xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 5f757f3f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
33  */
34 
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dbuf.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zap.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
53 #include <sys/sa.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/brt.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
60 #ifdef _KERNEL
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
63 #endif
64 
65 /*
66  * Enable/disable nopwrite feature.
67  */
68 static int zfs_nopwrite_enabled = 1;
69 
70 /*
71  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72  * one TXG. After this threshold is crossed, additional dirty blocks from frees
73  * will wait until the next TXG.
74  * A value of zero will disable this throttle.
75  */
76 static uint_t zfs_per_txg_dirty_frees_percent = 30;
77 
78 /*
79  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80  * By default this is enabled to ensure accurate hole reporting, it can result
81  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82  * Disabling this option will result in holes never being reported in dirty
83  * files which is always safe.
84  */
85 static int zfs_dmu_offset_next_sync = 1;
86 
87 /*
88  * Limit the amount we can prefetch with one call to this amount.  This
89  * helps to limit the amount of memory that can be used by prefetching.
90  * Larger objects should be prefetched a bit at a time.
91  */
92 #ifdef _ILP32
93 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
94 #else
95 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
96 #endif
97 
98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
99 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
100 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
101 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
102 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
103 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
104 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
105 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
106 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
107 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
108 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
109 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
110 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
111 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
112 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
113 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
115 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
116 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
117 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
118 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
121 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
122 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
123 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
124 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
125 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
128 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
129 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
132 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
133 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
134 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
135 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
140 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
141 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
143 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
144 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
146 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
147 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
148 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
149 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
150 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
151 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
152 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
153 };
154 
155 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
156 	{	byteswap_uint8_array,	"uint8"		},
157 	{	byteswap_uint16_array,	"uint16"	},
158 	{	byteswap_uint32_array,	"uint32"	},
159 	{	byteswap_uint64_array,	"uint64"	},
160 	{	zap_byteswap,		"zap"		},
161 	{	dnode_buf_byteswap,	"dnode"		},
162 	{	dmu_objset_byteswap,	"objset"	},
163 	{	zfs_znode_byteswap,	"znode"		},
164 	{	zfs_oldacl_byteswap,	"oldacl"	},
165 	{	zfs_acl_byteswap,	"acl"		}
166 };
167 
168 int
169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
170     const void *tag, dmu_buf_t **dbp)
171 {
172 	uint64_t blkid;
173 	dmu_buf_impl_t *db;
174 
175 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
176 	blkid = dbuf_whichblock(dn, 0, offset);
177 	db = dbuf_hold(dn, blkid, tag);
178 	rw_exit(&dn->dn_struct_rwlock);
179 
180 	if (db == NULL) {
181 		*dbp = NULL;
182 		return (SET_ERROR(EIO));
183 	}
184 
185 	*dbp = &db->db;
186 	return (0);
187 }
188 
189 int
190 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
191     const void *tag, dmu_buf_t **dbp)
192 {
193 	dnode_t *dn;
194 	uint64_t blkid;
195 	dmu_buf_impl_t *db;
196 	int err;
197 
198 	err = dnode_hold(os, object, FTAG, &dn);
199 	if (err)
200 		return (err);
201 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
202 	blkid = dbuf_whichblock(dn, 0, offset);
203 	db = dbuf_hold(dn, blkid, tag);
204 	rw_exit(&dn->dn_struct_rwlock);
205 	dnode_rele(dn, FTAG);
206 
207 	if (db == NULL) {
208 		*dbp = NULL;
209 		return (SET_ERROR(EIO));
210 	}
211 
212 	*dbp = &db->db;
213 	return (err);
214 }
215 
216 int
217 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
218     const void *tag, dmu_buf_t **dbp, int flags)
219 {
220 	int err;
221 	int db_flags = DB_RF_CANFAIL;
222 
223 	if (flags & DMU_READ_NO_PREFETCH)
224 		db_flags |= DB_RF_NOPREFETCH;
225 	if (flags & DMU_READ_NO_DECRYPT)
226 		db_flags |= DB_RF_NO_DECRYPT;
227 
228 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
229 	if (err == 0) {
230 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
231 		err = dbuf_read(db, NULL, db_flags);
232 		if (err != 0) {
233 			dbuf_rele(db, tag);
234 			*dbp = NULL;
235 		}
236 	}
237 
238 	return (err);
239 }
240 
241 int
242 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
243     const void *tag, dmu_buf_t **dbp, int flags)
244 {
245 	int err;
246 	int db_flags = DB_RF_CANFAIL;
247 
248 	if (flags & DMU_READ_NO_PREFETCH)
249 		db_flags |= DB_RF_NOPREFETCH;
250 	if (flags & DMU_READ_NO_DECRYPT)
251 		db_flags |= DB_RF_NO_DECRYPT;
252 
253 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
254 	if (err == 0) {
255 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
256 		err = dbuf_read(db, NULL, db_flags);
257 		if (err != 0) {
258 			dbuf_rele(db, tag);
259 			*dbp = NULL;
260 		}
261 	}
262 
263 	return (err);
264 }
265 
266 int
267 dmu_bonus_max(void)
268 {
269 	return (DN_OLD_MAX_BONUSLEN);
270 }
271 
272 int
273 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
274 {
275 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 	dnode_t *dn;
277 	int error;
278 
279 	DB_DNODE_ENTER(db);
280 	dn = DB_DNODE(db);
281 
282 	if (dn->dn_bonus != db) {
283 		error = SET_ERROR(EINVAL);
284 	} else if (newsize < 0 || newsize > db_fake->db_size) {
285 		error = SET_ERROR(EINVAL);
286 	} else {
287 		dnode_setbonuslen(dn, newsize, tx);
288 		error = 0;
289 	}
290 
291 	DB_DNODE_EXIT(db);
292 	return (error);
293 }
294 
295 int
296 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
297 {
298 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 	dnode_t *dn;
300 	int error;
301 
302 	DB_DNODE_ENTER(db);
303 	dn = DB_DNODE(db);
304 
305 	if (!DMU_OT_IS_VALID(type)) {
306 		error = SET_ERROR(EINVAL);
307 	} else if (dn->dn_bonus != db) {
308 		error = SET_ERROR(EINVAL);
309 	} else {
310 		dnode_setbonus_type(dn, type, tx);
311 		error = 0;
312 	}
313 
314 	DB_DNODE_EXIT(db);
315 	return (error);
316 }
317 
318 dmu_object_type_t
319 dmu_get_bonustype(dmu_buf_t *db_fake)
320 {
321 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
322 	dnode_t *dn;
323 	dmu_object_type_t type;
324 
325 	DB_DNODE_ENTER(db);
326 	dn = DB_DNODE(db);
327 	type = dn->dn_bonustype;
328 	DB_DNODE_EXIT(db);
329 
330 	return (type);
331 }
332 
333 int
334 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
335 {
336 	dnode_t *dn;
337 	int error;
338 
339 	error = dnode_hold(os, object, FTAG, &dn);
340 	dbuf_rm_spill(dn, tx);
341 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
342 	dnode_rm_spill(dn, tx);
343 	rw_exit(&dn->dn_struct_rwlock);
344 	dnode_rele(dn, FTAG);
345 	return (error);
346 }
347 
348 /*
349  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
350  * has not yet been allocated a new bonus dbuf a will be allocated.
351  * Returns ENOENT, EIO, or 0.
352  */
353 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
354     uint32_t flags)
355 {
356 	dmu_buf_impl_t *db;
357 	int error;
358 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
359 
360 	if (flags & DMU_READ_NO_PREFETCH)
361 		db_flags |= DB_RF_NOPREFETCH;
362 	if (flags & DMU_READ_NO_DECRYPT)
363 		db_flags |= DB_RF_NO_DECRYPT;
364 
365 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
366 	if (dn->dn_bonus == NULL) {
367 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
368 			rw_exit(&dn->dn_struct_rwlock);
369 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
370 		}
371 		if (dn->dn_bonus == NULL)
372 			dbuf_create_bonus(dn);
373 	}
374 	db = dn->dn_bonus;
375 
376 	/* as long as the bonus buf is held, the dnode will be held */
377 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
378 		VERIFY(dnode_add_ref(dn, db));
379 		atomic_inc_32(&dn->dn_dbufs_count);
380 	}
381 
382 	/*
383 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
384 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
385 	 * a dnode hold for every dbuf.
386 	 */
387 	rw_exit(&dn->dn_struct_rwlock);
388 
389 	error = dbuf_read(db, NULL, db_flags);
390 	if (error) {
391 		dnode_evict_bonus(dn);
392 		dbuf_rele(db, tag);
393 		*dbp = NULL;
394 		return (error);
395 	}
396 
397 	*dbp = &db->db;
398 	return (0);
399 }
400 
401 int
402 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
403 {
404 	dnode_t *dn;
405 	int error;
406 
407 	error = dnode_hold(os, object, FTAG, &dn);
408 	if (error)
409 		return (error);
410 
411 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
412 	dnode_rele(dn, FTAG);
413 
414 	return (error);
415 }
416 
417 /*
418  * returns ENOENT, EIO, or 0.
419  *
420  * This interface will allocate a blank spill dbuf when a spill blk
421  * doesn't already exist on the dnode.
422  *
423  * if you only want to find an already existing spill db, then
424  * dmu_spill_hold_existing() should be used.
