xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 81b22a98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
57 #ifdef _KERNEL
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
60 #endif
61 
62 /*
63  * Enable/disable nopwrite feature.
64  */
65 int zfs_nopwrite_enabled = 1;
66 
67 /*
68  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69  * one TXG. After this threshold is crossed, additional dirty blocks from frees
70  * will wait until the next TXG.
71  * A value of zero will disable this throttle.
72  */
73 unsigned long zfs_per_txg_dirty_frees_percent = 5;
74 
75 /*
76  * Enable/disable forcing txg sync when dirty in dmu_offset_next.
77  */
78 int zfs_dmu_offset_next_sync = 0;
79 
80 /*
81  * Limit the amount we can prefetch with one call to this amount.  This
82  * helps to limit the amount of memory that can be used by prefetching.
83  * Larger objects should be prefetched a bit at a time.
84  */
85 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
86 
87 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
88 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
89 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
90 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
91 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
92 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
93 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
94 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
95 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
98 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
99 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
100 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
101 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
102 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
103 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
104 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
105 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
106 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
107 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
108 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
109 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
110 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
111 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
112 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
113 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
114 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
116 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
117 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
118 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
120 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
121 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
122 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
123 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
124 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
125 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
128 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
129 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
132 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
137 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
139 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
141 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
142 };
143 
144 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
145 	{	byteswap_uint8_array,	"uint8"		},
146 	{	byteswap_uint16_array,	"uint16"	},
147 	{	byteswap_uint32_array,	"uint32"	},
148 	{	byteswap_uint64_array,	"uint64"	},
149 	{	zap_byteswap,		"zap"		},
150 	{	dnode_buf_byteswap,	"dnode"		},
151 	{	dmu_objset_byteswap,	"objset"	},
152 	{	zfs_znode_byteswap,	"znode"		},
153 	{	zfs_oldacl_byteswap,	"oldacl"	},
154 	{	zfs_acl_byteswap,	"acl"		}
155 };
156 
157 static int
158 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
159     void *tag, dmu_buf_t **dbp)
160 {
161 	uint64_t blkid;
162 	dmu_buf_impl_t *db;
163 
164 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
165 	blkid = dbuf_whichblock(dn, 0, offset);
166 	db = dbuf_hold(dn, blkid, tag);
167 	rw_exit(&dn->dn_struct_rwlock);
168 
169 	if (db == NULL) {
170 		*dbp = NULL;
171 		return (SET_ERROR(EIO));
172 	}
173 
174 	*dbp = &db->db;
175 	return (0);
176 }
177 int
178 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
179     void *tag, dmu_buf_t **dbp)
180 {
181 	dnode_t *dn;
182 	uint64_t blkid;
183 	dmu_buf_impl_t *db;
184 	int err;
185 
186 	err = dnode_hold(os, object, FTAG, &dn);
187 	if (err)
188 		return (err);
189 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
190 	blkid = dbuf_whichblock(dn, 0, offset);
191 	db = dbuf_hold(dn, blkid, tag);
192 	rw_exit(&dn->dn_struct_rwlock);
193 	dnode_rele(dn, FTAG);
194 
195 	if (db == NULL) {
196 		*dbp = NULL;
197 		return (SET_ERROR(EIO));
198 	}
199 
200 	*dbp = &db->db;
201 	return (err);
202 }
203 
204 int
205 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
206     void *tag, dmu_buf_t **dbp, int flags)
207 {
208 	int err;
209 	int db_flags = DB_RF_CANFAIL;
210 
211 	if (flags & DMU_READ_NO_PREFETCH)
212 		db_flags |= DB_RF_NOPREFETCH;
213 	if (flags & DMU_READ_NO_DECRYPT)
214 		db_flags |= DB_RF_NO_DECRYPT;
215 
216 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
217 	if (err == 0) {
218 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
219 		err = dbuf_read(db, NULL, db_flags);
220 		if (err != 0) {
221 			dbuf_rele(db, tag);
222 			*dbp = NULL;
223 		}
224 	}
225 
226 	return (err);
227 }
228 
229 int
230 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
231     void *tag, dmu_buf_t **dbp, int flags)
232 {
233 	int err;
234 	int db_flags = DB_RF_CANFAIL;
235 
236 	if (flags & DMU_READ_NO_PREFETCH)
237 		db_flags |= DB_RF_NOPREFETCH;
238 	if (flags & DMU_READ_NO_DECRYPT)
239 		db_flags |= DB_RF_NO_DECRYPT;
240 
241 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
242 	if (err == 0) {
243 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
244 		err = dbuf_read(db, NULL, db_flags);
245 		if (err != 0) {
246 			dbuf_rele(db, tag);
247 			*dbp = NULL;
248 		}
249 	}
250 
251 	return (err);
252 }
253 
254 int
255 dmu_bonus_max(void)
256 {
257 	return (DN_OLD_MAX_BONUSLEN);
258 }
259 
260 int
261 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
262 {
263 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
264 	dnode_t *dn;
265 	int error;
266 
267 	DB_DNODE_ENTER(db);
268 	dn = DB_DNODE(db);
269 
270 	if (dn->dn_bonus != db) {
271 		error = SET_ERROR(EINVAL);
272 	} else if (newsize < 0 || newsize > db_fake->db_size) {
273 		error = SET_ERROR(EINVAL);
274 	} else {
275 		dnode_setbonuslen(dn, newsize, tx);
276 		error = 0;
277 	}
278 
279 	DB_DNODE_EXIT(db);
280 	return (error);
281 }
282 
283 int
284 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
285 {
286 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
287 	dnode_t *dn;
288 	int error;
289 
290 	DB_DNODE_ENTER(db);
291 	dn = DB_DNODE(db);
292 
293 	if (!DMU_OT_IS_VALID(type)) {
294 		error = SET_ERROR(EINVAL);
295 	} else if (dn->dn_bonus != db) {
296 		error = SET_ERROR(EINVAL);
297 	} else {
298 		dnode_setbonus_type(dn, type, tx);
299 		error = 0;
300 	}
301 
302 	DB_DNODE_EXIT(db);
303 	return (error);
304 }
305 
306 dmu_object_type_t
307 dmu_get_bonustype(dmu_buf_t *db_fake)
308 {
309 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
310 	dnode_t *dn;
311 	dmu_object_type_t type;
312 
313 	DB_DNODE_ENTER(db);
314 	dn = DB_DNODE(db);
315 	type = dn->dn_bonustype;
316 	DB_DNODE_EXIT(db);
317 
318 	return (type);
319 }
320 
321 int
322 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
323 {
324 	dnode_t *dn;
325 	int error;
326 
327 	error = dnode_hold(os, object, FTAG, &dn);
328 	dbuf_rm_spill(dn, tx);
329 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
330 	dnode_rm_spill(dn, tx);
331 	rw_exit(&dn->dn_struct_rwlock);
332 	dnode_rele(dn, FTAG);
333 	return (error);
334 }
335 
336 /*
337  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
338  * has not yet been allocated a new bonus dbuf a will be allocated.
339  * Returns ENOENT, EIO, or 0.
340  */
341 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
342     uint32_t flags)
343 {
344 	dmu_buf_impl_t *db;
345 	int error;
346 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
347 
348 	if (flags & DMU_READ_NO_PREFETCH)
349 		db_flags |= DB_RF_NOPREFETCH;
350 	if (flags & DMU_READ_NO_DECRYPT)
351 		db_flags |= DB_RF_NO_DECRYPT;
352 
353 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
354 	if (dn->dn_bonus == NULL) {
355 		rw_exit(&dn->dn_struct_rwlock);
356 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 		if (dn->dn_bonus == NULL)
358 			dbuf_create_bonus(dn);
359 	}
360 	db = dn->dn_bonus;
361 
362 	/* as long as the bonus buf is held, the dnode will be held */
363 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
364 		VERIFY(dnode_add_ref(dn, db));
365 		atomic_inc_32(&dn->dn_dbufs_count);
366 	}
367 
368 	/*
369 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 	 * a dnode hold for every dbuf.
372 	 */
373 	rw_exit(&dn->dn_struct_rwlock);
374 
375 	error = dbuf_read(db, NULL, db_flags);
376 	if (error) {
377 		dnode_evict_bonus(dn);
378 		dbuf_rele(db, tag);
379 		*dbp = NULL;
380 		return (error);
381 	}
382 
383 	*dbp = &db->db;
384 	return (0);
385 }
386 
387 int
388 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
389 {
390 	dnode_t *dn;
391 	int error;
392 
393 	error = dnode_hold(os, object, FTAG, &dn);
394 	if (error)
395 		return (error);
396 
397 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
398 	dnode_rele(dn, FTAG);
399 
400 	return (error);
401 }
402 
403 /*
404  * returns ENOENT, EIO, or 0.
