fast warmup.
9085 		 *
9086 		 * Until the ARC is warm and starts to evict, read from the
9087 		 * head of the ARC lists rather than the tail.
9088 		 */
9089 		if (arc_warm == B_FALSE)
9090 			hdr = multilist_sublist_head(mls);
9091 		else
9092 			hdr = multilist_sublist_tail(mls);
9093 
9094 		headroom = target_sz * l2arc_headroom;
9095 		if (zfs_compressed_arc_enabled)
9096 			headroom = (headroom * l2arc_headroom_boost) / 100;
9097 
9098 		for (; hdr; hdr = hdr_prev) {
9099 			kmutex_t *hash_lock;
9100 			abd_t *to_write = NULL;
9101 
9102 			if (arc_warm == B_FALSE)
9103 				hdr_prev = multilist_sublist_next(mls, hdr);
9104 			else
9105 				hdr_prev = multilist_sublist_prev(mls, hdr);
9106 
9107 			hash_lock = HDR_LOCK(hdr);
9108 			if (!mutex_tryenter(hash_lock)) {
9109 				/*
9110 				 * Skip this buffer rather than waiting.
9111 				 */
9112 				continue;
9113 			}
9114 
9115 			passed_sz += HDR_GET_LSIZE(hdr);
9116 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9117 				/*
9118 				 * Searched too far.
9119 				 */
9120 				mutex_exit(hash_lock);
9121 				break;
9122 			}
9123 
9124 			if (!l2arc_write_eligible(guid, hdr)) {
9125 				mutex_exit(hash_lock);
9126 				continue;
9127 			}
9128 
9129 			ASSERT(HDR_HAS_L1HDR(hdr));
9130 
9131 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9132 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9133 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9134 			    HDR_HAS_RABD(hdr));
9135 			uint64_t psize = HDR_GET_PSIZE(hdr);
9136 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9137 			    psize);
9138 
9139 			/*
9140 			 * If the allocated size of this buffer plus the max
9141 			 * size for the pending log block exceeds the evicted
9142 			 * target size, terminate writing buffers for this run.
9143 			 */
9144 			if (write_asize + asize +
9145 			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9146 				full = B_TRUE;
9147 				mutex_exit(hash_lock);
9148 				break;
9149 			}
9150 
9151 			/*
9152 			 * We rely on the L1 portion of the header below, so
9153 			 * it's invalid for this header to have been evicted out
9154 			 * of the ghost cache, prior to being written out. The
9155 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9156 			 */
9157 			arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
9158 
9159 			/*
9160 			 * If this header has b_rabd, we can use this since it
9161 			 * must always match the data exactly as it exists on
9162 			 * disk. Otherwise, the L2ARC can normally use the
9163 			 * hdr's data, but if we're sharing data between the
9164 			 * hdr and one of its bufs, L2ARC needs its own copy of
9165 			 * the data so that the ZIO below can't race with the
9166 			 * buf consumer. To ensure that this copy will be
9167 			 * available for the lifetime of the ZIO and be cleaned
9168 			 * up afterwards, we add it to the l2arc_free_on_write
9169 			 * queue. If we need to apply any transforms to the
9170 			 * data (compression, encryption) we will also need the
9171 			 * extra buffer.
9172 			 */
9173 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9174 				to_write = hdr->b_crypt_hdr.b_rabd;
9175 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9176 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9177 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9178 			    psize == asize) {
9179 				to_write = hdr->b_l1hdr.b_pabd;
9180 			} else {
9181 				int ret;
9182 				arc_buf_contents_t type = arc_buf_type(hdr);
9183 
9184 				ret = l2arc_apply_transforms(spa, hdr, asize,
9185 				    &to_write);
9186 				if (ret != 0) {
9187 					arc_hdr_clear_flags(hdr,
9188 					    ARC_FLAG_L2_WRITING);
9189 					mutex_exit(hash_lock);
9190 					continue;
9191 				}
9192 
9193 				l2arc_free_abd_on_write(to_write, asize, type);
9194 			}
9195 
9196 			if (pio == NULL) {
9197 				/*
9198 				 * Insert a dummy header on the buflist so
9199 				 * l2arc_write_done() can find where the
9200 				 * write buffers begin without searching.
9201 				 */
9202 				mutex_enter(&dev->l2ad_mtx);
9203 				list_insert_head(&dev->l2ad_buflist, head);
9204 				mutex_exit(&dev->l2ad_mtx);
9205 
9206 				cb = kmem_alloc(
9207 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9208 				cb->l2wcb_dev = dev;
9209 				cb->l2wcb_head = head;
9210 				/*
9211 				 * Create a list to save allocated abd buffers
9212 				 * for l2arc_log_blk_commit().
9213 				 */
9214 				list_create(&cb->l2wcb_abd_list,
9215 				    sizeof (l2arc_lb_abd_buf_t),
9216 				    offsetof(l2arc_lb_abd_buf_t, node));
9217 				pio = zio_root(spa, l2arc_write_done, cb,
9218 				    ZIO_FLAG_CANFAIL);
9219 			}
9220 
9221 			hdr->b_l2hdr.b_dev = dev;
9222 			hdr->b_l2hdr.b_hits = 0;
9223 
9224 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9225 			hdr->b_l2hdr.b_arcs_state =
9226 			    hdr->b_l1hdr.b_state->arcs_state;
9227 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
9228 
9229 			mutex_enter(&dev->l2ad_mtx);
9230 			list_insert_head(&dev->l2ad_buflist, hdr);
9231 			mutex_exit(&dev->l2ad_mtx);
9232 
9233 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9234 			    arc_hdr_size(hdr), hdr);
9235 
9236 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9237 			    hdr->b_l2hdr.b_daddr, asize, to_write,
9238 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9239 			    ZIO_PRIORITY_ASYNC_WRITE,
9240 			    ZIO_FLAG_CANFAIL, B_FALSE);
9241 
9242 			write_lsize += HDR_GET_LSIZE(hdr);
9243 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9244 			    zio_t *, wzio);
9245 
9246 			write_psize += psize;
9247 			write_asize += asize;
9248 			dev->l2ad_hand += asize;
9249 			l2arc_hdr_arcstats_increment(hdr);
9250 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9251 
9252 			mutex_exit(hash_lock);
9253 
9254 			/*
9255 			 * Append buf info to current log and commit if full.
9256 			 * arcstat_l2_{size,asize} kstats are updated
9257 			 * internally.
9258 			 */
9259 			if (l2arc_log_blk_insert(dev, hdr)) {
9260 				/*
9261 				 * l2ad_hand will be adjusted in
9262 				 * l2arc_log_blk_commit().