425  */
426 int
427 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
428     dmu_buf_t **dbp)
429 {
430 	dmu_buf_impl_t *db = NULL;
431 	int err;
432 
433 	if ((flags & DB_RF_HAVESTRUCT) == 0)
434 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
435 
436 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
437 
438 	if ((flags & DB_RF_HAVESTRUCT) == 0)
439 		rw_exit(&dn->dn_struct_rwlock);
440 
441 	if (db == NULL) {
442 		*dbp = NULL;
443 		return (SET_ERROR(EIO));
444 	}
445 	err = dbuf_read(db, NULL, flags);
446 	if (err == 0)
447 		*dbp = &db->db;
448 	else {
449 		dbuf_rele(db, tag);
450 		*dbp = NULL;
451 	}
452 	return (err);
453 }
454 
455 int
456 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
457 {
458 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
459 	dnode_t *dn;
460 	int err;
461 
462 	DB_DNODE_ENTER(db);
463 	dn = DB_DNODE(db);
464 
465 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
466 		err = SET_ERROR(EINVAL);
467 	} else {
468 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
469 
470 		if (!dn->dn_have_spill) {
471 			err = SET_ERROR(ENOENT);
472 		} else {
473 			err = dmu_spill_hold_by_dnode(dn,
474 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
475 		}
476 
477 		rw_exit(&dn->dn_struct_rwlock);
478 	}
479 
480 	DB_DNODE_EXIT(db);
481 	return (err);
482 }
483 
484 int
485 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
486     dmu_buf_t **dbp)
487 {
488 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
489 	dnode_t *dn;
490 	int err;
491 	uint32_t db_flags = DB_RF_CANFAIL;
492 
493 	if (flags & DMU_READ_NO_DECRYPT)
494 		db_flags |= DB_RF_NO_DECRYPT;
495 
496 	DB_DNODE_ENTER(db);
497 	dn = DB_DNODE(db);
498 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
499 	DB_DNODE_EXIT(db);
500 
501 	return (err);
502 }
503 
504 /*
505  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
506  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
507  * and can induce severe lock contention when writing to several files
508  * whose dnodes are in the same block.
509  */
510 int
511 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
512     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
513     uint32_t flags)
514 {
515 	dmu_buf_t **dbp;
516 	zstream_t *zs = NULL;
517 	uint64_t blkid, nblks, i;
518 	uint32_t dbuf_flags;
519 	int err;
520 	zio_t *zio = NULL;
521 	boolean_t missed = B_FALSE;
522 
523 	ASSERT(!read || length <= DMU_MAX_ACCESS);
524 
525 	/*
526 	 * Note: We directly notify the prefetch code of this read, so that
527 	 * we can tell it about the multi-block read.  dbuf_read() only knows
528 	 * about the one block it is accessing.
529 	 */
530 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
531 	    DB_RF_NOPREFETCH;
532 
533 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
534 		dbuf_flags |= DB_RF_NO_DECRYPT;
535 
536 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
537 	if (dn->dn_datablkshift) {
538 		int blkshift = dn->dn_datablkshift;
539 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
540 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
541 	} else {
542 		if (offset + length > dn->dn_datablksz) {
543 			zfs_panic_recover("zfs: accessing past end of object "
544 			    "%llx/%llx (size=%u access=%llu+%llu)",
545 			    (longlong_t)dn->dn_objset->
546 			    os_dsl_dataset->ds_object,
547 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
548 			    (longlong_t)offset, (longlong_t)length);
549 			rw_exit(&dn->dn_struct_rwlock);
550 			return (SET_ERROR(EIO));
551 		}
552 		nblks = 1;
553 	}
554 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
555 
556 	if (read)
557 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
558 		    ZIO_FLAG_CANFAIL);
559 	blkid = dbuf_whichblock(dn, 0, offset);
560 	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
561 		/*
562 		 * Prepare the zfetch before initiating the demand reads, so
563 		 * that if multiple threads block on same indirect block, we
564 		 * base predictions on the original less racy request order.
565 		 */
566 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
567 		    B_TRUE);
568 	}
569 	for (i = 0; i < nblks; i++) {
570 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
571 		if (db == NULL) {
572 			if (zs)
573 				dmu_zfetch_run(zs, missed, B_TRUE);
574 			rw_exit(&dn->dn_struct_rwlock);
575 			dmu_buf_rele_array(dbp, nblks, tag);
576 			if (read)
577 				zio_nowait(zio);
578 			return (SET_ERROR(EIO));
579 		}
580 
581 		/*
582 		 * Initiate async demand data read.
583 		 * We check the db_state after calling dbuf_read() because
584 		 * (1) dbuf_read() may change the state to CACHED due to a
585 		 * hit in the ARC, and (2) on a cache miss, a child will
586 		 * have been added to "zio" but not yet completed, so the
587 		 * state will not yet be CACHED.
588 		 */
589 		if (read) {
590 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
591 			    offset + length < db->db.db_offset +
592 			    db->db.db_size) {
593 				if (offset <= db->db.db_offset)
594 					dbuf_flags |= DB_RF_PARTIAL_FIRST;
595 				else
596 					dbuf_flags |= DB_RF_PARTIAL_MORE;
597 			}
598 			(void) dbuf_read(db, zio, dbuf_flags);
599 			if (db->db_state != DB_CACHED)
600 				missed = B_TRUE;
601 		}
602 		dbp[i] = &db->db;
603 	}
604 
605 	if (!read)
606 		zfs_racct_write(length, nblks);
607 
608 	if (zs)
609 		dmu_zfetch_run(zs, missed, B_TRUE);
610 	rw_exit(&dn->dn_struct_rwlock);
611 
612 	if (read) {
613 		/* wait for async read i/o */
614 		err = zio_wait(zio);
615 		if (err) {
616 			dmu_buf_rele_array(dbp, nblks, tag);
617 			return (err);
618 		}
619 
620 		/* wait for other io to complete */
621 		for (i = 0; i < nblks; i++) {
622 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
623 			mutex_enter(&db->db_mtx);
624 			while (db->db_state == DB_READ ||
625 			    db->db_state == DB_FILL)
626 				cv_wait(&db->db_changed, &db->db_mtx);
627 			if (db->db_state == DB_UNCACHED)
628 				err = SET_ERROR(EIO);
629 			mutex_exit(&db->db_mtx);
630 			if (err) {
631 				dmu_buf_rele_array(dbp, nblks, tag);
632 				return (err);
633 			}
634 		}
635 	}
636 
637 	*numbufsp = nblks;
638 	*dbpp = dbp;
639 	return (0);
640 }
641 
642 int
643 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
644     uint64_t length, int read, const void *tag, int *numbufsp,
645     dmu_buf_t ***dbpp)
646 {
647 	dnode_t *dn;
648 	int err;
649 
650 	err = dnode_hold(os, object, FTAG, &dn);
651 	if (err)
652 		return (err);
653 
654 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
655 	    numbufsp, dbpp, DMU_READ_PREFETCH);
656 
657 	dnode_rele(dn, FTAG);
658 
659 	return (err);
660 }
661 
662 int
663 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
664     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
665     dmu_buf_t ***dbpp)
666 {
667 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
668 	dnode_t *dn;
669 	int err;
670 
671 	DB_DNODE_ENTER(db);
672 	dn = DB_DNODE(db);
673 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
674 	    numbufsp, dbpp, DMU_READ_PREFETCH);
675 	DB_DNODE_EXIT(db);
676 
677 	return (err);
678 }
679 
680 void
681 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
682 {
683 	int i;
684 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
685 
686 	if (numbufs == 0)
687 		return;
688 
689 	for (i = 0; i < numbufs; i++) {
690 		if (dbp[i])
691 			dbuf_rele(dbp[i], tag);
692 	}
693 
694 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
695 }
696 
697 /*
698  * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
699  * indirect blocks prefetched will be those that point to the blocks containing
700  * the data starting at offset, and continuing to offset + len.  If the range
701  * it too long, prefetch the first dmu_prefetch_max bytes as requested, while
702  * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
703  * should primarily help random reads, since for long sequential reads there is
704  * a speculative prefetcher.
705  *
706  * Note that if the indirect blocks above the blocks being prefetched are not
707  * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
708  * is currently synchronous.
709  */
710 void
711 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
712     uint64_t len, zio_priority_t pri)
713 {
714 	dnode_t *dn;
715 
716 	if (dmu_prefetch_max == 0 || len == 0) {
717 		dmu_prefetch_dnode(os, object, pri);
718 		return;
719 	}
720 
721 	if (dnode_hold(os, object, FTAG, &dn) != 0)
722 		return;
723 
724 	dmu_prefetch_by_dnode(dn, level, offset, len, pri);
725 
726 	dnode_rele(dn, FTAG);
727 }
728 
729 void
730 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
731     uint64_t len, zio_priority_t pri)
732 {
733 	int64_t level2 = level;
734 	uint64_t start, end, start2, end2;
735 
736 	/*
737 	 * Depending on len we may do two prefetches: blocks [start, end) at
738 	 * level, and following blocks [start2, end2) at higher level2.
739 	 */
740 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
741 	if (dn->dn_datablkshift != 0) {
742 		/*
743 		 * The object has multiple blocks.  Calculate the full range
744 		 * of blocks [start, end2) and then split it into two parts,
745 		 * so that the first [start, end) fits into dmu_prefetch_max.
