xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 271171e0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
57 #ifdef _KERNEL
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
60 #endif
61 
62 /*
63  * Enable/disable nopwrite feature.
64  */
65 static int zfs_nopwrite_enabled = 1;
66 
67 /*
68  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69  * one TXG. After this threshold is crossed, additional dirty blocks from frees
70  * will wait until the next TXG.
71  * A value of zero will disable this throttle.
72  */
73 static unsigned long zfs_per_txg_dirty_frees_percent = 5;
74 
75 /*
76  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
77  * By default this is enabled to ensure accurate hole reporting, it can result
78  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
79  * Disabling this option will result in holes never being reported in dirty
80  * files which is always safe.
81  */
82 static int zfs_dmu_offset_next_sync = 1;
83 
84 /*
85  * Limit the amount we can prefetch with one call to this amount.  This
86  * helps to limit the amount of memory that can be used by prefetching.
87  * Larger objects should be prefetched a bit at a time.
88  */
89 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
90 
91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
92 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
93 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
94 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
95 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
98 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
99 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
100 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
101 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
102 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
103 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
104 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
105 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
106 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
108 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
109 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
110 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
111 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
112 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
113 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
115 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
116 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
117 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
118 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
121 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
122 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
123 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
125 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
126 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
127 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
128 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
129 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
133 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
136 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
141 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
143 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
144 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
145 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
146 };
147 
148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
149 	{	byteswap_uint8_array,	"uint8"		},
150 	{	byteswap_uint16_array,	"uint16"	},
151 	{	byteswap_uint32_array,	"uint32"	},
152 	{	byteswap_uint64_array,	"uint64"	},
153 	{	zap_byteswap,		"zap"		},
154 	{	dnode_buf_byteswap,	"dnode"		},
155 	{	dmu_objset_byteswap,	"objset"	},
156 	{	zfs_znode_byteswap,	"znode"		},
157 	{	zfs_oldacl_byteswap,	"oldacl"	},
158 	{	zfs_acl_byteswap,	"acl"		}
159 };
160 
161 static int
162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
163     const void *tag, dmu_buf_t **dbp)
164 {
165 	uint64_t blkid;
166 	dmu_buf_impl_t *db;
167 
168 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
169 	blkid = dbuf_whichblock(dn, 0, offset);
170 	db = dbuf_hold(dn, blkid, tag);
171 	rw_exit(&dn->dn_struct_rwlock);
172 
173 	if (db == NULL) {
174 		*dbp = NULL;
175 		return (SET_ERROR(EIO));
176 	}
177 
178 	*dbp = &db->db;
179 	return (0);
180 }
181 int
182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
183     const void *tag, dmu_buf_t **dbp)
184 {
185 	dnode_t *dn;
186 	uint64_t blkid;
187 	dmu_buf_impl_t *db;
188 	int err;
189 
190 	err = dnode_hold(os, object, FTAG, &dn);
191 	if (err)
192 		return (err);
193 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
194 	blkid = dbuf_whichblock(dn, 0, offset);
195 	db = dbuf_hold(dn, blkid, tag);
196 	rw_exit(&dn->dn_struct_rwlock);
197 	dnode_rele(dn, FTAG);
198 
199 	if (db == NULL) {
200 		*dbp = NULL;
201 		return (SET_ERROR(EIO));
202 	}
203 
204 	*dbp = &db->db;
205 	return (err);
206 }
207 
208 int
209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
210     const void *tag, dmu_buf_t **dbp, int flags)
211 {
212 	int err;
213 	int db_flags = DB_RF_CANFAIL;
214 
215 	if (flags & DMU_READ_NO_PREFETCH)
216 		db_flags |= DB_RF_NOPREFETCH;
217 	if (flags & DMU_READ_NO_DECRYPT)
218 		db_flags |= DB_RF_NO_DECRYPT;
219 
220 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
221 	if (err == 0) {
222 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
223 		err = dbuf_read(db, NULL, db_flags);
224 		if (err != 0) {
225 			dbuf_rele(db, tag);
226 			*dbp = NULL;
227 		}
228 	}
229 
230 	return (err);
231 }
232 
233 int
234 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
235     const void *tag, dmu_buf_t **dbp, int flags)
236 {
237 	int err;
238 	int db_flags = DB_RF_CANFAIL;
239 
240 	if (flags & DMU_READ_NO_PREFETCH)
241 		db_flags |= DB_RF_NOPREFETCH;
242 	if (flags & DMU_READ_NO_DECRYPT)
243 		db_flags |= DB_RF_NO_DECRYPT;
244 
245 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
246 	if (err == 0) {
247 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
248 		err = dbuf_read(db, NULL, db_flags);
249 		if (err != 0) {
250 			dbuf_rele(db, tag);
251 			*dbp = NULL;
252 		}
253 	}
254 
255 	return (err);
256 }
257 
258 int
259 dmu_bonus_max(void)
260 {
261 	return (DN_OLD_MAX_BONUSLEN);
262 }
263 
264 int
265 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
266 {
267 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
268 	dnode_t *dn;
269 	int error;
270 
271 	DB_DNODE_ENTER(db);
272 	dn = DB_DNODE(db);
273 
274 	if (dn->dn_bonus != db) {
275 		error = SET_ERROR(EINVAL);
276 	} else if (newsize < 0 || newsize > db_fake->db_size) {
277 		error = SET_ERROR(EINVAL);
278 	} else {
279 		dnode_setbonuslen(dn, newsize, tx);
280 		error = 0;
281 	}
282 
283 	DB_DNODE_EXIT(db);
284 	return (error);
285 }
286 
287 int
288 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
289 {
290 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
291 	dnode_t *dn;
292 	int error;
293 
294 	DB_DNODE_ENTER(db);
295 	dn = DB_DNODE(db);
296 
297 	if (!DMU_OT_IS_VALID(type)) {
298 		error = SET_ERROR(EINVAL);
299 	} else if (dn->dn_bonus != db) {
300 		error = SET_ERROR(EINVAL);
301 	} else {
302 		dnode_setbonus_type(dn, type, tx);
303 		error = 0;
304 	}
305 
306 	DB_DNODE_EXIT(db);
307 	return (error);
308 }
309 
310 dmu_object_type_t
311 dmu_get_bonustype(dmu_buf_t *db_fake)
312 {
313 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
314 	dnode_t *dn;
315 	dmu_object_type_t type;
316 
317 	DB_DNODE_ENTER(db);
318 	dn = DB_DNODE(db);
319 	type = dn->dn_bonustype;
320 	DB_DNODE_EXIT(db);
321 
322 	return (type);
323 }
324 
325 int
326 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
327 {
328 	dnode_t *dn;
329 	int error;
330 
331 	error = dnode_hold(os, object, FTAG, &dn);
332 	dbuf_rm_spill(dn, tx);
333 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
334 	dnode_rm_spill(dn, tx);
335 	rw_exit(&dn->dn_struct_rwlock);
336 	dnode_rele(dn, FTAG);
337 	return (error);
338 }
339 
340 /*
341  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
342  * has not yet been allocated a new bonus dbuf a will be allocated.
343  * Returns ENOENT, EIO, or 0.
344  */
345 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
346     uint32_t flags)
347 {
348 	dmu_buf_impl_t *db;
349 	int error;
350 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
351 
352 	if (flags & DMU_READ_NO_PREFETCH)
353 		db_flags |= DB_RF_NOPREFETCH;
354 	if (flags & DMU_READ_NO_DECRYPT)
355 		db_flags |= DB_RF_NO_DECRYPT;
356 
357 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
358 	if (dn->dn_bonus == NULL) {
359 		rw_exit(&dn->dn_struct_rwlock);
360 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
361 		if (dn->dn_bonus == NULL)
362 			dbuf_create_bonus(dn);
363 	}
364 	db = dn->dn_bonus;
365 
366 	/* as long as the bonus buf is held, the dnode will be held */
367 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
368 		VERIFY(dnode_add_ref(dn, db));
369 		atomic_inc_32(&dn->dn_dbufs_count);
370 	}
371 
372 	/*
373 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
374 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
375 	 * a dnode hold for every dbuf.
376 	 */
377 	rw_exit(&dn->dn_struct_rwlock);
378 
379 	error = dbuf_read(db, NULL, db_flags);
380 	if (error) {
381 		dnode_evict_bonus(dn);
382 		dbuf_rele(db, tag);
383 		*dbp = NULL;
384 		return (error);
385 	}
386 
387 	*dbp = &db->db;
388 	return (0);
389 }
390 
391 int
392 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
393 {
394 	dnode_t *dn;
395 	int error;
396 
397 	error = dnode_hold(os, object, FTAG, &dn);
398 	if (error)
399 		return (error);
400 
401 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
402 	dnode_rele(dn, FTAG);
403 
404 	return (error);
405 }
406 
407 /*
408  * returns ENOENT, EIO, or 0.