405  *
406  * This interface will allocate a blank spill dbuf when a spill blk
407  * doesn't already exist on the dnode.
408  *
409  * if you only want to find an already existing spill db, then
410  * dmu_spill_hold_existing() should be used.
411  */
412 int
413 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
414 {
415 	dmu_buf_impl_t *db = NULL;
416 	int err;
417 
418 	if ((flags & DB_RF_HAVESTRUCT) == 0)
419 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
420 
421 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
422 
423 	if ((flags & DB_RF_HAVESTRUCT) == 0)
424 		rw_exit(&dn->dn_struct_rwlock);
425 
426 	if (db == NULL) {
427 		*dbp = NULL;
428 		return (SET_ERROR(EIO));
429 	}
430 	err = dbuf_read(db, NULL, flags);
431 	if (err == 0)
432 		*dbp = &db->db;
433 	else {
434 		dbuf_rele(db, tag);
435 		*dbp = NULL;
436 	}
437 	return (err);
438 }
439 
440 int
441 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
442 {
443 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
444 	dnode_t *dn;
445 	int err;
446 
447 	DB_DNODE_ENTER(db);
448 	dn = DB_DNODE(db);
449 
450 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
451 		err = SET_ERROR(EINVAL);
452 	} else {
453 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
454 
455 		if (!dn->dn_have_spill) {
456 			err = SET_ERROR(ENOENT);
457 		} else {
458 			err = dmu_spill_hold_by_dnode(dn,
459 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
460 		}
461 
462 		rw_exit(&dn->dn_struct_rwlock);
463 	}
464 
465 	DB_DNODE_EXIT(db);
466 	return (err);
467 }
468 
469 int
470 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
471     dmu_buf_t **dbp)
472 {
473 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
474 	dnode_t *dn;
475 	int err;
476 	uint32_t db_flags = DB_RF_CANFAIL;
477 
478 	if (flags & DMU_READ_NO_DECRYPT)
479 		db_flags |= DB_RF_NO_DECRYPT;
480 
481 	DB_DNODE_ENTER(db);
482 	dn = DB_DNODE(db);
483 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
484 	DB_DNODE_EXIT(db);
485 
486 	return (err);
487 }
488 
489 /*
490  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
491  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
492  * and can induce severe lock contention when writing to several files
493  * whose dnodes are in the same block.
494  */
495 int
496 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
497     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
498 {
499 	dmu_buf_t **dbp;
500 	zstream_t *zs = NULL;
501 	uint64_t blkid, nblks, i;
502 	uint32_t dbuf_flags;
503 	int err;
504 	zio_t *zio = NULL;
505 	boolean_t missed = B_FALSE;
506 
507 	ASSERT(length <= DMU_MAX_ACCESS);
508 
509 	/*
510 	 * Note: We directly notify the prefetch code of this read, so that
511 	 * we can tell it about the multi-block read.  dbuf_read() only knows
512 	 * about the one block it is accessing.
513 	 */
514 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
515 	    DB_RF_NOPREFETCH;
516 
517 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
518 	if (dn->dn_datablkshift) {
519 		int blkshift = dn->dn_datablkshift;
520 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
521 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
522 	} else {
523 		if (offset + length > dn->dn_datablksz) {
524 			zfs_panic_recover("zfs: accessing past end of object "
525 			    "%llx/%llx (size=%u access=%llu+%llu)",
526 			    (longlong_t)dn->dn_objset->
527 			    os_dsl_dataset->ds_object,
528 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
529 			    (longlong_t)offset, (longlong_t)length);
530 			rw_exit(&dn->dn_struct_rwlock);
531 			return (SET_ERROR(EIO));
532 		}
533 		nblks = 1;
534 	}
535 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
536 
537 	if (read)
538 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
539 		    ZIO_FLAG_CANFAIL);
540 	blkid = dbuf_whichblock(dn, 0, offset);
541 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
542 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
543 		/*
544 		 * Prepare the zfetch before initiating the demand reads, so
545 		 * that if multiple threads block on same indirect block, we
546 		 * base predictions on the original less racy request order.
547 		 */
548 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
549 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
550 	}
551 	for (i = 0; i < nblks; i++) {
552 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
553 		if (db == NULL) {
554 			if (zs)
555 				dmu_zfetch_run(zs, missed, B_TRUE);
556 			rw_exit(&dn->dn_struct_rwlock);
557 			dmu_buf_rele_array(dbp, nblks, tag);
558 			if (read)
559 				zio_nowait(zio);
560 			return (SET_ERROR(EIO));
561 		}
562 
563 		/*
564 		 * Initiate async demand data read.
565 		 * We check the db_state after calling dbuf_read() because
566 		 * (1) dbuf_read() may change the state to CACHED due to a
567 		 * hit in the ARC, and (2) on a cache miss, a child will
568 		 * have been added to "zio" but not yet completed, so the
569 		 * state will not yet be CACHED.
570 		 */
571 		if (read) {
572 			(void) dbuf_read(db, zio, dbuf_flags);
573 			if (db->db_state != DB_CACHED)
574 				missed = B_TRUE;
575 		}
576 		dbp[i] = &db->db;
577 	}
578 
579 	if (!read)
580 		zfs_racct_write(length, nblks);
581 
582 	if (zs)
583 		dmu_zfetch_run(zs, missed, B_TRUE);
584 	rw_exit(&dn->dn_struct_rwlock);
585 
586 	if (read) {
587 		/* wait for async read i/o */
588 		err = zio_wait(zio);
589 		if (err) {
590 			dmu_buf_rele_array(dbp, nblks, tag);
591 			return (err);
592 		}
593 
594 		/* wait for other io to complete */
595 		for (i = 0; i < nblks; i++) {
596 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
597 			mutex_enter(&db->db_mtx);
598 			while (db->db_state == DB_READ ||
599 			    db->db_state == DB_FILL)
600 				cv_wait(&db->db_changed, &db->db_mtx);
601 			if (db->db_state == DB_UNCACHED)
602 				err = SET_ERROR(EIO);
603 			mutex_exit(&db->db_mtx);
604 			if (err) {
605 				dmu_buf_rele_array(dbp, nblks, tag);
606 				return (err);
607 			}
608 		}
609 	}
610 
611 	*numbufsp = nblks;
612 	*dbpp = dbp;
613 	return (0);
614 }
615 
616 int
617 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
618     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
619 {
620 	dnode_t *dn;
621 	int err;
622 
623 	err = dnode_hold(os, object, FTAG, &dn);
624 	if (err)
625 		return (err);
626 
627 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
628 	    numbufsp, dbpp, DMU_READ_PREFETCH);
629 
630 	dnode_rele(dn, FTAG);
631 
632 	return (err);
633 }
634 
635 int
636 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
637     uint64_t length, boolean_t read, void *tag, int *numbufsp,
638     dmu_buf_t ***dbpp)
639 {
640 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
641 	dnode_t *dn;
642 	int err;
643 
644 	DB_DNODE_ENTER(db);
645 	dn = DB_DNODE(db);
646 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
647 	    numbufsp, dbpp, DMU_READ_PREFETCH);
648 	DB_DNODE_EXIT(db);
649 
650 	return (err);
651 }
652 
653 void
654 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
655 {
656 	int i;
657 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
658 
659 	if (numbufs == 0)
660 		return;
661 
662 	for (i = 0; i < numbufs; i++) {
663 		if (dbp[i])
664 			dbuf_rele(dbp[i], tag);
665 	}
666 
667 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
668 }
669 
670 /*
671  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
672  * indirect blocks prefetched will be those that point to the blocks containing
673  * the data starting at offset, and continuing to offset + len.
674  *
675  * Note that if the indirect blocks above the blocks being prefetched are not
676  * in cache, they will be asynchronously read in.
677  */
678 void
679 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
680     uint64_t len, zio_priority_t pri)
681 {
682 	dnode_t *dn;
683 	uint64_t blkid;
684 	int nblks, err;
685 
686 	if (len == 0) {  /* they're interested in the bonus buffer */
687 		dn = DMU_META_DNODE(os);
688 
689 		if (object == 0 || object >= DN_MAX_OBJECT)
690 			return;
691 
692 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
693 		blkid = dbuf_whichblock(dn, level,
694 		    object * sizeof (dnode_phys_t));
695 		dbuf_prefetch(dn, level, blkid, pri, 0);
696 		rw_exit(&dn->dn_struct_rwlock);
697 		return;
698 	}
699 
700 	/*
701 	 * See comment before the definition of dmu_prefetch_max.