746 		 */
747 		start = dbuf_whichblock(dn, level, offset);
748 		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
749 		uint8_t ibs = dn->dn_indblkshift;
750 		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
751 		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
752 		start2 = end = MIN(end2, start + limit);
753 
754 		/*
755 		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
756 		 */
757 		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
758 		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
759 		do {
760 			level2++;
761 			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
762 			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
763 		} while (end2 - start2 > limit);
764 	} else {
765 		/* There is only one block.  Prefetch it or nothing. */
766 		start = start2 = end2 = 0;
767 		end = start + (level == 0 && offset < dn->dn_datablksz);
768 	}
769 
770 	for (uint64_t i = start; i < end; i++)
771 		dbuf_prefetch(dn, level, i, pri, 0);
772 	for (uint64_t i = start2; i < end2; i++)
773 		dbuf_prefetch(dn, level2, i, pri, 0);
774 	rw_exit(&dn->dn_struct_rwlock);
775 }
776 
777 /*
778  * Issue prefetch I/Os for the given object's dnode.
779  */
780 void
781 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
782 {
783 	if (object == 0 || object >= DN_MAX_OBJECT)
784 		return;
785 
786 	dnode_t *dn = DMU_META_DNODE(os);
787 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
788 	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
789 	dbuf_prefetch(dn, 0, blkid, pri, 0);
790 	rw_exit(&dn->dn_struct_rwlock);
791 }
792 
793 /*
794  * Get the next "chunk" of file data to free.  We traverse the file from
795  * the end so that the file gets shorter over time (if we crashes in the
796  * middle, this will leave us in a better state).  We find allocated file
797  * data by simply searching the allocated level 1 indirects.
798  *
799  * On input, *start should be the first offset that does not need to be
800  * freed (e.g. "offset + length").  On return, *start will be the first
801  * offset that should be freed and l1blks is set to the number of level 1
802  * indirect blocks found within the chunk.
803  */
804 static int
805 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
806 {
807 	uint64_t blks;
808 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
809 	/* bytes of data covered by a level-1 indirect block */
810 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
811 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
812 
813 	ASSERT3U(minimum, <=, *start);
814 
815 	/*
816 	 * Check if we can free the entire range assuming that all of the
817 	 * L1 blocks in this range have data. If we can, we use this
818 	 * worst case value as an estimate so we can avoid having to look
819 	 * at the object's actual data.
820 	 */
821 	uint64_t total_l1blks =
822 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
823 	    iblkrange;
824 	if (total_l1blks <= maxblks) {
825 		*l1blks = total_l1blks;
826 		*start = minimum;
827 		return (0);
828 	}
829 	ASSERT(ISP2(iblkrange));
830 
831 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
832 		int err;
833 
834 		/*
835 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
836 		 * indirect block at or before the input offset.  We must
837 		 * decrement *start so that it is at the end of the region
838 		 * to search.
839 		 */
840 		(*start)--;
841 
842 		err = dnode_next_offset(dn,
843 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
844 
845 		/* if there are no indirect blocks before start, we are done */
846 		if (err == ESRCH) {
847 			*start = minimum;
848 			break;
849 		} else if (err != 0) {
850 			*l1blks = blks;
851 			return (err);
852 		}
853 
854 		/* set start to the beginning of this L1 indirect */
855 		*start = P2ALIGN(*start, iblkrange);
856 	}
857 	if (*start < minimum)
858 		*start = minimum;
859 	*l1blks = blks;
860 
861 	return (0);
862 }
863 
864 /*
865  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
866  * otherwise return false.
867  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
868  */
869 static boolean_t
870 dmu_objset_zfs_unmounting(objset_t *os)
871 {
872 #ifdef _KERNEL
873 	if (dmu_objset_type(os) == DMU_OST_ZFS)
874 		return (zfs_get_vfs_flag_unmounted(os));
875 #else
876 	(void) os;
877 #endif
878 	return (B_FALSE);
879 }
880 
881 static int
882 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
883     uint64_t length)
884 {
885 	uint64_t object_size;
886 	int err;
887 	uint64_t dirty_frees_threshold;
888 	dsl_pool_t *dp = dmu_objset_pool(os);
889 
890 	if (dn == NULL)
891 		return (SET_ERROR(EINVAL));
892 
893 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
894 	if (offset >= object_size)
895 		return (0);
896 
897 	if (zfs_per_txg_dirty_frees_percent <= 100)
898 		dirty_frees_threshold =
899 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
900 	else
901 		dirty_frees_threshold = zfs_dirty_data_max / 20;
902 
903 	if (length == DMU_OBJECT_END || offset + length > object_size)
904 		length = object_size - offset;
905 
906 	while (length != 0) {
907 		uint64_t chunk_end, chunk_begin, chunk_len;
908 		uint64_t l1blks;
909 		dmu_tx_t *tx;
910 
911 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
912 			return (SET_ERROR(EINTR));
913 
914 		chunk_end = chunk_begin = offset + length;
915 
916 		/* move chunk_begin backwards to the beginning of this chunk */
917 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
918 		if (err)
919 			return (err);
920 		ASSERT3U(chunk_begin, >=, offset);
921 		ASSERT3U(chunk_begin, <=, chunk_end);
922 
923 		chunk_len = chunk_end - chunk_begin;
924 
925 		tx = dmu_tx_create(os);
926 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
927 
928 		/*
929 		 * Mark this transaction as typically resulting in a net
930 		 * reduction in space used.
931 		 */
932 		dmu_tx_mark_netfree(tx);
933 		err = dmu_tx_assign(tx, TXG_WAIT);
934 		if (err) {
935 			dmu_tx_abort(tx);
936 			return (err);
937 		}
938 
939 		uint64_t txg = dmu_tx_get_txg(tx);
940 
941 		mutex_enter(&dp->dp_lock);
942 		uint64_t long_free_dirty =
943 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
944 		mutex_exit(&dp->dp_lock);
945 
946 		/*
947 		 * To avoid filling up a TXG with just frees, wait for
948 		 * the next TXG to open before freeing more chunks if
949 		 * we have reached the threshold of frees.
950 		 */
951 		if (dirty_frees_threshold != 0 &&
952 		    long_free_dirty >= dirty_frees_threshold) {
953 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
954 			dmu_tx_commit(tx);
955 			txg_wait_open(dp, 0, B_TRUE);
956 			continue;
957 		}
958 
959 		/*
960 		 * In order to prevent unnecessary write throttling, for each
961 		 * TXG, we track the cumulative size of L1 blocks being dirtied
962 		 * in dnode_free_range() below. We compare this number to a
963 		 * tunable threshold, past which we prevent new L1 dirty freeing
964 		 * blocks from being added into the open TXG. See
965 		 * dmu_free_long_range_impl() for details. The threshold
966 		 * prevents write throttle activation due to dirty freeing L1
967 		 * blocks taking up a large percentage of zfs_dirty_data_max.
968 		 */
969 		mutex_enter(&dp->dp_lock);
970 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
971 		    l1blks << dn->dn_indblkshift;
972 		mutex_exit(&dp->dp_lock);
973 		DTRACE_PROBE3(free__long__range,
974 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
975 		    uint64_t, txg);
976 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
977 
978 		dmu_tx_commit(tx);
979 
980 		length -= chunk_len;
981 	}
982 	return (0);
983 }
984 
985 int
986 dmu_free_long_range(objset_t *os, uint64_t object,
987     uint64_t offset, uint64_t length)
988 {
989 	dnode_t *dn;
990 	int err;
991 
992 	err = dnode_hold(os, object, FTAG, &dn);
993 	if (err != 0)
994 		return (err);
995 	err = dmu_free_long_range_impl(os, dn, offset, length);
996 
997 	/*
998 	 * It is important to zero out the maxblkid when freeing the entire
999 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1000 	 * will take the fast path, and (b) dnode_reallocate() can verify
1001 	 * that the entire file has been freed.
1002 	 */
1003 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1004 		dn->dn_maxblkid = 0;
1005 
1006 	dnode_rele(dn, FTAG);
1007 	return (err);
1008 }
1009 
1010 int
1011 dmu_free_long_object(objset_t *os, uint64_t object)
1012 {
1013 	dmu_tx_t *tx;
1014 	int err;
1015 
1016 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1017 	if (err != 0)
1018 		return (err);
1019 
1020 	tx = dmu_tx_create(os);
1021 	dmu_tx_hold_bonus(tx, object);
1022 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1023 	dmu_tx_mark_netfree(tx);
1024 	err = dmu_tx_assign(tx, TXG_WAIT);
1025 	if (err == 0) {
1026 		err = dmu_object_free(os, object, tx);
1027 		dmu_tx_commit(tx);
1028 	} else {
1029 		dmu_tx_abort(tx);
1030 	}
1031 
1032 	return (err);
1033 }
1034 
1035 int
1036 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1037     uint64_t size, dmu_tx_t *tx)
1038 {
1039 	dnode_t *dn;
1040 	int err = dnode_hold(os, object, FTAG, &dn);
1041 	if (err)
1042 		return (err);
1043 	ASSERT(offset < UINT64_MAX);
1044 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1045 	dnode_free_range(dn, offset, size, tx);
1046 	dnode_rele(dn, FTAG);
1047 	return (0);
1048 }
1049 
1050 static int
1051 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1052     void *buf, uint32_t flags)
1053 {
1054 	dmu_buf_t **dbp;
1055 	int numbufs, err = 0;
1056 
1057 	/*
1058 	 * Deal with odd block sizes, where there can't be data past the first
1059 	 * block.  If we ever do the tail block optimization, we will need to
1060 	 * handle that here as well.