409  *
410  * This interface will allocate a blank spill dbuf when a spill blk
411  * doesn't already exist on the dnode.
412  *
413  * if you only want to find an already existing spill db, then
414  * dmu_spill_hold_existing() should be used.
415  */
416 int
417 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
418     dmu_buf_t **dbp)
419 {
420 	dmu_buf_impl_t *db = NULL;
421 	int err;
422 
423 	if ((flags & DB_RF_HAVESTRUCT) == 0)
424 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
425 
426 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
427 
428 	if ((flags & DB_RF_HAVESTRUCT) == 0)
429 		rw_exit(&dn->dn_struct_rwlock);
430 
431 	if (db == NULL) {
432 		*dbp = NULL;
433 		return (SET_ERROR(EIO));
434 	}
435 	err = dbuf_read(db, NULL, flags);
436 	if (err == 0)
437 		*dbp = &db->db;
438 	else {
439 		dbuf_rele(db, tag);
440 		*dbp = NULL;
441 	}
442 	return (err);
443 }
444 
445 int
446 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
447 {
448 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
449 	dnode_t *dn;
450 	int err;
451 
452 	DB_DNODE_ENTER(db);
453 	dn = DB_DNODE(db);
454 
455 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
456 		err = SET_ERROR(EINVAL);
457 	} else {
458 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
459 
460 		if (!dn->dn_have_spill) {
461 			err = SET_ERROR(ENOENT);
462 		} else {
463 			err = dmu_spill_hold_by_dnode(dn,
464 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
465 		}
466 
467 		rw_exit(&dn->dn_struct_rwlock);
468 	}
469 
470 	DB_DNODE_EXIT(db);
471 	return (err);
472 }
473 
474 int
475 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
476     dmu_buf_t **dbp)
477 {
478 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
479 	dnode_t *dn;
480 	int err;
481 	uint32_t db_flags = DB_RF_CANFAIL;
482 
483 	if (flags & DMU_READ_NO_DECRYPT)
484 		db_flags |= DB_RF_NO_DECRYPT;
485 
486 	DB_DNODE_ENTER(db);
487 	dn = DB_DNODE(db);
488 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
489 	DB_DNODE_EXIT(db);
490 
491 	return (err);
492 }
493 
494 /*
495  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
496  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
497  * and can induce severe lock contention when writing to several files
498  * whose dnodes are in the same block.
499  */
500 int
501 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
502     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
503     uint32_t flags)
504 {
505 	dmu_buf_t **dbp;
506 	zstream_t *zs = NULL;
507 	uint64_t blkid, nblks, i;
508 	uint32_t dbuf_flags;
509 	int err;
510 	zio_t *zio = NULL;
511 	boolean_t missed = B_FALSE;
512 
513 	ASSERT(length <= DMU_MAX_ACCESS);
514 
515 	/*
516 	 * Note: We directly notify the prefetch code of this read, so that
517 	 * we can tell it about the multi-block read.  dbuf_read() only knows
518 	 * about the one block it is accessing.
519 	 */
520 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
521 	    DB_RF_NOPREFETCH;
522 
523 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
524 		dbuf_flags |= DB_RF_NO_DECRYPT;
525 
526 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
527 	if (dn->dn_datablkshift) {
528 		int blkshift = dn->dn_datablkshift;
529 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
530 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
531 	} else {
532 		if (offset + length > dn->dn_datablksz) {
533 			zfs_panic_recover("zfs: accessing past end of object "
534 			    "%llx/%llx (size=%u access=%llu+%llu)",
535 			    (longlong_t)dn->dn_objset->
536 			    os_dsl_dataset->ds_object,
537 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
538 			    (longlong_t)offset, (longlong_t)length);
539 			rw_exit(&dn->dn_struct_rwlock);
540 			return (SET_ERROR(EIO));
541 		}
542 		nblks = 1;
543 	}
544 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
545 
546 	if (read)
547 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
548 		    ZIO_FLAG_CANFAIL);
549 	blkid = dbuf_whichblock(dn, 0, offset);
550 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
551 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
552 		/*
553 		 * Prepare the zfetch before initiating the demand reads, so
554 		 * that if multiple threads block on same indirect block, we
555 		 * base predictions on the original less racy request order.
556 		 */
557 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
558 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
559 	}
560 	for (i = 0; i < nblks; i++) {
561 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
562 		if (db == NULL) {
563 			if (zs)
564 				dmu_zfetch_run(zs, missed, B_TRUE);
565 			rw_exit(&dn->dn_struct_rwlock);
566 			dmu_buf_rele_array(dbp, nblks, tag);
567 			if (read)
568 				zio_nowait(zio);
569 			return (SET_ERROR(EIO));
570 		}
571 
572 		/*
573 		 * Initiate async demand data read.
574 		 * We check the db_state after calling dbuf_read() because
575 		 * (1) dbuf_read() may change the state to CACHED due to a
576 		 * hit in the ARC, and (2) on a cache miss, a child will
577 		 * have been added to "zio" but not yet completed, so the
578 		 * state will not yet be CACHED.
579 		 */
580 		if (read) {
581 			(void) dbuf_read(db, zio, dbuf_flags);
582 			if (db->db_state != DB_CACHED)
583 				missed = B_TRUE;
584 		}
585 		dbp[i] = &db->db;
586 	}
587 
588 	if (!read)
589 		zfs_racct_write(length, nblks);
590 
591 	if (zs)
592 		dmu_zfetch_run(zs, missed, B_TRUE);
593 	rw_exit(&dn->dn_struct_rwlock);
594 
595 	if (read) {
596 		/* wait for async read i/o */
597 		err = zio_wait(zio);
598 		if (err) {
599 			dmu_buf_rele_array(dbp, nblks, tag);
600 			return (err);
601 		}
602 
603 		/* wait for other io to complete */
604 		for (i = 0; i < nblks; i++) {
605 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
606 			mutex_enter(&db->db_mtx);
607 			while (db->db_state == DB_READ ||
608 			    db->db_state == DB_FILL)
609 				cv_wait(&db->db_changed, &db->db_mtx);
610 			if (db->db_state == DB_UNCACHED)
611 				err = SET_ERROR(EIO);
612 			mutex_exit(&db->db_mtx);
613 			if (err) {
614 				dmu_buf_rele_array(dbp, nblks, tag);
615 				return (err);
616 			}
617 		}
618 	}
619 
620 	*numbufsp = nblks;
621 	*dbpp = dbp;
622 	return (0);
623 }
624 
625 int
626 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
627     uint64_t length, int read, const void *tag, int *numbufsp,
628     dmu_buf_t ***dbpp)
629 {
630 	dnode_t *dn;
631 	int err;
632 
633 	err = dnode_hold(os, object, FTAG, &dn);
634 	if (err)
635 		return (err);
636 
637 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
638 	    numbufsp, dbpp, DMU_READ_PREFETCH);
639 
640 	dnode_rele(dn, FTAG);
641 
642 	return (err);
643 }
644 
645 int
646 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
647     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
648     dmu_buf_t ***dbpp)
649 {
650 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
651 	dnode_t *dn;
652 	int err;
653 
654 	DB_DNODE_ENTER(db);
655 	dn = DB_DNODE(db);
656 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
657 	    numbufsp, dbpp, DMU_READ_PREFETCH);
658 	DB_DNODE_EXIT(db);
659 
660 	return (err);
661 }
662 
663 void
664 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
665 {
666 	int i;
667 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
668 
669 	if (numbufs == 0)
670 		return;
671 
672 	for (i = 0; i < numbufs; i++) {
673 		if (dbp[i])
674 			dbuf_rele(dbp[i], tag);
675 	}
676 
677 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
678 }
679 
680 /*
681  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
682  * indirect blocks prefetched will be those that point to the blocks containing
683  * the data starting at offset, and continuing to offset + len.
684  *
685  * Note that if the indirect blocks above the blocks being prefetched are not
686  * in cache, they will be asynchronously read in.
