xref: /freebsd/sys/contrib/openzfs/module/zfs/btree.c (revision 9768746b)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 /*
16  * Copyright (c) 2019 by Delphix. All rights reserved.
17  */
18 
19 #include	<sys/btree.h>
20 #include	<sys/bitops.h>
21 #include	<sys/zfs_context.h>
22 
23 kmem_cache_t *zfs_btree_leaf_cache;
24 
25 /*
26  * Control the extent of the verification that occurs when zfs_btree_verify is
27  * called. Primarily used for debugging when extending the btree logic and
28  * functionality. As the intensity is increased, new verification steps are
29  * added. These steps are cumulative; intensity = 3 includes the intensity = 1
30  * and intensity = 2 steps as well.
31  *
32  * Intensity 1: Verify that the tree's height is consistent throughout.
33  * Intensity 2: Verify that a core node's children's parent pointers point
34  * to the core node.
35  * Intensity 3: Verify that the total number of elements in the tree matches the
36  * sum of the number of elements in each node. Also verifies that each node's
37  * count obeys the invariants (less than or equal to maximum value, greater than
38  * or equal to half the maximum minus one).
39  * Intensity 4: Verify that each element compares less than the element
40  * immediately after it and greater than the one immediately before it using the
41  * comparator function. For core nodes, also checks that each element is greater
42  * than the last element in the first of the two nodes it separates, and less
43  * than the first element in the second of the two nodes.
44  * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
45  * of each node is poisoned appropriately. Note that poisoning always occurs if
46  * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
47  * operation.
48  *
49  * Intensity 4 and 5 are particularly expensive to perform; the previous levels
50  * are a few memory operations per node, while these levels require multiple
51  * operations per element. In addition, when creating large btrees, these
52  * operations are called at every step, resulting in extremely slow operation
53  * (while the asymptotic complexity of the other steps is the same, the
54  * importance of the constant factors cannot be denied).
55  */
56 uint_t zfs_btree_verify_intensity = 0;
57 
58 /*
59  * Convenience functions to silence warnings from memcpy/memmove's
60  * return values and change argument order to src, dest.
61  */
62 static void
63 bcpy(const void *src, void *dest, size_t size)
64 {
65 	(void) memcpy(dest, src, size);
66 }
67 
68 static void
69 bmov(const void *src, void *dest, size_t size)
70 {
71 	(void) memmove(dest, src, size);
72 }
73 
74 static boolean_t
75 zfs_btree_is_core(struct zfs_btree_hdr *hdr)
76 {
77 	return (hdr->bth_first == -1);
78 }
79 
80 #ifdef _ILP32
81 #define	BTREE_POISON 0xabadb10c
82 #else
83 #define	BTREE_POISON 0xabadb10cdeadbeef
84 #endif
85 
86 static void
87 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
88 {
89 #ifdef ZFS_DEBUG
90 	size_t size = tree->bt_elem_size;
91 	if (zfs_btree_is_core(hdr)) {
92 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
93 		for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
94 		    i++) {
95 			node->btc_children[i] =
96 			    (zfs_btree_hdr_t *)BTREE_POISON;
97 		}
98 		(void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
99 		    (BTREE_CORE_ELEMS - hdr->bth_count) * size);
100 	} else {
101 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
102 		(void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
103 		(void) memset(leaf->btl_elems +
104 		    (hdr->bth_first + hdr->bth_count) * size, 0x0f,
105 		    tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) -
106 		    (hdr->bth_first + hdr->bth_count) * size);
107 	}
108 #endif
109 }
110 
111 static inline void
112 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
113     uint32_t idx, uint32_t count)
114 {
115 #ifdef ZFS_DEBUG
116 	size_t size = tree->bt_elem_size;
117 	if (zfs_btree_is_core(hdr)) {
118 		ASSERT3U(idx, >=, hdr->bth_count);
119 		ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
120 		ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
121 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
122 		for (uint32_t i = 1; i <= count; i++) {
123 			node->btc_children[idx + i] =
124 			    (zfs_btree_hdr_t *)BTREE_POISON;
125 		}
126 		(void) memset(node->btc_elems + idx * size, 0x0f, count * size);
127 	} else {
128 		ASSERT3U(idx, <=, tree->bt_leaf_cap);
129 		ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
130 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
131 		(void) memset(leaf->btl_elems +
132 		    (hdr->bth_first + idx) * size, 0x0f, count * size);
133 	}
134 #endif
135 }
136 
137 static inline void
138 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
139     uint32_t idx)
140 {
141 #ifdef ZFS_DEBUG
142 	size_t size = tree->bt_elem_size;
143 	if (zfs_btree_is_core(hdr)) {
144 		ASSERT3U(idx, <, BTREE_CORE_ELEMS);
145 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
146 		zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
147 		VERIFY3P(node->btc_children[idx + 1], ==, cval);
148 		for (size_t i = 0; i < size; i++)
149 			VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
150 	} else  {
151 		ASSERT3U(idx, <, tree->bt_leaf_cap);
152 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
153 		if (idx >= tree->bt_leaf_cap - hdr->bth_first)
154 			return;
155 		for (size_t i = 0; i < size; i++) {
156 			VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
157 			    * size + i], ==, 0x0f);
158 		}
159 	}
160 #endif
161 }
162 
163 void
164 zfs_btree_init(void)
165 {
166 	zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
167 	    BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
168 }
169 
170 void
171 zfs_btree_fini(void)
172 {
173 	kmem_cache_destroy(zfs_btree_leaf_cache);
174 }
175 
176 static void *
177 zfs_btree_leaf_alloc(zfs_btree_t *tree)
178 {
179 	if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
180 		return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP));
181 	else
182 		return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP));
183 }
184 
185 static void
186 zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr)
187 {
188 	if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
189 		return (kmem_cache_free(zfs_btree_leaf_cache, ptr));
190 	else
191 		return (kmem_free(ptr, tree->bt_leaf_size));
192 }
193 
194 void
195 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
196     size_t size)
197 {
198 	zfs_btree_create_custom(tree, compar, size, BTREE_LEAF_SIZE);
199 }
200 
201 void
202 zfs_btree_create_custom(zfs_btree_t *tree,
203     int (*compar) (const void *, const void *),
204     size_t size, size_t lsize)
205 {
206 	size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems);
207 
208 	ASSERT3U(size, <=, esize / 2);
209 	memset(tree, 0, sizeof (*tree));
210 	tree->bt_compar = compar;
211 	tree->bt_elem_size = size;
212 	tree->bt_leaf_size = lsize;
213 	tree->bt_leaf_cap = P2ALIGN(esize / size, 2);
214 	tree->bt_height = -1;
215 	tree->bt_bulk = NULL;
216 }
217 
218 /*
219  * Find value in the array of elements provided. Uses a simple binary search.
220  */
221 static void *
222 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
223     const void *value, zfs_btree_index_t *where)
224 {
225 	uint32_t max = nelems;
226 	uint32_t min = 0;
227 	while (max > min) {
228 		uint32_t idx = (min + max) / 2;
229 		uint8_t *cur = buf + idx * tree->bt_elem_size;
230 		int comp = tree->bt_compar(cur, value);
231 		if (comp < 0) {
232 			min = idx + 1;
233 		} else if (comp > 0) {
234 			max = idx;
235 		} else {
236 			where->bti_offset = idx;
237 			where->bti_before = B_FALSE;
238 			return (cur);
239 		}
240 	}
241 
242 	where->bti_offset = max;
243 	where->bti_before = B_TRUE;
244 	return (NULL);
245 }
246 
247 /*
248  * Find the given value in the tree. where may be passed as null to use as a
249  * membership test or if the btree is being used as a map.
250  */
251 void *
252 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
253 {
254 	if (tree->bt_height == -1) {
255 		if (where != NULL) {
256 			where->bti_node = NULL;
257 			where->bti_offset = 0;
258 		}
259 		ASSERT0(tree->bt_num_elems);
260 		return (NULL);
261 	}
262 
263 	/*
264 	 * If we're in bulk-insert mode, we check the last spot in the tree
265 	 * and the last leaf in the tree before doing the normal search,
266 	 * because for most workloads the vast majority of finds in
267 	 * bulk-insert mode are to insert new elements.
268 	 */
269 	zfs_btree_index_t idx;
270 	size_t size = tree->bt_elem_size;
271 	if (tree->bt_bulk != NULL) {
272 		zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
273 		int comp = tree->bt_compar(last_leaf->btl_elems +
274 		    (last_leaf->btl_hdr.bth_first +
275 		    last_leaf->btl_hdr.bth_count - 1) * size, value);
276 		if (comp < 0) {
277 			/*
278 			 * If what they're looking for is after the last
279 			 * element, it's not in the tree.
280 			 */
281 			if (where != NULL) {
282 				where->bti_node = (zfs_btree_hdr_t *)last_leaf;
283 				where->bti_offset =
284 				    last_leaf->btl_hdr.bth_count;
285 				where->bti_before = B_TRUE;
286 			}
287 			return (NULL);
288 		} else if (comp == 0) {
289 			if (where != NULL) {
290 				where->bti_node = (zfs_btree_hdr_t *)last_leaf;
291 				where->bti_offset =
292 				    last_leaf->btl_hdr.bth_count - 1;
293 				where->bti_before = B_FALSE;
294 			}
295 			return (last_leaf->btl_elems +
296 			    (last_leaf->btl_hdr.bth_first +
297 			    last_leaf->btl_hdr.bth_count - 1) * size);
298 		}
299 		if (tree->bt_compar(last_leaf->btl_elems +
300 		    last_leaf->btl_hdr.bth_first * size, value) <= 0) {
301 			/*
302 			 * If what they're looking for is after the first
303 			 * element in the last leaf, it's in the last leaf or
304 			 * it's not in the tree.