1061 	 */
1062 	if (dn->dn_maxblkid == 0) {
1063 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1064 		    MIN(size, dn->dn_datablksz - offset);
1065 		memset((char *)buf + newsz, 0, size - newsz);
1066 		size = newsz;
1067 	}
1068 
1069 	while (size > 0) {
1070 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1071 		int i;
1072 
1073 		/*
1074 		 * NB: we could do this block-at-a-time, but it's nice
1075 		 * to be reading in parallel.
1076 		 */
1077 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1078 		    TRUE, FTAG, &numbufs, &dbp, flags);
1079 		if (err)
1080 			break;
1081 
1082 		for (i = 0; i < numbufs; i++) {
1083 			uint64_t tocpy;
1084 			int64_t bufoff;
1085 			dmu_buf_t *db = dbp[i];
1086 
1087 			ASSERT(size > 0);
1088 
1089 			bufoff = offset - db->db_offset;
1090 			tocpy = MIN(db->db_size - bufoff, size);
1091 
1092 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1093 
1094 			offset += tocpy;
1095 			size -= tocpy;
1096 			buf = (char *)buf + tocpy;
1097 		}
1098 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1099 	}
1100 	return (err);
1101 }
1102 
1103 int
1104 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1105     void *buf, uint32_t flags)
1106 {
1107 	dnode_t *dn;
1108 	int err;
1109 
1110 	err = dnode_hold(os, object, FTAG, &dn);
1111 	if (err != 0)
1112 		return (err);
1113 
1114 	err = dmu_read_impl(dn, offset, size, buf, flags);
1115 	dnode_rele(dn, FTAG);
1116 	return (err);
1117 }
1118 
1119 int
1120 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1121     uint32_t flags)
1122 {
1123 	return (dmu_read_impl(dn, offset, size, buf, flags));
1124 }
1125 
1126 static void
1127 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1128     const void *buf, dmu_tx_t *tx)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; i < numbufs; i++) {
1133 		uint64_t tocpy;
1134 		int64_t bufoff;
1135 		dmu_buf_t *db = dbp[i];
1136 
1137 		ASSERT(size > 0);
1138 
1139 		bufoff = offset - db->db_offset;
1140 		tocpy = MIN(db->db_size - bufoff, size);
1141 
1142 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1143 
1144 		if (tocpy == db->db_size)
1145 			dmu_buf_will_fill(db, tx, B_FALSE);
1146 		else
1147 			dmu_buf_will_dirty(db, tx);
1148 
1149 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1150 
1151 		if (tocpy == db->db_size)
1152 			dmu_buf_fill_done(db, tx, B_FALSE);
1153 
1154 		offset += tocpy;
1155 		size -= tocpy;
1156 		buf = (char *)buf + tocpy;
1157 	}
1158 }
1159 
1160 void
1161 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1162     const void *buf, dmu_tx_t *tx)
1163 {
1164 	dmu_buf_t **dbp;
1165 	int numbufs;
1166 
1167 	if (size == 0)
1168 		return;
1169 
1170 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1171 	    FALSE, FTAG, &numbufs, &dbp));
1172 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1173 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1174 }
1175 
1176 /*
1177  * Note: Lustre is an external consumer of this interface.
1178  */
1179 void
1180 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1181     const void *buf, dmu_tx_t *tx)
1182 {
1183 	dmu_buf_t **dbp;
1184 	int numbufs;
1185 
1186 	if (size == 0)
1187 		return;
1188 
1189 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1190 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1191 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1192 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1193 }
1194 
1195 void
1196 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1197     dmu_tx_t *tx)
1198 {
1199 	dmu_buf_t **dbp;
1200 	int numbufs, i;
1201 
1202 	if (size == 0)
1203 		return;
1204 
1205 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1206 	    FALSE, FTAG, &numbufs, &dbp));
1207 
1208 	for (i = 0; i < numbufs; i++) {
1209 		dmu_buf_t *db = dbp[i];
1210 
1211 		dmu_buf_will_not_fill(db, tx);
1212 	}
1213 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1214 }
1215 
1216 void
1217 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1218     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1219     int compressed_size, int byteorder, dmu_tx_t *tx)
1220 {
1221 	dmu_buf_t *db;
1222 
1223 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1224 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1225 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1226 	    FTAG, &db));
1227 
1228 	dmu_buf_write_embedded(db,
1229 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1230 	    uncompressed_size, compressed_size, byteorder, tx);
1231 
1232 	dmu_buf_rele(db, FTAG);
1233 }
1234 
1235 void
1236 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1237     dmu_tx_t *tx)
1238 {
1239 	int numbufs, i;
1240 	dmu_buf_t **dbp;
1241 
1242 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1243 	    &numbufs, &dbp));
1244 	for (i = 0; i < numbufs; i++)
1245 		dmu_buf_redact(dbp[i], tx);
1246 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1247 }
1248 
1249 #ifdef _KERNEL
1250 int
1251 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1252 {
1253 	dmu_buf_t **dbp;
1254 	int numbufs, i, err;
1255 
1256 	/*
1257 	 * NB: we could do this block-at-a-time, but it's nice
1258 	 * to be reading in parallel.
1259 	 */
1260 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1261 	    TRUE, FTAG, &numbufs, &dbp, 0);
1262 	if (err)
1263 		return (err);
1264 
1265 	for (i = 0; i < numbufs; i++) {
1266 		uint64_t tocpy;
1267 		int64_t bufoff;
1268 		dmu_buf_t *db = dbp[i];
1269 
1270 		ASSERT(size > 0);
1271 
1272 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1273 		tocpy = MIN(db->db_size - bufoff, size);
1274 
1275 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1276 		    UIO_READ, uio);
1277 
1278 		if (err)
1279 			break;
1280 
1281 		size -= tocpy;
1282 	}
1283 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1284 
1285 	return (err);
1286 }
1287 
1288 /*
1289  * Read 'size' bytes into the uio buffer.
1290  * From object zdb->db_object.
1291  * Starting at zfs_uio_offset(uio).
1292  *
1293  * If the caller already has a dbuf in the target object
1294  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1295  * because we don't have to find the dnode_t for the object.
1296  */
1297 int
1298 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1299 {
1300 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1301 	dnode_t *dn;
1302 	int err;
1303 
1304 	if (size == 0)
1305 		return (0);
1306 
1307 	DB_DNODE_ENTER(db);
1308 	dn = DB_DNODE(db);
1309 	err = dmu_read_uio_dnode(dn, uio, size);
1310 	DB_DNODE_EXIT(db);
1311 
1312 	return (err);
1313 }
1314 
1315 /*
1316  * Read 'size' bytes into the uio buffer.
1317  * From the specified object
1318  * Starting at offset zfs_uio_offset(uio).
1319  */
1320 int
1321 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1322 {
1323 	dnode_t *dn;
1324 	int err;
1325 
1326 	if (size == 0)
1327 		return (0);
1328 
1329 	err = dnode_hold(os, object, FTAG, &dn);
1330 	if (err)
1331 		return (err);
1332 
1333 	err = dmu_read_uio_dnode(dn, uio, size);
1334 
1335 	dnode_rele(dn, FTAG);
1336 
1337 	return (err);
1338 }
1339 
1340 int
1341 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1342 {
1343 	dmu_buf_t **dbp;
1344 	int numbufs;
1345 	int err = 0;
1346 	int i;
1347 
1348 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1349 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1350 	if (err)
1351 		return (err);
1352 
1353 	for (i = 0; i < numbufs; i++) {
1354 		uint64_t tocpy;
1355 		int64_t bufoff;
1356 		dmu_buf_t *db = dbp[i];
1357 
1358 		ASSERT(size > 0);
1359 
1360 		offset_t off = zfs_uio_offset(uio);
1361 		bufoff = off - db->db_offset;
1362 		tocpy = MIN(db->db_size - bufoff, size);
1363 
1364 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1365 
1366 		if (tocpy == db->db_size)
1367 			dmu_buf_will_fill(db, tx, B_TRUE);
1368 		else
1369 			dmu_buf_will_dirty(db, tx);
1370 
1371 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1372 		    tocpy, UIO_WRITE, uio);
1373 
1374 		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1375 			/* The fill was reverted.  Undo any uio progress. */
1376 			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1377 		}
1378 
1379 		if (err)
1380 			break;
1381 
1382 		size -= tocpy;
1383 	}
1384 
1385 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1386 	return (err);
1387 }
1388 
1389 /*
1390  * Write 'size' bytes from the uio buffer.
1391  * To object zdb->db_object.
1392  * Starting at offset zfs_uio_offset(uio).
1393  *
1394  * If the caller already has a dbuf in the target object
1395  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1396  * because we don't have to find the dnode_t for the object.
1397  */
1398 int
1399 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1400     dmu_tx_t *tx)
1401 {
1402 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1403 	dnode_t *dn;
1404 	int err;
1405 
1406 	if (size == 0)
1407 		return (0);
1408 
1409 	DB_DNODE_ENTER(db);
1410 	dn = DB_DNODE(db);
1411 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1412 	DB_DNODE_EXIT(db);
1413 
1414 	return (err);
1415 }
1416 
1417 /*
1418  * Write 'size' bytes from the uio buffer.
1419  * To the specified object.
1420  * Starting at offset zfs_uio_offset(uio).
1421  */
1422 int
1423 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1424     dmu_tx_t *tx)
1425 {
1426 	dnode_t *dn;
1427 	int err;
1428 
1429 	if (size == 0)
1430 		return (0);
1431 
1432 	err = dnode_hold(os, object, FTAG, &dn);
1433 	if (err)
1434 		return (err);
1435 
1436 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1437 
1438 	dnode_rele(dn, FTAG);
1439 
1440 	return (err);
1441 }
1442 #endif /* _KERNEL */
1443 
1444 /*
1445  * Allocate a loaned anonymous arc buffer.