687  */
688 void
689 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
690     uint64_t len, zio_priority_t pri)
691 {
692 	dnode_t *dn;
693 	uint64_t blkid;
694 	int nblks, err;
695 
696 	if (len == 0) {  /* they're interested in the bonus buffer */
697 		dn = DMU_META_DNODE(os);
698 
699 		if (object == 0 || object >= DN_MAX_OBJECT)
700 			return;
701 
702 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
703 		blkid = dbuf_whichblock(dn, level,
704 		    object * sizeof (dnode_phys_t));
705 		dbuf_prefetch(dn, level, blkid, pri, 0);
706 		rw_exit(&dn->dn_struct_rwlock);
707 		return;
708 	}
709 
710 	/*
711 	 * See comment before the definition of dmu_prefetch_max.
712 	 */
713 	len = MIN(len, dmu_prefetch_max);
714 
715 	/*
716 	 * XXX - Note, if the dnode for the requested object is not
717 	 * already cached, we will do a *synchronous* read in the
718 	 * dnode_hold() call.  The same is true for any indirects.
719 	 */
720 	err = dnode_hold(os, object, FTAG, &dn);
721 	if (err != 0)
722 		return;
723 
724 	/*
725 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
726 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
727 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
728 	 * offset)  is the first.  Then the number we need to prefetch is the
729 	 * last - first + 1.
730 	 */
731 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
732 	if (level > 0 || dn->dn_datablkshift != 0) {
733 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
734 		    dbuf_whichblock(dn, level, offset) + 1;
735 	} else {
736 		nblks = (offset < dn->dn_datablksz);
737 	}
738 
739 	if (nblks != 0) {
740 		blkid = dbuf_whichblock(dn, level, offset);
741 		for (int i = 0; i < nblks; i++)
742 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
743 	}
744 	rw_exit(&dn->dn_struct_rwlock);
745 
746 	dnode_rele(dn, FTAG);
747 }
748 
749 /*
750  * Get the next "chunk" of file data to free.  We traverse the file from
751  * the end so that the file gets shorter over time (if we crashes in the
752  * middle, this will leave us in a better state).  We find allocated file
753  * data by simply searching the allocated level 1 indirects.
754  *
755  * On input, *start should be the first offset that does not need to be
756  * freed (e.g. "offset + length").  On return, *start will be the first
757  * offset that should be freed and l1blks is set to the number of level 1
758  * indirect blocks found within the chunk.
759  */
760 static int
761 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
762 {
763 	uint64_t blks;
764 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
765 	/* bytes of data covered by a level-1 indirect block */
766 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
767 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
768 
769 	ASSERT3U(minimum, <=, *start);
770 
771 	/*
772 	 * Check if we can free the entire range assuming that all of the
773 	 * L1 blocks in this range have data. If we can, we use this
774 	 * worst case value as an estimate so we can avoid having to look
775 	 * at the object's actual data.
776 	 */
777 	uint64_t total_l1blks =
778 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
779 	    iblkrange;
780 	if (total_l1blks <= maxblks) {
781 		*l1blks = total_l1blks;
782 		*start = minimum;
783 		return (0);
784 	}
785 	ASSERT(ISP2(iblkrange));
786 
787 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
788 		int err;
789 
790 		/*
791 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
792 		 * indirect block at or before the input offset.  We must
793 		 * decrement *start so that it is at the end of the region
794 		 * to search.
795 		 */
796 		(*start)--;
797 
798 		err = dnode_next_offset(dn,
799 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
800 
801 		/* if there are no indirect blocks before start, we are done */
802 		if (err == ESRCH) {
803 			*start = minimum;
804 			break;
805 		} else if (err != 0) {
806 			*l1blks = blks;
807 			return (err);
808 		}
809 
810 		/* set start to the beginning of this L1 indirect */
811 		*start = P2ALIGN(*start, iblkrange);
812 	}
813 	if (*start < minimum)
814 		*start = minimum;
815 	*l1blks = blks;
816 
817 	return (0);
818 }
819 
820 /*
821  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
822  * otherwise return false.
823  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
824  */
825 static boolean_t
826 dmu_objset_zfs_unmounting(objset_t *os)
827 {
828 #ifdef _KERNEL
829 	if (dmu_objset_type(os) == DMU_OST_ZFS)
830 		return (zfs_get_vfs_flag_unmounted(os));
831 #else
832 	(void) os;
833 #endif
834 	return (B_FALSE);
835 }
836 
837 static int
838 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
839     uint64_t length)
840 {
841 	uint64_t object_size;
842 	int err;
843 	uint64_t dirty_frees_threshold;
844 	dsl_pool_t *dp = dmu_objset_pool(os);
845 
846 	if (dn == NULL)
847 		return (SET_ERROR(EINVAL));
848 
849 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
850 	if (offset >= object_size)
851 		return (0);
852 
853 	if (zfs_per_txg_dirty_frees_percent <= 100)
854 		dirty_frees_threshold =
855 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
856 	else
857 		dirty_frees_threshold = zfs_dirty_data_max / 20;
858 
859 	if (length == DMU_OBJECT_END || offset + length > object_size)
860 		length = object_size - offset;
861 
862 	while (length != 0) {
863 		uint64_t chunk_end, chunk_begin, chunk_len;
864 		uint64_t l1blks;
865 		dmu_tx_t *tx;
866 
867 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
868 			return (SET_ERROR(EINTR));
869 
870 		chunk_end = chunk_begin = offset + length;
871 
872 		/* move chunk_begin backwards to the beginning of this chunk */
873 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
874 		if (err)
875 			return (err);
876 		ASSERT3U(chunk_begin, >=, offset);
877 		ASSERT3U(chunk_begin, <=, chunk_end);
878 
879 		chunk_len = chunk_end - chunk_begin;
880 
881 		tx = dmu_tx_create(os);
882 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
883 
884 		/*
885 		 * Mark this transaction as typically resulting in a net
886 		 * reduction in space used.
887 		 */
888 		dmu_tx_mark_netfree(tx);
889 		err = dmu_tx_assign(tx, TXG_WAIT);
890 		if (err) {
891 			dmu_tx_abort(tx);
892 			return (err);
893 		}
894 
895 		uint64_t txg = dmu_tx_get_txg(tx);
896 
897 		mutex_enter(&dp->dp_lock);
898 		uint64_t long_free_dirty =
899 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
900 		mutex_exit(&dp->dp_lock);
901 
902 		/*
903 		 * To avoid filling up a TXG with just frees, wait for
904 		 * the next TXG to open before freeing more chunks if
905 		 * we have reached the threshold of frees.
906 		 */
907 		if (dirty_frees_threshold != 0 &&
908 		    long_free_dirty >= dirty_frees_threshold) {
909 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
910 			dmu_tx_commit(tx);
911 			txg_wait_open(dp, 0, B_TRUE);
912 			continue;
913 		}
914 
915 		/*
916 		 * In order to prevent unnecessary write throttling, for each
917 		 * TXG, we track the cumulative size of L1 blocks being dirtied
918 		 * in dnode_free_range() below. We compare this number to a
919 		 * tunable threshold, past which we prevent new L1 dirty freeing
920 		 * blocks from being added into the open TXG. See
921 		 * dmu_free_long_range_impl() for details. The threshold
922 		 * prevents write throttle activation due to dirty freeing L1
923 		 * blocks taking up a large percentage of zfs_dirty_data_max.
924 		 */
925 		mutex_enter(&dp->dp_lock);
926 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
927 		    l1blks << dn->dn_indblkshift;
928 		mutex_exit(&dp->dp_lock);
929 		DTRACE_PROBE3(free__long__range,
930 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
931 		    uint64_t, txg);
932 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
933 
934 		dmu_tx_commit(tx);
935 
936 		length -= chunk_len;
937 	}
938 	return (0);
939 }
940 
941 int
942 dmu_free_long_range(objset_t *os, uint64_t object,
943     uint64_t offset, uint64_t length)
944 {
945 	dnode_t *dn;
946 	int err;
947 
948 	err = dnode_hold(os, object, FTAG, &dn);
949 	if (err != 0)
950 		return (err);
951 	err = dmu_free_long_range_impl(os, dn, offset, length);
952 
953 	/*
954 	 * It is important to zero out the maxblkid when freeing the entire
955 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
956 	 * will take the fast path, and (b) dnode_reallocate() can verify
957 	 * that the entire file has been freed.
