xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision dbd5678d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  */
33 
34 #include <sys/dmu.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dmu_zfetch.h>
48 #include <sys/zfs_ioctl.h>
49 #include <sys/zap.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zio_compress.h>
52 #include <sys/sa.h>
53 #include <sys/zfeature.h>
54 #include <sys/abd.h>
55 #include <sys/trace_zfs.h>
56 #include <sys/zfs_racct.h>
57 #include <sys/zfs_rlock.h>
58 #ifdef _KERNEL
59 #include <sys/vmsystm.h>
60 #include <sys/zfs_znode.h>
61 #endif
62 
63 /*
64  * Enable/disable nopwrite feature.
65  */
66 static int zfs_nopwrite_enabled = 1;
67 
68 /*
69  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
70  * one TXG. After this threshold is crossed, additional dirty blocks from frees
71  * will wait until the next TXG.
72  * A value of zero will disable this throttle.
73  */
74 static uint_t zfs_per_txg_dirty_frees_percent = 30;
75 
76 /*
77  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
78  * By default this is enabled to ensure accurate hole reporting, it can result
79  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
80  * Disabling this option will result in holes never being reported in dirty
81  * files which is always safe.
82  */
83 static int zfs_dmu_offset_next_sync = 1;
84 
85 /*
86  * Limit the amount we can prefetch with one call to this amount.  This
87  * helps to limit the amount of memory that can be used by prefetching.
88  * Larger objects should be prefetched a bit at a time.
89  */
90 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
91 
92 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
93 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
94 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
95 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
96 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
98 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
99 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
100 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
101 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
102 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
103 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
104 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
105 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
106 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
108 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
109 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
110 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
111 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
112 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
113 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
116 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
117 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
118 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
119 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
121 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
122 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
123 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
125 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
126 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
127 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
128 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
129 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
134 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
137 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
141 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
142 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
143 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
144 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
146 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
147 };
148 
149 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
150 	{	byteswap_uint8_array,	"uint8"		},
151 	{	byteswap_uint16_array,	"uint16"	},
152 	{	byteswap_uint32_array,	"uint32"	},
153 	{	byteswap_uint64_array,	"uint64"	},
154 	{	zap_byteswap,		"zap"		},
155 	{	dnode_buf_byteswap,	"dnode"		},
156 	{	dmu_objset_byteswap,	"objset"	},
157 	{	zfs_znode_byteswap,	"znode"		},
158 	{	zfs_oldacl_byteswap,	"oldacl"	},
159 	{	zfs_acl_byteswap,	"acl"		}
160 };
161 
162 static int
163 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
164     const void *tag, dmu_buf_t **dbp)
165 {
166 	uint64_t blkid;
167 	dmu_buf_impl_t *db;
168 
169 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
170 	blkid = dbuf_whichblock(dn, 0, offset);
171 	db = dbuf_hold(dn, blkid, tag);
172 	rw_exit(&dn->dn_struct_rwlock);
173 
174 	if (db == NULL) {
175 		*dbp = NULL;
176 		return (SET_ERROR(EIO));
177 	}
178 
179 	*dbp = &db->db;
180 	return (0);
181 }
182 int