9263 				 */
9264 				write_asize +=
9265 				    l2arc_log_blk_commit(dev, pio, cb);
9266 			}
9267 
9268 			zio_nowait(wzio);
9269 		}
9270 
9271 		multilist_sublist_unlock(mls);
9272 
9273 		if (full == B_TRUE)
9274 			break;
9275 	}
9276 
9277 	/* No buffers selected for writing? */
9278 	if (pio == NULL) {
9279 		ASSERT0(write_lsize);
9280 		ASSERT(!HDR_HAS_L1HDR(head));
9281 		kmem_cache_free(hdr_l2only_cache, head);
9282 
9283 		/*
9284 		 * Although we did not write any buffers l2ad_evict may
9285 		 * have advanced.
9286 		 */
9287 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9288 			l2arc_dev_hdr_update(dev);
9289 
9290 		return (0);
9291 	}
9292 
9293 	if (!dev->l2ad_first)
9294 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9295 
9296 	ASSERT3U(write_asize, <=, target_sz);
9297 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9298 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9299 
9300 	dev->l2ad_writing = B_TRUE;
9301 	(void) zio_wait(pio);
9302 	dev->l2ad_writing = B_FALSE;
9303 
9304 	/*
9305 	 * Update the device header after the zio completes as
9306 	 * l2arc_write_done() may have updated the memory holding the log block
9307 	 * pointers in the device header.
9308 	 */
9309 	l2arc_dev_hdr_update(dev);
9310 
9311 	return (write_asize);
9312 }
9313 
9314 static boolean_t
9315 l2arc_hdr_limit_reached(void)
9316 {
9317 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9318 
9319 	return (arc_reclaim_needed() ||
9320 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9321 }
9322 
9323 /*
9324  * This thread feeds the L2ARC at regular intervals.  This is the beating
9325  * heart of the L2ARC.
9326  */
9327 static  __attribute__((noreturn)) void
9328 l2arc_feed_thread(void *unused)
9329 {
9330 	(void) unused;
9331 	callb_cpr_t cpr;
9332 	l2arc_dev_t *dev;
9333 	spa_t *spa;
9334 	uint64_t size, wrote;
9335 	clock_t begin, next = ddi_get_lbolt();
9336 	fstrans_cookie_t cookie;
9337 
9338 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9339 
9340 	mutex_enter(&l2arc_feed_thr_lock);
9341 
9342 	cookie = spl_fstrans_mark();
9343 	while (l2arc_thread_exit == 0) {
9344 		CALLB_CPR_SAFE_BEGIN(&cpr);
9345 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9346 		    &l2arc_feed_thr_lock, next);
9347 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9348 		next = ddi_get_lbolt() + hz;
9349 
9350 		/*
9351 		 * Quick check for L2ARC devices.
9352 		 */
9353 		mutex_enter(&l2arc_dev_mtx);
9354 		if (l2arc_ndev == 0) {
9355 			mutex_exit(&l2arc_dev_mtx);
9356 			continue;
9357 		}
9358 		mutex_exit(&l2arc_dev_mtx);
9359 		begin = ddi_get_lbolt();
9360 
9361 		/*
9362 		 * This selects the next l2arc device to write to, and in
9363 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9364 		 * will return NULL if there are now no l2arc devices or if
9365 		 * they are all faulted.
9366 		 *
9367 		 * If a device is returned, its spa's config lock is also
9368 		 * held to prevent device removal.  l2arc_dev_get_next()
9369 		 * will grab and release l2arc_dev_mtx.
9370 		 */
9371 		if ((dev = l2arc_dev_get_next()) == NULL)
9372 			continue;
9373 
9374 		spa = dev->l2ad_spa;
9375 		ASSERT3P(spa, !=, NULL);
9376 
9377 		/*
9378 		 * If the pool is read-only then force the feed thread to
9379 		 * sleep a little longer.
9380 		 */
9381 		if (!spa_writeable(spa)) {
9382 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9383 			spa_config_exit(spa, SCL_L2ARC, dev);
9384 			continue;
9385 		}
9386 
9387 		/*
9388 		 * Avoid contributing to memory pressure.
9389 		 */
9390 		if (l2arc_hdr_limit_reached()) {
9391 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9392 			spa_config_exit(spa, SCL_L2ARC, dev);
9393 			continue;
9394 		}
9395 
9396 		ARCSTAT_BUMP(arcstat_l2_feeds);
9397 
9398 		size = l2arc_write_size(dev);
9399 
9400 		/*
9401 		 * Evict L2ARC buffers that will be overwritten.
9402 		 */
9403 		l2arc_evict(dev, size, B_FALSE);
9404 
9405 		/*
9406 		 * Write ARC buffers.
9407 		 */
9408 		wrote = l2arc_write_buffers(spa, dev, size);
9409 
9410 		/*
9411 		 * Calculate interval between writes.
9412 		 */
9413 		next = l2arc_write_interval(begin, size, wrote);
9414 		spa_config_exit(spa, SCL_L2ARC, dev);
9415 	}
9416 	spl_fstrans_unmark(cookie);
9417 
9418 	l2arc_thread_exit = 0;
9419 	cv_broadcast(&l2arc_feed_thr_cv);
9420 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9421 	thread_exit();
9422 }
9423 
9424 boolean_t
9425 l2arc_vdev_present(vdev_t *vd)
9426 {
9427 	return (l2arc_vdev_get(vd) != NULL);
9428 }
9429 
9430 /*
9431  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9432  * the vdev_t isn't an L2ARC device.
9433  */
9434 l2arc_dev_t *
9435 l2arc_vdev_get(vdev_t *vd)
9436 {
9437 	l2arc_dev_t	*dev;
9438 
9439 	mutex_enter(&l2arc_dev_mtx);
9440 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9441 	    dev = list_next(l2arc_dev_list, dev)) {
9442 		if (dev->l2ad_vdev == vd)
9443 			break;
9444 	}
9445 	mutex_exit(&l2arc_dev_mtx);
9446 
9447 	return (dev);
9448 }
9449 
9450 static void
9451 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9452 {
9453 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9454 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9455 	spa_t *spa = dev->l2ad_spa;
9456 
9457 	/*
9458 	 * The L2ARC has to hold at least the payload of one log block for
9459 	 * them to be restored (persistent L2ARC). The payload of a log block
9460 	 * depends on the amount of its log entries. We always write log blocks
9461 	 * with 1022 entries. How many of them are committed or restored depends
9462 	 * on the size of the L2ARC device. Thus the maximum payload of
9463 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9464 	 * is less than that, we reduce the amount of committed and restored
9465 	 * log entries per block so as to enable persistence.
9466 	 */
9467 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9468 		dev->l2ad_log_entries = 0;
9469 	} else {
9470 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9471 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9472 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9473 	}
9474 
9475 	/*
9476 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9477 	 */
9478 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9479 		/*
9480 		 * If we are onlining a cache device (vdev_reopen) that was
9481 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9482 		 * we should evict all ARC buffers and pointers to log blocks
9483 		 * and reclaim their space before restoring its contents to
9484 		 * L2ARC.