958 	 */
959 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
960 		dn->dn_maxblkid = 0;
961 
962 	dnode_rele(dn, FTAG);
963 	return (err);
964 }
965 
966 int
967 dmu_free_long_object(objset_t *os, uint64_t object)
968 {
969 	dmu_tx_t *tx;
970 	int err;
971 
972 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
973 	if (err != 0)
974 		return (err);
975 
976 	tx = dmu_tx_create(os);
977 	dmu_tx_hold_bonus(tx, object);
978 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
979 	dmu_tx_mark_netfree(tx);
980 	err = dmu_tx_assign(tx, TXG_WAIT);
981 	if (err == 0) {
982 		err = dmu_object_free(os, object, tx);
983 		dmu_tx_commit(tx);
984 	} else {
985 		dmu_tx_abort(tx);
986 	}
987 
988 	return (err);
989 }
990 
991 int
992 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
993     uint64_t size, dmu_tx_t *tx)
994 {
995 	dnode_t *dn;
996 	int err = dnode_hold(os, object, FTAG, &dn);
997 	if (err)
998 		return (err);
999 	ASSERT(offset < UINT64_MAX);
1000 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1001 	dnode_free_range(dn, offset, size, tx);
1002 	dnode_rele(dn, FTAG);
1003 	return (0);
1004 }
1005 
1006 static int
1007 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1008     void *buf, uint32_t flags)
1009 {
1010 	dmu_buf_t **dbp;
1011 	int numbufs, err = 0;
1012 
1013 	/*
1014 	 * Deal with odd block sizes, where there can't be data past the first
1015 	 * block.  If we ever do the tail block optimization, we will need to
1016 	 * handle that here as well.
1017 	 */
1018 	if (dn->dn_maxblkid == 0) {
1019 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1020 		    MIN(size, dn->dn_datablksz - offset);
1021 		memset((char *)buf + newsz, 0, size - newsz);
1022 		size = newsz;
1023 	}
1024 
1025 	while (size > 0) {
1026 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1027 		int i;
1028 
1029 		/*
1030 		 * NB: we could do this block-at-a-time, but it's nice
1031 		 * to be reading in parallel.
1032 		 */
1033 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1034 		    TRUE, FTAG, &numbufs, &dbp, flags);
1035 		if (err)
1036 			break;
1037 
1038 		for (i = 0; i < numbufs; i++) {
1039 			uint64_t tocpy;
1040 			int64_t bufoff;
1041 			dmu_buf_t *db = dbp[i];
1042 
1043 			ASSERT(size > 0);
1044 
1045 			bufoff = offset - db->db_offset;
1046 			tocpy = MIN(db->db_size - bufoff, size);
1047 
1048 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1049 
1050 			offset += tocpy;
1051 			size -= tocpy;
1052 			buf = (char *)buf + tocpy;
1053 		}
1054 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1055 	}
1056 	return (err);
1057 }
1058 
1059 int
1060 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1061     void *buf, uint32_t flags)
1062 {
1063 	dnode_t *dn;
1064 	int err;
1065 
1066 	err = dnode_hold(os, object, FTAG, &dn);
1067 	if (err != 0)
1068 		return (err);
1069 
1070 	err = dmu_read_impl(dn, offset, size, buf, flags);
1071 	dnode_rele(dn, FTAG);
1072 	return (err);
1073 }
1074 
1075 int
1076 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1077     uint32_t flags)
1078 {
1079 	return (dmu_read_impl(dn, offset, size, buf, flags));
1080 }
1081 
1082 static void
1083 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1084     const void *buf, dmu_tx_t *tx)
1085 {
1086 	int i;
1087 
1088 	for (i = 0; i < numbufs; i++) {
1089 		uint64_t tocpy;
1090 		int64_t bufoff;
1091 		dmu_buf_t *db = dbp[i];
1092 
1093 		ASSERT(size > 0);
1094 
1095 		bufoff = offset - db->db_offset;
1096 		tocpy = MIN(db->db_size - bufoff, size);
1097 
1098 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1099 
1100 		if (tocpy == db->db_size)
1101 			dmu_buf_will_fill(db, tx);
1102 		else
1103 			dmu_buf_will_dirty(db, tx);
1104 
1105 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1106 
1107 		if (tocpy == db->db_size)
1108 			dmu_buf_fill_done(db, tx);
1109 
1110 		offset += tocpy;
1111 		size -= tocpy;
1112 		buf = (char *)buf + tocpy;
1113 	}
1114 }
1115 
1116 void
1117 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1118     const void *buf, dmu_tx_t *tx)
1119 {
1120 	dmu_buf_t **dbp;
1121 	int numbufs;
1122 
1123 	if (size == 0)
1124 		return;
1125 
1126 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1127 	    FALSE, FTAG, &numbufs, &dbp));
1128 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1129 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1130 }
1131 
1132 /*
1133  * Note: Lustre is an external consumer of this interface.
1134  */
1135 void
1136 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1137     const void *buf, dmu_tx_t *tx)
1138 {
1139 	dmu_buf_t **dbp;
1140 	int numbufs;
1141 
1142 	if (size == 0)
1143 		return;
1144 
1145 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1146 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1147 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1148 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1149 }
1150 
1151 void
1152 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1153     dmu_tx_t *tx)
1154 {
1155 	dmu_buf_t **dbp;
1156 	int numbufs, i;
1157 
1158 	if (size == 0)
1159 		return;
1160 
1161 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1162 	    FALSE, FTAG, &numbufs, &dbp));
1163 
1164 	for (i = 0; i < numbufs; i++) {
1165 		dmu_buf_t *db = dbp[i];
1166 
1167 		dmu_buf_will_not_fill(db, tx);
1168 	}
1169 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1170 }
1171 
1172 void
1173 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1174     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1175     int compressed_size, int byteorder, dmu_tx_t *tx)
1176 {
1177 	dmu_buf_t *db;
1178 
1179 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1180 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1181 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1182 	    FTAG, &db));
1183 
1184 	dmu_buf_write_embedded(db,
1185 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1186 	    uncompressed_size, compressed_size, byteorder, tx);
1187 
1188 	dmu_buf_rele(db, FTAG);
1189 }
1190 
1191 void
1192 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1193     dmu_tx_t *tx)
1194 {
1195 	int numbufs, i;
1196 	dmu_buf_t **dbp;
1197 
1198 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1199 	    &numbufs, &dbp));
1200 	for (i = 0; i < numbufs; i++)
1201 		dmu_buf_redact(dbp[i], tx);
1202 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1203 }
1204 
1205 #ifdef _KERNEL
1206 int
1207 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1208 {
1209 	dmu_buf_t **dbp;
1210 	int numbufs, i, err;
1211 
1212 	/*
1213 	 * NB: we could do this block-at-a-time, but it's nice
1214 	 * to be reading in parallel.
1215 	 */
1216 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1217 	    TRUE, FTAG, &numbufs, &dbp, 0);
1218 	if (err)
1219 		return (err);
1220 
1221 	for (i = 0; i < numbufs; i++) {
1222 		uint64_t tocpy;
1223 		int64_t bufoff;
1224 		dmu_buf_t *db = dbp[i];
1225 
1226 		ASSERT(size > 0);
1227 
1228 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1229 		tocpy = MIN(db->db_size - bufoff, size);
1230 
1231 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1232 		    UIO_READ, uio);
1233 
1234 		if (err)
1235 			break;
1236 
1237 		size -= tocpy;
1238 	}
1239 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1240 
1241 	return (err);
1242 }
1243 
1244 /*
1245  * Read 'size' bytes into the uio buffer.
1246  * From object zdb->db_object.
1247  * Starting at zfs_uio_offset(uio).
1248  *
1249  * If the caller already has a dbuf in the target object
1250  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1251  * because we don't have to find the dnode_t for the object.
1252  */
1253 int
1254 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1255 {
1256 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1257 	dnode_t *dn;
1258 	int err;
1259 
1260 	if (size == 0)
1261 		return (0);
1262 
1263 	DB_DNODE_ENTER(db);
1264 	dn = DB_DNODE(db);
1265 	err = dmu_read_uio_dnode(dn, uio, size);
1266 	DB_DNODE_EXIT(db);
1267 
1268 	return (err);
1269 }
1270 
1271 /*
1272  * Read 'size' bytes into the uio buffer.
1273  * From the specified object
1274  * Starting at offset zfs_uio_offset(uio).