702 	 */
703 	len = MIN(len, dmu_prefetch_max);
704 
705 	/*
706 	 * XXX - Note, if the dnode for the requested object is not
707 	 * already cached, we will do a *synchronous* read in the
708 	 * dnode_hold() call.  The same is true for any indirects.
709 	 */
710 	err = dnode_hold(os, object, FTAG, &dn);
711 	if (err != 0)
712 		return;
713 
714 	/*
715 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
716 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
717 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
718 	 * offset)  is the first.  Then the number we need to prefetch is the
719 	 * last - first + 1.
720 	 */
721 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
722 	if (level > 0 || dn->dn_datablkshift != 0) {
723 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
724 		    dbuf_whichblock(dn, level, offset) + 1;
725 	} else {
726 		nblks = (offset < dn->dn_datablksz);
727 	}
728 
729 	if (nblks != 0) {
730 		blkid = dbuf_whichblock(dn, level, offset);
731 		for (int i = 0; i < nblks; i++)
732 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
733 	}
734 	rw_exit(&dn->dn_struct_rwlock);
735 
736 	dnode_rele(dn, FTAG);
737 }
738 
739 /*
740  * Get the next "chunk" of file data to free.  We traverse the file from
741  * the end so that the file gets shorter over time (if we crashes in the
742  * middle, this will leave us in a better state).  We find allocated file
743  * data by simply searching the allocated level 1 indirects.
744  *
745  * On input, *start should be the first offset that does not need to be
746  * freed (e.g. "offset + length").  On return, *start will be the first
747  * offset that should be freed and l1blks is set to the number of level 1
748  * indirect blocks found within the chunk.
749  */
750 static int
751 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
752 {
753 	uint64_t blks;
754 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
755 	/* bytes of data covered by a level-1 indirect block */
756 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
757 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
758 
759 	ASSERT3U(minimum, <=, *start);
760 
761 	/*
762 	 * Check if we can free the entire range assuming that all of the
763 	 * L1 blocks in this range have data. If we can, we use this
764 	 * worst case value as an estimate so we can avoid having to look
765 	 * at the object's actual data.
766 	 */
767 	uint64_t total_l1blks =
768 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
769 	    iblkrange;
770 	if (total_l1blks <= maxblks) {
771 		*l1blks = total_l1blks;
772 		*start = minimum;
773 		return (0);
774 	}
775 	ASSERT(ISP2(iblkrange));
776 
777 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
778 		int err;
779 
780 		/*
781 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
782 		 * indirect block at or before the input offset.  We must
783 		 * decrement *start so that it is at the end of the region
784 		 * to search.
785 		 */
786 		(*start)--;
787 
788 		err = dnode_next_offset(dn,
789 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
790 
791 		/* if there are no indirect blocks before start, we are done */
792 		if (err == ESRCH) {
793 			*start = minimum;
794 			break;
795 		} else if (err != 0) {
796 			*l1blks = blks;
797 			return (err);
798 		}
799 
800 		/* set start to the beginning of this L1 indirect */
801 		*start = P2ALIGN(*start, iblkrange);
802 	}
803 	if (*start < minimum)
804 		*start = minimum;
805 	*l1blks = blks;
806 
807 	return (0);
808 }
809 
810 /*
811  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
812  * otherwise return false.
813  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
814  */
815 /*ARGSUSED*/
816 static boolean_t
817 dmu_objset_zfs_unmounting(objset_t *os)
818 {
819 #ifdef _KERNEL
820 	if (dmu_objset_type(os) == DMU_OST_ZFS)
821 		return (zfs_get_vfs_flag_unmounted(os));
822 #endif
823 	return (B_FALSE);
824 }
825 
826 static int
827 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
828     uint64_t length)
829 {
830 	uint64_t object_size;
831 	int err;
832 	uint64_t dirty_frees_threshold;
833 	dsl_pool_t *dp = dmu_objset_pool(os);
834 
835 	if (dn == NULL)
836 		return (SET_ERROR(EINVAL));
837 
838 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
839 	if (offset >= object_size)
840 		return (0);
841 
842 	if (zfs_per_txg_dirty_frees_percent <= 100)
843 		dirty_frees_threshold =
844 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
845 	else
846 		dirty_frees_threshold = zfs_dirty_data_max / 20;
847 
848 	if (length == DMU_OBJECT_END || offset + length > object_size)
849 		length = object_size - offset;
850 
851 	while (length != 0) {
852 		uint64_t chunk_end, chunk_begin, chunk_len;
853 		uint64_t l1blks;
854 		dmu_tx_t *tx;
855 
856 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
857 			return (SET_ERROR(EINTR));
858 
859 		chunk_end = chunk_begin = offset + length;
860 
861 		/* move chunk_begin backwards to the beginning of this chunk */
862 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
863 		if (err)
864 			return (err);
865 		ASSERT3U(chunk_begin, >=, offset);
866 		ASSERT3U(chunk_begin, <=, chunk_end);
867 
868 		chunk_len = chunk_end - chunk_begin;
869 
870 		tx = dmu_tx_create(os);
871 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
872 
873 		/*
874 		 * Mark this transaction as typically resulting in a net
875 		 * reduction in space used.
876 		 */
877 		dmu_tx_mark_netfree(tx);
878 		err = dmu_tx_assign(tx, TXG_WAIT);
879 		if (err) {
880 			dmu_tx_abort(tx);
881 			return (err);
882 		}
883 
884 		uint64_t txg = dmu_tx_get_txg(tx);
885 
886 		mutex_enter(&dp->dp_lock);
887 		uint64_t long_free_dirty =
888 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
889 		mutex_exit(&dp->dp_lock);
890 
891 		/*
892 		 * To avoid filling up a TXG with just frees, wait for
893 		 * the next TXG to open before freeing more chunks if
894 		 * we have reached the threshold of frees.
895 		 */
896 		if (dirty_frees_threshold != 0 &&
897 		    long_free_dirty >= dirty_frees_threshold) {
898 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
899 			dmu_tx_commit(tx);
900 			txg_wait_open(dp, 0, B_TRUE);
901 			continue;
902 		}
903 
904 		/*
905 		 * In order to prevent unnecessary write throttling, for each
906 		 * TXG, we track the cumulative size of L1 blocks being dirtied
907 		 * in dnode_free_range() below. We compare this number to a
908 		 * tunable threshold, past which we prevent new L1 dirty freeing
909 		 * blocks from being added into the open TXG. See
910 		 * dmu_free_long_range_impl() for details. The threshold
911 		 * prevents write throttle activation due to dirty freeing L1
912 		 * blocks taking up a large percentage of zfs_dirty_data_max.
913 		 */
914 		mutex_enter(&dp->dp_lock);
915 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
916 		    l1blks << dn->dn_indblkshift;
917 		mutex_exit(&dp->dp_lock);
918 		DTRACE_PROBE3(free__long__range,
919 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
920 		    uint64_t, txg);
921 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
922 
923 		dmu_tx_commit(tx);
924 
925 		length -= chunk_len;
926 	}
927 	return (0);
928 }
929 
930 int
931 dmu_free_long_range(objset_t *os, uint64_t object,
932     uint64_t offset, uint64_t length)
933 {
934 	dnode_t *dn;
935 	int err;
936 
937 	err = dnode_hold(os, object, FTAG, &dn);
938 	if (err != 0)
939 		return (err);
940 	err = dmu_free_long_range_impl(os, dn, offset, length);
941 
942 	/*
943 	 * It is important to zero out the maxblkid when freeing the entire
944 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
945 	 * will take the fast path, and (b) dnode_reallocate() can verify
946 	 * that the entire file has been freed.