9485 		 */
9486 		if (reopen) {
9487 			if (!l2arc_rebuild_enabled) {
9488 				return;
9489 			} else {
9490 				l2arc_evict(dev, 0, B_TRUE);
9491 				/* start a new log block */
9492 				dev->l2ad_log_ent_idx = 0;
9493 				dev->l2ad_log_blk_payload_asize = 0;
9494 				dev->l2ad_log_blk_payload_start = 0;
9495 			}
9496 		}
9497 		/*
9498 		 * Just mark the device as pending for a rebuild. We won't
9499 		 * be starting a rebuild in line here as it would block pool
9500 		 * import. Instead spa_load_impl will hand that off to an
9501 		 * async task which will call l2arc_spa_rebuild_start.
9502 		 */
9503 		dev->l2ad_rebuild = B_TRUE;
9504 	} else if (spa_writeable(spa)) {
9505 		/*
9506 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9507 		 * otherwise create a new header. We zero out the memory holding
9508 		 * the header to reset dh_start_lbps. If we TRIM the whole
9509 		 * device the new header will be written by
9510 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9511 		 * trim_state in the header too. When reading the header, if
9512 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9513 		 * we opt to TRIM the whole device again.
9514 		 */
9515 		if (l2arc_trim_ahead > 0) {
9516 			dev->l2ad_trim_all = B_TRUE;
9517 		} else {
9518 			memset(l2dhdr, 0, l2dhdr_asize);
9519 			l2arc_dev_hdr_update(dev);
9520 		}
9521 	}
9522 }
9523 
9524 /*
9525  * Add a vdev for use by the L2ARC.  By this point the spa has already
9526  * validated the vdev and opened it.
9527  */
9528 void
9529 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9530 {
9531 	l2arc_dev_t		*adddev;
9532 	uint64_t		l2dhdr_asize;
9533 
9534 	ASSERT(!l2arc_vdev_present(vd));
9535 
9536 	/*
9537 	 * Create a new l2arc device entry.
9538 	 */
9539 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9540 	adddev->l2ad_spa = spa;
9541 	adddev->l2ad_vdev = vd;
9542 	/* leave extra size for an l2arc device header */
9543 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9544 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9545 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9546 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9547 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9548 	adddev->l2ad_hand = adddev->l2ad_start;
9549 	adddev->l2ad_evict = adddev->l2ad_start;
9550 	adddev->l2ad_first = B_TRUE;
9551 	adddev->l2ad_writing = B_FALSE;
9552 	adddev->l2ad_trim_all = B_FALSE;
9553 	list_link_init(&adddev->l2ad_node);
9554 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9555 
9556 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9557 	/*
9558 	 * This is a list of all ARC buffers that are still valid on the
9559 	 * device.
9560 	 */
9561 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9562 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9563 
9564 	/*
9565 	 * This is a list of pointers to log blocks that are still present
9566 	 * on the device.
9567 	 */
9568 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9569 	    offsetof(l2arc_lb_ptr_buf_t, node));
9570 
9571 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9572 	zfs_refcount_create(&adddev->l2ad_alloc);
9573 	zfs_refcount_create(&adddev->l2ad_lb_asize);
9574 	zfs_refcount_create(&adddev->l2ad_lb_count);
9575 
9576 	/*
9577 	 * Decide if dev is eligible for L2ARC rebuild or whole device
9578 	 * trimming. This has to happen before the device is added in the
9579 	 * cache device list and l2arc_dev_mtx is released. Otherwise
9580 	 * l2arc_feed_thread() might already start writing on the
9581 	 * device.
9582 	 */
9583 	l2arc_rebuild_dev(adddev, B_FALSE);
9584 
9585 	/*
9586 	 * Add device to global list
9587 	 */
9588 	mutex_enter(&l2arc_dev_mtx);
9589 	list_insert_head(l2arc_dev_list, adddev);
9590 	atomic_inc_64(&l2arc_ndev);
9591 	mutex_exit(&l2arc_dev_mtx);
9592 }
9593 
9594 /*
9595  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9596  * in case of onlining a cache device.
9597  */
9598 void
9599 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9600 {
9601 	l2arc_dev_t		*dev = NULL;
9602 
9603 	dev = l2arc_vdev_get(vd);
9604 	ASSERT3P(dev, !=, NULL);
9605 
9606 	/*
9607 	 * In contrast to l2arc_add_vdev() we do not have to worry about
9608 	 * l2arc_feed_thread() invalidating previous content when onlining a
9609 	 * cache device. The device parameters (l2ad*) are not cleared when
9610 	 * offlining the device and writing new buffers will not invalidate
9611 	 * all previous content. In worst case only buffers that have not had
9612 	 * their log block written to the device will be lost.
9613 	 * When onlining the cache device (ie offline->online without exporting
9614 	 * the pool in between) this happens:
9615 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9616 	 * 			|			|
9617 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
9618 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9619 	 * is set to B_TRUE we might write additional buffers to the device.
9620 	 */
9621 	l2arc_rebuild_dev(dev, reopen);
9622 }
9623 
9624 /*
9625  * Remove a vdev from the L2ARC.
9626  */
9627 void
9628 l2arc_remove_vdev(vdev_t *vd)
9629 {
9630 	l2arc_dev_t *remdev = NULL;
9631 
9632 	/*
9633 	 * Find the device by vdev
9634 	 */
9635 	remdev = l2arc_vdev_get(vd);
9636 	ASSERT3P(remdev, !=, NULL);
9637 
9638 	/*
9639 	 * Cancel any ongoing or scheduled rebuild.
9640 	 */
9641 	mutex_enter(&l2arc_rebuild_thr_lock);
9642 	if (remdev->l2ad_rebuild_began == B_TRUE) {
9643 		remdev->l2ad_rebuild_cancel = B_TRUE;
9644 		while (remdev->l2ad_rebuild == B_TRUE)
9645 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9646 	}
9647 	mutex_exit(&l2arc_rebuild_thr_lock);
9648 
9649 	/*
9650 	 * Remove device from global list
9651 	 */
9652 	mutex_enter(&l2arc_dev_mtx);
9653 	list_remove(l2arc_dev_list, remdev);
9654 	l2arc_dev_last = NULL;		/* may have been invalidated */
9655 	atomic_dec_64(&l2arc_ndev);
9656 	mutex_exit(&l2arc_dev_mtx);
9657 
9658 	/*
9659 	 * Clear all buflists and ARC references.  L2ARC device flush.