1275  */
1276 int
1277 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1278 {
1279 	dnode_t *dn;
1280 	int err;
1281 
1282 	if (size == 0)
1283 		return (0);
1284 
1285 	err = dnode_hold(os, object, FTAG, &dn);
1286 	if (err)
1287 		return (err);
1288 
1289 	err = dmu_read_uio_dnode(dn, uio, size);
1290 
1291 	dnode_rele(dn, FTAG);
1292 
1293 	return (err);
1294 }
1295 
1296 int
1297 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1298 {
1299 	dmu_buf_t **dbp;
1300 	int numbufs;
1301 	int err = 0;
1302 	int i;
1303 
1304 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1305 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1306 	if (err)
1307 		return (err);
1308 
1309 	for (i = 0; i < numbufs; i++) {
1310 		uint64_t tocpy;
1311 		int64_t bufoff;
1312 		dmu_buf_t *db = dbp[i];
1313 
1314 		ASSERT(size > 0);
1315 
1316 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1317 		tocpy = MIN(db->db_size - bufoff, size);
1318 
1319 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1320 
1321 		if (tocpy == db->db_size)
1322 			dmu_buf_will_fill(db, tx);
1323 		else
1324 			dmu_buf_will_dirty(db, tx);
1325 
1326 		/*
1327 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1328 		 * pages).  There needs to be a uiolockdown() function
1329 		 * to lock the pages in memory, so that zfs_uiomove won't
1330 		 * block.
1331 		 */
1332 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1333 		    tocpy, UIO_WRITE, uio);
1334 
1335 		if (tocpy == db->db_size)
1336 			dmu_buf_fill_done(db, tx);
1337 
1338 		if (err)
1339 			break;
1340 
1341 		size -= tocpy;
1342 	}
1343 
1344 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1345 	return (err);
1346 }
1347 
1348 /*
1349  * Write 'size' bytes from the uio buffer.
1350  * To object zdb->db_object.
1351  * Starting at offset zfs_uio_offset(uio).
1352  *
1353  * If the caller already has a dbuf in the target object
1354  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1355  * because we don't have to find the dnode_t for the object.
1356  */
1357 int
1358 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1359     dmu_tx_t *tx)
1360 {
1361 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1362 	dnode_t *dn;
1363 	int err;
1364 
1365 	if (size == 0)
1366 		return (0);
1367 
1368 	DB_DNODE_ENTER(db);
1369 	dn = DB_DNODE(db);
1370 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1371 	DB_DNODE_EXIT(db);
1372 
1373 	return (err);
1374 }
1375 
1376 /*
1377  * Write 'size' bytes from the uio buffer.
1378  * To the specified object.
1379  * Starting at offset zfs_uio_offset(uio).
1380  */
1381 int
1382 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1383     dmu_tx_t *tx)
1384 {
1385 	dnode_t *dn;
1386 	int err;
1387 
1388 	if (size == 0)
1389 		return (0);
1390 
1391 	err = dnode_hold(os, object, FTAG, &dn);
1392 	if (err)
1393 		return (err);
1394 
1395 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1396 
1397 	dnode_rele(dn, FTAG);
1398 
1399 	return (err);
1400 }
1401 #endif /* _KERNEL */
1402 
1403 /*
1404  * Allocate a loaned anonymous arc buffer.
1405  */
1406 arc_buf_t *
1407 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1408 {
1409 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1410 
1411 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1412 }
1413 
1414 /*
1415  * Free a loaned arc buffer.
1416  */
1417 void
1418 dmu_return_arcbuf(arc_buf_t *buf)
1419 {
1420 	arc_return_buf(buf, FTAG);
1421 	arc_buf_destroy(buf, FTAG);
1422 }
1423 
1424 /*
1425  * A "lightweight" write is faster than a regular write (e.g.
1426  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1427  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1428  * data can not be read or overwritten until the transaction's txg has been
1429  * synced.  This makes it appropriate for workloads that are known to be
1430  * (temporarily) write-only, like "zfs receive".
1431  *
1432  * A single block is written, starting at the specified offset in bytes.  If
1433  * the call is successful, it returns 0 and the provided abd has been
1434  * consumed (the caller should not free it).
1435  */
1436 int
1437 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1438     const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1439 {
1440 	dbuf_dirty_record_t *dr =
1441 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1442 	if (dr == NULL)
1443 		return (SET_ERROR(EIO));
1444 	dr->dt.dll.dr_abd = abd;
1445 	dr->dt.dll.dr_props = *zp;
1446 	dr->dt.dll.dr_flags = flags;
1447 	return (0);
1448 }
1449 
1450 /*
1451  * When possible directly assign passed loaned arc buffer to a dbuf.
1452  * If this is not possible copy the contents of passed arc buf via
1453  * dmu_write().
1454  */
1455 int
1456 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1457     dmu_tx_t *tx)
1458 {
1459 	dmu_buf_impl_t *db;
1460 	objset_t *os = dn->dn_objset;
1461 	uint64_t object = dn->dn_object;
1462 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1463 	uint64_t blkid;
1464 
1465 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1466 	blkid = dbuf_whichblock(dn, 0, offset);
1467 	db = dbuf_hold(dn, blkid, FTAG);
1468 	if (db == NULL)
1469 		return (SET_ERROR(EIO));
1470 	rw_exit(&dn->dn_struct_rwlock);
1471 
1472 	/*
1473 	 * We can only assign if the offset is aligned and the arc buf is the
1474 	 * same size as the dbuf.
1475 	 */
1476 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1477 		zfs_racct_write(blksz, 1);
1478 		dbuf_assign_arcbuf(db, buf, tx);
1479 		dbuf_rele(db, FTAG);
1480 	} else {
1481 		/* compressed bufs must always be assignable to their dbuf */
1482 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1483 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1484 
1485 		dbuf_rele(db, FTAG);
1486 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1487 		dmu_return_arcbuf(buf);
1488 	}
1489 
1490 	return (0);
1491 }
1492 
1493 int
1494 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1495     dmu_tx_t *tx)
1496 {
1497 	int err;
1498 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1499 
1500 	DB_DNODE_ENTER(dbuf);
1501 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1502 	DB_DNODE_EXIT(dbuf);
1503 
1504 	return (err);
1505 }
1506 
1507 typedef struct {
1508 	dbuf_dirty_record_t	*dsa_dr;
1509 	dmu_sync_cb_t		*dsa_done;
1510 	zgd_t			*dsa_zgd;
1511 	dmu_tx_t		*dsa_tx;
1512 } dmu_sync_arg_t;
1513 
1514 static void
1515 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1516 {
1517 	(void) buf;
1518 	dmu_sync_arg_t *dsa = varg;
1519 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1520 	blkptr_t *bp = zio->io_bp;
1521 
1522 	if (zio->io_error == 0) {
1523 		if (BP_IS_HOLE(bp)) {
1524 			/*
1525 			 * A block of zeros may compress to a hole, but the
1526 			 * block size still needs to be known for replay.
1527 			 */
1528 			BP_SET_LSIZE(bp, db->db_size);
1529 		} else if (!BP_IS_EMBEDDED(bp)) {
1530 			ASSERT(BP_GET_LEVEL(bp) == 0);
1531 			BP_SET_FILL(bp, 1);
1532 		}
1533 	}
1534 }
1535 
1536 static void
1537 dmu_sync_late_arrival_ready(zio_t *zio)
1538 {
1539 	dmu_sync_ready(zio, NULL, zio->io_private);
1540 }
1541 
1542 static void
1543 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1544 {
1545 	(void) buf;
1546 	dmu_sync_arg_t *dsa = varg;
1547 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1548 	dmu_buf_impl_t *db = dr->dr_dbuf;
1549 	zgd_t *zgd = dsa->dsa_zgd;
1550 
1551 	/*
1552 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1553 	 * the writes for the lwb have completed.
1554 	 */
1555 	if (zio->io_error == 0) {
1556 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1557 	}
1558 
1559 	mutex_enter(&db->db_mtx);
1560 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1561 	if (zio->io_error == 0) {
1562 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1563 		if (dr->dt.dl.dr_nopwrite) {
1564 			blkptr_t *bp = zio->io_bp;
1565 			blkptr_t *bp_orig = &zio->io_bp_orig;
1566 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1567 
1568 			ASSERT(BP_EQUAL(bp, bp_orig));
1569 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1570 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1571 			VERIFY(zio_checksum_table[chksum].ci_flags &
1572 			    ZCHECKSUM_FLAG_NOPWRITE);
1573 		}
1574 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1575 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1576 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1577 
1578 		/*
1579 		 * Old style holes are filled with all zeros, whereas
1580 		 * new-style holes maintain their lsize, type, level,
1581 		 * and birth time (see zio_write_compress). While we
1582 		 * need to reset the BP_SET_LSIZE() call that happened
1583 		 * in dmu_sync_ready for old style holes, we do *not*
1584 		 * want to wipe out the information contained in new
1585 		 * style holes. Thus, only zero out the block pointer if
1586 		 * it's an old style hole.