947 	 */
948 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
949 		dn->dn_maxblkid = 0;
950 
951 	dnode_rele(dn, FTAG);
952 	return (err);
953 }
954 
955 int
956 dmu_free_long_object(objset_t *os, uint64_t object)
957 {
958 	dmu_tx_t *tx;
959 	int err;
960 
961 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
962 	if (err != 0)
963 		return (err);
964 
965 	tx = dmu_tx_create(os);
966 	dmu_tx_hold_bonus(tx, object);
967 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
968 	dmu_tx_mark_netfree(tx);
969 	err = dmu_tx_assign(tx, TXG_WAIT);
970 	if (err == 0) {
971 		err = dmu_object_free(os, object, tx);
972 		dmu_tx_commit(tx);
973 	} else {
974 		dmu_tx_abort(tx);
975 	}
976 
977 	return (err);
978 }
979 
980 int
981 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
982     uint64_t size, dmu_tx_t *tx)
983 {
984 	dnode_t *dn;
985 	int err = dnode_hold(os, object, FTAG, &dn);
986 	if (err)
987 		return (err);
988 	ASSERT(offset < UINT64_MAX);
989 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
990 	dnode_free_range(dn, offset, size, tx);
991 	dnode_rele(dn, FTAG);
992 	return (0);
993 }
994 
995 static int
996 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
997     void *buf, uint32_t flags)
998 {
999 	dmu_buf_t **dbp;
1000 	int numbufs, err = 0;
1001 
1002 	/*
1003 	 * Deal with odd block sizes, where there can't be data past the first
1004 	 * block.  If we ever do the tail block optimization, we will need to
1005 	 * handle that here as well.
1006 	 */
1007 	if (dn->dn_maxblkid == 0) {
1008 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1009 		    MIN(size, dn->dn_datablksz - offset);
1010 		bzero((char *)buf + newsz, size - newsz);
1011 		size = newsz;
1012 	}
1013 
1014 	while (size > 0) {
1015 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1016 		int i;
1017 
1018 		/*
1019 		 * NB: we could do this block-at-a-time, but it's nice
1020 		 * to be reading in parallel.
1021 		 */
1022 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1023 		    TRUE, FTAG, &numbufs, &dbp, flags);
1024 		if (err)
1025 			break;
1026 
1027 		for (i = 0; i < numbufs; i++) {
1028 			uint64_t tocpy;
1029 			int64_t bufoff;
1030 			dmu_buf_t *db = dbp[i];
1031 
1032 			ASSERT(size > 0);
1033 
1034 			bufoff = offset - db->db_offset;
1035 			tocpy = MIN(db->db_size - bufoff, size);
1036 
1037 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1038 
1039 			offset += tocpy;
1040 			size -= tocpy;
1041 			buf = (char *)buf + tocpy;
1042 		}
1043 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1044 	}
1045 	return (err);
1046 }
1047 
1048 int
1049 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1050     void *buf, uint32_t flags)
1051 {
1052 	dnode_t *dn;
1053 	int err;
1054 
1055 	err = dnode_hold(os, object, FTAG, &dn);
1056 	if (err != 0)
1057 		return (err);
1058 
1059 	err = dmu_read_impl(dn, offset, size, buf, flags);
1060 	dnode_rele(dn, FTAG);
1061 	return (err);
1062 }
1063 
1064 int
1065 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1066     uint32_t flags)
1067 {
1068 	return (dmu_read_impl(dn, offset, size, buf, flags));
1069 }
1070 
1071 static void
1072 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1073     const void *buf, dmu_tx_t *tx)
1074 {
1075 	int i;
1076 
1077 	for (i = 0; i < numbufs; i++) {
1078 		uint64_t tocpy;
1079 		int64_t bufoff;
1080 		dmu_buf_t *db = dbp[i];
1081 
1082 		ASSERT(size > 0);
1083 
1084 		bufoff = offset - db->db_offset;
1085 		tocpy = MIN(db->db_size - bufoff, size);
1086 
1087 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1088 
1089 		if (tocpy == db->db_size)
1090 			dmu_buf_will_fill(db, tx);
1091 		else
1092 			dmu_buf_will_dirty(db, tx);
1093 
1094 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1095 
1096 		if (tocpy == db->db_size)
1097 			dmu_buf_fill_done(db, tx);
1098 
1099 		offset += tocpy;
1100 		size -= tocpy;
1101 		buf = (char *)buf + tocpy;
1102 	}
1103 }
1104 
1105 void
1106 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1107     const void *buf, dmu_tx_t *tx)
1108 {
1109 	dmu_buf_t **dbp;
1110 	int numbufs;
1111 
1112 	if (size == 0)
1113 		return;
1114 
1115 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1116 	    FALSE, FTAG, &numbufs, &dbp));
1117 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1118 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1119 }
1120 
1121 /*
1122  * Note: Lustre is an external consumer of this interface.
1123  */
1124 void
1125 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1126     const void *buf, dmu_tx_t *tx)
1127 {
1128 	dmu_buf_t **dbp;
1129 	int numbufs;
1130 
1131 	if (size == 0)
1132 		return;
1133 
1134 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1135 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1136 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1137 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1138 }
1139 
1140 void
1141 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1142     dmu_tx_t *tx)
1143 {
1144 	dmu_buf_t **dbp;
1145 	int numbufs, i;
1146 
1147 	if (size == 0)
1148 		return;
1149 
1150 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1151 	    FALSE, FTAG, &numbufs, &dbp));
1152 
1153 	for (i = 0; i < numbufs; i++) {
1154 		dmu_buf_t *db = dbp[i];
1155 
1156 		dmu_buf_will_not_fill(db, tx);
1157 	}
1158 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1159 }
1160 
1161 void
1162 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1163     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1164     int compressed_size, int byteorder, dmu_tx_t *tx)
1165 {
1166 	dmu_buf_t *db;
1167 
1168 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1169 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1170 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1171 	    FTAG, &db));
1172 
1173 	dmu_buf_write_embedded(db,
1174 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1175 	    uncompressed_size, compressed_size, byteorder, tx);
1176 
1177 	dmu_buf_rele(db, FTAG);
1178 }
1179 
1180 void
1181 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1182     dmu_tx_t *tx)
1183 {
1184 	int numbufs, i;
1185 	dmu_buf_t **dbp;
1186 
1187 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1188 	    &numbufs, &dbp));
1189 	for (i = 0; i < numbufs; i++)
1190 		dmu_buf_redact(dbp[i], tx);
1191 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1192 }
1193 
1194 #ifdef _KERNEL
1195 int
1196 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1197 {
1198 	dmu_buf_t **dbp;
1199 	int numbufs, i, err;
1200 
1201 	/*
1202 	 * NB: we could do this block-at-a-time, but it's nice
1203 	 * to be reading in parallel.
1204 	 */
1205 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1206 	    TRUE, FTAG, &numbufs, &dbp, 0);
1207 	if (err)
1208 		return (err);
1209 
1210 	for (i = 0; i < numbufs; i++) {
1211 		uint64_t tocpy;
1212 		int64_t bufoff;
1213 		dmu_buf_t *db = dbp[i];
1214 
1215 		ASSERT(size > 0);
1216 
1217 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1218 		tocpy = MIN(db->db_size - bufoff, size);
1219 
1220 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1221 		    UIO_READ, uio);
1222 
1223 		if (err)
1224 			break;
1225 
1226 		size -= tocpy;
1227 	}
1228 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1229 
1230 	return (err);
1231 }
1232 
1233 /*
1234  * Read 'size' bytes into the uio buffer.
1235  * From object zdb->db_object.
1236  * Starting at zfs_uio_offset(uio).
1237  *
1238  * If the caller already has a dbuf in the target object
1239  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1240  * because we don't have to find the dnode_t for the object.
1241  */
1242 int
1243 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1244 {
1245 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1246 	dnode_t *dn;
1247 	int err;
1248 
1249 	if (size == 0)
1250 		return (0);
1251 
1252 	DB_DNODE_ENTER(db);
1253 	dn = DB_DNODE(db);
1254 	err = dmu_read_uio_dnode(dn, uio, size);
1255 	DB_DNODE_EXIT(db);
1256 
1257 	return (err);
1258 }
1259 
1260 /*
1261  * Read 'size' bytes into the uio buffer.
1262  * From the specified object
1263  * Starting at offset zfs_uio_offset(uio).