183 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
184     const void *tag, dmu_buf_t **dbp)
185 {
186 	dnode_t *dn;
187 	uint64_t blkid;
188 	dmu_buf_impl_t *db;
189 	int err;
190 
191 	err = dnode_hold(os, object, FTAG, &dn);
192 	if (err)
193 		return (err);
194 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
195 	blkid = dbuf_whichblock(dn, 0, offset);
196 	db = dbuf_hold(dn, blkid, tag);
197 	rw_exit(&dn->dn_struct_rwlock);
198 	dnode_rele(dn, FTAG);
199 
200 	if (db == NULL) {
201 		*dbp = NULL;
202 		return (SET_ERROR(EIO));
203 	}
204 
205 	*dbp = &db->db;
206 	return (err);
207 }
208 
209 int
210 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
211     const void *tag, dmu_buf_t **dbp, int flags)
212 {
213 	int err;
214 	int db_flags = DB_RF_CANFAIL;
215 
216 	if (flags & DMU_READ_NO_PREFETCH)
217 		db_flags |= DB_RF_NOPREFETCH;
218 	if (flags & DMU_READ_NO_DECRYPT)
219 		db_flags |= DB_RF_NO_DECRYPT;
220 
221 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
222 	if (err == 0) {
223 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
224 		err = dbuf_read(db, NULL, db_flags);
225 		if (err != 0) {
226 			dbuf_rele(db, tag);
227 			*dbp = NULL;
228 		}
229 	}
230 
231 	return (err);
232 }
233 
234 int
235 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
236     const void *tag, dmu_buf_t **dbp, int flags)
237 {
238 	int err;
239 	int db_flags = DB_RF_CANFAIL;
240 
241 	if (flags & DMU_READ_NO_PREFETCH)
242 		db_flags |= DB_RF_NOPREFETCH;
243 	if (flags & DMU_READ_NO_DECRYPT)
244 		db_flags |= DB_RF_NO_DECRYPT;
245 
246 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
247 	if (err == 0) {
248 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
249 		err = dbuf_read(db, NULL, db_flags);
250 		if (err != 0) {
251 			dbuf_rele(db, tag);
252 			*dbp = NULL;
253 		}
254 	}
255 
256 	return (err);
257 }
258 
259 int
260 dmu_bonus_max(void)
261 {
262 	return (DN_OLD_MAX_BONUSLEN);
263 }
264 
265 int
266 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
267 {
268 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
269 	dnode_t *dn;
270 	int error;
271 
272 	DB_DNODE_ENTER(db);
273 	dn = DB_DNODE(db);
274 
275 	if (dn->dn_bonus != db) {
276 		error = SET_ERROR(EINVAL);
277 	} else if (newsize < 0 || newsize > db_fake->db_size) {
278 		error = SET_ERROR(EINVAL);
279 	} else {
280 		dnode_setbonuslen(dn, newsize, tx);
281 		error = 0;
282 	}
283 
284 	DB_DNODE_EXIT(db);
285 	return (error);
286 }
287 
288 int
289 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
290 {
291 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
292 	dnode_t *dn;
293 	int error;
294 
295 	DB_DNODE_ENTER(db);
296 	dn = DB_DNODE(db);
297 
298 	if (!DMU_OT_IS_VALID(type)) {
299 		error = SET_ERROR(EINVAL);
300 	} else if (dn->dn_bonus != db) {
301 		error = SET_ERROR(EINVAL);
302 	} else {
303 		dnode_setbonus_type(dn, type, tx);
304 		error = 0;
305 	}
306 
307 	DB_DNODE_EXIT(db);
308 	return (error);
309 }
310 
311 dmu_object_type_t
312 dmu_get_bonustype(dmu_buf_t *db_fake)
313 {
314 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
315 	dnode_t *dn;
316 	dmu_object_type_t type;
317 
318 	DB_DNODE_ENTER(db);
319 	dn = DB_DNODE(db);
320 	type = dn->dn_bonustype;
321 	DB_DNODE_EXIT(db);
322 
323 	return (type);
324 }
325 
326 int
327 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
328 {
329 	dnode_t *dn;
330 	int error;
331 
332 	error = dnode_hold(os, object, FTAG, &dn);
333 	dbuf_rm_spill(dn, tx);
334 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
335 	dnode_rm_spill(dn, tx);
336 	rw_exit(&dn->dn_struct_rwlock);
337 	dnode_rele(dn, FTAG);
338 	return (error);
339 }
340 
341 /*
342  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
343  * has not yet been allocated a new bonus dbuf a will be allocated.
344  * Returns ENOENT, EIO, or 0.
345  */
346 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
347     uint32_t flags)
348 {
349 	dmu_buf_impl_t *db;
350 	int error;
351 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
352 
353 	if (flags & DMU_READ_NO_PREFETCH)
354 		db_flags |= DB_RF_NOPREFETCH;
355 	if (flags & DMU_READ_NO_DECRYPT)
356 		db_flags |= DB_RF_NO_DECRYPT;
357 
358 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
359 	if (dn->dn_bonus == NULL) {
360 		rw_exit(&dn->dn_struct_rwlock);
361 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
362 		if (dn->dn_bonus == NULL)
363 			dbuf_create_bonus(dn);
364 	}
365 	db = dn->dn_bonus;
366 
367 	/* as long as the bonus buf is held, the dnode will be held */
368 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
369 		VERIFY(dnode_add_ref(dn, db));
370 		atomic_inc_32(&dn->dn_dbufs_count);
371 	}
372 
373 	/*
374 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
375 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
376 	 * a dnode hold for every dbuf.