1446  */
1447 arc_buf_t *
1448 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1449 {
1450 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1451 
1452 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1453 }
1454 
1455 /*
1456  * Free a loaned arc buffer.
1457  */
1458 void
1459 dmu_return_arcbuf(arc_buf_t *buf)
1460 {
1461 	arc_return_buf(buf, FTAG);
1462 	arc_buf_destroy(buf, FTAG);
1463 }
1464 
1465 /*
1466  * A "lightweight" write is faster than a regular write (e.g.
1467  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1468  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1469  * data can not be read or overwritten until the transaction's txg has been
1470  * synced.  This makes it appropriate for workloads that are known to be
1471  * (temporarily) write-only, like "zfs receive".
1472  *
1473  * A single block is written, starting at the specified offset in bytes.  If
1474  * the call is successful, it returns 0 and the provided abd has been
1475  * consumed (the caller should not free it).
1476  */
1477 int
1478 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1479     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1480 {
1481 	dbuf_dirty_record_t *dr =
1482 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1483 	if (dr == NULL)
1484 		return (SET_ERROR(EIO));
1485 	dr->dt.dll.dr_abd = abd;
1486 	dr->dt.dll.dr_props = *zp;
1487 	dr->dt.dll.dr_flags = flags;
1488 	return (0);
1489 }
1490 
1491 /*
1492  * When possible directly assign passed loaned arc buffer to a dbuf.
1493  * If this is not possible copy the contents of passed arc buf via
1494  * dmu_write().
1495  */
1496 int
1497 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1498     dmu_tx_t *tx)
1499 {
1500 	dmu_buf_impl_t *db;
1501 	objset_t *os = dn->dn_objset;
1502 	uint64_t object = dn->dn_object;
1503 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1504 	uint64_t blkid;
1505 
1506 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1507 	blkid = dbuf_whichblock(dn, 0, offset);
1508 	db = dbuf_hold(dn, blkid, FTAG);
1509 	rw_exit(&dn->dn_struct_rwlock);
1510 	if (db == NULL)
1511 		return (SET_ERROR(EIO));
1512 
1513 	/*
1514 	 * We can only assign if the offset is aligned and the arc buf is the
1515 	 * same size as the dbuf.
1516 	 */
1517 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1518 		zfs_racct_write(blksz, 1);
1519 		dbuf_assign_arcbuf(db, buf, tx);
1520 		dbuf_rele(db, FTAG);
1521 	} else {
1522 		/* compressed bufs must always be assignable to their dbuf */
1523 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1524 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1525 
1526 		dbuf_rele(db, FTAG);
1527 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1528 		dmu_return_arcbuf(buf);
1529 	}
1530 
1531 	return (0);
1532 }
1533 
1534 int
1535 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1536     dmu_tx_t *tx)
1537 {
1538 	int err;
1539 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1540 
1541 	DB_DNODE_ENTER(dbuf);
1542 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1543 	DB_DNODE_EXIT(dbuf);
1544 
1545 	return (err);
1546 }
1547 
1548 typedef struct {
1549 	dbuf_dirty_record_t	*dsa_dr;
1550 	dmu_sync_cb_t		*dsa_done;
1551 	zgd_t			*dsa_zgd;
1552 	dmu_tx_t		*dsa_tx;
1553 } dmu_sync_arg_t;
1554 
1555 static void
1556 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1557 {
1558 	(void) buf;
1559 	dmu_sync_arg_t *dsa = varg;
1560 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1561 	blkptr_t *bp = zio->io_bp;
1562 
1563 	if (zio->io_error == 0) {
1564 		if (BP_IS_HOLE(bp)) {
1565 			/*
1566 			 * A block of zeros may compress to a hole, but the
1567 			 * block size still needs to be known for replay.
1568 			 */
1569 			BP_SET_LSIZE(bp, db->db_size);
1570 		} else if (!BP_IS_EMBEDDED(bp)) {
1571 			ASSERT(BP_GET_LEVEL(bp) == 0);
1572 			BP_SET_FILL(bp, 1);
1573 		}
1574 	}
1575 }
1576 
1577 static void
1578 dmu_sync_late_arrival_ready(zio_t *zio)
1579 {
1580 	dmu_sync_ready(zio, NULL, zio->io_private);
1581 }
1582 
1583 static void
1584 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1585 {
1586 	(void) buf;
1587 	dmu_sync_arg_t *dsa = varg;
1588 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1589 	dmu_buf_impl_t *db = dr->dr_dbuf;
1590 	zgd_t *zgd = dsa->dsa_zgd;
1591 
1592 	/*
1593 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1594 	 * the writes for the lwb have completed.
1595 	 */
1596 	if (zio->io_error == 0) {
1597 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1598 	}
1599 
1600 	mutex_enter(&db->db_mtx);
1601 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1602 	if (zio->io_error == 0) {
1603 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1604 		if (dr->dt.dl.dr_nopwrite) {
1605 			blkptr_t *bp = zio->io_bp;
1606 			blkptr_t *bp_orig = &zio->io_bp_orig;
1607 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1608 
1609 			ASSERT(BP_EQUAL(bp, bp_orig));
1610 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1611 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1612 			VERIFY(zio_checksum_table[chksum].ci_flags &
1613 			    ZCHECKSUM_FLAG_NOPWRITE);
1614 		}
1615 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1616 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1617 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1618 
1619 		/*
1620 		 * Old style holes are filled with all zeros, whereas
1621 		 * new-style holes maintain their lsize, type, level,
1622 		 * and birth time (see zio_write_compress). While we
1623 		 * need to reset the BP_SET_LSIZE() call that happened
1624 		 * in dmu_sync_ready for old style holes, we do *not*
1625 		 * want to wipe out the information contained in new
1626 		 * style holes. Thus, only zero out the block pointer if
1627 		 * it's an old style hole.
1628 		 */
1629 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1630 		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1631 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1632 	} else {
1633 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1634 	}
1635 	cv_broadcast(&db->db_changed);
1636 	mutex_exit(&db->db_mtx);
1637 
1638 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1639 
1640 	kmem_free(dsa, sizeof (*dsa));
1641 }
1642 
1643 static void
1644 dmu_sync_late_arrival_done(zio_t *zio)
1645 {
1646 	blkptr_t *bp = zio->io_bp;
1647 	dmu_sync_arg_t *dsa = zio->io_private;
1648 	zgd_t *zgd = dsa->dsa_zgd;
1649 
1650 	if (zio->io_error == 0) {
1651 		/*
1652 		 * Record the vdev(s) backing this blkptr so they can be
1653 		 * flushed after the writes for the lwb have completed.
1654 		 */
1655 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1656 
1657 		if (!BP_IS_HOLE(bp)) {
1658 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1659 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1660 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1661 			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
1662 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1663 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1664 		}
1665 	}
1666 
1667 	dmu_tx_commit(dsa->dsa_tx);
1668 
1669 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1670 
1671 	abd_free(zio->io_abd);
1672 	kmem_free(dsa, sizeof (*dsa));
1673 }
1674 
1675 static int
1676 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1677     zio_prop_t *zp, zbookmark_phys_t *zb)
1678 {
1679 	dmu_sync_arg_t *dsa;
1680 	dmu_tx_t *tx;
1681 	int error;
1682 
1683 	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1684 	    DB_RF_CANFAIL | DB_RF_NOPREFETCH);
1685 	if (error != 0)
1686 		return (error);
1687 
1688 	tx = dmu_tx_create(os);
1689 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1690 	/*
1691 	 * This transaction does not produce any dirty data or log blocks, so
1692 	 * it should not be throttled.  All other cases wait for TXG sync, by
1693 	 * which time the log block we are writing will be obsolete, so we can
1694 	 * skip waiting and just return error here instead.
1695 	 */
1696 	if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
1697 		dmu_tx_abort(tx);
1698 		/* Make zl_get_data do txg_waited_synced() */
1699 		return (SET_ERROR(EIO));
1700 	}
1701 
1702 	/*
1703 	 * In order to prevent the zgd's lwb from being free'd prior to
1704 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1705 	 * the lwb's "max txg" takes this tx's txg into account.
1706 	 */
1707 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1708 
1709 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1710 	dsa->dsa_dr = NULL;
1711 	dsa->dsa_done = done;
1712 	dsa->dsa_zgd = zgd;
1713 	dsa->dsa_tx = tx;
1714 
1715 	/*
1716 	 * Since we are currently syncing this txg, it's nontrivial to
1717 	 * determine what BP to nopwrite against, so we disable nopwrite.
1718 	 *
1719 	 * When syncing, the db_blkptr is initially the BP of the previous
1720 	 * txg.  We can not nopwrite against it because it will be changed
1721 	 * (this is similar to the non-late-arrival case where the dbuf is
1722 	 * dirty in a future txg).
1723 	 *
1724 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1725 	 * We can not nopwrite against it because although the BP will not
1726 	 * (typically) be changed, the data has not yet been persisted to this
1727 	 * location.
1728 	 *
1729 	 * Finally, when dbuf_write_done() is called, it is theoretically
1730 	 * possible to always nopwrite, because the data that was written in
1731 	 * this txg is the same data that we are trying to write.  However we
1732 	 * would need to check that this dbuf is not dirty in any future
1733 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1734 	 * don't nopwrite in this case.