1587 		 */
1588 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1589 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1590 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1591 	} else {
1592 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1593 	}
1594 	cv_broadcast(&db->db_changed);
1595 	mutex_exit(&db->db_mtx);
1596 
1597 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1598 
1599 	kmem_free(dsa, sizeof (*dsa));
1600 }
1601 
1602 static void
1603 dmu_sync_late_arrival_done(zio_t *zio)
1604 {
1605 	blkptr_t *bp = zio->io_bp;
1606 	dmu_sync_arg_t *dsa = zio->io_private;
1607 	zgd_t *zgd = dsa->dsa_zgd;
1608 
1609 	if (zio->io_error == 0) {
1610 		/*
1611 		 * Record the vdev(s) backing this blkptr so they can be
1612 		 * flushed after the writes for the lwb have completed.
1613 		 */
1614 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1615 
1616 		if (!BP_IS_HOLE(bp)) {
1617 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1618 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1619 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1620 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1621 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1622 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1623 		}
1624 	}
1625 
1626 	dmu_tx_commit(dsa->dsa_tx);
1627 
1628 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1629 
1630 	abd_free(zio->io_abd);
1631 	kmem_free(dsa, sizeof (*dsa));
1632 }
1633 
1634 static int
1635 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1636     zio_prop_t *zp, zbookmark_phys_t *zb)
1637 {
1638 	dmu_sync_arg_t *dsa;
1639 	dmu_tx_t *tx;
1640 
1641 	tx = dmu_tx_create(os);
1642 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1643 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1644 		dmu_tx_abort(tx);
1645 		/* Make zl_get_data do txg_waited_synced() */
1646 		return (SET_ERROR(EIO));
1647 	}
1648 
1649 	/*
1650 	 * In order to prevent the zgd's lwb from being free'd prior to
1651 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1652 	 * the lwb's "max txg" takes this tx's txg into account.
1653 	 */
1654 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1655 
1656 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1657 	dsa->dsa_dr = NULL;
1658 	dsa->dsa_done = done;
1659 	dsa->dsa_zgd = zgd;
1660 	dsa->dsa_tx = tx;
1661 
1662 	/*
1663 	 * Since we are currently syncing this txg, it's nontrivial to
1664 	 * determine what BP to nopwrite against, so we disable nopwrite.
1665 	 *
1666 	 * When syncing, the db_blkptr is initially the BP of the previous
1667 	 * txg.  We can not nopwrite against it because it will be changed
1668 	 * (this is similar to the non-late-arrival case where the dbuf is
1669 	 * dirty in a future txg).
1670 	 *
1671 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1672 	 * We can not nopwrite against it because although the BP will not
1673 	 * (typically) be changed, the data has not yet been persisted to this
1674 	 * location.
1675 	 *
1676 	 * Finally, when dbuf_write_done() is called, it is theoretically
1677 	 * possible to always nopwrite, because the data that was written in
1678 	 * this txg is the same data that we are trying to write.  However we
1679 	 * would need to check that this dbuf is not dirty in any future
1680 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1681 	 * don't nopwrite in this case.
1682 	 */
1683 	zp->zp_nopwrite = B_FALSE;
1684 
1685 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1686 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1687 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1688 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1689 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1690 
1691 	return (0);
1692 }
1693 
1694 /*
1695  * Intent log support: sync the block associated with db to disk.
1696  * N.B. and XXX: the caller is responsible for making sure that the
1697  * data isn't changing while dmu_sync() is writing it.
1698  *
1699  * Return values:
1700  *
1701  *	EEXIST: this txg has already been synced, so there's nothing to do.
1702  *		The caller should not log the write.
1703  *
1704  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1705  *		The caller should not log the write.
1706  *
1707  *	EALREADY: this block is already in the process of being synced.
1708  *		The caller should track its progress (somehow).
1709  *
1710  *	EIO: could not do the I/O.
1711  *		The caller should do a txg_wait_synced().
1712  *
1713  *	0: the I/O has been initiated.
1714  *		The caller should log this blkptr in the done callback.
1715  *		It is possible that the I/O will fail, in which case
1716  *		the error will be reported to the done callback and
1717  *		propagated to pio from zio_done().
1718  */
1719 int
1720 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1721 {
1722 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1723 	objset_t *os = db->db_objset;
1724 	dsl_dataset_t *ds = os->os_dsl_dataset;
1725 	dbuf_dirty_record_t *dr, *dr_next;
1726 	dmu_sync_arg_t *dsa;
1727 	zbookmark_phys_t zb;
1728 	zio_prop_t zp;
1729 	dnode_t *dn;
1730 
1731 	ASSERT(pio != NULL);
1732 	ASSERT(txg != 0);
1733 
1734 	SET_BOOKMARK(&zb, ds->ds_object,
1735 	    db->db.db_object, db->db_level, db->db_blkid);
1736 
1737 	DB_DNODE_ENTER(db);
1738 	dn = DB_DNODE(db);
1739 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1740 	DB_DNODE_EXIT(db);
1741 
1742 	/*
1743 	 * If we're frozen (running ziltest), we always need to generate a bp.
1744 	 */
1745 	if (txg > spa_freeze_txg(os->os_spa))
1746 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1747 
1748 	/*
1749 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1750 	 * and us.  If we determine that this txg is not yet syncing,
1751 	 * but it begins to sync a moment later, that's OK because the
1752 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1753 	 */
1754 	mutex_enter(&db->db_mtx);
1755 
1756 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1757 		/*
1758 		 * This txg has already synced.  There's nothing to do.
1759 		 */
1760 		mutex_exit(&db->db_mtx);
1761 		return (SET_ERROR(EEXIST));
1762 	}
1763 
1764 	if (txg <= spa_syncing_txg(os->os_spa)) {
1765 		/*
1766 		 * This txg is currently syncing, so we can't mess with
1767 		 * the dirty record anymore; just write a new log block.
1768 		 */
1769 		mutex_exit(&db->db_mtx);
1770 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1771 	}
1772 
1773 	dr = dbuf_find_dirty_eq(db, txg);
1774 
1775 	if (dr == NULL) {
1776 		/*
1777 		 * There's no dr for this dbuf, so it must have been freed.
1778 		 * There's no need to log writes to freed blocks, so we're done.
1779 		 */
1780 		mutex_exit(&db->db_mtx);
1781 		return (SET_ERROR(ENOENT));
1782 	}
1783 
1784 	dr_next = list_next(&db->db_dirty_records, dr);
1785 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1786 
1787 	if (db->db_blkptr != NULL) {
1788 		/*
1789 		 * We need to fill in zgd_bp with the current blkptr so that
1790 		 * the nopwrite code can check if we're writing the same
1791 		 * data that's already on disk.  We can only nopwrite if we
1792 		 * are sure that after making the copy, db_blkptr will not
1793 		 * change until our i/o completes.  We ensure this by
1794 		 * holding the db_mtx, and only allowing nopwrite if the
1795 		 * block is not already dirty (see below).  This is verified
1796 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1797 		 * not changed.
1798 		 */
1799 		*zgd->zgd_bp = *db->db_blkptr;
1800 	}
1801 
1802 	/*
1803 	 * Assume the on-disk data is X, the current syncing data (in
1804 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1805 	 * in dmu_sync).
1806 	 *
1807 	 * We usually want to perform a nopwrite if X and Z are the
1808 	 * same.  However, if Y is different (i.e. the BP is going to
1809 	 * change before this write takes effect), then a nopwrite will
1810 	 * be incorrect - we would override with X, which could have
1811 	 * been freed when Y was written.
1812 	 *
1813 	 * (Note that this is not a concern when we are nop-writing from
1814 	 * syncing context, because X and Y must be identical, because
1815 	 * all previous txgs have been synced.)
1816 	 *
1817 	 * Therefore, we disable nopwrite if the current BP could change
1818 	 * before this TXG.  There are two ways it could change: by
1819 	 * being dirty (dr_next is non-NULL), or by being freed
1820 	 * (dnode_block_freed()).  This behavior is verified by
1821 	 * zio_done(), which VERIFYs that the override BP is identical
1822 	 * to the on-disk BP.
1823 	 */
1824 	DB_DNODE_ENTER(db);
1825 	dn = DB_DNODE(db);
1826 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1827 		zp.zp_nopwrite = B_FALSE;
1828 	DB_DNODE_EXIT(db);
1829 
1830 	ASSERT(dr->dr_txg == txg);
1831 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1832 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1833 		/*
1834 		 * We have already issued a sync write for this buffer,
1835 		 * or this buffer has already been synced.  It could not
1836 		 * have been dirtied since, or we would have cleared the state.