1264  */
1265 int
1266 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1267 {
1268 	dnode_t *dn;
1269 	int err;
1270 
1271 	if (size == 0)
1272 		return (0);
1273 
1274 	err = dnode_hold(os, object, FTAG, &dn);
1275 	if (err)
1276 		return (err);
1277 
1278 	err = dmu_read_uio_dnode(dn, uio, size);
1279 
1280 	dnode_rele(dn, FTAG);
1281 
1282 	return (err);
1283 }
1284 
1285 int
1286 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1287 {
1288 	dmu_buf_t **dbp;
1289 	int numbufs;
1290 	int err = 0;
1291 	int i;
1292 
1293 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1294 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1295 	if (err)
1296 		return (err);
1297 
1298 	for (i = 0; i < numbufs; i++) {
1299 		uint64_t tocpy;
1300 		int64_t bufoff;
1301 		dmu_buf_t *db = dbp[i];
1302 
1303 		ASSERT(size > 0);
1304 
1305 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1306 		tocpy = MIN(db->db_size - bufoff, size);
1307 
1308 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1309 
1310 		if (tocpy == db->db_size)
1311 			dmu_buf_will_fill(db, tx);
1312 		else
1313 			dmu_buf_will_dirty(db, tx);
1314 
1315 		/*
1316 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1317 		 * pages).  There needs to be a uiolockdown() function
1318 		 * to lock the pages in memory, so that zfs_uiomove won't
1319 		 * block.
1320 		 */
1321 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1322 		    tocpy, UIO_WRITE, uio);
1323 
1324 		if (tocpy == db->db_size)
1325 			dmu_buf_fill_done(db, tx);
1326 
1327 		if (err)
1328 			break;
1329 
1330 		size -= tocpy;
1331 	}
1332 
1333 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1334 	return (err);
1335 }
1336 
1337 /*
1338  * Write 'size' bytes from the uio buffer.
1339  * To object zdb->db_object.
1340  * Starting at offset zfs_uio_offset(uio).
1341  *
1342  * If the caller already has a dbuf in the target object
1343  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1344  * because we don't have to find the dnode_t for the object.
1345  */
1346 int
1347 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1348     dmu_tx_t *tx)
1349 {
1350 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1351 	dnode_t *dn;
1352 	int err;
1353 
1354 	if (size == 0)
1355 		return (0);
1356 
1357 	DB_DNODE_ENTER(db);
1358 	dn = DB_DNODE(db);
1359 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1360 	DB_DNODE_EXIT(db);
1361 
1362 	return (err);
1363 }
1364 
1365 /*
1366  * Write 'size' bytes from the uio buffer.
1367  * To the specified object.
1368  * Starting at offset zfs_uio_offset(uio).
1369  */
1370 int
1371 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1372     dmu_tx_t *tx)
1373 {
1374 	dnode_t *dn;
1375 	int err;
1376 
1377 	if (size == 0)
1378 		return (0);
1379 
1380 	err = dnode_hold(os, object, FTAG, &dn);
1381 	if (err)
1382 		return (err);
1383 
1384 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1385 
1386 	dnode_rele(dn, FTAG);
1387 
1388 	return (err);
1389 }
1390 #endif /* _KERNEL */
1391 
1392 /*
1393  * Allocate a loaned anonymous arc buffer.
1394  */
1395 arc_buf_t *
1396 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1397 {
1398 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1399 
1400 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1401 }
1402 
1403 /*
1404  * Free a loaned arc buffer.
1405  */
1406 void
1407 dmu_return_arcbuf(arc_buf_t *buf)
1408 {
1409 	arc_return_buf(buf, FTAG);
1410 	arc_buf_destroy(buf, FTAG);
1411 }
1412 
1413 /*
1414  * A "lightweight" write is faster than a regular write (e.g.
1415  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1416  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1417  * data can not be read or overwritten until the transaction's txg has been
1418  * synced.  This makes it appropriate for workloads that are known to be
1419  * (temporarily) write-only, like "zfs receive".
1420  *
1421  * A single block is written, starting at the specified offset in bytes.  If
1422  * the call is successful, it returns 0 and the provided abd has been
1423  * consumed (the caller should not free it).
1424  */
1425 int
1426 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1427     const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1428 {
1429 	dbuf_dirty_record_t *dr =
1430 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1431 	if (dr == NULL)
1432 		return (SET_ERROR(EIO));
1433 	dr->dt.dll.dr_abd = abd;
1434 	dr->dt.dll.dr_props = *zp;
1435 	dr->dt.dll.dr_flags = flags;
1436 	return (0);
1437 }
1438 
1439 /*
1440  * When possible directly assign passed loaned arc buffer to a dbuf.
1441  * If this is not possible copy the contents of passed arc buf via
1442  * dmu_write().
1443  */
1444 int
1445 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1446     dmu_tx_t *tx)
1447 {
1448 	dmu_buf_impl_t *db;
1449 	objset_t *os = dn->dn_objset;
1450 	uint64_t object = dn->dn_object;
1451 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1452 	uint64_t blkid;
1453 
1454 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1455 	blkid = dbuf_whichblock(dn, 0, offset);
1456 	db = dbuf_hold(dn, blkid, FTAG);
1457 	if (db == NULL)
1458 		return (SET_ERROR(EIO));
1459 	rw_exit(&dn->dn_struct_rwlock);
1460 
1461 	/*
1462 	 * We can only assign if the offset is aligned and the arc buf is the
1463 	 * same size as the dbuf.
1464 	 */
1465 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1466 		zfs_racct_write(blksz, 1);
1467 		dbuf_assign_arcbuf(db, buf, tx);
1468 		dbuf_rele(db, FTAG);
1469 	} else {
1470 		/* compressed bufs must always be assignable to their dbuf */
1471 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1472 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1473 
1474 		dbuf_rele(db, FTAG);
1475 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1476 		dmu_return_arcbuf(buf);
1477 	}
1478 
1479 	return (0);
1480 }
1481 
1482 int
1483 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1484     dmu_tx_t *tx)
1485 {
1486 	int err;
1487 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1488 
1489 	DB_DNODE_ENTER(dbuf);
1490 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1491 	DB_DNODE_EXIT(dbuf);
1492 
1493 	return (err);
1494 }
1495 
1496 typedef struct {
1497 	dbuf_dirty_record_t	*dsa_dr;
1498 	dmu_sync_cb_t		*dsa_done;
1499 	zgd_t			*dsa_zgd;
1500 	dmu_tx_t		*dsa_tx;
1501 } dmu_sync_arg_t;
1502 
1503 /* ARGSUSED */
1504 static void
1505 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1506 {
1507 	dmu_sync_arg_t *dsa = varg;
1508 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1509 	blkptr_t *bp = zio->io_bp;
1510 
1511 	if (zio->io_error == 0) {
1512 		if (BP_IS_HOLE(bp)) {
1513 			/*
1514 			 * A block of zeros may compress to a hole, but the
1515 			 * block size still needs to be known for replay.
1516 			 */
1517 			BP_SET_LSIZE(bp, db->db_size);
1518 		} else if (!BP_IS_EMBEDDED(bp)) {
1519 			ASSERT(BP_GET_LEVEL(bp) == 0);
1520 			BP_SET_FILL(bp, 1);
1521 		}
1522 	}
1523 }
1524 
1525 static void
1526 dmu_sync_late_arrival_ready(zio_t *zio)
1527 {
1528 	dmu_sync_ready(zio, NULL, zio->io_private);
1529 }
1530 
1531 /* ARGSUSED */
1532 static void
1533 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1534 {
1535 	dmu_sync_arg_t *dsa = varg;
1536 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1537 	dmu_buf_impl_t *db = dr->dr_dbuf;
1538 	zgd_t *zgd = dsa->dsa_zgd;
1539 
1540 	/*
1541 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1542 	 * the writes for the lwb have completed.
1543 	 */
1544 	if (zio->io_error == 0) {
1545 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1546 	}
1547 
1548 	mutex_enter(&db->db_mtx);
1549 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1550 	if (zio->io_error == 0) {
1551 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1552 		if (dr->dt.dl.dr_nopwrite) {
1553 			blkptr_t *bp = zio->io_bp;
1554 			blkptr_t *bp_orig = &zio->io_bp_orig;
1555 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1556 
1557 			ASSERT(BP_EQUAL(bp, bp_orig));
1558 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1559 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1560 			VERIFY(zio_checksum_table[chksum].ci_flags &
1561 			    ZCHECKSUM_FLAG_NOPWRITE);
1562 		}
1563 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1564 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1565 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1566 
1567 		/*
1568 		 * Old style holes are filled with all zeros, whereas
1569 		 * new-style holes maintain their lsize, type, level,
1570 		 * and birth time (see zio_write_compress). While we
1571 		 * need to reset the BP_SET_LSIZE() call that happened
1572 		 * in dmu_sync_ready for old style holes, we do *not*
1573 		 * want to wipe out the information contained in new
1574 		 * style holes. Thus, only zero out the block pointer if
1575 		 * it's an old style hole.