1735 	 */
1736 	zp->zp_nopwrite = B_FALSE;
1737 
1738 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1739 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1740 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1741 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
1742 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1743 
1744 	return (0);
1745 }
1746 
1747 /*
1748  * Intent log support: sync the block associated with db to disk.
1749  * N.B. and XXX: the caller is responsible for making sure that the
1750  * data isn't changing while dmu_sync() is writing it.
1751  *
1752  * Return values:
1753  *
1754  *	EEXIST: this txg has already been synced, so there's nothing to do.
1755  *		The caller should not log the write.
1756  *
1757  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1758  *		The caller should not log the write.
1759  *
1760  *	EALREADY: this block is already in the process of being synced.
1761  *		The caller should track its progress (somehow).
1762  *
1763  *	EIO: could not do the I/O.
1764  *		The caller should do a txg_wait_synced().
1765  *
1766  *	0: the I/O has been initiated.
1767  *		The caller should log this blkptr in the done callback.
1768  *		It is possible that the I/O will fail, in which case
1769  *		the error will be reported to the done callback and
1770  *		propagated to pio from zio_done().
1771  */
1772 int
1773 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1774 {
1775 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1776 	objset_t *os = db->db_objset;
1777 	dsl_dataset_t *ds = os->os_dsl_dataset;
1778 	dbuf_dirty_record_t *dr, *dr_next;
1779 	dmu_sync_arg_t *dsa;
1780 	zbookmark_phys_t zb;
1781 	zio_prop_t zp;
1782 	dnode_t *dn;
1783 
1784 	ASSERT(pio != NULL);
1785 	ASSERT(txg != 0);
1786 
1787 	SET_BOOKMARK(&zb, ds->ds_object,
1788 	    db->db.db_object, db->db_level, db->db_blkid);
1789 
1790 	DB_DNODE_ENTER(db);
1791 	dn = DB_DNODE(db);
1792 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1793 	DB_DNODE_EXIT(db);
1794 
1795 	/*
1796 	 * If we're frozen (running ziltest), we always need to generate a bp.
1797 	 */
1798 	if (txg > spa_freeze_txg(os->os_spa))
1799 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1800 
1801 	/*
1802 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1803 	 * and us.  If we determine that this txg is not yet syncing,
1804 	 * but it begins to sync a moment later, that's OK because the
1805 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1806 	 */
1807 	mutex_enter(&db->db_mtx);
1808 
1809 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1810 		/*
1811 		 * This txg has already synced.  There's nothing to do.
1812 		 */
1813 		mutex_exit(&db->db_mtx);
1814 		return (SET_ERROR(EEXIST));
1815 	}
1816 
1817 	if (txg <= spa_syncing_txg(os->os_spa)) {
1818 		/*
1819 		 * This txg is currently syncing, so we can't mess with
1820 		 * the dirty record anymore; just write a new log block.
1821 		 */
1822 		mutex_exit(&db->db_mtx);
1823 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1824 	}
1825 
1826 	dr = dbuf_find_dirty_eq(db, txg);
1827 
1828 	if (dr == NULL) {
1829 		/*
1830 		 * There's no dr for this dbuf, so it must have been freed.
1831 		 * There's no need to log writes to freed blocks, so we're done.
1832 		 */
1833 		mutex_exit(&db->db_mtx);
1834 		return (SET_ERROR(ENOENT));
1835 	}
1836 
1837 	dr_next = list_next(&db->db_dirty_records, dr);
1838 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1839 
1840 	if (db->db_blkptr != NULL) {
1841 		/*
1842 		 * We need to fill in zgd_bp with the current blkptr so that
1843 		 * the nopwrite code can check if we're writing the same
1844 		 * data that's already on disk.  We can only nopwrite if we
1845 		 * are sure that after making the copy, db_blkptr will not
1846 		 * change until our i/o completes.  We ensure this by
1847 		 * holding the db_mtx, and only allowing nopwrite if the
1848 		 * block is not already dirty (see below).  This is verified
1849 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1850 		 * not changed.
1851 		 */
1852 		*zgd->zgd_bp = *db->db_blkptr;
1853 	}
1854 
1855 	/*
1856 	 * Assume the on-disk data is X, the current syncing data (in
1857 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1858 	 * in dmu_sync).
1859 	 *
1860 	 * We usually want to perform a nopwrite if X and Z are the
1861 	 * same.  However, if Y is different (i.e. the BP is going to
1862 	 * change before this write takes effect), then a nopwrite will
1863 	 * be incorrect - we would override with X, which could have
1864 	 * been freed when Y was written.
1865 	 *
1866 	 * (Note that this is not a concern when we are nop-writing from
1867 	 * syncing context, because X and Y must be identical, because
1868 	 * all previous txgs have been synced.)
1869 	 *
1870 	 * Therefore, we disable nopwrite if the current BP could change
1871 	 * before this TXG.  There are two ways it could change: by
1872 	 * being dirty (dr_next is non-NULL), or by being freed
1873 	 * (dnode_block_freed()).  This behavior is verified by
1874 	 * zio_done(), which VERIFYs that the override BP is identical
1875 	 * to the on-disk BP.
1876 	 */
1877 	DB_DNODE_ENTER(db);
1878 	dn = DB_DNODE(db);
1879 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1880 		zp.zp_nopwrite = B_FALSE;
1881 	DB_DNODE_EXIT(db);
1882 
1883 	ASSERT(dr->dr_txg == txg);
1884 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1885 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1886 		/*
1887 		 * We have already issued a sync write for this buffer,
1888 		 * or this buffer has already been synced.  It could not
1889 		 * have been dirtied since, or we would have cleared the state.
1890 		 */
1891 		mutex_exit(&db->db_mtx);
1892 		return (SET_ERROR(EALREADY));
1893 	}
1894 
1895 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1896 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1897 	mutex_exit(&db->db_mtx);
1898 
1899 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1900 	dsa->dsa_dr = dr;
1901 	dsa->dsa_done = done;
1902 	dsa->dsa_zgd = zgd;
1903 	dsa->dsa_tx = NULL;
1904 
1905 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1906 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1907 	    &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
1908 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1909 
1910 	return (0);
1911 }
1912 
1913 int
1914 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1915 {
1916 	dnode_t *dn;
1917 	int err;
1918 
1919 	err = dnode_hold(os, object, FTAG, &dn);
1920 	if (err)
1921 		return (err);
1922 	err = dnode_set_nlevels(dn, nlevels, tx);
1923 	dnode_rele(dn, FTAG);
1924 	return (err);
1925 }
1926 
1927 int
1928 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1929     dmu_tx_t *tx)
1930 {
1931 	dnode_t *dn;
1932 	int err;
1933 
1934 	err = dnode_hold(os, object, FTAG, &dn);
1935 	if (err)
1936 		return (err);
1937 	err = dnode_set_blksz(dn, size, ibs, tx);
1938 	dnode_rele(dn, FTAG);
1939 	return (err);
1940 }
1941 
1942 int
1943 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1944     dmu_tx_t *tx)
1945 {
1946 	dnode_t *dn;
1947 	int err;
1948 
1949 	err = dnode_hold(os, object, FTAG, &dn);
1950 	if (err)
1951 		return (err);
1952 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1953 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1954 	rw_exit(&dn->dn_struct_rwlock);
1955 	dnode_rele(dn, FTAG);
1956 	return (0);
1957 }
1958 
1959 void
1960 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1961     dmu_tx_t *tx)
1962 {
1963 	dnode_t *dn;
1964 
1965 	/*
1966 	 * Send streams include each object's checksum function.  This
1967 	 * check ensures that the receiving system can understand the
1968 	 * checksum function transmitted.
1969 	 */
1970 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1971 
1972 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1973 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1974 	dn->dn_checksum = checksum;
1975 	dnode_setdirty(dn, tx);
1976 	dnode_rele(dn, FTAG);
1977 }
1978 
1979 void
1980 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1981     dmu_tx_t *tx)
1982 {
1983 	dnode_t *dn;
1984 
1985 	/*
1986 	 * Send streams include each object's compression function.  This
1987 	 * check ensures that the receiving system can understand the
1988 	 * compression function transmitted.
1989 	 */
1990 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1991 
1992 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1993 	dn->dn_compress = compress;
1994 	dnode_setdirty(dn, tx);
1995 	dnode_rele(dn, FTAG);
1996 }
1997 
1998 /*
1999  * When the "redundant_metadata" property is set to "most", only indirect
2000  * blocks of this level and higher will have an additional ditto block.
2001  */
2002 static const int zfs_redundant_metadata_most_ditto_level = 2;
2003 
2004 void
2005 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2006 {
2007 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2008 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2009 	    (wp & WP_SPILL));
2010 	enum zio_checksum checksum = os->os_checksum;
2011 	enum zio_compress compress = os->os_compress;
2012 	uint8_t complevel = os->os_complevel;
2013 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2014 	boolean_t dedup = B_FALSE;
2015 	boolean_t nopwrite = B_FALSE;
2016 	boolean_t dedup_verify = os->os_dedup_verify;
2017 	boolean_t encrypt = B_FALSE;
2018 	int copies = os->os_copies;
2019 
2020 	/*
2021 	 * We maintain different write policies for each of the following
2022 	 * types of data:
2023 	 *	 1. metadata
2024 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2025 	 *	 3. all other level 0 blocks
2026 	 */
2027 	if (ismd) {
2028 		/*
2029 		 * XXX -- we should design a compression algorithm
2030 		 * that specializes in arrays of bps.