305 			 */
306 			void *d = zfs_btree_find_in_buf(tree,
307 			    last_leaf->btl_elems +
308 			    last_leaf->btl_hdr.bth_first * size,
309 			    last_leaf->btl_hdr.bth_count, value, &idx);
310 
311 			if (where != NULL) {
312 				idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
313 				*where = idx;
314 			}
315 			return (d);
316 		}
317 	}
318 
319 	zfs_btree_core_t *node = NULL;
320 	uint32_t child = 0;
321 	uint32_t depth = 0;
322 
323 	/*
324 	 * Iterate down the tree, finding which child the value should be in
325 	 * by comparing with the separators.
326 	 */
327 	for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
328 	    node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
329 		ASSERT3P(node, !=, NULL);
330 		void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
331 		    node->btc_hdr.bth_count, value, &idx);
332 		EQUIV(d != NULL, !idx.bti_before);
333 		if (d != NULL) {
334 			if (where != NULL) {
335 				idx.bti_node = (zfs_btree_hdr_t *)node;
336 				*where = idx;
337 			}
338 			return (d);
339 		}
340 		ASSERT(idx.bti_before);
341 		child = idx.bti_offset;
342 	}
343 
344 	/*
345 	 * The value is in this leaf, or it would be if it were in the
346 	 * tree. Find its proper location and return it.
347 	 */
348 	zfs_btree_leaf_t *leaf = (depth == 0 ?
349 	    (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
350 	void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems +
351 	    leaf->btl_hdr.bth_first * size,
352 	    leaf->btl_hdr.bth_count, value, &idx);
353 
354 	if (where != NULL) {
355 		idx.bti_node = (zfs_btree_hdr_t *)leaf;
356 		*where = idx;
357 	}
358 
359 	return (d);
360 }
361 
362 /*
363  * To explain the following functions, it is useful to understand the four
364  * kinds of shifts used in btree operation. First, a shift is a movement of
365  * elements within a node. It is used to create gaps for inserting new
366  * elements and children, or cover gaps created when things are removed. A
367  * shift has two fundamental properties, each of which can be one of two
368  * values, making four types of shifts.  There is the direction of the shift
369  * (left or right) and the shape of the shift (parallelogram or isoceles
370  * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
371  * applies to shifts of core nodes.
372  *
373  * The names derive from the following imagining of the layout of a node:
374  *
375  *  Elements:       *   *   *   *   *   *   *   ...   *   *   *
376  *  Children:     *   *   *   *   *   *   *   *   ...   *   *   *
377  *
378  * This layout follows from the fact that the elements act as separators
379  * between pairs of children, and that children root subtrees "below" the
380  * current node. A left and right shift are fairly self-explanatory; a left
381  * shift moves things to the left, while a right shift moves things to the
382  * right. A parallelogram shift is a shift with the same number of elements
383  * and children being moved, while a trapezoid shift is a shift that moves one
384  * more children than elements. An example follows:
385  *
386  * A parallelogram shift could contain the following:
387  *      _______________
388  *      \*   *   *   * \ *   *   *   ...   *   *   *
389  *     * \ *   *   *   *\  *   *   *   ...   *   *   *
390  *        ---------------
391  * A trapezoid shift could contain the following:
392  *          ___________
393  *       * / *   *   * \ *   *   *   ...   *   *   *
394  *     *  / *  *   *   *\  *   *   *   ...   *   *   *
395  *        ---------------
396  *
397  * Note that a parallelogram shift is always shaped like a "left-leaning"
398  * parallelogram, where the starting index of the children being moved is
399  * always one higher than the starting index of the elements being moved. No
400  * "right-leaning" parallelogram shifts are needed (shifts where the starting
401  * element index and starting child index being moved are the same) to achieve
402  * any btree operations, so we ignore them.
403  */
404 
405 enum bt_shift_shape {
406 	BSS_TRAPEZOID,
407 	BSS_PARALLELOGRAM
408 };
409 
410 enum bt_shift_direction {
411 	BSD_LEFT,
412 	BSD_RIGHT
413 };
414 
415 /*
416  * Shift elements and children in the provided core node by off spots.  The
417  * first element moved is idx, and count elements are moved. The shape of the
418  * shift is determined by shape. The direction is determined by dir.
419  */
420 static inline void
421 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
422     uint32_t count, uint32_t off, enum bt_shift_shape shape,
423     enum bt_shift_direction dir)
424 {
425 	size_t size = tree->bt_elem_size;
426 	ASSERT(zfs_btree_is_core(&node->btc_hdr));
427 
428 	uint8_t *e_start = node->btc_elems + idx * size;
429 	uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
430 	    e_start + off * size);
431 	bmov(e_start, e_out, count * size);
432 
433 	zfs_btree_hdr_t **c_start = node->btc_children + idx +
434 	    (shape == BSS_TRAPEZOID ? 0 : 1);
435 	zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
436 	    c_start + off);
437 	uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
438 	bmov(c_start, c_out, c_count * sizeof (*c_start));
439 }
440 
441 /*
442  * Shift elements and children in the provided core node left by one spot.
443  * The first element moved is idx, and count elements are moved. The
444  * shape of the shift is determined by trap; true if the shift is a trapezoid,
445  * false if it is a parallelogram.
446  */
447 static inline void
448 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
449     uint32_t count, enum bt_shift_shape shape)
450 {
451 	bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
452 }
453 
454 /*
455  * Shift elements and children in the provided core node right by one spot.
456  * Starts with elements[idx] and children[idx] and one more child than element.
457  */
458 static inline void
459 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
460     uint32_t count, enum bt_shift_shape shape)
461 {
462 	bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
463 }
464 
465 /*
466  * Shift elements and children in the provided leaf node by off spots.
467  * The first element moved is idx, and count elements are moved. The direction
468  * is determined by left.
469  */
470 static inline void
471 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
472     uint32_t count, uint32_t off, enum bt_shift_direction dir)
473 {
474 	size_t size = tree->bt_elem_size;
475 	zfs_btree_hdr_t *hdr = &node->btl_hdr;
476 	ASSERT(!zfs_btree_is_core(hdr));
477 
478 	if (count == 0)
479 		return;
480 	uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
481 	uint8_t *out = (dir == BSD_LEFT ? start - off * size :
482 	    start + off * size);
483 	bmov(start, out, count * size);
484 }
485 
486 /*
487  * Grow leaf for n new elements before idx.
488  */
489 static void
490 bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
491     uint32_t n)
492 {
493 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
494 	ASSERT(!zfs_btree_is_core(hdr));
495 	ASSERT3U(idx, <=, hdr->bth_count);
496 	uint32_t capacity = tree->bt_leaf_cap;
497 	ASSERT3U(hdr->bth_count + n, <=, capacity);
498 	boolean_t cl = (hdr->bth_first >= n);
499 	boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
500 
501 	if (cl && (!cr || idx <= hdr->bth_count / 2)) {
502 		/* Grow left. */
503 		hdr->bth_first -= n;
504 		bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
505 	} else if (cr) {
506 		/* Grow right. */
507 		bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
508 		    BSD_RIGHT);
509 	} else {
510 		/* Grow both ways. */
511 		uint32_t fn = hdr->bth_first -
512 		    (capacity - (hdr->bth_count + n)) / 2;
513 		hdr->bth_first -= fn;
514 		bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
515 		bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
516 		    n - fn, BSD_RIGHT);
517 	}
518 	hdr->bth_count += n;
519 }
520 
521 /*
522  * Shrink leaf for count elements starting from idx.
523  */
524 static void
525 bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
526     uint32_t n)
527 {
528 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
529 	ASSERT(!zfs_btree_is_core(hdr));
530 	ASSERT3U(idx, <=, hdr->bth_count);
531 	ASSERT3U(idx + n, <=, hdr->bth_count);
532 
533 	if (idx <= (hdr->bth_count - n) / 2) {
534 		bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
535 		zfs_btree_poison_node_at(tree, hdr, 0, n);
536 		hdr->bth_first += n;
537 	} else {
538 		bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
539 		    BSD_LEFT);
540 		zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
541 	}
542 	hdr->bth_count -= n;
543 }
544 
545 /*
546  * Move children and elements from one core node to another. The shape
547  * parameter behaves the same as it does in the shift logic.
548  */
549 static inline void
550 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
551     uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
552     enum bt_shift_shape shape)
553 {
554 	size_t size = tree->bt_elem_size;
555 	ASSERT(zfs_btree_is_core(&source->btc_hdr));
556 	ASSERT(zfs_btree_is_core(&dest->btc_hdr));
557 
558 	bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
559 	    count * size);
560 
561 	uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
562 	bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
563 	    dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
564 	    c_count * sizeof (*source->btc_children));
565 }
566 
567 static inline void
568 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
569     uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
570 {
571 	size_t size = tree->bt_elem_size;
572 	ASSERT(!zfs_btree_is_core(&source->btl_hdr));
573 	ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
574 
575 	bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
576 	    dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
577 	    count * size);
578 }
579 
580 /*
581  * Find the first element in the subtree rooted at hdr, return its value and
582  * put its location in where if non-null.