1837 		 */
1838 		mutex_exit(&db->db_mtx);
1839 		return (SET_ERROR(EALREADY));
1840 	}
1841 
1842 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1843 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1844 	mutex_exit(&db->db_mtx);
1845 
1846 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1847 	dsa->dsa_dr = dr;
1848 	dsa->dsa_done = done;
1849 	dsa->dsa_zgd = zgd;
1850 	dsa->dsa_tx = NULL;
1851 
1852 	zio_nowait(arc_write(pio, os->os_spa, txg,
1853 	    zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db),
1854 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1855 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1856 
1857 	return (0);
1858 }
1859 
1860 int
1861 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1862 {
1863 	dnode_t *dn;
1864 	int err;
1865 
1866 	err = dnode_hold(os, object, FTAG, &dn);
1867 	if (err)
1868 		return (err);
1869 	err = dnode_set_nlevels(dn, nlevels, tx);
1870 	dnode_rele(dn, FTAG);
1871 	return (err);
1872 }
1873 
1874 int
1875 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1876     dmu_tx_t *tx)
1877 {
1878 	dnode_t *dn;
1879 	int err;
1880 
1881 	err = dnode_hold(os, object, FTAG, &dn);
1882 	if (err)
1883 		return (err);
1884 	err = dnode_set_blksz(dn, size, ibs, tx);
1885 	dnode_rele(dn, FTAG);
1886 	return (err);
1887 }
1888 
1889 int
1890 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1891     dmu_tx_t *tx)
1892 {
1893 	dnode_t *dn;
1894 	int err;
1895 
1896 	err = dnode_hold(os, object, FTAG, &dn);
1897 	if (err)
1898 		return (err);
1899 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1900 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1901 	rw_exit(&dn->dn_struct_rwlock);
1902 	dnode_rele(dn, FTAG);
1903 	return (0);
1904 }
1905 
1906 void
1907 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1908     dmu_tx_t *tx)
1909 {
1910 	dnode_t *dn;
1911 
1912 	/*
1913 	 * Send streams include each object's checksum function.  This
1914 	 * check ensures that the receiving system can understand the
1915 	 * checksum function transmitted.
1916 	 */
1917 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1918 
1919 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1920 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1921 	dn->dn_checksum = checksum;
1922 	dnode_setdirty(dn, tx);
1923 	dnode_rele(dn, FTAG);
1924 }
1925 
1926 void
1927 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1928     dmu_tx_t *tx)
1929 {
1930 	dnode_t *dn;
1931 
1932 	/*
1933 	 * Send streams include each object's compression function.  This
1934 	 * check ensures that the receiving system can understand the
1935 	 * compression function transmitted.
1936 	 */
1937 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1938 
1939 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1940 	dn->dn_compress = compress;
1941 	dnode_setdirty(dn, tx);
1942 	dnode_rele(dn, FTAG);
1943 }
1944 
1945 /*
1946  * When the "redundant_metadata" property is set to "most", only indirect
1947  * blocks of this level and higher will have an additional ditto block.
1948  */
1949 static const int zfs_redundant_metadata_most_ditto_level = 2;
1950 
1951 void
1952 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1953 {
1954 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1955 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1956 	    (wp & WP_SPILL));
1957 	enum zio_checksum checksum = os->os_checksum;
1958 	enum zio_compress compress = os->os_compress;
1959 	uint8_t complevel = os->os_complevel;
1960 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1961 	boolean_t dedup = B_FALSE;
1962 	boolean_t nopwrite = B_FALSE;
1963 	boolean_t dedup_verify = os->os_dedup_verify;
1964 	boolean_t encrypt = B_FALSE;
1965 	int copies = os->os_copies;
1966 
1967 	/*
1968 	 * We maintain different write policies for each of the following
1969 	 * types of data:
1970 	 *	 1. metadata
1971 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1972 	 *	 3. all other level 0 blocks
1973 	 */
1974 	if (ismd) {
1975 		/*
1976 		 * XXX -- we should design a compression algorithm
1977 		 * that specializes in arrays of bps.
1978 		 */
1979 		compress = zio_compress_select(os->os_spa,
1980 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1981 
1982 		/*
1983 		 * Metadata always gets checksummed.  If the data
1984 		 * checksum is multi-bit correctable, and it's not a
1985 		 * ZBT-style checksum, then it's suitable for metadata
1986 		 * as well.  Otherwise, the metadata checksum defaults
1987 		 * to fletcher4.
1988 		 */
1989 		if (!(zio_checksum_table[checksum].ci_flags &
1990 		    ZCHECKSUM_FLAG_METADATA) ||
1991 		    (zio_checksum_table[checksum].ci_flags &
1992 		    ZCHECKSUM_FLAG_EMBEDDED))
1993 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1994 
1995 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1996 		    (os->os_redundant_metadata ==
1997 		    ZFS_REDUNDANT_METADATA_MOST &&
1998 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1999 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2000 			copies++;
2001 	} else if (wp & WP_NOFILL) {
2002 		ASSERT(level == 0);
2003 
2004 		/*
2005 		 * If we're writing preallocated blocks, we aren't actually
2006 		 * writing them so don't set any policy properties.  These
2007 		 * blocks are currently only used by an external subsystem
2008 		 * outside of zfs (i.e. dump) and not written by the zio
2009 		 * pipeline.
2010 		 */
2011 		compress = ZIO_COMPRESS_OFF;
2012 		checksum = ZIO_CHECKSUM_OFF;
2013 	} else {
2014 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2015 		    compress);
2016 		complevel = zio_complevel_select(os->os_spa, compress,
2017 		    complevel, complevel);
2018 
2019 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2020 		    zio_checksum_select(dn->dn_checksum, checksum) :
2021 		    dedup_checksum;
2022 
2023 		/*
2024 		 * Determine dedup setting.  If we are in dmu_sync(),
2025 		 * we won't actually dedup now because that's all
2026 		 * done in syncing context; but we do want to use the
2027 		 * dedup checksum.  If the checksum is not strong
2028 		 * enough to ensure unique signatures, force
2029 		 * dedup_verify.
2030 		 */
2031 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2032 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2033 			if (!(zio_checksum_table[checksum].ci_flags &
2034 			    ZCHECKSUM_FLAG_DEDUP))
2035 				dedup_verify = B_TRUE;
2036 		}
2037 
2038 		/*
2039 		 * Enable nopwrite if we have secure enough checksum
2040 		 * algorithm (see comment in zio_nop_write) and
2041 		 * compression is enabled.  We don't enable nopwrite if
2042 		 * dedup is enabled as the two features are mutually
2043 		 * exclusive.
2044 		 */
2045 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2046 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2047 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2048 	}
2049 
2050 	/*
2051 	 * All objects in an encrypted objset are protected from modification
2052 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2053 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2054 	 * not subject to nopwrite since writing the same data will still
2055 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2056 	 * to avoid ambiguity in the dedup code since the DDT does not store
2057 	 * object types.
2058 	 */
2059 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2060 		encrypt = B_TRUE;
2061 
2062 		if (DMU_OT_IS_ENCRYPTED(type)) {
2063 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2064 			nopwrite = B_FALSE;
2065 		} else {
2066 			dedup = B_FALSE;
2067 		}
2068 
2069 		if (level <= 0 &&
2070 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2071 			compress = ZIO_COMPRESS_EMPTY;
2072 		}
2073 	}
2074 
2075 	zp->zp_compress = compress;
2076 	zp->zp_complevel = complevel;
2077 	zp->zp_checksum = checksum;
2078 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2079 	zp->zp_level = level;
2080 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2081 	zp->zp_dedup = dedup;
2082 	zp->zp_dedup_verify = dedup && dedup_verify;
2083 	zp->zp_nopwrite = nopwrite;
2084 	zp->zp_encrypt = encrypt;
2085 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2086 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2087 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2088 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2089 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2090 	    os->os_zpl_special_smallblock : 0;
2091 
2092 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2093 }
2094 
2095 /*
2096  * This function is only called from zfs_holey_common() for zpl_llseek()
2097  * in order to determine the location of holes.  In order to accurately
2098  * report holes all dirty data must be synced to disk.  This causes extremely
2099  * poor performance when seeking for holes in a dirty file.  As a compromise,
2100  * only provide hole data when the dnode is clean.  When a dnode is dirty
2101  * report the dnode as having no holes which is always a safe thing to do.