1576 		 */
1577 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1578 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1579 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1580 	} else {
1581 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1582 	}
1583 	cv_broadcast(&db->db_changed);
1584 	mutex_exit(&db->db_mtx);
1585 
1586 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1587 
1588 	kmem_free(dsa, sizeof (*dsa));
1589 }
1590 
1591 static void
1592 dmu_sync_late_arrival_done(zio_t *zio)
1593 {
1594 	blkptr_t *bp = zio->io_bp;
1595 	dmu_sync_arg_t *dsa = zio->io_private;
1596 	zgd_t *zgd = dsa->dsa_zgd;
1597 
1598 	if (zio->io_error == 0) {
1599 		/*
1600 		 * Record the vdev(s) backing this blkptr so they can be
1601 		 * flushed after the writes for the lwb have completed.
1602 		 */
1603 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1604 
1605 		if (!BP_IS_HOLE(bp)) {
1606 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1607 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1608 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1609 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1610 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1611 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1612 		}
1613 	}
1614 
1615 	dmu_tx_commit(dsa->dsa_tx);
1616 
1617 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1618 
1619 	abd_free(zio->io_abd);
1620 	kmem_free(dsa, sizeof (*dsa));
1621 }
1622 
1623 static int
1624 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1625     zio_prop_t *zp, zbookmark_phys_t *zb)
1626 {
1627 	dmu_sync_arg_t *dsa;
1628 	dmu_tx_t *tx;
1629 
1630 	tx = dmu_tx_create(os);
1631 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1632 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1633 		dmu_tx_abort(tx);
1634 		/* Make zl_get_data do txg_waited_synced() */
1635 		return (SET_ERROR(EIO));
1636 	}
1637 
1638 	/*
1639 	 * In order to prevent the zgd's lwb from being free'd prior to
1640 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1641 	 * the lwb's "max txg" takes this tx's txg into account.
1642 	 */
1643 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1644 
1645 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1646 	dsa->dsa_dr = NULL;
1647 	dsa->dsa_done = done;
1648 	dsa->dsa_zgd = zgd;
1649 	dsa->dsa_tx = tx;
1650 
1651 	/*
1652 	 * Since we are currently syncing this txg, it's nontrivial to
1653 	 * determine what BP to nopwrite against, so we disable nopwrite.
1654 	 *
1655 	 * When syncing, the db_blkptr is initially the BP of the previous
1656 	 * txg.  We can not nopwrite against it because it will be changed
1657 	 * (this is similar to the non-late-arrival case where the dbuf is
1658 	 * dirty in a future txg).
1659 	 *
1660 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1661 	 * We can not nopwrite against it because although the BP will not
1662 	 * (typically) be changed, the data has not yet been persisted to this
1663 	 * location.
1664 	 *
1665 	 * Finally, when dbuf_write_done() is called, it is theoretically
1666 	 * possible to always nopwrite, because the data that was written in
1667 	 * this txg is the same data that we are trying to write.  However we
1668 	 * would need to check that this dbuf is not dirty in any future
1669 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1670 	 * don't nopwrite in this case.
1671 	 */
1672 	zp->zp_nopwrite = B_FALSE;
1673 
1674 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1675 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1676 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1677 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1678 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1679 
1680 	return (0);
1681 }
1682 
1683 /*
1684  * Intent log support: sync the block associated with db to disk.
1685  * N.B. and XXX: the caller is responsible for making sure that the
1686  * data isn't changing while dmu_sync() is writing it.
1687  *
1688  * Return values:
1689  *
1690  *	EEXIST: this txg has already been synced, so there's nothing to do.
1691  *		The caller should not log the write.
1692  *
1693  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1694  *		The caller should not log the write.
1695  *
1696  *	EALREADY: this block is already in the process of being synced.
1697  *		The caller should track its progress (somehow).
1698  *
1699  *	EIO: could not do the I/O.
1700  *		The caller should do a txg_wait_synced().
1701  *
1702  *	0: the I/O has been initiated.
1703  *		The caller should log this blkptr in the done callback.
1704  *		It is possible that the I/O will fail, in which case
1705  *		the error will be reported to the done callback and
1706  *		propagated to pio from zio_done().
1707  */
1708 int
1709 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1710 {
1711 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1712 	objset_t *os = db->db_objset;
1713 	dsl_dataset_t *ds = os->os_dsl_dataset;
1714 	dbuf_dirty_record_t *dr, *dr_next;
1715 	dmu_sync_arg_t *dsa;
1716 	zbookmark_phys_t zb;
1717 	zio_prop_t zp;
1718 	dnode_t *dn;
1719 
1720 	ASSERT(pio != NULL);
1721 	ASSERT(txg != 0);
1722 
1723 	SET_BOOKMARK(&zb, ds->ds_object,
1724 	    db->db.db_object, db->db_level, db->db_blkid);
1725 
1726 	DB_DNODE_ENTER(db);
1727 	dn = DB_DNODE(db);
1728 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1729 	DB_DNODE_EXIT(db);
1730 
1731 	/*
1732 	 * If we're frozen (running ziltest), we always need to generate a bp.
1733 	 */
1734 	if (txg > spa_freeze_txg(os->os_spa))
1735 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1736 
1737 	/*
1738 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1739 	 * and us.  If we determine that this txg is not yet syncing,
1740 	 * but it begins to sync a moment later, that's OK because the
1741 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1742 	 */
1743 	mutex_enter(&db->db_mtx);
1744 
1745 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1746 		/*
1747 		 * This txg has already synced.  There's nothing to do.
1748 		 */
1749 		mutex_exit(&db->db_mtx);
1750 		return (SET_ERROR(EEXIST));
1751 	}
1752 
1753 	if (txg <= spa_syncing_txg(os->os_spa)) {
1754 		/*
1755 		 * This txg is currently syncing, so we can't mess with
1756 		 * the dirty record anymore; just write a new log block.
1757 		 */
1758 		mutex_exit(&db->db_mtx);
1759 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1760 	}
1761 
1762 	dr = dbuf_find_dirty_eq(db, txg);
1763 
1764 	if (dr == NULL) {
1765 		/*
1766 		 * There's no dr for this dbuf, so it must have been freed.
1767 		 * There's no need to log writes to freed blocks, so we're done.
1768 		 */
1769 		mutex_exit(&db->db_mtx);
1770 		return (SET_ERROR(ENOENT));
1771 	}
1772 
1773 	dr_next = list_next(&db->db_dirty_records, dr);
1774 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1775 
1776 	if (db->db_blkptr != NULL) {
1777 		/*
1778 		 * We need to fill in zgd_bp with the current blkptr so that
1779 		 * the nopwrite code can check if we're writing the same
1780 		 * data that's already on disk.  We can only nopwrite if we
1781 		 * are sure that after making the copy, db_blkptr will not
1782 		 * change until our i/o completes.  We ensure this by
1783 		 * holding the db_mtx, and only allowing nopwrite if the
1784 		 * block is not already dirty (see below).  This is verified
1785 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1786 		 * not changed.
1787 		 */
1788 		*zgd->zgd_bp = *db->db_blkptr;
1789 	}
1790 
1791 	/*
1792 	 * Assume the on-disk data is X, the current syncing data (in
1793 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1794 	 * in dmu_sync).
1795 	 *
1796 	 * We usually want to perform a nopwrite if X and Z are the
1797 	 * same.  However, if Y is different (i.e. the BP is going to
1798 	 * change before this write takes effect), then a nopwrite will
1799 	 * be incorrect - we would override with X, which could have
1800 	 * been freed when Y was written.
1801 	 *
1802 	 * (Note that this is not a concern when we are nop-writing from
1803 	 * syncing context, because X and Y must be identical, because
1804 	 * all previous txgs have been synced.)
1805 	 *
1806 	 * Therefore, we disable nopwrite if the current BP could change
1807 	 * before this TXG.  There are two ways it could change: by
1808 	 * being dirty (dr_next is non-NULL), or by being freed
1809 	 * (dnode_block_freed()).  This behavior is verified by
1810 	 * zio_done(), which VERIFYs that the override BP is identical
1811 	 * to the on-disk BP.
1812 	 */
1813 	DB_DNODE_ENTER(db);
1814 	dn = DB_DNODE(db);
1815 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1816 		zp.zp_nopwrite = B_FALSE;
1817 	DB_DNODE_EXIT(db);
1818 
1819 	ASSERT(dr->dr_txg == txg);
1820 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1821 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1822 		/*
1823 		 * We have already issued a sync write for this buffer,
1824 		 * or this buffer has already been synced.  It could not
1825 		 * have been dirtied since, or we would have cleared the state.