583  */
584 static void *
585 zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
586     zfs_btree_index_t *where)
587 {
588 	zfs_btree_hdr_t *node;
589 
590 	for (node = hdr; zfs_btree_is_core(node);
591 	    node = ((zfs_btree_core_t *)node)->btc_children[0])
592 		;
593 
594 	ASSERT(!zfs_btree_is_core(node));
595 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
596 	if (where != NULL) {
597 		where->bti_node = node;
598 		where->bti_offset = 0;
599 		where->bti_before = B_FALSE;
600 	}
601 	return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
602 }
603 
604 /* Insert an element and a child into a core node at the given offset. */
605 static void
606 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
607     uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
608 {
609 	size_t size = tree->bt_elem_size;
610 	zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
611 	ASSERT3P(par_hdr, ==, new_node->bth_parent);
612 	ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
613 
614 	if (zfs_btree_verify_intensity >= 5) {
615 		zfs_btree_verify_poison_at(tree, par_hdr,
616 		    par_hdr->bth_count);
617 	}
618 	/* Shift existing elements and children */
619 	uint32_t count = par_hdr->bth_count - offset;
620 	bt_shift_core_right(tree, parent, offset, count,
621 	    BSS_PARALLELOGRAM);
622 
623 	/* Insert new values */
624 	parent->btc_children[offset + 1] = new_node;
625 	bcpy(buf, parent->btc_elems + offset * size, size);
626 	par_hdr->bth_count++;
627 }
628 
629 /*
630  * Insert new_node into the parent of old_node directly after old_node, with
631  * buf as the dividing element between the two.
632  */
633 static void
634 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
635     zfs_btree_hdr_t *new_node, void *buf)
636 {
637 	ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
638 	size_t size = tree->bt_elem_size;
639 	zfs_btree_core_t *parent = old_node->bth_parent;
640 
641 	/*
642 	 * If this is the root node we were splitting, we create a new root
643 	 * and increase the height of the tree.
644 	 */
645 	if (parent == NULL) {
646 		ASSERT3P(old_node, ==, tree->bt_root);
647 		tree->bt_num_nodes++;
648 		zfs_btree_core_t *new_root =
649 		    kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
650 		    size, KM_SLEEP);
651 		zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
652 		new_root_hdr->bth_parent = NULL;
653 		new_root_hdr->bth_first = -1;
654 		new_root_hdr->bth_count = 1;
655 
656 		old_node->bth_parent = new_node->bth_parent = new_root;
657 		new_root->btc_children[0] = old_node;
658 		new_root->btc_children[1] = new_node;
659 		bcpy(buf, new_root->btc_elems, size);
660 
661 		tree->bt_height++;
662 		tree->bt_root = new_root_hdr;
663 		zfs_btree_poison_node(tree, new_root_hdr);
664 		return;
665 	}
666 
667 	/*
668 	 * Since we have the new separator, binary search for where to put
669 	 * new_node.
670 	 */
671 	zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
672 	zfs_btree_index_t idx;
673 	ASSERT(zfs_btree_is_core(par_hdr));
674 	VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
675 	    par_hdr->bth_count, buf, &idx), ==, NULL);
676 	ASSERT(idx.bti_before);
677 	uint32_t offset = idx.bti_offset;
678 	ASSERT3U(offset, <=, par_hdr->bth_count);
679 	ASSERT3P(parent->btc_children[offset], ==, old_node);
680 
681 	/*
682 	 * If the parent isn't full, shift things to accommodate our insertions
683 	 * and return.
684 	 */
685 	if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
686 		zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
687 		return;
688 	}
689 
690 	/*
691 	 * We need to split this core node into two. Currently there are
692 	 * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
693 	 * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
694 	 * current node, and the others will be moved to the new core node.
695 	 * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
696 	 * will be used as the new separator in our parent, and the others
697 	 * will be split among the two core nodes.
698 	 *
699 	 * Usually we will split the node in half evenly, with
700 	 * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
701 	 * instead move only about a quarter of the elements (and children) to
702 	 * the new node. Since the average state after a long time is a 3/4
703 	 * full node, shortcutting directly to that state improves efficiency.
704 	 *
705 	 * We do this in two stages: first we split into two nodes, and then we
706 	 * reuse our existing logic to insert the new element and child.
707 	 */
708 	uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
709 	    2 : 4)) - 1, 2);
710 	uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
711 	ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
712 	tree->bt_num_nodes++;
713 	zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
714 	    BTREE_CORE_ELEMS * size, KM_SLEEP);
715 	zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
716 	new_par_hdr->bth_parent = par_hdr->bth_parent;
717 	new_par_hdr->bth_first = -1;
718 	new_par_hdr->bth_count = move_count;
719 	zfs_btree_poison_node(tree, new_par_hdr);
720 
721 	par_hdr->bth_count = keep_count;
722 
723 	bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
724 	    0, BSS_TRAPEZOID);
725 
726 	/* Store the new separator in a buffer. */
727 	uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
728 	bcpy(parent->btc_elems + keep_count * size, tmp_buf,
729 	    size);
730 	zfs_btree_poison_node(tree, par_hdr);
731 
732 	if (offset < keep_count) {
733 		/* Insert the new node into the left half */
734 		zfs_btree_insert_core_impl(tree, parent, offset, new_node,
735 		    buf);
736 
737 		/*
738 		 * Move the new separator to the existing buffer.
739 		 */
740 		bcpy(tmp_buf, buf, size);
741 	} else if (offset > keep_count) {
742 		/* Insert the new node into the right half */
743 		new_node->bth_parent = new_parent;
744 		zfs_btree_insert_core_impl(tree, new_parent,
745 		    offset - keep_count - 1, new_node, buf);
746 
747 		/*
748 		 * Move the new separator to the existing buffer.
749 		 */
750 		bcpy(tmp_buf, buf, size);
751 	} else {
752 		/*
753 		 * Move the new separator into the right half, and replace it
754 		 * with buf. We also need to shift back the elements in the
755 		 * right half to accommodate new_node.
756 		 */
757 		bt_shift_core_right(tree, new_parent, 0, move_count,
758 		    BSS_TRAPEZOID);
759 		new_parent->btc_children[0] = new_node;
760 		bcpy(tmp_buf, new_parent->btc_elems, size);
761 		new_par_hdr->bth_count++;
762 	}
763 	kmem_free(tmp_buf, size);
764 	zfs_btree_poison_node(tree, par_hdr);
765 
766 	for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
767 		new_parent->btc_children[i]->bth_parent = new_parent;
768 
769 	for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
770 		ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
771 
772 	/*
773 	 * Now that the node is split, we need to insert the new node into its
774 	 * parent. This may cause further splitting.
775 	 */
776 	zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
777 	    &new_parent->btc_hdr, buf);
778 }
779 
780 /* Insert an element into a leaf node at the given offset. */
781 static void
782 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
783     uint32_t idx, const void *value)
784 {
785 	size_t size = tree->bt_elem_size;
786 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
787 	ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
788 
789 	if (zfs_btree_verify_intensity >= 5) {
790 		zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
791 		    leaf->btl_hdr.bth_count);
792 	}
793 
794 	bt_grow_leaf(tree, leaf, idx, 1);
795 	uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
796 	bcpy(value, start, size);
797 }
798 
799 static void
800 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
801 
802 /* Helper function for inserting a new value into leaf at the given index. */
803 static void
804 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
805     const void *value, uint32_t idx)
806 {
807 	size_t size = tree->bt_elem_size;
808 	uint32_t capacity = tree->bt_leaf_cap;
809 
810 	/*
811 	 * If the leaf isn't full, shift the elements after idx and insert
812 	 * value.
813 	 */
814 	if (leaf->btl_hdr.bth_count != capacity) {
815 		zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
816 		return;
817 	}
818 
819 	/*
820 	 * Otherwise, we split the leaf node into two nodes. If we're not bulk
821 	 * inserting, each is of size (capacity / 2).  If we are bulk
822 	 * inserting, we move a quarter of the elements to the new node so
823 	 * inserts into the old node don't cause immediate splitting but the
824 	 * tree stays relatively dense. Since the average state after a long
825 	 * time is a 3/4 full node, shortcutting directly to that state
826 	 * improves efficiency.  At the end of the bulk insertion process
827 	 * we'll need to go through and fix up any nodes (the last leaf and
828 	 * its ancestors, potentially) that are below the minimum.
829 	 *
830 	 * In either case, we're left with one extra element. The leftover
831 	 * element will become the new dividing element between the two nodes.
832 	 */
833 	uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
834 	uint32_t keep_count = capacity - move_count - 1;
835 	ASSERT3U(keep_count, >=, 1);
836 	/* If we insert on left. move one more to keep leaves balanced.  */
837 	if (idx < keep_count) {
838 		keep_count--;
839 		move_count++;
840 	}
841 	tree->bt_num_nodes++;
842 	zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree);
843 	zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
844 	new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
845 	new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
846 	    (idx >= keep_count && idx <= keep_count + move_count / 2);
847 	new_hdr->bth_count = move_count;
848 	zfs_btree_poison_node(tree, new_hdr);
849 
850 	if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
851 		tree->bt_bulk = new_leaf;
852 
853 	/* Copy the back part to the new leaf. */
854 	bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
855 
856 	/* We store the new separator in a buffer we control for simplicity. */
857 	uint8_t *buf = kmem_alloc(size, KM_SLEEP);
858 	bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
859 	    buf, size);
860 
861 	bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
862 
863 	if (idx < keep_count) {
864 		/* Insert into the existing leaf. */
865 		zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
866 	} else if (idx > keep_count) {
867 		/* Insert into the new leaf. */
868 		zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
869 		    1, value);
870 	} else {
871 		/*
872 		 * Insert planned separator into the new leaf, and use
873 		 * the new value as the new separator.