9660 	 */
9661 	l2arc_evict(remdev, 0, B_TRUE);
9662 	list_destroy(&remdev->l2ad_buflist);
9663 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9664 	list_destroy(&remdev->l2ad_lbptr_list);
9665 	mutex_destroy(&remdev->l2ad_mtx);
9666 	zfs_refcount_destroy(&remdev->l2ad_alloc);
9667 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9668 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9669 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9670 	vmem_free(remdev, sizeof (l2arc_dev_t));
9671 }
9672 
9673 void
9674 l2arc_init(void)
9675 {
9676 	l2arc_thread_exit = 0;
9677 	l2arc_ndev = 0;
9678 
9679 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9680 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9681 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9682 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9683 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9684 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9685 
9686 	l2arc_dev_list = &L2ARC_dev_list;
9687 	l2arc_free_on_write = &L2ARC_free_on_write;
9688 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9689 	    offsetof(l2arc_dev_t, l2ad_node));
9690 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9691 	    offsetof(l2arc_data_free_t, l2df_list_node));
9692 }
9693 
9694 void
9695 l2arc_fini(void)
9696 {
9697 	mutex_destroy(&l2arc_feed_thr_lock);
9698 	cv_destroy(&l2arc_feed_thr_cv);
9699 	mutex_destroy(&l2arc_rebuild_thr_lock);
9700 	cv_destroy(&l2arc_rebuild_thr_cv);
9701 	mutex_destroy(&l2arc_dev_mtx);
9702 	mutex_destroy(&l2arc_free_on_write_mtx);
9703 
9704 	list_destroy(l2arc_dev_list);
9705 	list_destroy(l2arc_free_on_write);
9706 }
9707 
9708 void
9709 l2arc_start(void)
9710 {
9711 	if (!(spa_mode_global & SPA_MODE_WRITE))
9712 		return;
9713 
9714 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9715 	    TS_RUN, defclsyspri);
9716 }
9717 
9718 void
9719 l2arc_stop(void)
9720 {
9721 	if (!(spa_mode_global & SPA_MODE_WRITE))
9722 		return;
9723 
9724 	mutex_enter(&l2arc_feed_thr_lock);
9725 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
9726 	l2arc_thread_exit = 1;
9727 	while (l2arc_thread_exit != 0)
9728 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9729 	mutex_exit(&l2arc_feed_thr_lock);
9730 }
9731 
9732 /*
9733  * Punches out rebuild threads for the L2ARC devices in a spa. This should
9734  * be called after pool import from the spa async thread, since starting
9735  * these threads directly from spa_import() will make them part of the
9736  * "zpool import" context and delay process exit (and thus pool import).
9737  */
9738 void
9739 l2arc_spa_rebuild_start(spa_t *spa)
9740 {
9741 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
9742 
9743 	/*
9744 	 * Locate the spa's l2arc devices and kick off rebuild threads.
9745 	 */
9746 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9747 		l2arc_dev_t *dev =
9748 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9749 		if (dev == NULL) {
9750 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
9751 			continue;
9752 		}
9753 		mutex_enter(&l2arc_rebuild_thr_lock);
9754 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9755 			dev->l2ad_rebuild_began = B_TRUE;
9756 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
9757 			    dev, 0, &p0, TS_RUN, minclsyspri);
9758 		}
9759 		mutex_exit(&l2arc_rebuild_thr_lock);
9760 	}
9761 }
9762 
9763 /*
9764  * Main entry point for L2ARC rebuilding.
9765  */
9766 static __attribute__((noreturn)) void
9767 l2arc_dev_rebuild_thread(void *arg)
9768 {
9769 	l2arc_dev_t *dev = arg;
9770 
9771 	VERIFY(!dev->l2ad_rebuild_cancel);
9772 	VERIFY(dev->l2ad_rebuild);
9773 	(void) l2arc_rebuild(dev);
9774 	mutex_enter(&l2arc_rebuild_thr_lock);
9775 	dev->l2ad_rebuild_began = B_FALSE;
9776 	dev->l2ad_rebuild = B_FALSE;
9777 	mutex_exit(&l2arc_rebuild_thr_lock);
9778 
9779 	thread_exit();
9780 }
9781 
9782 /*
9783  * This function implements the actual L2ARC metadata rebuild. It:
9784  * starts reading the log block chain and restores each block's contents
9785  * to memory (reconstructing arc_buf_hdr_t's).
9786  *
9787  * Operation stops under any of the following conditions:
9788  *
9789  * 1) We reach the end of the log block chain.
9790  * 2) We encounter *any* error condition (cksum errors, io errors)
9791  */
9792 static int
9793 l2arc_rebuild(l2arc_dev_t *dev)
9794 {
9795 	vdev_t			*vd = dev->l2ad_vdev;
9796 	spa_t			*spa = vd->vdev_spa;
9797 	int			err = 0;
9798 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9799 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
9800 	zio_t			*this_io = NULL, *next_io = NULL;
9801 	l2arc_log_blkptr_t	lbps[2];
9802 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
9803 	boolean_t		lock_held;
9804 
9805 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9806 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9807 
9808 	/*
9809 	 * We prevent device removal while issuing reads to the device,
9810 	 * then during the rebuilding phases we drop this lock again so
9811 	 * that a spa_unload or device remove can be initiated - this is
9812 	 * safe, because the spa will signal us to stop before removing
9813 	 * our device and wait for us to stop.
9814 	 */
9815 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9816 	lock_held = B_TRUE;
9817 
9818 	/*
9819 	 * Retrieve the persistent L2ARC device state.
9820 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9821 	 */
9822 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9823 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9824 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9825 	    dev->l2ad_start);
9826 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9827 
9828 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
9829 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
9830 
9831 	/*
9832 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
9833 	 * we do not start the rebuild process.
9834 	 */
9835 	if (!l2arc_rebuild_enabled)
9836 		goto out;
9837 
9838 	/* Prepare the rebuild process */
9839 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
9840 
9841 	/* Start the rebuild process */
9842 	for (;;) {
9843 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9844 			break;
9845 
9846 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9847 		    this_lb, next_lb, this_io, &next_io)) != 0)
9848 			goto out;
9849 
9850 		/*
9851 		 * Our memory pressure valve. If the system is running low
9852 		 * on memory, rather than swamping memory with new ARC buf
9853 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
9854 		 * however, we have already set up our L2ARC dev to chain in
9855 		 * new metadata log blocks, so the user may choose to offline/
9856 		 * online the L2ARC dev at a later time (or re-import the pool)
9857 		 * to reconstruct it (when there's less memory pressure).
9858 		 */
9859 		if (l2arc_hdr_limit_reached()) {
9860 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9861 			cmn_err(CE_NOTE, "System running low on memory, "
9862 			    "aborting L2ARC rebuild.");
9863 			err = SET_ERROR(ENOMEM);
9864 			goto out;
9865 		}
9866 
9867 		spa_config_exit(spa, SCL_L2ARC, vd);
9868 		lock_held = B_FALSE;
9869 
9870 		/*
9871 		 * Now that we know that the next_lb checks out alright, we
9872 		 * can start reconstruction from this log block.