1826 		 */
1827 		mutex_exit(&db->db_mtx);
1828 		return (SET_ERROR(EALREADY));
1829 	}
1830 
1831 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1832 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1833 	mutex_exit(&db->db_mtx);
1834 
1835 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1836 	dsa->dsa_dr = dr;
1837 	dsa->dsa_done = done;
1838 	dsa->dsa_zgd = zgd;
1839 	dsa->dsa_tx = NULL;
1840 
1841 	zio_nowait(arc_write(pio, os->os_spa, txg,
1842 	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1843 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1844 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1845 
1846 	return (0);
1847 }
1848 
1849 int
1850 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1851 {
1852 	dnode_t *dn;
1853 	int err;
1854 
1855 	err = dnode_hold(os, object, FTAG, &dn);
1856 	if (err)
1857 		return (err);
1858 	err = dnode_set_nlevels(dn, nlevels, tx);
1859 	dnode_rele(dn, FTAG);
1860 	return (err);
1861 }
1862 
1863 int
1864 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1865     dmu_tx_t *tx)
1866 {
1867 	dnode_t *dn;
1868 	int err;
1869 
1870 	err = dnode_hold(os, object, FTAG, &dn);
1871 	if (err)
1872 		return (err);
1873 	err = dnode_set_blksz(dn, size, ibs, tx);
1874 	dnode_rele(dn, FTAG);
1875 	return (err);
1876 }
1877 
1878 int
1879 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1880     dmu_tx_t *tx)
1881 {
1882 	dnode_t *dn;
1883 	int err;
1884 
1885 	err = dnode_hold(os, object, FTAG, &dn);
1886 	if (err)
1887 		return (err);
1888 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1889 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1890 	rw_exit(&dn->dn_struct_rwlock);
1891 	dnode_rele(dn, FTAG);
1892 	return (0);
1893 }
1894 
1895 void
1896 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1897     dmu_tx_t *tx)
1898 {
1899 	dnode_t *dn;
1900 
1901 	/*
1902 	 * Send streams include each object's checksum function.  This
1903 	 * check ensures that the receiving system can understand the
1904 	 * checksum function transmitted.
1905 	 */
1906 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1907 
1908 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1909 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1910 	dn->dn_checksum = checksum;
1911 	dnode_setdirty(dn, tx);
1912 	dnode_rele(dn, FTAG);
1913 }
1914 
1915 void
1916 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1917     dmu_tx_t *tx)
1918 {
1919 	dnode_t *dn;
1920 
1921 	/*
1922 	 * Send streams include each object's compression function.  This
1923 	 * check ensures that the receiving system can understand the
1924 	 * compression function transmitted.
1925 	 */
1926 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1927 
1928 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1929 	dn->dn_compress = compress;
1930 	dnode_setdirty(dn, tx);
1931 	dnode_rele(dn, FTAG);
1932 }
1933 
1934 /*
1935  * When the "redundant_metadata" property is set to "most", only indirect
1936  * blocks of this level and higher will have an additional ditto block.
1937  */
1938 int zfs_redundant_metadata_most_ditto_level = 2;
1939 
1940 void
1941 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1942 {
1943 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1944 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1945 	    (wp & WP_SPILL));
1946 	enum zio_checksum checksum = os->os_checksum;
1947 	enum zio_compress compress = os->os_compress;
1948 	uint8_t complevel = os->os_complevel;
1949 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1950 	boolean_t dedup = B_FALSE;
1951 	boolean_t nopwrite = B_FALSE;
1952 	boolean_t dedup_verify = os->os_dedup_verify;
1953 	boolean_t encrypt = B_FALSE;
1954 	int copies = os->os_copies;
1955 
1956 	/*
1957 	 * We maintain different write policies for each of the following
1958 	 * types of data:
1959 	 *	 1. metadata
1960 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1961 	 *	 3. all other level 0 blocks
1962 	 */
1963 	if (ismd) {
1964 		/*
1965 		 * XXX -- we should design a compression algorithm
1966 		 * that specializes in arrays of bps.
1967 		 */
1968 		compress = zio_compress_select(os->os_spa,
1969 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1970 
1971 		/*
1972 		 * Metadata always gets checksummed.  If the data
1973 		 * checksum is multi-bit correctable, and it's not a
1974 		 * ZBT-style checksum, then it's suitable for metadata
1975 		 * as well.  Otherwise, the metadata checksum defaults
1976 		 * to fletcher4.
1977 		 */
1978 		if (!(zio_checksum_table[checksum].ci_flags &
1979 		    ZCHECKSUM_FLAG_METADATA) ||
1980 		    (zio_checksum_table[checksum].ci_flags &
1981 		    ZCHECKSUM_FLAG_EMBEDDED))
1982 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1983 
1984 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1985 		    (os->os_redundant_metadata ==
1986 		    ZFS_REDUNDANT_METADATA_MOST &&
1987 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1988 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1989 			copies++;
1990 	} else if (wp & WP_NOFILL) {
1991 		ASSERT(level == 0);
1992 
1993 		/*
1994 		 * If we're writing preallocated blocks, we aren't actually
1995 		 * writing them so don't set any policy properties.  These
1996 		 * blocks are currently only used by an external subsystem
1997 		 * outside of zfs (i.e. dump) and not written by the zio
1998 		 * pipeline.
1999 		 */
2000 		compress = ZIO_COMPRESS_OFF;
2001 		checksum = ZIO_CHECKSUM_OFF;
2002 	} else {
2003 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2004 		    compress);
2005 		complevel = zio_complevel_select(os->os_spa, compress,
2006 		    complevel, complevel);
2007 
2008 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2009 		    zio_checksum_select(dn->dn_checksum, checksum) :
2010 		    dedup_checksum;
2011 
2012 		/*
2013 		 * Determine dedup setting.  If we are in dmu_sync(),
2014 		 * we won't actually dedup now because that's all
2015 		 * done in syncing context; but we do want to use the
2016 		 * dedup checksum.  If the checksum is not strong
2017 		 * enough to ensure unique signatures, force
2018 		 * dedup_verify.
2019 		 */
2020 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2021 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2022 			if (!(zio_checksum_table[checksum].ci_flags &
2023 			    ZCHECKSUM_FLAG_DEDUP))
2024 				dedup_verify = B_TRUE;
2025 		}
2026 
2027 		/*
2028 		 * Enable nopwrite if we have secure enough checksum
2029 		 * algorithm (see comment in zio_nop_write) and
2030 		 * compression is enabled.  We don't enable nopwrite if
2031 		 * dedup is enabled as the two features are mutually
2032 		 * exclusive.
2033 		 */
2034 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2035 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2036 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2037 	}
2038 
2039 	/*
2040 	 * All objects in an encrypted objset are protected from modification
2041 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2042 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2043 	 * not subject to nopwrite since writing the same data will still
2044 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2045 	 * to avoid ambiguity in the dedup code since the DDT does not store
2046 	 * object types.
2047 	 */
2048 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2049 		encrypt = B_TRUE;
2050 
2051 		if (DMU_OT_IS_ENCRYPTED(type)) {
2052 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2053 			nopwrite = B_FALSE;
2054 		} else {
2055 			dedup = B_FALSE;
2056 		}
2057 
2058 		if (level <= 0 &&
2059 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2060 			compress = ZIO_COMPRESS_EMPTY;
2061 		}
2062 	}
2063 
2064 	zp->zp_compress = compress;
2065 	zp->zp_complevel = complevel;
2066 	zp->zp_checksum = checksum;
2067 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2068 	zp->zp_level = level;
2069 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2070 	zp->zp_dedup = dedup;
2071 	zp->zp_dedup_verify = dedup && dedup_verify;
2072 	zp->zp_nopwrite = nopwrite;
2073 	zp->zp_encrypt = encrypt;
2074 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2075 	bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2076 	bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2077 	bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2078 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2079 	    os->os_zpl_special_smallblock : 0;
2080 
2081 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2082 }
2083 
2084 /*
2085  * This function is only called from zfs_holey_common() for zpl_llseek()
2086  * in order to determine the location of holes.  In order to accurately
2087  * report holes all dirty data must be synced to disk.  This causes extremely
2088  * poor performance when seeking for holes in a dirty file.  As a compromise,
2089  * only provide hole data when the dnode is clean.  When a dnode is dirty
2090  * report the dnode as having no holes which is always a safe thing to do.