874 		 */
875 		zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
876 		bcpy(value, buf, size);
877 	}
878 
879 	/*
880 	 * Now that the node is split, we need to insert the new node into its
881 	 * parent. This may cause further splitting, bur only of core nodes.
882 	 */
883 	zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
884 	    buf);
885 	kmem_free(buf, size);
886 }
887 
888 static uint32_t
889 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
890 {
891 	void *buf;
892 	if (zfs_btree_is_core(hdr)) {
893 		buf = ((zfs_btree_core_t *)hdr)->btc_elems;
894 	} else {
895 		buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
896 		    hdr->bth_first * tree->bt_elem_size;
897 	}
898 	zfs_btree_index_t idx;
899 	zfs_btree_core_t *parent = hdr->bth_parent;
900 	VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
901 	    parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
902 	ASSERT(idx.bti_before);
903 	ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
904 	ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
905 	return (idx.bti_offset);
906 }
907 
908 /*
909  * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
910  * nodes may violate the invariant that non-root nodes must be at least half
911  * full. All nodes violating this invariant should be the last node in their
912  * particular level. To correct the invariant, we take values from their left
913  * neighbor until they are half full. They must have a left neighbor at their
914  * level because the last node at a level is not the first node unless it's
915  * the root.
916  */
917 static void
918 zfs_btree_bulk_finish(zfs_btree_t *tree)
919 {
920 	ASSERT3P(tree->bt_bulk, !=, NULL);
921 	ASSERT3P(tree->bt_root, !=, NULL);
922 	zfs_btree_leaf_t *leaf = tree->bt_bulk;
923 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
924 	zfs_btree_core_t *parent = hdr->bth_parent;
925 	size_t size = tree->bt_elem_size;
926 	uint32_t capacity = tree->bt_leaf_cap;
927 
928 	/*
929 	 * The invariant doesn't apply to the root node, if that's the only
930 	 * node in the tree we're done.
931 	 */
932 	if (parent == NULL) {
933 		tree->bt_bulk = NULL;
934 		return;
935 	}
936 
937 	/* First, take elements to rebalance the leaf node. */
938 	if (hdr->bth_count < capacity / 2) {
939 		/*
940 		 * First, find the left neighbor. The simplest way to do this
941 		 * is to call zfs_btree_prev twice; the first time finds some
942 		 * ancestor of this node, and the second time finds the left
943 		 * neighbor. The ancestor found is the lowest common ancestor
944 		 * of leaf and the neighbor.
945 		 */
946 		zfs_btree_index_t idx = {
947 			.bti_node = hdr,
948 			.bti_offset = 0
949 		};
950 		VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
951 		ASSERT(zfs_btree_is_core(idx.bti_node));
952 		zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
953 		uint32_t common_idx = idx.bti_offset;
954 
955 		VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
956 		ASSERT(!zfs_btree_is_core(idx.bti_node));
957 		zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
958 		zfs_btree_hdr_t *l_hdr = idx.bti_node;
959 		uint32_t move_count = (capacity / 2) - hdr->bth_count;
960 		ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
961 		    capacity / 2);
962 
963 		if (zfs_btree_verify_intensity >= 5) {
964 			for (uint32_t i = 0; i < move_count; i++) {
965 				zfs_btree_verify_poison_at(tree, hdr,
966 				    leaf->btl_hdr.bth_count + i);
967 			}
968 		}
969 
970 		/* First, shift elements in leaf back. */
971 		bt_grow_leaf(tree, leaf, 0, move_count);
972 
973 		/* Next, move the separator from the common ancestor to leaf. */
974 		uint8_t *separator = common->btc_elems + common_idx * size;
975 		uint8_t *out = leaf->btl_elems +
976 		    (hdr->bth_first + move_count - 1) * size;
977 		bcpy(separator, out, size);
978 
979 		/*
980 		 * Now we move elements from the tail of the left neighbor to
981 		 * fill the remaining spots in leaf.
982 		 */
983 		bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
984 		    (move_count - 1), move_count - 1, leaf, 0);
985 
986 		/*
987 		 * Finally, move the new last element in the left neighbor to
988 		 * the separator.
989 		 */
990 		bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
991 		    l_hdr->bth_count - move_count) * size, separator, size);
992 
993 		/* Adjust the node's counts, and we're done. */
994 		bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
995 		    move_count);
996 
997 		ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
998 		ASSERT3U(hdr->bth_count, >=, capacity / 2);
999 	}
1000 
1001 	/*
1002 	 * Now we have to rebalance any ancestors of leaf that may also
1003 	 * violate the invariant.
1004 	 */
1005 	capacity = BTREE_CORE_ELEMS;
1006 	while (parent->btc_hdr.bth_parent != NULL) {
1007 		zfs_btree_core_t *cur = parent;
1008 		zfs_btree_hdr_t *hdr = &cur->btc_hdr;
1009 		parent = hdr->bth_parent;
1010 		/*
1011 		 * If the invariant isn't violated, move on to the next
1012 		 * ancestor.
1013 		 */
1014 		if (hdr->bth_count >= capacity / 2)
1015 			continue;
1016 
1017 		/*
1018 		 * Because the smallest number of nodes we can move when
1019 		 * splitting is 2, we never need to worry about not having a
1020 		 * left sibling (a sibling is a neighbor with the same parent).
1021 		 */
1022 		uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1023 		ASSERT3U(parent_idx, >, 0);
1024 		zfs_btree_core_t *l_neighbor =
1025 		    (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
1026 		uint32_t move_count = (capacity / 2) - hdr->bth_count;
1027 		ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
1028 		    capacity / 2);
1029 
1030 		if (zfs_btree_verify_intensity >= 5) {
1031 			for (uint32_t i = 0; i < move_count; i++) {
1032 				zfs_btree_verify_poison_at(tree, hdr,
1033 				    hdr->bth_count + i);
1034 			}
1035 		}
1036 		/* First, shift things in the right node back. */
1037 		bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
1038 		    BSS_TRAPEZOID, BSD_RIGHT);
1039 
1040 		/* Next, move the separator to the right node. */
1041 		uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
1042 		    size);
1043 		uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
1044 		bcpy(separator, e_out, size);
1045 
1046 		/*
1047 		 * Now, move elements and children from the left node to the
1048 		 * right.  We move one more child than elements.
1049 		 */
1050 		move_count--;
1051 		uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
1052 		bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
1053 		    BSS_TRAPEZOID);
1054 
1055 		/*
1056 		 * Finally, move the last element in the left node to the
1057 		 * separator's position.
1058 		 */
1059 		move_idx--;
1060 		bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
1061 
1062 		l_neighbor->btc_hdr.bth_count -= move_count + 1;
1063 		hdr->bth_count += move_count + 1;
1064 
1065 		ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
1066 		ASSERT3U(hdr->bth_count, >=, capacity / 2);
1067 
1068 		zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
1069 
1070 		for (uint32_t i = 0; i <= hdr->bth_count; i++)
1071 			cur->btc_children[i]->bth_parent = cur;
1072 	}
1073 
1074 	tree->bt_bulk = NULL;
1075 	zfs_btree_verify(tree);
1076 }
1077 
1078 /*
1079  * Insert value into tree at the location specified by where.
1080  */
1081 void
1082 zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
1083     const zfs_btree_index_t *where)
1084 {
1085 	zfs_btree_index_t idx = {0};
1086 
1087 	/* If we're not inserting in the last leaf, end bulk insert mode. */
1088 	if (tree->bt_bulk != NULL) {
1089 		if (where->bti_node != &tree->bt_bulk->btl_hdr) {
1090 			zfs_btree_bulk_finish(tree);
1091 			VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
1092 			where = &idx;
1093 		}
1094 	}
1095 
1096 	tree->bt_num_elems++;
1097 	/*
1098 	 * If this is the first element in the tree, create a leaf root node
1099 	 * and add the value to it.
1100 	 */
1101 	if (where->bti_node == NULL) {
1102 		ASSERT3U(tree->bt_num_elems, ==, 1);
1103 		ASSERT3S(tree->bt_height, ==, -1);
1104 		ASSERT3P(tree->bt_root, ==, NULL);
1105 		ASSERT0(where->bti_offset);
1106 
1107 		tree->bt_num_nodes++;
1108 		zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree);
1109 		tree->bt_root = &leaf->btl_hdr;
1110 		tree->bt_height++;
1111 
1112 		zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
1113 		hdr->bth_parent = NULL;
1114 		hdr->bth_first = 0;
1115 		hdr->bth_count = 0;
1116 		zfs_btree_poison_node(tree, hdr);
1117 
1118 		zfs_btree_insert_into_leaf(tree, leaf, value, 0);
1119 		tree->bt_bulk = leaf;
1120 	} else if (!zfs_btree_is_core(where->bti_node)) {
1121 		/*
1122 		 * If we're inserting into a leaf, go directly to the helper
1123 		 * function.
1124 		 */
1125 		zfs_btree_insert_into_leaf(tree,
1126 		    (zfs_btree_leaf_t *)where->bti_node, value,
1127 		    where->bti_offset);
1128 	} else {
1129 		/*
1130 		 * If we're inserting into a core node, we can't just shift
1131 		 * the existing element in that slot in the same node without
1132 		 * breaking our ordering invariants. Instead we place the new
1133 		 * value in the node at that spot and then insert the old
1134 		 * separator into the first slot in the subtree to the right.