2031 		 */
2032 		compress = zio_compress_select(os->os_spa,
2033 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2034 
2035 		/*
2036 		 * Metadata always gets checksummed.  If the data
2037 		 * checksum is multi-bit correctable, and it's not a
2038 		 * ZBT-style checksum, then it's suitable for metadata
2039 		 * as well.  Otherwise, the metadata checksum defaults
2040 		 * to fletcher4.
2041 		 */
2042 		if (!(zio_checksum_table[checksum].ci_flags &
2043 		    ZCHECKSUM_FLAG_METADATA) ||
2044 		    (zio_checksum_table[checksum].ci_flags &
2045 		    ZCHECKSUM_FLAG_EMBEDDED))
2046 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2047 
2048 		switch (os->os_redundant_metadata) {
2049 		case ZFS_REDUNDANT_METADATA_ALL:
2050 			copies++;
2051 			break;
2052 		case ZFS_REDUNDANT_METADATA_MOST:
2053 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2054 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2055 				copies++;
2056 			break;
2057 		case ZFS_REDUNDANT_METADATA_SOME:
2058 			if (DMU_OT_IS_CRITICAL(type))
2059 				copies++;
2060 			break;
2061 		case ZFS_REDUNDANT_METADATA_NONE:
2062 			break;
2063 		}
2064 	} else if (wp & WP_NOFILL) {
2065 		ASSERT(level == 0);
2066 
2067 		/*
2068 		 * If we're writing preallocated blocks, we aren't actually
2069 		 * writing them so don't set any policy properties.  These
2070 		 * blocks are currently only used by an external subsystem
2071 		 * outside of zfs (i.e. dump) and not written by the zio
2072 		 * pipeline.
2073 		 */
2074 		compress = ZIO_COMPRESS_OFF;
2075 		checksum = ZIO_CHECKSUM_OFF;
2076 	} else {
2077 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2078 		    compress);
2079 		complevel = zio_complevel_select(os->os_spa, compress,
2080 		    complevel, complevel);
2081 
2082 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2083 		    zio_checksum_select(dn->dn_checksum, checksum) :
2084 		    dedup_checksum;
2085 
2086 		/*
2087 		 * Determine dedup setting.  If we are in dmu_sync(),
2088 		 * we won't actually dedup now because that's all
2089 		 * done in syncing context; but we do want to use the
2090 		 * dedup checksum.  If the checksum is not strong
2091 		 * enough to ensure unique signatures, force
2092 		 * dedup_verify.
2093 		 */
2094 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2095 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2096 			if (!(zio_checksum_table[checksum].ci_flags &
2097 			    ZCHECKSUM_FLAG_DEDUP))
2098 				dedup_verify = B_TRUE;
2099 		}
2100 
2101 		/*
2102 		 * Enable nopwrite if we have secure enough checksum
2103 		 * algorithm (see comment in zio_nop_write) and
2104 		 * compression is enabled.  We don't enable nopwrite if
2105 		 * dedup is enabled as the two features are mutually
2106 		 * exclusive.
2107 		 */
2108 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2109 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2110 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2111 	}
2112 
2113 	/*
2114 	 * All objects in an encrypted objset are protected from modification
2115 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2116 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2117 	 * not subject to nopwrite since writing the same data will still
2118 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2119 	 * to avoid ambiguity in the dedup code since the DDT does not store
2120 	 * object types.
2121 	 */
2122 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2123 		encrypt = B_TRUE;
2124 
2125 		if (DMU_OT_IS_ENCRYPTED(type)) {
2126 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2127 			nopwrite = B_FALSE;
2128 		} else {
2129 			dedup = B_FALSE;
2130 		}
2131 
2132 		if (level <= 0 &&
2133 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2134 			compress = ZIO_COMPRESS_EMPTY;
2135 		}
2136 	}
2137 
2138 	zp->zp_compress = compress;
2139 	zp->zp_complevel = complevel;
2140 	zp->zp_checksum = checksum;
2141 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2142 	zp->zp_level = level;
2143 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2144 	zp->zp_dedup = dedup;
2145 	zp->zp_dedup_verify = dedup && dedup_verify;
2146 	zp->zp_nopwrite = nopwrite;
2147 	zp->zp_encrypt = encrypt;
2148 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2149 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2150 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2151 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2152 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2153 	    os->os_zpl_special_smallblock : 0;
2154 
2155 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2156 }
2157 
2158 /*
2159  * Reports the location of data and holes in an object.  In order to
2160  * accurately report holes all dirty data must be synced to disk.  This
2161  * causes extremely poor performance when seeking for holes in a dirty file.
2162  * As a compromise, only provide hole data when the dnode is clean.  When
2163  * a dnode is dirty report the dnode as having no holes by returning EBUSY
2164  * which is always safe to do.
2165  */
2166 int
2167 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2168 {
2169 	dnode_t *dn;
2170 	int restarted = 0, err;
2171 
2172 restart:
2173 	err = dnode_hold(os, object, FTAG, &dn);
2174 	if (err)
2175 		return (err);
2176 
2177 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2178 
2179 	if (dnode_is_dirty(dn)) {
2180 		/*
2181 		 * If the zfs_dmu_offset_next_sync module option is enabled
2182 		 * then hole reporting has been requested.  Dirty dnodes
2183 		 * must be synced to disk to accurately report holes.
2184 		 *
2185 		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2186 		 * held by the caller only a single restart will be required.
2187 		 * We tolerate callers which do not hold the rangelock by
2188 		 * returning EBUSY and not reporting holes after one restart.
2189 		 */
2190 		if (zfs_dmu_offset_next_sync) {
2191 			rw_exit(&dn->dn_struct_rwlock);
2192 			dnode_rele(dn, FTAG);
2193 
2194 			if (restarted)
2195 				return (SET_ERROR(EBUSY));
2196 
2197 			txg_wait_synced(dmu_objset_pool(os), 0);
2198 			restarted = 1;
2199 			goto restart;
2200 		}
2201 
2202 		err = SET_ERROR(EBUSY);
2203 	} else {
2204 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2205 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2206 	}
2207 
2208 	rw_exit(&dn->dn_struct_rwlock);
2209 	dnode_rele(dn, FTAG);
2210 
2211 	return (err);
2212 }
2213 
2214 int
2215 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2216     blkptr_t *bps, size_t *nbpsp)
2217 {
2218 	dmu_buf_t **dbp, *dbuf;
2219 	dmu_buf_impl_t *db;
2220 	blkptr_t *bp;
2221 	int error, numbufs;
2222 
2223 	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2224 	    &numbufs, &dbp);
2225 	if (error != 0) {
2226 		if (error == ESRCH) {
2227 			error = SET_ERROR(ENXIO);
2228 		}
2229 		return (error);
2230 	}
2231 
2232 	ASSERT3U(numbufs, <=, *nbpsp);
2233 
2234 	for (int i = 0; i < numbufs; i++) {
2235 		dbuf = dbp[i];
2236 		db = (dmu_buf_impl_t *)dbuf;
2237 
2238 		mutex_enter(&db->db_mtx);
2239 
2240 		if (!list_is_empty(&db->db_dirty_records)) {
2241 			dbuf_dirty_record_t *dr;
2242 
2243 			dr = list_head(&db->db_dirty_records);
2244 			if (dr->dt.dl.dr_brtwrite) {
2245 				/*
2246 				 * This is very special case where we clone a
2247 				 * block and in the same transaction group we
2248 				 * read its BP (most likely to clone the clone).
2249 				 */
2250 				bp = &dr->dt.dl.dr_overridden_by;
2251 			} else {
2252 				/*
2253 				 * The block was modified in the same
2254 				 * transaction group.
2255 				 */
2256 				mutex_exit(&db->db_mtx);
2257 				error = SET_ERROR(EAGAIN);
2258 				goto out;
2259 			}
2260 		} else {
2261 			bp = db->db_blkptr;
2262 		}
2263 
2264 		mutex_exit(&db->db_mtx);
2265 
2266 		if (bp == NULL) {
2267 			/*
2268 			 * The file size was increased, but the block was never
2269 			 * written, otherwise we would either have the block
2270 			 * pointer or the dirty record and would not get here.
2271 			 * It is effectively a hole, so report it as such.
2272 			 */
2273 			BP_ZERO(&bps[i]);
2274 			continue;
2275 		}
2276 		/*
2277 		 * Make sure we clone only data blocks.
2278 		 */
2279 		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2280 			error = SET_ERROR(EINVAL);
2281 			goto out;
2282 		}
2283 
2284 		/*
2285 		 * If the block was allocated in transaction group that is not
2286 		 * yet synced, we could clone it, but we couldn't write this
2287 		 * operation into ZIL, or it may be impossible to replay, since
2288 		 * the block may appear not yet allocated at that point.
2289 		 */
2290 		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2291 			error = SET_ERROR(EINVAL);
2292 			goto out;
2293 		}
2294 		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
2295 			error = SET_ERROR(EAGAIN);
2296 			goto out;
2297 		}
2298 
2299 		bps[i] = *bp;
2300 	}
2301 
2302 	*nbpsp = numbufs;
2303 out:
2304 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2305 
2306 	return (error);
2307 }
2308 
2309 int
2310 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2311     dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2312 {
2313 	spa_t *spa;
2314 	dmu_buf_t **dbp, *dbuf;
2315 	dmu_buf_impl_t *db;
2316 	struct dirty_leaf *dl;
2317 	dbuf_dirty_record_t *dr;
2318 	const blkptr_t *bp;
2319 	int error = 0, i, numbufs;
2320 
2321 	spa = os->os_spa;
2322 
2323 	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2324 	    &numbufs, &dbp));
2325 	ASSERT3U(nbps, ==, numbufs);
2326 
2327 	/*
2328 	 * Before we start cloning make sure that the dbufs sizes match new BPs
2329 	 * sizes. If they don't, that's a no-go, as we are not able to shrink
2330 	 * dbufs.