2091  */
2092 int
2093 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2094 {
2095 	dnode_t *dn;
2096 	int err;
2097 
2098 restart:
2099 	err = dnode_hold(os, object, FTAG, &dn);
2100 	if (err)
2101 		return (err);
2102 
2103 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2104 
2105 	if (dnode_is_dirty(dn)) {
2106 		/*
2107 		 * If the zfs_dmu_offset_next_sync module option is enabled
2108 		 * then strict hole reporting has been requested.  Dirty
2109 		 * dnodes must be synced to disk to accurately report all
2110 		 * holes.  When disabled (the default) dirty dnodes are
2111 		 * reported to not have any holes which is always safe.
2112 		 *
2113 		 * When called by zfs_holey_common() the zp->z_rangelock
2114 		 * is held to prevent zfs_write() and mmap writeback from
2115 		 * re-dirtying the dnode after txg_wait_synced().
2116 		 */
2117 		if (zfs_dmu_offset_next_sync) {
2118 			rw_exit(&dn->dn_struct_rwlock);
2119 			dnode_rele(dn, FTAG);
2120 			txg_wait_synced(dmu_objset_pool(os), 0);
2121 			goto restart;
2122 		}
2123 
2124 		err = SET_ERROR(EBUSY);
2125 	} else {
2126 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2127 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2128 	}
2129 
2130 	rw_exit(&dn->dn_struct_rwlock);
2131 	dnode_rele(dn, FTAG);
2132 
2133 	return (err);
2134 }
2135 
2136 void
2137 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2138 {
2139 	dnode_phys_t *dnp = dn->dn_phys;
2140 
2141 	doi->doi_data_block_size = dn->dn_datablksz;
2142 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2143 	    1ULL << dn->dn_indblkshift : 0;
2144 	doi->doi_type = dn->dn_type;
2145 	doi->doi_bonus_type = dn->dn_bonustype;
2146 	doi->doi_bonus_size = dn->dn_bonuslen;
2147 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2148 	doi->doi_indirection = dn->dn_nlevels;
2149 	doi->doi_checksum = dn->dn_checksum;
2150 	doi->doi_compress = dn->dn_compress;
2151 	doi->doi_nblkptr = dn->dn_nblkptr;
2152 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2153 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2154 	doi->doi_fill_count = 0;
2155 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2156 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2157 }
2158 
2159 void
2160 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2161 {
2162 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2163 	mutex_enter(&dn->dn_mtx);
2164 
2165 	__dmu_object_info_from_dnode(dn, doi);
2166 
2167 	mutex_exit(&dn->dn_mtx);
2168 	rw_exit(&dn->dn_struct_rwlock);
2169 }
2170 
2171 /*
2172  * Get information on a DMU object.
2173  * If doi is NULL, just indicates whether the object exists.
2174  */
2175 int
2176 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2177 {
2178 	dnode_t *dn;
2179 	int err = dnode_hold(os, object, FTAG, &dn);
2180 
2181 	if (err)
2182 		return (err);
2183 
2184 	if (doi != NULL)
2185 		dmu_object_info_from_dnode(dn, doi);
2186 
2187 	dnode_rele(dn, FTAG);
2188 	return (0);
2189 }
2190 
2191 /*
2192  * As above, but faster; can be used when you have a held dbuf in hand.
2193  */
2194 void
2195 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2196 {
2197 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2198 
2199 	DB_DNODE_ENTER(db);
2200 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2201 	DB_DNODE_EXIT(db);
2202 }
2203 
2204 /*
2205  * Faster still when you only care about the size.
2206  */
2207 void
2208 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2209     u_longlong_t *nblk512)
2210 {
2211 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2212 	dnode_t *dn;
2213 
2214 	DB_DNODE_ENTER(db);
2215 	dn = DB_DNODE(db);
2216 
2217 	*blksize = dn->dn_datablksz;
2218 	/* add in number of slots used for the dnode itself */
2219 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2220 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2221 	DB_DNODE_EXIT(db);
2222 }
2223 
2224 void
2225 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2226 {
2227 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2228 	dnode_t *dn;
2229 
2230 	DB_DNODE_ENTER(db);
2231 	dn = DB_DNODE(db);
2232 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2233 	DB_DNODE_EXIT(db);
2234 }
2235 
2236 void
2237 byteswap_uint64_array(void *vbuf, size_t size)
2238 {
2239 	uint64_t *buf = vbuf;
2240 	size_t count = size >> 3;
2241 	int i;
2242 
2243 	ASSERT((size & 7) == 0);
2244 
2245 	for (i = 0; i < count; i++)
2246 		buf[i] = BSWAP_64(buf[i]);
2247 }
2248 
2249 void
2250 byteswap_uint32_array(void *vbuf, size_t size)
2251 {
2252 	uint32_t *buf = vbuf;
2253 	size_t count = size >> 2;
2254 	int i;
2255 
2256 	ASSERT((size & 3) == 0);
2257 
2258 	for (i = 0; i < count; i++)
2259 		buf[i] = BSWAP_32(buf[i]);
2260 }
2261 
2262 void
2263 byteswap_uint16_array(void *vbuf, size_t size)
2264 {
2265 	uint16_t *buf = vbuf;
2266 	size_t count = size >> 1;
2267 	int i;
2268 
2269 	ASSERT((size & 1) == 0);
2270 
2271 	for (i = 0; i < count; i++)
2272 		buf[i] = BSWAP_16(buf[i]);
2273 }
2274 
2275 /* ARGSUSED */
2276 void
2277 byteswap_uint8_array(void *vbuf, size_t size)
2278 {
2279 }
2280 
2281 void
2282 dmu_init(void)
2283 {
2284 	abd_init();
2285 	zfs_dbgmsg_init();
2286 	sa_cache_init();
2287 	dmu_objset_init();
2288 	dnode_init();
2289 	zfetch_init();
2290 	dmu_tx_init();
2291 	l2arc_init();
2292 	arc_init();
2293 	dbuf_init();
2294 }
2295 
2296 void
2297 dmu_fini(void)
2298 {
2299 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2300 	l2arc_fini();
2301 	dmu_tx_fini();
2302 	zfetch_fini();
2303 	dbuf_fini();
2304 	dnode_fini();
2305 	dmu_objset_fini();
2306 	sa_cache_fini();
2307 	zfs_dbgmsg_fini();
2308 	abd_fini();
2309 }
2310 
2311 EXPORT_SYMBOL(dmu_bonus_hold);
2312 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2313 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2314 EXPORT_SYMBOL(dmu_buf_rele_array);
2315 EXPORT_SYMBOL(dmu_prefetch);
2316 EXPORT_SYMBOL(dmu_free_range);
2317 EXPORT_SYMBOL(dmu_free_long_range);
2318 EXPORT_SYMBOL(dmu_free_long_object);
2319 EXPORT_SYMBOL(dmu_read);
2320 EXPORT_SYMBOL(dmu_read_by_dnode);
2321 EXPORT_SYMBOL(dmu_write);
2322 EXPORT_SYMBOL(dmu_write_by_dnode);
2323 EXPORT_SYMBOL(dmu_prealloc);
2324 EXPORT_SYMBOL(dmu_object_info);
2325 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2326 EXPORT_SYMBOL(dmu_object_info_from_db);
2327 EXPORT_SYMBOL(dmu_object_size_from_db);
2328 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2329 EXPORT_SYMBOL(dmu_object_set_nlevels);
2330 EXPORT_SYMBOL(dmu_object_set_blocksize);
2331 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2332 EXPORT_SYMBOL(dmu_object_set_checksum);
2333 EXPORT_SYMBOL(dmu_object_set_compress);
2334 EXPORT_SYMBOL(dmu_offset_next);
2335 EXPORT_SYMBOL(dmu_write_policy);
2336 EXPORT_SYMBOL(dmu_sync);
2337 EXPORT_SYMBOL(dmu_request_arcbuf);
2338 EXPORT_SYMBOL(dmu_return_arcbuf);
2339 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2340 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2341 EXPORT_SYMBOL(dmu_buf_hold);
2342 EXPORT_SYMBOL(dmu_ot);
2343 
2344 /* BEGIN CSTYLED */
2345 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2346 	"Enable NOP writes");
2347 
2348 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2349 	"Percentage of dirtied blocks from frees in one TXG");
2350 
2351 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2352 	"Enable forcing txg sync to find holes");
2353 
2354 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2355 	"Limit one prefetch call to this size");
2356 /* END CSTYLED */
2357