1135 		 */
1136 		zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
1137 
1138 		/*
1139 		 * We can ignore bti_before, because either way the value
1140 		 * should end up in bti_offset.
1141 		 */
1142 		uint32_t off = where->bti_offset;
1143 		zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
1144 		size_t size = tree->bt_elem_size;
1145 		uint8_t *buf = kmem_alloc(size, KM_SLEEP);
1146 		bcpy(node->btc_elems + off * size, buf, size);
1147 		bcpy(value, node->btc_elems + off * size, size);
1148 
1149 		/*
1150 		 * Find the first slot in the subtree to the right, insert
1151 		 * there.
1152 		 */
1153 		zfs_btree_index_t new_idx;
1154 		VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
1155 		    NULL);
1156 		ASSERT0(new_idx.bti_offset);
1157 		ASSERT(!zfs_btree_is_core(new_idx.bti_node));
1158 		zfs_btree_insert_into_leaf(tree,
1159 		    (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
1160 		kmem_free(buf, size);
1161 	}
1162 	zfs_btree_verify(tree);
1163 }
1164 
1165 /*
1166  * Return the first element in the tree, and put its location in where if
1167  * non-null.
1168  */
1169 void *
1170 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
1171 {
1172 	if (tree->bt_height == -1) {
1173 		ASSERT0(tree->bt_num_elems);
1174 		return (NULL);
1175 	}
1176 	return (zfs_btree_first_helper(tree, tree->bt_root, where));
1177 }
1178 
1179 /*
1180  * Find the last element in the subtree rooted at hdr, return its value and
1181  * put its location in where if non-null.
1182  */
1183 static void *
1184 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
1185     zfs_btree_index_t *where)
1186 {
1187 	zfs_btree_hdr_t *node;
1188 
1189 	for (node = hdr; zfs_btree_is_core(node); node =
1190 	    ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
1191 		;
1192 
1193 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
1194 	if (where != NULL) {
1195 		where->bti_node = node;
1196 		where->bti_offset = node->bth_count - 1;
1197 		where->bti_before = B_FALSE;
1198 	}
1199 	return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
1200 	    btree->bt_elem_size);
1201 }
1202 
1203 /*
1204  * Return the last element in the tree, and put its location in where if
1205  * non-null.
1206  */
1207 void *
1208 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
1209 {
1210 	if (tree->bt_height == -1) {
1211 		ASSERT0(tree->bt_num_elems);
1212 		return (NULL);
1213 	}
1214 	return (zfs_btree_last_helper(tree, tree->bt_root, where));
1215 }
1216 
1217 /*
1218  * This function contains the logic to find the next node in the tree. A
1219  * helper function is used because there are multiple internal consumemrs of
1220  * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
1221  * node after we've finished with it.
1222  */
1223 static void *
1224 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1225     zfs_btree_index_t *out_idx,
1226     void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
1227 {
1228 	if (idx->bti_node == NULL) {
1229 		ASSERT3S(tree->bt_height, ==, -1);
1230 		return (NULL);
1231 	}
1232 
1233 	uint32_t offset = idx->bti_offset;
1234 	if (!zfs_btree_is_core(idx->bti_node)) {
1235 		/*
1236 		 * When finding the next element of an element in a leaf,
1237 		 * there are two cases. If the element isn't the last one in
1238 		 * the leaf, in which case we just return the next element in
1239 		 * the leaf. Otherwise, we need to traverse up our parents
1240 		 * until we find one where our ancestor isn't the last child
1241 		 * of its parent. Once we do, the next element is the
1242 		 * separator after our ancestor in its parent.
1243 		 */
1244 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1245 		uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
1246 		if (leaf->btl_hdr.bth_count > new_off) {
1247 			out_idx->bti_node = &leaf->btl_hdr;
1248 			out_idx->bti_offset = new_off;
1249 			out_idx->bti_before = B_FALSE;
1250 			return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1251 			    new_off) * tree->bt_elem_size);
1252 		}
1253 
1254 		zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1255 		for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1256 		    node != NULL; node = node->btc_hdr.bth_parent) {
1257 			zfs_btree_hdr_t *hdr = &node->btc_hdr;
1258 			ASSERT(zfs_btree_is_core(hdr));
1259 			uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1260 			if (done_func != NULL)
1261 				done_func(tree, prev);
1262 			if (i == hdr->bth_count) {
1263 				prev = hdr;
1264 				continue;
1265 			}
1266 			out_idx->bti_node = hdr;
1267 			out_idx->bti_offset = i;
1268 			out_idx->bti_before = B_FALSE;
1269 			return (node->btc_elems + i * tree->bt_elem_size);
1270 		}
1271 		if (done_func != NULL)
1272 			done_func(tree, prev);
1273 		/*
1274 		 * We've traversed all the way up and been at the end of the
1275 		 * node every time, so this was the last element in the tree.
1276 		 */
1277 		return (NULL);
1278 	}
1279 
1280 	/* If we were before an element in a core node, return that element. */
1281 	ASSERT(zfs_btree_is_core(idx->bti_node));
1282 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1283 	if (idx->bti_before) {
1284 		out_idx->bti_before = B_FALSE;
1285 		return (node->btc_elems + offset * tree->bt_elem_size);
1286 	}
1287 
1288 	/*
1289 	 * The next element from one in a core node is the first element in
1290 	 * the subtree just to the right of the separator.
1291 	 */
1292 	zfs_btree_hdr_t *child = node->btc_children[offset + 1];
1293 	return (zfs_btree_first_helper(tree, child, out_idx));
1294 }
1295 
1296 /*
1297  * Return the next valued node in the tree.  The same address can be safely
1298  * passed for idx and out_idx.
1299  */
1300 void *
1301 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1302     zfs_btree_index_t *out_idx)
1303 {
1304 	return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
1305 }
1306 
1307 /*
1308  * Return the previous valued node in the tree.  The same value can be safely
1309  * passed for idx and out_idx.
1310  */
1311 void *
1312 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1313     zfs_btree_index_t *out_idx)
1314 {
1315 	if (idx->bti_node == NULL) {
1316 		ASSERT3S(tree->bt_height, ==, -1);
1317 		return (NULL);
1318 	}
1319 
1320 	uint32_t offset = idx->bti_offset;
1321 	if (!zfs_btree_is_core(idx->bti_node)) {
1322 		/*
1323 		 * When finding the previous element of an element in a leaf,
1324 		 * there are two cases. If the element isn't the first one in
1325 		 * the leaf, in which case we just return the previous element
1326 		 * in the leaf. Otherwise, we need to traverse up our parents
1327 		 * until we find one where our previous ancestor isn't the
1328 		 * first child. Once we do, the previous element is the
1329 		 * separator after our previous ancestor.
1330 		 */
1331 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1332 		if (offset != 0) {
1333 			out_idx->bti_node = &leaf->btl_hdr;
1334 			out_idx->bti_offset = offset - 1;
1335 			out_idx->bti_before = B_FALSE;
1336 			return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1337 			    offset - 1) * tree->bt_elem_size);
1338 		}
1339 		zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1340 		for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1341 		    node != NULL; node = node->btc_hdr.bth_parent) {
1342 			zfs_btree_hdr_t *hdr = &node->btc_hdr;
1343 			ASSERT(zfs_btree_is_core(hdr));
1344 			uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1345 			if (i == 0) {
1346 				prev = hdr;
1347 				continue;
1348 			}
1349 			out_idx->bti_node = hdr;
1350 			out_idx->bti_offset = i - 1;
1351 			out_idx->bti_before = B_FALSE;
1352 			return (node->btc_elems + (i - 1) * tree->bt_elem_size);
1353 		}
1354 		/*
1355 		 * We've traversed all the way up and been at the start of the
1356 		 * node every time, so this was the first node in the tree.
1357 		 */
1358 		return (NULL);
1359 	}
1360 
1361 	/*
1362 	 * The previous element from one in a core node is the last element in
1363 	 * the subtree just to the left of the separator.
1364 	 */
1365 	ASSERT(zfs_btree_is_core(idx->bti_node));
1366 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1367 	zfs_btree_hdr_t *child = node->btc_children[offset];
1368 	return (zfs_btree_last_helper(tree, child, out_idx));
1369 }
1370 
1371 /*
1372  * Get the value at the provided index in the tree.
1373  *
1374  * Note that the value returned from this function can be mutated, but only
1375  * if it will not change the ordering of the element with respect to any other
1376  * elements that could be in the tree.
1377  */
1378 void *
1379 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
1380 {
1381 	ASSERT(!idx->bti_before);
1382 	size_t size = tree->bt_elem_size;
1383 	if (!zfs_btree_is_core(idx->bti_node)) {
1384 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1385 		return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1386 		    idx->bti_offset) * size);
1387 	}
1388 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1389 	return (node->btc_elems + idx->bti_offset * size);
1390 }
1391 
1392 /* Add the given value to the tree. Must not already be in the tree. */
1393 void
1394 zfs_btree_add(zfs_btree_t *tree, const void *node)
1395 {
1396 	zfs_btree_index_t where = {0};
1397 	VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
1398 	zfs_btree_add_idx(tree, node, &where);
1399 }
1400 
1401 /* Helper function to free a tree node. */
1402 static void
1403 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
1404 {
1405 	tree->bt_num_nodes--;
1406 	if (!zfs_btree_is_core(node)) {
1407 		zfs_btree_leaf_free(tree, node);
1408 	} else {
1409 		kmem_free(node, sizeof (zfs_btree_core_t) +
1410 		    BTREE_CORE_ELEMS * tree->bt_elem_size);
1411 	}
1412 }
1413 
1414 /*
1415  * Remove the rm_hdr and the separator to its left from the parent node. The
1416  * buffer that rm_hdr was stored in may already be freed, so its contents
1417  * cannot be accessed.