9873 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9874 		 */
9875 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9876 		l2arc_log_blk_restore(dev, this_lb, asize);
9877 
9878 		/*
9879 		 * log block restored, include its pointer in the list of
9880 		 * pointers to log blocks present in the L2ARC device.
9881 		 */
9882 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9883 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9884 		    KM_SLEEP);
9885 		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
9886 		    sizeof (l2arc_log_blkptr_t));
9887 		mutex_enter(&dev->l2ad_mtx);
9888 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9889 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9890 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9891 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9892 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9893 		mutex_exit(&dev->l2ad_mtx);
9894 		vdev_space_update(vd, asize, 0, 0);
9895 
9896 		/*
9897 		 * Protection against loops of log blocks:
9898 		 *
9899 		 *				       l2ad_hand  l2ad_evict
9900 		 *                                         V	      V
9901 		 * l2ad_start |=======================================| l2ad_end
9902 		 *             -----|||----|||---|||----|||
9903 		 *                  (3)    (2)   (1)    (0)
9904 		 *             ---|||---|||----|||---|||
9905 		 *		  (7)   (6)    (5)   (4)
9906 		 *
9907 		 * In this situation the pointer of log block (4) passes
9908 		 * l2arc_log_blkptr_valid() but the log block should not be
9909 		 * restored as it is overwritten by the payload of log block
9910 		 * (0). Only log blocks (0)-(3) should be restored. We check
9911 		 * whether l2ad_evict lies in between the payload starting
9912 		 * offset of the next log block (lbps[1].lbp_payload_start)
9913 		 * and the payload starting offset of the present log block
9914 		 * (lbps[0].lbp_payload_start). If true and this isn't the
9915 		 * first pass, we are looping from the beginning and we should
9916 		 * stop.
9917 		 */
9918 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9919 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9920 		    !dev->l2ad_first)
9921 			goto out;
9922 
9923 		kpreempt(KPREEMPT_SYNC);
9924 		for (;;) {
9925 			mutex_enter(&l2arc_rebuild_thr_lock);
9926 			if (dev->l2ad_rebuild_cancel) {
9927 				dev->l2ad_rebuild = B_FALSE;
9928 				cv_signal(&l2arc_rebuild_thr_cv);
9929 				mutex_exit(&l2arc_rebuild_thr_lock);
9930 				err = SET_ERROR(ECANCELED);
9931 				goto out;
9932 			}
9933 			mutex_exit(&l2arc_rebuild_thr_lock);
9934 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9935 			    RW_READER)) {
9936 				lock_held = B_TRUE;
9937 				break;
9938 			}
9939 			/*
9940 			 * L2ARC config lock held by somebody in writer,
9941 			 * possibly due to them trying to remove us. They'll
9942 			 * likely to want us to shut down, so after a little
9943 			 * delay, we check l2ad_rebuild_cancel and retry
9944 			 * the lock again.
9945 			 */
9946 			delay(1);
9947 		}
9948 
9949 		/*
9950 		 * Continue with the next log block.
9951 		 */
9952 		lbps[0] = lbps[1];
9953 		lbps[1] = this_lb->lb_prev_lbp;
9954 		PTR_SWAP(this_lb, next_lb);
9955 		this_io = next_io;
9956 		next_io = NULL;
9957 	}
9958 
9959 	if (this_io != NULL)
9960 		l2arc_log_blk_fetch_abort(this_io);
9961 out:
9962 	if (next_io != NULL)
9963 		l2arc_log_blk_fetch_abort(next_io);
9964 	vmem_free(this_lb, sizeof (*this_lb));
9965 	vmem_free(next_lb, sizeof (*next_lb));
9966 
9967 	if (!l2arc_rebuild_enabled) {
9968 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9969 		    "disabled");
9970 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9971 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9972 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9973 		    "successful, restored %llu blocks",
9974 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9975 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9976 		/*
9977 		 * No error but also nothing restored, meaning the lbps array
9978 		 * in the device header points to invalid/non-present log
9979 		 * blocks. Reset the header.
9980 		 */
9981 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9982 		    "no valid log blocks");
9983 		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
9984 		l2arc_dev_hdr_update(dev);
9985 	} else if (err == ECANCELED) {
9986 		/*
9987 		 * In case the rebuild was canceled do not log to spa history
9988 		 * log as the pool may be in the process of being removed.
9989 		 */
9990 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9991 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9992 	} else if (err != 0) {
9993 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9994 		    "aborted, restored %llu blocks",
9995 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9996 	}
9997 
9998 	if (lock_held)
9999 		spa_config_exit(spa, SCL_L2ARC, vd);
10000 
10001 	return (err);
10002 }
10003 
10004 /*
10005  * Attempts to read the device header on the provided L2ARC device and writes
10006  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10007  * error code is returned.
10008  */
10009 static int
10010 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10011 {
10012 	int			err;
10013 	uint64_t		guid;
10014 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10015 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10016 	abd_t 			*abd;
10017 
10018 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10019 
10020 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10021 
10022 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10023 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10024 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10025 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10026 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10027 
10028 	abd_free(abd);
10029 
10030 	if (err != 0) {
10031 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10032 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10033 		    "vdev guid: %llu", err,
10034 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10035 		return (err);
10036 	}
10037 
10038 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10039 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10040 
10041 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10042 	    l2dhdr->dh_spa_guid != guid ||
10043 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10044 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10045 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10046 	    l2dhdr->dh_end != dev->l2ad_end ||
10047 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10048 	    l2dhdr->dh_evict) ||
10049 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10050 	    l2arc_trim_ahead > 0)) {
10051 		/*
10052 		 * Attempt to rebuild a device containing no actual dev hdr
10053 		 * or containing a header from some other pool or from another
10054 		 * version of persistent L2ARC.
10055 		 */
10056 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10057 		return (SET_ERROR(ENOTSUP));
10058 	}
10059 
10060 	return (0);
10061 }
10062 
10063 /*
10064  * Reads L2ARC log blocks from storage and validates their contents.
10065  *
10066  * This function implements a simple fetcher to make sure that while
10067  * we're processing one buffer the L2ARC is already fetching the next
10068  * one in the chain.
10069  *
10070  * The arguments this_lp and next_lp point to the current and next log block
10071  * address in the block chain. Similarly, this_lb and next_lb hold the
10072  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10073  *
10074  * The `this_io' and `next_io' arguments are used for block fetching.