2331 	 */
2332 	for (i = 0; i < numbufs; i++) {
2333 		dbuf = dbp[i];
2334 		db = (dmu_buf_impl_t *)dbuf;
2335 		bp = &bps[i];
2336 
2337 		ASSERT0(db->db_level);
2338 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2339 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2340 
2341 		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2342 			error = SET_ERROR(EXDEV);
2343 			goto out;
2344 		}
2345 	}
2346 
2347 	for (i = 0; i < numbufs; i++) {
2348 		dbuf = dbp[i];
2349 		db = (dmu_buf_impl_t *)dbuf;
2350 		bp = &bps[i];
2351 
2352 		ASSERT0(db->db_level);
2353 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2354 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2355 		ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
2356 
2357 		dmu_buf_will_clone(dbuf, tx);
2358 
2359 		mutex_enter(&db->db_mtx);
2360 
2361 		dr = list_head(&db->db_dirty_records);
2362 		VERIFY(dr != NULL);
2363 		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2364 		dl = &dr->dt.dl;
2365 		dl->dr_overridden_by = *bp;
2366 		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2367 			if (!BP_IS_EMBEDDED(bp)) {
2368 				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2369 				    BP_GET_BIRTH(bp));
2370 			} else {
2371 				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2372 				    dr->dr_txg);
2373 			}
2374 		}
2375 		dl->dr_brtwrite = B_TRUE;
2376 		dl->dr_override_state = DR_OVERRIDDEN;
2377 
2378 		mutex_exit(&db->db_mtx);
2379 
2380 		/*
2381 		 * When data in embedded into BP there is no need to create
2382 		 * BRT entry as there is no data block. Just copy the BP as
2383 		 * it contains the data.
2384 		 */
2385 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2386 			brt_pending_add(spa, bp, tx);
2387 		}
2388 	}
2389 out:
2390 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2391 
2392 	return (error);
2393 }
2394 
2395 void
2396 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2397 {
2398 	dnode_phys_t *dnp = dn->dn_phys;
2399 
2400 	doi->doi_data_block_size = dn->dn_datablksz;
2401 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2402 	    1ULL << dn->dn_indblkshift : 0;
2403 	doi->doi_type = dn->dn_type;
2404 	doi->doi_bonus_type = dn->dn_bonustype;
2405 	doi->doi_bonus_size = dn->dn_bonuslen;
2406 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2407 	doi->doi_indirection = dn->dn_nlevels;
2408 	doi->doi_checksum = dn->dn_checksum;
2409 	doi->doi_compress = dn->dn_compress;
2410 	doi->doi_nblkptr = dn->dn_nblkptr;
2411 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2412 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2413 	doi->doi_fill_count = 0;
2414 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2415 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2416 }
2417 
2418 void
2419 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2420 {
2421 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2422 	mutex_enter(&dn->dn_mtx);
2423 
2424 	__dmu_object_info_from_dnode(dn, doi);
2425 
2426 	mutex_exit(&dn->dn_mtx);
2427 	rw_exit(&dn->dn_struct_rwlock);
2428 }
2429 
2430 /*
2431  * Get information on a DMU object.
2432  * If doi is NULL, just indicates whether the object exists.
2433  */
2434 int
2435 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2436 {
2437 	dnode_t *dn;
2438 	int err = dnode_hold(os, object, FTAG, &dn);
2439 
2440 	if (err)
2441 		return (err);
2442 
2443 	if (doi != NULL)
2444 		dmu_object_info_from_dnode(dn, doi);
2445 
2446 	dnode_rele(dn, FTAG);
2447 	return (0);
2448 }
2449 
2450 /*
2451  * As above, but faster; can be used when you have a held dbuf in hand.
2452  */
2453 void
2454 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2455 {
2456 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2457 
2458 	DB_DNODE_ENTER(db);
2459 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2460 	DB_DNODE_EXIT(db);
2461 }
2462 
2463 /*
2464  * Faster still when you only care about the size.
2465  */
2466 void
2467 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2468     u_longlong_t *nblk512)
2469 {
2470 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2471 	dnode_t *dn;
2472 
2473 	DB_DNODE_ENTER(db);
2474 	dn = DB_DNODE(db);
2475 
2476 	*blksize = dn->dn_datablksz;
2477 	/* add in number of slots used for the dnode itself */
2478 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2479 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2480 	DB_DNODE_EXIT(db);
2481 }
2482 
2483 void
2484 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2485 {
2486 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2487 	dnode_t *dn;
2488 
2489 	DB_DNODE_ENTER(db);
2490 	dn = DB_DNODE(db);
2491 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2492 	DB_DNODE_EXIT(db);
2493 }
2494 
2495 void
2496 byteswap_uint64_array(void *vbuf, size_t size)
2497 {
2498 	uint64_t *buf = vbuf;
2499 	size_t count = size >> 3;
2500 	int i;
2501 
2502 	ASSERT((size & 7) == 0);
2503 
2504 	for (i = 0; i < count; i++)
2505 		buf[i] = BSWAP_64(buf[i]);
2506 }
2507 
2508 void
2509 byteswap_uint32_array(void *vbuf, size_t size)
2510 {
2511 	uint32_t *buf = vbuf;
2512 	size_t count = size >> 2;
2513 	int i;
2514 
2515 	ASSERT((size & 3) == 0);
2516 
2517 	for (i = 0; i < count; i++)
2518 		buf[i] = BSWAP_32(buf[i]);
2519 }
2520 
2521 void
2522 byteswap_uint16_array(void *vbuf, size_t size)
2523 {
2524 	uint16_t *buf = vbuf;
2525 	size_t count = size >> 1;
2526 	int i;
2527 
2528 	ASSERT((size & 1) == 0);
2529 
2530 	for (i = 0; i < count; i++)
2531 		buf[i] = BSWAP_16(buf[i]);
2532 }
2533 
2534 void
2535 byteswap_uint8_array(void *vbuf, size_t size)
2536 {
2537 	(void) vbuf, (void) size;
2538 }
2539 
2540 void
2541 dmu_init(void)
2542 {
2543 	abd_init();
2544 	zfs_dbgmsg_init();
2545 	sa_cache_init();
2546 	dmu_objset_init();
2547 	dnode_init();
2548 	zfetch_init();
2549 	dmu_tx_init();
2550 	l2arc_init();
2551 	arc_init();
2552 	dbuf_init();
2553 }
2554 
2555 void
2556 dmu_fini(void)
2557 {
2558 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2559 	l2arc_fini();
2560 	dmu_tx_fini();
2561 	zfetch_fini();
2562 	dbuf_fini();
2563 	dnode_fini();
2564 	dmu_objset_fini();
2565 	sa_cache_fini();
2566 	zfs_dbgmsg_fini();
2567 	abd_fini();
2568 }
2569 
2570 EXPORT_SYMBOL(dmu_bonus_hold);
2571 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2572 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2573 EXPORT_SYMBOL(dmu_buf_rele_array);
2574 EXPORT_SYMBOL(dmu_prefetch);
2575 EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2576 EXPORT_SYMBOL(dmu_prefetch_dnode);
2577 EXPORT_SYMBOL(dmu_free_range);
2578 EXPORT_SYMBOL(dmu_free_long_range);
2579 EXPORT_SYMBOL(dmu_free_long_object);
2580 EXPORT_SYMBOL(dmu_read);
2581 EXPORT_SYMBOL(dmu_read_by_dnode);
2582 EXPORT_SYMBOL(dmu_write);
2583 EXPORT_SYMBOL(dmu_write_by_dnode);
2584 EXPORT_SYMBOL(dmu_prealloc);
2585 EXPORT_SYMBOL(dmu_object_info);
2586 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2587 EXPORT_SYMBOL(dmu_object_info_from_db);
2588 EXPORT_SYMBOL(dmu_object_size_from_db);
2589 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2590 EXPORT_SYMBOL(dmu_object_set_nlevels);
2591 EXPORT_SYMBOL(dmu_object_set_blocksize);
2592 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2593 EXPORT_SYMBOL(dmu_object_set_checksum);
2594 EXPORT_SYMBOL(dmu_object_set_compress);
2595 EXPORT_SYMBOL(dmu_offset_next);
2596 EXPORT_SYMBOL(dmu_write_policy);
2597 EXPORT_SYMBOL(dmu_sync);
2598 EXPORT_SYMBOL(dmu_request_arcbuf);
2599 EXPORT_SYMBOL(dmu_return_arcbuf);
2600 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2601 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2602 EXPORT_SYMBOL(dmu_buf_hold);
2603 EXPORT_SYMBOL(dmu_ot);
2604 
2605 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2606 	"Enable NOP writes");
2607 
2608 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2609 	"Percentage of dirtied blocks from frees in one TXG");
2610 
2611 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2612 	"Enable forcing txg sync to find holes");
2613 
2614 /* CSTYLED */
2615 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2616 	"Limit one prefetch call to this size");
2617