1418  */
1419 static void
1420 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
1421     zfs_btree_hdr_t *rm_hdr)
1422 {
1423 	size_t size = tree->bt_elem_size;
1424 	uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
1425 	zfs_btree_hdr_t *hdr = &node->btc_hdr;
1426 	/*
1427 	 * If the node is the root node and rm_hdr is one of two children,
1428 	 * promote the other child to the root.
1429 	 */
1430 	if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
1431 		ASSERT3U(hdr->bth_count, ==, 1);
1432 		ASSERT3P(tree->bt_root, ==, node);
1433 		ASSERT3P(node->btc_children[1], ==, rm_hdr);
1434 		tree->bt_root = node->btc_children[0];
1435 		node->btc_children[0]->bth_parent = NULL;
1436 		zfs_btree_node_destroy(tree, hdr);
1437 		tree->bt_height--;
1438 		return;
1439 	}
1440 
1441 	uint32_t idx;
1442 	for (idx = 0; idx <= hdr->bth_count; idx++) {
1443 		if (node->btc_children[idx] == rm_hdr)
1444 			break;
1445 	}
1446 	ASSERT3U(idx, <=, hdr->bth_count);
1447 
1448 	/*
1449 	 * If the node is the root or it has more than the minimum number of
1450 	 * children, just remove the child and separator, and return.
1451 	 */
1452 	if (hdr->bth_parent == NULL ||
1453 	    hdr->bth_count > min_count) {
1454 		/*
1455 		 * Shift the element and children to the right of rm_hdr to
1456 		 * the left by one spot.
1457 		 */
1458 		bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1459 		    BSS_PARALLELOGRAM);
1460 		hdr->bth_count--;
1461 		zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
1462 		return;
1463 	}
1464 
1465 	ASSERT3U(hdr->bth_count, ==, min_count);
1466 
1467 	/*
1468 	 * Now we try to take a node from a neighbor. We check left, then
1469 	 * right. If the neighbor exists and has more than the minimum number
1470 	 * of elements, we move the separator between us and them to our
1471 	 * node, move their closest element (last for left, first for right)
1472 	 * to the separator, and move their closest child to our node. Along
1473 	 * the way we need to collapse the gap made by idx, and (for our right
1474 	 * neighbor) the gap made by removing their first element and child.
1475 	 *
1476 	 * Note: this logic currently doesn't support taking from a neighbor
1477 	 * that isn't a sibling (i.e. a neighbor with a different
1478 	 * parent). This isn't critical functionality, but may be worth
1479 	 * implementing in the future for completeness' sake.
1480 	 */
1481 	zfs_btree_core_t *parent = hdr->bth_parent;
1482 	uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1483 
1484 	zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1485 	    parent->btc_children[parent_idx - 1]);
1486 	if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1487 		/* We can take a node from the left neighbor. */
1488 		ASSERT(zfs_btree_is_core(l_hdr));
1489 		zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
1490 
1491 		/*
1492 		 * Start by shifting the elements and children in the current
1493 		 * node to the right by one spot.
1494 		 */
1495 		bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
1496 
1497 		/*
1498 		 * Move the separator between node and neighbor to the first
1499 		 * element slot in the current node.
1500 		 */
1501 		uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1502 		    size;
1503 		bcpy(separator, node->btc_elems, size);
1504 
1505 		/* Move the last child of neighbor to our first child slot. */
1506 		node->btc_children[0] =
1507 		    neighbor->btc_children[l_hdr->bth_count];
1508 		node->btc_children[0]->bth_parent = node;
1509 
1510 		/* Move the last element of neighbor to the separator spot. */
1511 		uint8_t *take_elem = neighbor->btc_elems +
1512 		    (l_hdr->bth_count - 1) * size;
1513 		bcpy(take_elem, separator, size);
1514 		l_hdr->bth_count--;
1515 		zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
1516 		return;
1517 	}
1518 
1519 	zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1520 	    NULL : parent->btc_children[parent_idx + 1]);
1521 	if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1522 		/* We can take a node from the right neighbor. */
1523 		ASSERT(zfs_btree_is_core(r_hdr));
1524 		zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
1525 
1526 		/*
1527 		 * Shift elements in node left by one spot to overwrite rm_hdr
1528 		 * and the separator before it.
1529 		 */
1530 		bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1531 		    BSS_PARALLELOGRAM);
1532 
1533 		/*
1534 		 * Move the separator between node and neighbor to the last
1535 		 * element spot in node.
1536 		 */
1537 		uint8_t *separator = parent->btc_elems + parent_idx * size;
1538 		bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
1539 		    size);
1540 
1541 		/*
1542 		 * Move the first child of neighbor to the last child spot in
1543 		 * node.
1544 		 */
1545 		node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
1546 		node->btc_children[hdr->bth_count]->bth_parent = node;
1547 
1548 		/* Move the first element of neighbor to the separator spot. */
1549 		uint8_t *take_elem = neighbor->btc_elems;
1550 		bcpy(take_elem, separator, size);
1551 		r_hdr->bth_count--;
1552 
1553 		/*
1554 		 * Shift the elements and children of neighbor to cover the
1555 		 * stolen elements.
1556 		 */
1557 		bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
1558 		    BSS_TRAPEZOID);
1559 		zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
1560 		return;
1561 	}
1562 
1563 	/*
1564 	 * In this case, neither of our neighbors can spare an element, so we
1565 	 * need to merge with one of them. We prefer the left one,
1566 	 * arbitrarily. Move the separator into the leftmost merging node
1567 	 * (which may be us or the left neighbor), and then move the right
1568 	 * merging node's elements. Once that's done, we go back and delete
1569 	 * the element we're removing. Finally, go into the parent and delete
1570 	 * the right merging node and the separator. This may cause further
1571 	 * merging.
1572 	 */
1573 	zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
1574 	uint32_t new_idx = idx;
1575 	if (l_hdr != NULL) {
1576 		keep_hdr = l_hdr;
1577 		new_rm_hdr = hdr;
1578 		new_idx += keep_hdr->bth_count + 1;
1579 	} else {
1580 		ASSERT3P(r_hdr, !=, NULL);
1581 		keep_hdr = hdr;
1582 		new_rm_hdr = r_hdr;
1583 		parent_idx++;
1584 	}
1585 
1586 	ASSERT(zfs_btree_is_core(keep_hdr));
1587 	ASSERT(zfs_btree_is_core(new_rm_hdr));
1588 
1589 	zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
1590 	zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
1591 
1592 	if (zfs_btree_verify_intensity >= 5) {
1593 		for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
1594 			zfs_btree_verify_poison_at(tree, keep_hdr,
1595 			    keep_hdr->bth_count + i);
1596 		}
1597 	}
1598 
1599 	/* Move the separator into the left node. */
1600 	uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
1601 	uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1602 	    size;
1603 	bcpy(separator, e_out, size);
1604 	keep_hdr->bth_count++;
1605 
1606 	/* Move all our elements and children into the left node. */
1607 	bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
1608 	    keep_hdr->bth_count, BSS_TRAPEZOID);
1609 
1610 	uint32_t old_count = keep_hdr->bth_count;
1611 
1612 	/* Update bookkeeping */
1613 	keep_hdr->bth_count += new_rm_hdr->bth_count;
1614 	ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
1615 
1616 	/*
1617 	 * Shift the element and children to the right of rm_hdr to
1618 	 * the left by one spot.
1619 	 */
1620 	ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
1621 	bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
1622 	    BSS_PARALLELOGRAM);
1623 	keep_hdr->bth_count--;
1624 
1625 	/* Reparent all our children to point to the left node. */
1626 	zfs_btree_hdr_t **new_start = keep->btc_children +
1627 	    old_count - 1;
1628 	for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
1629 		new_start[i]->bth_parent = keep;
1630 	for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
1631 		ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
1632 		ASSERT3P(keep->btc_children[i], !=, rm_hdr);
1633 	}
1634 	zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
1635 
1636 	new_rm_hdr->bth_count = 0;
1637 	zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
1638 	zfs_btree_node_destroy(tree, new_rm_hdr);
1639 }
1640 
1641 /* Remove the element at the specific location. */
1642 void
1643 zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
1644 {
1645 	size_t size = tree->bt_elem_size;
1646 	zfs_btree_hdr_t *hdr = where->bti_node;
1647 	uint32_t idx = where->bti_offset;
1648 
1649 	ASSERT(!where->bti_before);
1650 	if (tree->bt_bulk != NULL) {
1651 		/*
1652 		 * Leave bulk insert mode. Note that our index would be
1653 		 * invalid after we correct the tree, so we copy the value
1654 		 * we're planning to remove and find it again after
1655 		 * bulk_finish.
1656 		 */
1657 		uint8_t *value = zfs_btree_get(tree, where);
1658 		uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
1659 		bcpy(value, tmp, size);
1660 		zfs_btree_bulk_finish(tree);
1661 		VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
1662 		kmem_free(tmp, size);
1663 		hdr = where->bti_node;
1664 		idx = where->bti_offset;
1665 	}
1666 
1667 	tree->bt_num_elems--;
1668 	/*
1669 	 * If the element happens to be in a core node, we move a leaf node's
1670 	 * element into its place and then remove the leaf node element. This
1671 	 * makes the rebalance logic not need to be recursive both upwards and
1672 	 * downwards.