10075  * When issuing the first blk IO during rebuild, you should pass NULL for
10076  * `this_io'. This function will then issue a sync IO to read the block and
10077  * also issue an async IO to fetch the next block in the block chain. The
10078  * fetched IO is returned in `next_io'. On subsequent calls to this
10079  * function, pass the value returned in `next_io' from the previous call
10080  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10081  * Prior to the call, you should initialize your `next_io' pointer to be
10082  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10083  *
10084  * On success, this function returns 0, otherwise it returns an appropriate
10085  * error code. On error the fetching IO is aborted and cleared before
10086  * returning from this function. Therefore, if we return `success', the
10087  * caller can assume that we have taken care of cleanup of fetch IOs.
10088  */
10089 static int
10090 l2arc_log_blk_read(l2arc_dev_t *dev,
10091     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10092     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10093     zio_t *this_io, zio_t **next_io)
10094 {
10095 	int		err = 0;
10096 	zio_cksum_t	cksum;
10097 	abd_t		*abd = NULL;
10098 	uint64_t	asize;
10099 
10100 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10101 	ASSERT(this_lb != NULL && next_lb != NULL);
10102 	ASSERT(next_io != NULL && *next_io == NULL);
10103 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10104 
10105 	/*
10106 	 * Check to see if we have issued the IO for this log block in a
10107 	 * previous run. If not, this is the first call, so issue it now.
10108 	 */
10109 	if (this_io == NULL) {
10110 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10111 		    this_lb);
10112 	}
10113 
10114 	/*
10115 	 * Peek to see if we can start issuing the next IO immediately.
10116 	 */
10117 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10118 		/*
10119 		 * Start issuing IO for the next log block early - this
10120 		 * should help keep the L2ARC device busy while we
10121 		 * decompress and restore this log block.
10122 		 */
10123 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10124 		    next_lb);
10125 	}
10126 
10127 	/* Wait for the IO to read this log block to complete */
10128 	if ((err = zio_wait(this_io)) != 0) {
10129 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10130 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10131 		    "offset: %llu, vdev guid: %llu", err,
10132 		    (u_longlong_t)this_lbp->lbp_daddr,
10133 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10134 		goto cleanup;
10135 	}
10136 
10137 	/*
10138 	 * Make sure the buffer checks out.
10139 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10140 	 */
10141 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10142 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10143 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10144 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10145 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10146 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10147 		    (u_longlong_t)this_lbp->lbp_daddr,
10148 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10149 		    (u_longlong_t)dev->l2ad_hand,
10150 		    (u_longlong_t)dev->l2ad_evict);
10151 		err = SET_ERROR(ECKSUM);
10152 		goto cleanup;
10153 	}
10154 
10155 	/* Now we can take our time decoding this buffer */
10156 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10157 	case ZIO_COMPRESS_OFF:
10158 		break;
10159 	case ZIO_COMPRESS_LZ4:
10160 		abd = abd_alloc_for_io(asize, B_TRUE);
10161 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10162 		if ((err = zio_decompress_data(
10163 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10164 		    abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10165 			err = SET_ERROR(EINVAL);
10166 			goto cleanup;
10167 		}
10168 		break;
10169 	default:
10170 		err = SET_ERROR(EINVAL);
10171 		goto cleanup;
10172 	}
10173 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10174 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10175 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10176 		err = SET_ERROR(EINVAL);
10177 		goto cleanup;
10178 	}
10179 cleanup:
10180 	/* Abort an in-flight fetch I/O in case of error */
10181 	if (err != 0 && *next_io != NULL) {
10182 		l2arc_log_blk_fetch_abort(*next_io);
10183 		*next_io = NULL;
10184 	}
10185 	if (abd != NULL)
10186 		abd_free(abd);
10187 	return (err);
10188 }
10189 
10190 /*
10191  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10192  * entries which only contain an l2arc hdr, essentially restoring the
10193  * buffers to their L2ARC evicted state. This function also updates space
10194  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10195  */
10196 static void
10197 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10198     uint64_t lb_asize)
10199 {
10200 	uint64_t	size = 0, asize = 0;
10201 	uint64_t	log_entries = dev->l2ad_log_entries;
10202 
10203 	/*
10204 	 * Usually arc_adapt() is called only for data, not headers, but
10205 	 * since we may allocate significant amount of memory here, let ARC
10206 	 * grow its arc_c.
10207 	 */
10208 	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10209 
10210 	for (int i = log_entries - 1; i >= 0; i--) {
10211 		/*
10212 		 * Restore goes in the reverse temporal direction to preserve
10213 		 * correct temporal ordering of buffers in the l2ad_buflist.
10214 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10215 		 * list_insert_head on the l2ad_buflist:
10216 		 *
10217 		 *		LIST	l2ad_buflist		LIST
10218 		 *		HEAD  <------ (time) ------	TAIL
10219 		 * direction	+-----+-----+-----+-----+-----+    direction
10220 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10221 		 * fill		+-----+-----+-----+-----+-----+
10222 		 *		^				^
10223 		 *		|				|
10224 		 *		|				|
10225 		 *	l2arc_feed_thread		l2arc_rebuild
10226 		 *	will place new bufs here	restores bufs here
10227 		 *
10228 		 * During l2arc_rebuild() the device is not used by
10229 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10230 		 */
10231 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10232 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10233 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10234 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10235 	}
10236 
10237 	/*
10238 	 * Record rebuild stats:
10239 	 *	size		Logical size of restored buffers in the L2ARC
10240 	 *	asize		Aligned size of restored buffers in the L2ARC
10241 	 */
10242 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10243 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10244 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10245 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10246 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10247 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10248 }
10249 
10250 /*
10251  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10252  * into a state indicating that it has been evicted to L2ARC.
10253  */
10254 static void
10255 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10256 {
10257 	arc_buf_hdr_t		*hdr, *exists;
10258 	kmutex_t		*hash_lock;
10259 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10260 	uint64_t		asize;
10261 
10262 	/*
10263 	 * Do all the allocation before grabbing any locks, this lets us
10264 	 * sleep if memory is full and we don't have to deal with failed
10265 	 * allocations.
10266 	 */
10267 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10268 	    dev, le->le_dva, le->le_daddr,
10269 	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10270 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10271 	    L2BLK_GET_PROTECTED((le)->le_prop),
10272 	    L2BLK_GET_PREFETCH((le)->le_prop),
10273 	    L2BLK_GET_STATE((le)->le_prop));
10274 	asize = vdev_psize_to_asize(dev->l2ad_vdev,
10275 	    L2BLK_GET_PSIZE((le)->le_prop));
10276 
10277 	/*
10278 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10279 	 * avoid underflow since the latter also calls vdev_space_update().
10280 	 */
10281 	l2arc_hdr_arcstats_increment(hdr);
10282 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10283 
10284 	mutex_enter(&dev->l2ad_mtx);
10285 	list_insert_tail(&dev->l2ad_buflist, hdr);
10286 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10287 	mutex_exit(&dev->l2ad_mtx);
10288 
10289 	exists = buf_hash_insert(hdr, &hash_lock);
10290 	if (exists) {
10291 		/* Buffer was already cached, no need to restore it. */
10292 		arc_hdr_destroy(hdr);
10293 		/*
10294 		 * If the buffer is already cached, check whether it has
10295 		 * L2ARC metadata. If not, enter them and update the flag.