2102  */
2103 int
2104 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2105 {
2106 	dnode_t *dn;
2107 	int err;
2108 
2109 restart:
2110 	err = dnode_hold(os, object, FTAG, &dn);
2111 	if (err)
2112 		return (err);
2113 
2114 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2115 
2116 	if (dnode_is_dirty(dn)) {
2117 		/*
2118 		 * If the zfs_dmu_offset_next_sync module option is enabled
2119 		 * then strict hole reporting has been requested.  Dirty
2120 		 * dnodes must be synced to disk to accurately report all
2121 		 * holes.  When disabled dirty dnodes are reported to not
2122 		 * have any holes which is always safe.
2123 		 *
2124 		 * When called by zfs_holey_common() the zp->z_rangelock
2125 		 * is held to prevent zfs_write() and mmap writeback from
2126 		 * re-dirtying the dnode after txg_wait_synced().
2127 		 */
2128 		if (zfs_dmu_offset_next_sync) {
2129 			rw_exit(&dn->dn_struct_rwlock);
2130 			dnode_rele(dn, FTAG);
2131 			txg_wait_synced(dmu_objset_pool(os), 0);
2132 			goto restart;
2133 		}
2134 
2135 		err = SET_ERROR(EBUSY);
2136 	} else {
2137 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2138 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2139 	}
2140 
2141 	rw_exit(&dn->dn_struct_rwlock);
2142 	dnode_rele(dn, FTAG);
2143 
2144 	return (err);
2145 }
2146 
2147 void
2148 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2149 {
2150 	dnode_phys_t *dnp = dn->dn_phys;
2151 
2152 	doi->doi_data_block_size = dn->dn_datablksz;
2153 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2154 	    1ULL << dn->dn_indblkshift : 0;
2155 	doi->doi_type = dn->dn_type;
2156 	doi->doi_bonus_type = dn->dn_bonustype;
2157 	doi->doi_bonus_size = dn->dn_bonuslen;
2158 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2159 	doi->doi_indirection = dn->dn_nlevels;
2160 	doi->doi_checksum = dn->dn_checksum;
2161 	doi->doi_compress = dn->dn_compress;
2162 	doi->doi_nblkptr = dn->dn_nblkptr;
2163 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2164 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2165 	doi->doi_fill_count = 0;
2166 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2167 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2168 }
2169 
2170 void
2171 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2172 {
2173 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2174 	mutex_enter(&dn->dn_mtx);
2175 
2176 	__dmu_object_info_from_dnode(dn, doi);
2177 
2178 	mutex_exit(&dn->dn_mtx);
2179 	rw_exit(&dn->dn_struct_rwlock);
2180 }
2181 
2182 /*
2183  * Get information on a DMU object.
2184  * If doi is NULL, just indicates whether the object exists.
2185  */
2186 int
2187 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2188 {
2189 	dnode_t *dn;
2190 	int err = dnode_hold(os, object, FTAG, &dn);
2191 
2192 	if (err)
2193 		return (err);
2194 
2195 	if (doi != NULL)
2196 		dmu_object_info_from_dnode(dn, doi);
2197 
2198 	dnode_rele(dn, FTAG);
2199 	return (0);
2200 }
2201 
2202 /*
2203  * As above, but faster; can be used when you have a held dbuf in hand.
2204  */
2205 void
2206 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2207 {
2208 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2209 
2210 	DB_DNODE_ENTER(db);
2211 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2212 	DB_DNODE_EXIT(db);
2213 }
2214 
2215 /*
2216  * Faster still when you only care about the size.
2217  */
2218 void
2219 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2220     u_longlong_t *nblk512)
2221 {
2222 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2223 	dnode_t *dn;
2224 
2225 	DB_DNODE_ENTER(db);
2226 	dn = DB_DNODE(db);
2227 
2228 	*blksize = dn->dn_datablksz;
2229 	/* add in number of slots used for the dnode itself */
2230 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2231 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2232 	DB_DNODE_EXIT(db);
2233 }
2234 
2235 void
2236 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2237 {
2238 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2239 	dnode_t *dn;
2240 
2241 	DB_DNODE_ENTER(db);
2242 	dn = DB_DNODE(db);
2243 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2244 	DB_DNODE_EXIT(db);
2245 }
2246 
2247 void
2248 byteswap_uint64_array(void *vbuf, size_t size)
2249 {
2250 	uint64_t *buf = vbuf;
2251 	size_t count = size >> 3;
2252 	int i;
2253 
2254 	ASSERT((size & 7) == 0);
2255 
2256 	for (i = 0; i < count; i++)
2257 		buf[i] = BSWAP_64(buf[i]);
2258 }
2259 
2260 void
2261 byteswap_uint32_array(void *vbuf, size_t size)
2262 {
2263 	uint32_t *buf = vbuf;
2264 	size_t count = size >> 2;
2265 	int i;
2266 
2267 	ASSERT((size & 3) == 0);
2268 
2269 	for (i = 0; i < count; i++)
2270 		buf[i] = BSWAP_32(buf[i]);
2271 }
2272 
2273 void
2274 byteswap_uint16_array(void *vbuf, size_t size)
2275 {
2276 	uint16_t *buf = vbuf;
2277 	size_t count = size >> 1;
2278 	int i;
2279 
2280 	ASSERT((size & 1) == 0);
2281 
2282 	for (i = 0; i < count; i++)
2283 		buf[i] = BSWAP_16(buf[i]);
2284 }
2285 
2286 void
2287 byteswap_uint8_array(void *vbuf, size_t size)
2288 {
2289 	(void) vbuf, (void) size;
2290 }
2291 
2292 void
2293 dmu_init(void)
2294 {
2295 	abd_init();
2296 	zfs_dbgmsg_init();
2297 	sa_cache_init();
2298 	dmu_objset_init();
2299 	dnode_init();
2300 	zfetch_init();
2301 	dmu_tx_init();
2302 	l2arc_init();
2303 	arc_init();
2304 	dbuf_init();
2305 }
2306 
2307 void
2308 dmu_fini(void)
2309 {
2310 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2311 	l2arc_fini();
2312 	dmu_tx_fini();
2313 	zfetch_fini();
2314 	dbuf_fini();
2315 	dnode_fini();
2316 	dmu_objset_fini();
2317 	sa_cache_fini();
2318 	zfs_dbgmsg_fini();
2319 	abd_fini();
2320 }
2321 
2322 EXPORT_SYMBOL(dmu_bonus_hold);
2323 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2324 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2325 EXPORT_SYMBOL(dmu_buf_rele_array);
2326 EXPORT_SYMBOL(dmu_prefetch);
2327 EXPORT_SYMBOL(dmu_free_range);
2328 EXPORT_SYMBOL(dmu_free_long_range);
2329 EXPORT_SYMBOL(dmu_free_long_object);
2330 EXPORT_SYMBOL(dmu_read);
2331 EXPORT_SYMBOL(dmu_read_by_dnode);
2332 EXPORT_SYMBOL(dmu_write);
2333 EXPORT_SYMBOL(dmu_write_by_dnode);
2334 EXPORT_SYMBOL(dmu_prealloc);
2335 EXPORT_SYMBOL(dmu_object_info);
2336 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2337 EXPORT_SYMBOL(dmu_object_info_from_db);
2338 EXPORT_SYMBOL(dmu_object_size_from_db);
2339 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2340 EXPORT_SYMBOL(dmu_object_set_nlevels);
2341 EXPORT_SYMBOL(dmu_object_set_blocksize);
2342 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2343 EXPORT_SYMBOL(dmu_object_set_checksum);
2344 EXPORT_SYMBOL(dmu_object_set_compress);
2345 EXPORT_SYMBOL(dmu_offset_next);
2346 EXPORT_SYMBOL(dmu_write_policy);
2347 EXPORT_SYMBOL(dmu_sync);
2348 EXPORT_SYMBOL(dmu_request_arcbuf);
2349 EXPORT_SYMBOL(dmu_return_arcbuf);
2350 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2351 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2352 EXPORT_SYMBOL(dmu_buf_hold);
2353 EXPORT_SYMBOL(dmu_ot);
2354 
2355 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2356 	"Enable NOP writes");
2357 
2358 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2359 	"Percentage of dirtied blocks from frees in one TXG");
2360 
2361 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2362 	"Enable forcing txg sync to find holes");
2363 
2364 /* CSTYLED */
2365 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2366 	"Limit one prefetch call to this size");
2367