1673 	 */
1674 	if (zfs_btree_is_core(hdr)) {
1675 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1676 		zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
1677 		void *new_value = zfs_btree_last_helper(tree, left_subtree,
1678 		    where);
1679 		ASSERT3P(new_value, !=, NULL);
1680 
1681 		bcpy(new_value, node->btc_elems + idx * size, size);
1682 
1683 		hdr = where->bti_node;
1684 		idx = where->bti_offset;
1685 		ASSERT(!where->bti_before);
1686 	}
1687 
1688 	/*
1689 	 * First, we'll update the leaf's metadata. Then, we shift any
1690 	 * elements after the idx to the left. After that, we rebalance if
1691 	 * needed.
1692 	 */
1693 	ASSERT(!zfs_btree_is_core(hdr));
1694 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1695 	ASSERT3U(hdr->bth_count, >, 0);
1696 
1697 	uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
1698 
1699 	/*
1700 	 * If we're over the minimum size or this is the root, just overwrite
1701 	 * the value and return.
1702 	 */
1703 	if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
1704 		bt_shrink_leaf(tree, leaf, idx, 1);
1705 		if (hdr->bth_parent == NULL) {
1706 			ASSERT0(tree->bt_height);
1707 			if (hdr->bth_count == 0) {
1708 				tree->bt_root = NULL;
1709 				tree->bt_height--;
1710 				zfs_btree_node_destroy(tree, &leaf->btl_hdr);
1711 			}
1712 		}
1713 		zfs_btree_verify(tree);
1714 		return;
1715 	}
1716 	ASSERT3U(hdr->bth_count, ==, min_count);
1717 
1718 	/*
1719 	 * Now we try to take a node from a sibling. We check left, then
1720 	 * right. If they exist and have more than the minimum number of
1721 	 * elements, we move the separator between us and them to our node
1722 	 * and move their closest element (last for left, first for right) to
1723 	 * the separator. Along the way we need to collapse the gap made by
1724 	 * idx, and (for our right neighbor) the gap made by removing their
1725 	 * first element.
1726 	 *
1727 	 * Note: this logic currently doesn't support taking from a neighbor
1728 	 * that isn't a sibling. This isn't critical functionality, but may be
1729 	 * worth implementing in the future for completeness' sake.
1730 	 */
1731 	zfs_btree_core_t *parent = hdr->bth_parent;
1732 	uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1733 
1734 	zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1735 	    parent->btc_children[parent_idx - 1]);
1736 	if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1737 		/* We can take a node from the left neighbor. */
1738 		ASSERT(!zfs_btree_is_core(l_hdr));
1739 		zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
1740 
1741 		/*
1742 		 * Move our elements back by one spot to make room for the
1743 		 * stolen element and overwrite the element being removed.
1744 		 */
1745 		bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
1746 
1747 		/* Move the separator to our first spot. */
1748 		uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1749 		    size;
1750 		bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
1751 
1752 		/* Move our neighbor's last element to the separator. */
1753 		uint8_t *take_elem = neighbor->btl_elems +
1754 		    (l_hdr->bth_first + l_hdr->bth_count - 1) * size;
1755 		bcpy(take_elem, separator, size);
1756 
1757 		/* Delete our neighbor's last element. */
1758 		bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
1759 		zfs_btree_verify(tree);
1760 		return;
1761 	}
1762 
1763 	zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1764 	    NULL : parent->btc_children[parent_idx + 1]);
1765 	if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1766 		/* We can take a node from the right neighbor. */
1767 		ASSERT(!zfs_btree_is_core(r_hdr));
1768 		zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
1769 
1770 		/*
1771 		 * Move our elements after the element being removed forwards
1772 		 * by one spot to make room for the stolen element and
1773 		 * overwrite the element being removed.
1774 		 */
1775 		bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
1776 		    1, BSD_LEFT);
1777 
1778 		/* Move the separator between us to our last spot. */
1779 		uint8_t *separator = parent->btc_elems + parent_idx * size;
1780 		bcpy(separator, leaf->btl_elems + (hdr->bth_first +
1781 		    hdr->bth_count - 1) * size, size);
1782 
1783 		/* Move our neighbor's first element to the separator. */
1784 		uint8_t *take_elem = neighbor->btl_elems +
1785 		    r_hdr->bth_first * size;
1786 		bcpy(take_elem, separator, size);
1787 
1788 		/* Delete our neighbor's first element. */
1789 		bt_shrink_leaf(tree, neighbor, 0, 1);
1790 		zfs_btree_verify(tree);
1791 		return;
1792 	}
1793 
1794 	/*
1795 	 * In this case, neither of our neighbors can spare an element, so we
1796 	 * need to merge with one of them. We prefer the left one, arbitrarily.
1797 	 * After remove we move the separator into the leftmost merging node
1798 	 * (which may be us or the left neighbor), and then move the right
1799 	 * merging node's elements. Once that's done, we go back and delete
1800 	 * the element we're removing. Finally, go into the parent and delete
1801 	 * the right merging node and the separator. This may cause further
1802 	 * merging.
1803 	 */
1804 	zfs_btree_hdr_t *rm_hdr, *k_hdr;
1805 	if (l_hdr != NULL) {
1806 		k_hdr = l_hdr;
1807 		rm_hdr = hdr;
1808 	} else {
1809 		ASSERT3P(r_hdr, !=, NULL);
1810 		k_hdr = hdr;
1811 		rm_hdr = r_hdr;
1812 		parent_idx++;
1813 	}
1814 	ASSERT(!zfs_btree_is_core(k_hdr));
1815 	ASSERT(!zfs_btree_is_core(rm_hdr));
1816 	ASSERT3U(k_hdr->bth_count, ==, min_count);
1817 	ASSERT3U(rm_hdr->bth_count, ==, min_count);
1818 	zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
1819 	zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
1820 
1821 	if (zfs_btree_verify_intensity >= 5) {
1822 		for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
1823 			zfs_btree_verify_poison_at(tree, k_hdr,
1824 			    k_hdr->bth_count + i);
1825 		}
1826 	}
1827 
1828 	/*
1829 	 * Remove the value from the node.  It will go below the minimum,
1830 	 * but we'll fix it in no time.
1831 	 */
1832 	bt_shrink_leaf(tree, leaf, idx, 1);
1833 
1834 	/* Prepare space for elements to be moved from the right. */
1835 	uint32_t k_count = k_hdr->bth_count;
1836 	bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
1837 	ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
1838 
1839 	/* Move the separator into the first open spot. */
1840 	uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
1841 	uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
1842 	bcpy(separator, out, size);
1843 
1844 	/* Move our elements to the left neighbor. */
1845 	bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
1846 
1847 	/* Remove the emptied node from the parent. */
1848 	zfs_btree_remove_from_node(tree, parent, rm_hdr);
1849 	zfs_btree_node_destroy(tree, rm_hdr);
1850 	zfs_btree_verify(tree);
1851 }
1852 
1853 /* Remove the given value from the tree. */
1854 void
1855 zfs_btree_remove(zfs_btree_t *tree, const void *value)
1856 {
1857 	zfs_btree_index_t where = {0};
1858 	VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
1859 	zfs_btree_remove_idx(tree, &where);
1860 }
1861 
1862 /* Return the number of elements in the tree. */
1863 ulong_t
1864 zfs_btree_numnodes(zfs_btree_t *tree)
1865 {
1866 	return (tree->bt_num_elems);
1867 }
1868 
1869 /*
1870  * This function is used to visit all the elements in the tree before
1871  * destroying the tree. This allows the calling code to perform any cleanup it
1872  * needs to do. This is more efficient than just removing the first element
1873  * over and over, because it removes all rebalancing. Once the destroy_nodes()
1874  * function has been called, no other btree operations are valid until it
1875  * returns NULL, which point the only valid operation is zfs_btree_destroy().
1876  *
1877  * example:
1878  *
1879  *      zfs_btree_index_t *cookie = NULL;
1880  *      my_data_t *node;
1881  *
1882  *      while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
1883  *              free(node->ptr);
1884  *      zfs_btree_destroy(tree);
1885  *
1886  */
1887 void *
1888 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
1889 {
1890 	if (*cookie == NULL) {
1891 		if (tree->bt_height == -1)
1892 			return (NULL);
1893 		*cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
1894 		return (zfs_btree_first(tree, *cookie));
1895 	}
1896 
1897 	void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
1898 	    zfs_btree_node_destroy);
1899 	if (rval == NULL)   {
1900 		tree->bt_root = NULL;
1901 		tree->bt_height = -1;
1902 		tree->bt_num_elems = 0;
1903 		kmem_free(*cookie, sizeof (**cookie));
1904 		tree->bt_bulk = NULL;
1905 	}
1906 	return (rval);
1907 }
1908 
1909 static void
1910 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1911 {
1912 	if (zfs_btree_is_core(hdr)) {
1913 		zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
1914 		for (uint32_t i = 0; i <= hdr->bth_count; i++)
1915 			zfs_btree_clear_helper(tree, btc->btc_children[i]);
1916 	}
1917 
1918 	zfs_btree_node_destroy(tree, hdr);
1919 }
1920 
1921 void
1922 zfs_btree_clear(zfs_btree_t *tree)
1923 {
1924 	if (tree->bt_root == NULL) {
1925 		ASSERT0(tree->bt_num_elems);
1926 		return;
1927 	}
1928 
1929 	zfs_btree_clear_helper(tree, tree->bt_root);
1930 	tree->bt_num_elems = 0;
1931 	tree->bt_root = NULL;
1932 	tree->bt_num_nodes = 0;
1933 	tree->bt_height = -1;
1934 	tree->bt_bulk = NULL;
1935 }
1936 
1937 void
1938 zfs_btree_destroy(zfs_btree_t *tree)
1939 {
1940 	ASSERT0(tree->bt_num_elems);
1941 	ASSERT3P(tree->bt_root, ==, NULL);
1942 }
1943 
1944 /* Verify that every child of this node has the correct parent pointer. */
1945 static void
1946 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1947 {
1948 	if (!zfs_btree_is_core(hdr))
1949 		return;
1950 
1951 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1952 	for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1953 		VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
1954 		zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
1955 	}
1956 }
1957 
1958 /* Verify that every node has the correct parent pointer. */
1959 static void
1960 zfs_btree_verify_pointers(zfs_btree_t *tree)
1961 {
1962 	if (tree->bt_height == -1) {
1963 		VERIFY3P(tree->bt_root, ==, NULL);
1964 		return;
1965 	}
1966 	VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
1967 	zfs_btree_verify_pointers_helper(tree, tree->bt_root);
1968 }
1969 
1970 /*
1971  * Verify that all the current node and its children satisfy the count
1972  * invariants, and return the total count in the subtree rooted in this node.