10296 		 * This is important is case of onlining a cache device, since
10297 		 * we previously evicted all L2ARC metadata from ARC.
10298 		 */
10299 		if (!HDR_HAS_L2HDR(exists)) {
10300 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10301 			exists->b_l2hdr.b_dev = dev;
10302 			exists->b_l2hdr.b_daddr = le->le_daddr;
10303 			exists->b_l2hdr.b_arcs_state =
10304 			    L2BLK_GET_STATE((le)->le_prop);
10305 			mutex_enter(&dev->l2ad_mtx);
10306 			list_insert_tail(&dev->l2ad_buflist, exists);
10307 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10308 			    arc_hdr_size(exists), exists);
10309 			mutex_exit(&dev->l2ad_mtx);
10310 			l2arc_hdr_arcstats_increment(exists);
10311 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10312 		}
10313 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10314 	}
10315 
10316 	mutex_exit(hash_lock);
10317 }
10318 
10319 /*
10320  * Starts an asynchronous read IO to read a log block. This is used in log
10321  * block reconstruction to start reading the next block before we are done
10322  * decoding and reconstructing the current block, to keep the l2arc device
10323  * nice and hot with read IO to process.
10324  * The returned zio will contain a newly allocated memory buffers for the IO
10325  * data which should then be freed by the caller once the zio is no longer
10326  * needed (i.e. due to it having completed). If you wish to abort this
10327  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10328  * care of disposing of the allocated buffers correctly.
10329  */
10330 static zio_t *
10331 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10332     l2arc_log_blk_phys_t *lb)
10333 {
10334 	uint32_t		asize;
10335 	zio_t			*pio;
10336 	l2arc_read_callback_t	*cb;
10337 
10338 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10339 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10340 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10341 
10342 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10343 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10344 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10345 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10346 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10347 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10348 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10349 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10350 
10351 	return (pio);
10352 }
10353 
10354 /*
10355  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10356  * buffers allocated for it.
10357  */
10358 static void
10359 l2arc_log_blk_fetch_abort(zio_t *zio)
10360 {
10361 	(void) zio_wait(zio);
10362 }
10363 
10364 /*
10365  * Creates a zio to update the device header on an l2arc device.
10366  */
10367 void
10368 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10369 {
10370 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10371 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10372 	abd_t			*abd;
10373 	int			err;
10374 
10375 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10376 
10377 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10378 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10379 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10380 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10381 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10382 	l2dhdr->dh_evict = dev->l2ad_evict;
10383 	l2dhdr->dh_start = dev->l2ad_start;
10384 	l2dhdr->dh_end = dev->l2ad_end;
10385 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10386 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10387 	l2dhdr->dh_flags = 0;
10388 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10389 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10390 	if (dev->l2ad_first)
10391 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10392 
10393 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10394 
10395 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10396 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10397 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10398 
10399 	abd_free(abd);
10400 
10401 	if (err != 0) {
10402 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10403 		    "vdev guid: %llu", err,
10404 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10405 	}
10406 }
10407 
10408 /*
10409  * Commits a log block to the L2ARC device. This routine is invoked from
10410  * l2arc_write_buffers when the log block fills up.
10411  * This function allocates some memory to temporarily hold the serialized
10412  * buffer to be written. This is then released in l2arc_write_done.
10413  */
10414 static uint64_t
10415 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10416 {
10417 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10418 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10419 	uint64_t		psize, asize;
10420 	zio_t			*wzio;
10421 	l2arc_lb_abd_buf_t	*abd_buf;
10422 	uint8_t			*tmpbuf = NULL;
10423 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10424 
10425 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10426 
10427 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10428 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10429 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10430 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10431 
10432 	/* link the buffer into the block chain */
10433 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10434 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10435 
10436 	/*
10437 	 * l2arc_log_blk_commit() may be called multiple times during a single
10438 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10439 	 * so we can free them in l2arc_write_done() later on.
10440 	 */
10441 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10442 
10443 	/* try to compress the buffer */
10444 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10445 	    abd_buf->abd, (void **) &tmpbuf, sizeof (*lb), 0);
10446 
10447 	/* a log block is never entirely zero */
10448 	ASSERT(psize != 0);
10449 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10450 	ASSERT(asize <= sizeof (*lb));
10451 
10452 	/*
10453 	 * Update the start log block pointer in the device header to point
10454 	 * to the log block we're about to write.
10455 	 */
10456 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10457 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10458 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10459 	    dev->l2ad_log_blk_payload_asize;
10460 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10461 	    dev->l2ad_log_blk_payload_start;
10462 	L2BLK_SET_LSIZE(
10463 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10464 	L2BLK_SET_PSIZE(
10465 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10466 	L2BLK_SET_CHECKSUM(
10467 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10468 	    ZIO_CHECKSUM_FLETCHER_4);
10469 	if (asize < sizeof (*lb)) {
10470 		/* compression succeeded */
10471 		memset(tmpbuf + psize, 0, asize - psize);
10472 		L2BLK_SET_COMPRESS(
10473 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10474 		    ZIO_COMPRESS_LZ4);
10475 	} else {
10476 		/* compression failed */
10477 		memcpy(tmpbuf, lb, sizeof (*lb));
10478 		L2BLK_SET_COMPRESS(
10479 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10480 		    ZIO_COMPRESS_OFF);
10481 	}
10482 
10483 	/* checksum what we're about to write */
10484 	fletcher_4_native(tmpbuf, asize, NULL,
10485 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10486 
10487 	abd_free(abd_buf->abd);
10488 
10489 	/* perform the write itself */
10490 	abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10491 	abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10492 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10493 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10494 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10495 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10496 	(void) zio_nowait(wzio);
10497 
10498 	dev->l2ad_hand += asize;
10499 	/*
10500 	 * Include the committed log block's pointer  in the list of pointers
10501 	 * to log blocks present in the L2ARC device.
10502 	 */
10503 	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10504 	    sizeof (l2arc_log_blkptr_t));
10505 	mutex_enter(&dev->l2ad_mtx);
10506 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10507 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10508 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10509 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10510 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10511 	mutex_exit(&dev->l2ad_mtx);
10512 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10513 
10514 	/* bump the kstats */
10515 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10516 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10517 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10518 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10519 	    dev->l2ad_log_blk_payload_asize / asize);
10520 
10521 	/* start a new log block */
10522 	dev->l2ad_log_ent_idx = 0;
10523 	dev->l2ad_log_blk_payload_asize = 0;
10524 	dev->l2ad_log_blk_payload_start = 0;
10525 
10526 	return (asize);
10527 }
10528 
10529 /*
10530  * Validates an L2ARC log block address to make sure that it can be read
10531  * from the provided L2ARC device.
10532  */
10533 boolean_t
10534 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10535 {
10536 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10537 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10538 	uint64_t end = lbp->lbp_daddr + asize - 1;
10539 	uint64_t start = lbp->lbp_payload_start;
10540 	boolean_t evicted = B_FALSE;
10541 
10542 	/*
10543 	 * A log block is valid if all of the following conditions are true:
10544 	 * - it fits entirely (including its payload) between l2ad_start and
10545 	 *   l2ad_end
10546 	 * - it has a valid size
10547 	 * - neither the log block itself nor part of its payload was evicted
10548 	 *   by l2arc_evict():
10549 	 *
10550 	 *		l2ad_hand          l2ad_evict
10551 	 *		|			 |	lbp_daddr
10552 	 *		|     start		 |	|  end
10553 	 *		|     |			 |	|  |
10554 	 *		V     V		         V	V  V
10555 	 *   l2ad_start ============================================ l2ad_end
10556 	 *                    --------------------------||||
10557 	 *				^		 ^
10558 	 *				|		log block
10559 	 *				payload
10560 	 */
10561 
10562 	evicted =
10563 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10564 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10565 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10566 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10567 
10568 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10569 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10570 	    (!evicted || dev->l2ad_first));
10571 }
10572 
10573 /*
10574  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10575  * the device. The buffer being inserted must be present in L2ARC.
10576  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10577  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10578  */
10579 static boolean_t
10580 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10581 {
10582 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10583 	l2arc_log_ent_phys_t	*le;
10584 
10585 	if (dev->l2ad_log_entries == 0)
10586 		return (B_FALSE);
10587 
10588 	int index = dev->l2ad_log_ent_idx++;
10589 
10590 	ASSERT3S(index, <, dev->l2ad_log_entries);
10591 	ASSERT(HDR_HAS_L2HDR(hdr));
10592 
10593 	le = &lb->lb_entries[index];
10594 	memset(le, 0, sizeof (*le));
10595 	le->le_dva = hdr->b_dva;
10596 	le->le_birth = hdr->b_birth;
10597 	le->le_daddr = hdr->b_l2hdr.b_daddr;
10598 	if (index == 0)
10599 		dev->l2ad_log_blk_payload_start = le->le_daddr;
10600 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10601 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10602 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10603 	le->le_complevel = hdr->b_complevel;
10604 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10605 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10606 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10607 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10608 
10609 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10610 	    HDR_GET_PSIZE(hdr));
10611 
10612 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10613 }
10614 
10615 /*
10616  * Checks whether a given L2ARC device address sits in a time-sequential
10617  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10618  * just do a range comparison, we need to handle the situation in which the
10619  * range wraps around the end of the L2ARC device. Arguments:
10620  *	bottom -- Lower end of the range to check (written to earlier).
10621  *	top    -- Upper end of the range to check (written to later).
10622  *	check  -- The address for which we want to determine if it sits in
10623  *		  between the top and bottom.
10624  *
10625  * The 3-way conditional below represents the following cases:
10626  *
10627  *	bottom < top : Sequentially ordered case:
10628  *	  <check>--------+-------------------+
10629  *	                 |  (overlap here?)  |
10630  *	 L2ARC dev       V                   V
10631  *	 |---------------<bottom>============<top>--------------|
10632  *
10633  *	bottom > top: Looped-around case:
10634  *	                      <check>--------+------------------+
10635  *	                                     |  (overlap here?) |
10636  *	 L2ARC dev                           V                  V
10637  *	 |===============<top>---------------<bottom>===========|
10638  *	 ^               ^
10639  *	 |  (or here?)   |
10640  *	 +---------------+---------<check>
10641  *
10642  *	top == bottom : Just a single address comparison.
10643  */
10644 boolean_t
10645 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10646 {
10647 	if (bottom < top)
10648 		return (bottom <= check && check <= top);
10649 	else if (bottom > top)
10650 		return (check <= top || bottom <= check);
10651 	else
10652 		return (check == top);
10653 }
10654 
10655 EXPORT_SYMBOL(arc_buf_size);
10656 EXPORT_SYMBOL(arc_write);
10657 EXPORT_SYMBOL(arc_read);
10658 EXPORT_SYMBOL(arc_buf_info);
10659 EXPORT_SYMBOL(arc_getbuf_func);
10660 EXPORT_SYMBOL(arc_add_prune_callback);
10661 EXPORT_SYMBOL(arc_remove_prune_callback);
10662 
10663 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10664 	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
10665 
10666 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
10667 	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
10668 
10669 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
10670 	"Balance between metadata and data on ghost hits.");
10671 
10672 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10673 	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
10674 
10675 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10676 	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
10677 
10678 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
10679 	"Percent of pagecache to reclaim ARC to");
10680 
10681 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
10682 	"Target average block size");
10683 
10684 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10685 	"Disable compressed ARC buffers");
10686 
10687 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10688 	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
10689 
10690 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10691     param_set_arc_int, param_get_uint, ZMOD_RW,
10692 	"Min life of prescient prefetched block in ms");
10693 
10694 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
10695 	"Max write bytes per interval");
10696 
10697 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
10698 	"Extra write bytes during device warmup");
10699 
10700 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
10701 	"Number of max device writes to precache");
10702 
10703 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
10704 	"Compressed l2arc_headroom multiplier");
10705 
10706 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
10707 	"TRIM ahead L2ARC write size multiplier");
10708 
10709 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
10710 	"Seconds between L2ARC writing");
10711 
10712 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
10713 	"Min feed interval in milliseconds");
10714 
10715 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
10716 	"Skip caching prefetched buffers");
10717 
10718 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
10719 	"Turbo L2ARC warmup");
10720 
10721 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
10722 	"No reads during writes");
10723 
10724 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
10725 	"Percent of ARC size allowed for L2ARC-only headers");
10726 
10727 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
10728 	"Rebuild the L2ARC when importing a pool");
10729 
10730 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
10731 	"Min size in bytes to write rebuild log blocks in L2ARC");
10732 
10733 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
10734 	"Cache only MFU data from ARC into L2ARC");
10735 
10736 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
10737 	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10738 
10739 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
10740 	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
10741 
10742 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
10743 	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
10744 
10745 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
10746 	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
10747 
10748 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
10749     param_set_arc_int, param_get_uint, ZMOD_RW,
10750 	"Percent of ARC meta buffers for dnodes");
10751 
10752 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
10753 	"Percentage of excess dnodes to try to unpin");
10754 
10755 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
10756 	"When full, ARC allocation waits for eviction of this % of alloc size");
10757 
10758 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
10759 	"The number of headers to evict per sublist before moving to the next");
10760 
10761 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
10762 	"Number of arc_prune threads");
10763