1973  */
1974 static uint64_t
1975 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1976 {
1977 	if (!zfs_btree_is_core(hdr)) {
1978 		if (tree->bt_root != hdr && tree->bt_bulk &&
1979 		    hdr != &tree->bt_bulk->btl_hdr) {
1980 			VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
1981 		}
1982 
1983 		return (hdr->bth_count);
1984 	} else {
1985 
1986 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1987 		uint64_t ret = hdr->bth_count;
1988 		if (tree->bt_root != hdr && tree->bt_bulk == NULL)
1989 			VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
1990 		for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1991 			ret += zfs_btree_verify_counts_helper(tree,
1992 			    node->btc_children[i]);
1993 		}
1994 
1995 		return (ret);
1996 	}
1997 }
1998 
1999 /*
2000  * Verify that all nodes satisfy the invariants and that the total number of
2001  * elements is correct.
2002  */
2003 static void
2004 zfs_btree_verify_counts(zfs_btree_t *tree)
2005 {
2006 	EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
2007 	if (tree->bt_height == -1) {
2008 		return;
2009 	}
2010 	VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
2011 	    tree->bt_num_elems);
2012 }
2013 
2014 /*
2015  * Check that the subtree rooted at this node has a uniform height. Returns
2016  * the number of nodes under this node, to help verify bt_num_nodes.
2017  */
2018 static uint64_t
2019 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
2020     int32_t height)
2021 {
2022 	if (!zfs_btree_is_core(hdr)) {
2023 		VERIFY0(height);
2024 		return (1);
2025 	}
2026 
2027 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2028 	uint64_t ret = 1;
2029 	for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2030 		ret += zfs_btree_verify_height_helper(tree,
2031 		    node->btc_children[i], height - 1);
2032 	}
2033 	return (ret);
2034 }
2035 
2036 /*
2037  * Check that the tree rooted at this node has a uniform height, and that the
2038  * bt_height in the tree is correct.
2039  */
2040 static void
2041 zfs_btree_verify_height(zfs_btree_t *tree)
2042 {
2043 	EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2044 	if (tree->bt_height == -1) {
2045 		return;
2046 	}
2047 
2048 	VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
2049 	    tree->bt_height), ==, tree->bt_num_nodes);
2050 }
2051 
2052 /*
2053  * Check that the elements in this node are sorted, and that if this is a core
2054  * node, the separators are properly between the subtrees they separaate and
2055  * that the children also satisfy this requirement.
2056  */
2057 static void
2058 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2059 {
2060 	size_t size = tree->bt_elem_size;
2061 	if (!zfs_btree_is_core(hdr)) {
2062 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2063 		for (uint32_t i = 1; i < hdr->bth_count; i++) {
2064 			VERIFY3S(tree->bt_compar(leaf->btl_elems +
2065 			    (hdr->bth_first + i - 1) * size,
2066 			    leaf->btl_elems +
2067 			    (hdr->bth_first + i) * size), ==, -1);
2068 		}
2069 		return;
2070 	}
2071 
2072 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2073 	for (uint32_t i = 1; i < hdr->bth_count; i++) {
2074 		VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
2075 		    node->btc_elems + i * size), ==, -1);
2076 	}
2077 	for (uint32_t i = 0; i < hdr->bth_count; i++) {
2078 		uint8_t *left_child_last = NULL;
2079 		zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
2080 		if (zfs_btree_is_core(left_child_hdr)) {
2081 			zfs_btree_core_t *left_child =
2082 			    (zfs_btree_core_t *)left_child_hdr;
2083 			left_child_last = left_child->btc_elems +
2084 			    (left_child_hdr->bth_count - 1) * size;
2085 		} else {
2086 			zfs_btree_leaf_t *left_child =
2087 			    (zfs_btree_leaf_t *)left_child_hdr;
2088 			left_child_last = left_child->btl_elems +
2089 			    (left_child_hdr->bth_first +
2090 			    left_child_hdr->bth_count - 1) * size;
2091 		}
2092 		int comp = tree->bt_compar(node->btc_elems + i * size,
2093 		    left_child_last);
2094 		if (comp <= 0) {
2095 			panic("btree: compar returned %d (expected 1) at "
2096 			    "%px %d: compar(%px,  %px)", comp, node, i,
2097 			    node->btc_elems + i * size, left_child_last);
2098 		}
2099 
2100 		uint8_t *right_child_first = NULL;
2101 		zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
2102 		if (zfs_btree_is_core(right_child_hdr)) {
2103 			zfs_btree_core_t *right_child =
2104 			    (zfs_btree_core_t *)right_child_hdr;
2105 			right_child_first = right_child->btc_elems;
2106 		} else {
2107 			zfs_btree_leaf_t *right_child =
2108 			    (zfs_btree_leaf_t *)right_child_hdr;
2109 			right_child_first = right_child->btl_elems +
2110 			    right_child_hdr->bth_first * size;
2111 		}
2112 		comp = tree->bt_compar(node->btc_elems + i * size,
2113 		    right_child_first);
2114 		if (comp >= 0) {
2115 			panic("btree: compar returned %d (expected -1) at "
2116 			    "%px %d: compar(%px,  %px)", comp, node, i,
2117 			    node->btc_elems + i * size, right_child_first);
2118 		}
2119 	}
2120 	for (uint32_t i = 0; i <= hdr->bth_count; i++)
2121 		zfs_btree_verify_order_helper(tree, node->btc_children[i]);
2122 }
2123 
2124 /* Check that all elements in the tree are in sorted order. */
2125 static void
2126 zfs_btree_verify_order(zfs_btree_t *tree)
2127 {
2128 	EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2129 	if (tree->bt_height == -1) {
2130 		return;
2131 	}
2132 
2133 	zfs_btree_verify_order_helper(tree, tree->bt_root);
2134 }
2135 
2136 #ifdef ZFS_DEBUG
2137 /* Check that all unused memory is poisoned correctly. */
2138 static void
2139 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2140 {
2141 	size_t size = tree->bt_elem_size;
2142 	if (!zfs_btree_is_core(hdr)) {
2143 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2144 		for (size_t i = 0; i < hdr->bth_first * size; i++)
2145 			VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2146 		size_t esize = tree->bt_leaf_size -
2147 		    offsetof(zfs_btree_leaf_t, btl_elems);
2148 		for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
2149 		    i < esize; i++)
2150 			VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2151 	} else {
2152 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2153 		for (size_t i = hdr->bth_count * size;
2154 		    i < BTREE_CORE_ELEMS * size; i++)
2155 			VERIFY3U(node->btc_elems[i], ==, 0x0f);
2156 
2157 		for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
2158 		    i++) {
2159 			VERIFY3P(node->btc_children[i], ==,
2160 			    (zfs_btree_hdr_t *)BTREE_POISON);
2161 		}
2162 
2163 		for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2164 			zfs_btree_verify_poison_helper(tree,
2165 			    node->btc_children[i]);
2166 		}
2167 	}
2168 }
2169 #endif
2170 
2171 /* Check that unused memory in the tree is still poisoned. */
2172 static void
2173 zfs_btree_verify_poison(zfs_btree_t *tree)
2174 {
2175 #ifdef ZFS_DEBUG
2176 	if (tree->bt_height == -1)
2177 		return;
2178 	zfs_btree_verify_poison_helper(tree, tree->bt_root);
2179 #endif
2180 }
2181 
2182 void
2183 zfs_btree_verify(zfs_btree_t *tree)
2184 {
2185 	if (zfs_btree_verify_intensity == 0)
2186 		return;
2187 	zfs_btree_verify_height(tree);
2188 	if (zfs_btree_verify_intensity == 1)
2189 		return;
2190 	zfs_btree_verify_pointers(tree);
2191 	if (zfs_btree_verify_intensity == 2)
2192 		return;
2193 	zfs_btree_verify_counts(tree);
2194 	if (zfs_btree_verify_intensity == 3)
2195 		return;
2196 	zfs_btree_verify_order(tree);
2197 
2198 	if (zfs_btree_verify_intensity == 4)
2199 		return;
2200 	zfs_btree_verify_poison(tree);
2201 }
2202 
2203 /* BEGIN CSTYLED */
2204 ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW,
2205 	"Enable btree verification. Levels above 4 require ZFS be built "
2206 	"with debugging");
2207 /* END CSTYLED */
2208