377 	 */
378 	rw_exit(&dn->dn_struct_rwlock);
379 
380 	error = dbuf_read(db, NULL, db_flags);
381 	if (error) {
382 		dnode_evict_bonus(dn);
383 		dbuf_rele(db, tag);
384 		*dbp = NULL;
385 		return (error);
386 	}
387 
388 	*dbp = &db->db;
389 	return (0);
390 }
391 
392 int
393 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
394 {
395 	dnode_t *dn;
396 	int error;
397 
398 	error = dnode_hold(os, object, FTAG, &dn);
399 	if (error)
400 		return (error);
401 
402 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
403 	dnode_rele(dn, FTAG);
404 
405 	return (error);
406 }
407 
408 /*
409  * returns ENOENT, EIO, or 0.
410  *
411  * This interface will allocate a blank spill dbuf when a spill blk
412  * doesn't already exist on the dnode.
413  *
414  * if you only want to find an already existing spill db, then
415  * dmu_spill_hold_existing() should be used.
416  */
417 int
418 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
419     dmu_buf_t **dbp)
420 {
421 	dmu_buf_impl_t *db = NULL;
422 	int err;
423 
424 	if ((flags & DB_RF_HAVESTRUCT) == 0)
425 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
426 
427 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
428 
429 	if ((flags & DB_RF_HAVESTRUCT) == 0)
430 		rw_exit(&dn->dn_struct_rwlock);
431 
432 	if (db == NULL) {
433 		*dbp = NULL;
434 		return (SET_ERROR(EIO));
435 	}
436 	err = dbuf_read(db, NULL, flags);
437 	if (err == 0)
438 		*dbp = &db->db;
439 	else {
440 		dbuf_rele(db, tag);
441 		*dbp = NULL;
442 	}
443 	return (err);
444 }
445 
446 int
447 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
448 {
449 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
450 	dnode_t *dn;
451 	int err;
452 
453 	DB_DNODE_ENTER(db);
454 	dn = DB_DNODE(db);
455 
456 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
457 		err = SET_ERROR(EINVAL);
458 	} else {
459 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
460 
461 		if (!dn->dn_have_spill) {
462 			err = SET_ERROR(ENOENT);
463 		} else {
464 			err = dmu_spill_hold_by_dnode(dn,
465 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
466 		}
467 
468 		rw_exit(&dn->dn_struct_rwlock);
469 	}
470 
471 	DB_DNODE_EXIT(db);
472 	return (err);
473 }
474 
475 int
476 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
477     dmu_buf_t **dbp)
478 {
479 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
480 	dnode_t *dn;
481 	int err;
482 	uint32_t db_flags = DB_RF_CANFAIL;
483 
484 	if (flags & DMU_READ_NO_DECRYPT)
485 		db_flags |= DB_RF_NO_DECRYPT;
486 
487 	DB_DNODE_ENTER(db);
488 	dn = DB_DNODE(db);
489 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
490 	DB_DNODE_EXIT(db);
491 
492 	return (err);
493 }
494 
495 /*
496  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
497  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
498  * and can induce severe lock contention when writing to several files
499  * whose dnodes are in the same block.
500  */
501 int
502 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
503     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
504     uint32_t flags)
505 {
506 	dmu_buf_t **dbp;
507 	zstream_t *zs = NULL;
508 	uint64_t blkid, nblks, i;
509 	uint32_t dbuf_flags;
510 	int err;
511 	zio_t *zio = NULL;
512 	boolean_t missed = B_FALSE;
513 
514 	ASSERT(length <= DMU_MAX_ACCESS);
515 
516 	/*
517 	 * Note: We directly notify the prefetch code of this read, so that
518 	 * we can tell it about the multi-block read.  dbuf_read() only knows
519 	 * about the one block it is accessing.
520 	 */
521 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
522 	    DB_RF_NOPREFETCH;
523 
524 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
525 		dbuf_flags |= DB_RF_NO_DECRYPT;
526 
527 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
528 	if (dn->dn_datablkshift) {
529 		int blkshift = dn->dn_datablkshift;
530 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
531 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
532 	} else {
533 		if (offset + length > dn->dn_datablksz) {
534 			zfs_panic_recover("zfs: accessing past end of object "
535 			    "%llx/%llx (size=%u access=%llu+%llu)",
536 			    (longlong_t)dn->dn_objset->
537 			    os_dsl_dataset->ds_object,
538 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
539 			    (longlong_t)offset, (longlong_t)length);
540 			rw_exit(&dn->dn_struct_rwlock);
541 			return (SET_ERROR(EIO));
542 		}
543 		nblks = 1;
544 	}
545 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
546 
547 	if (read)
548 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
549 		    ZIO_FLAG_CANFAIL);
550 	blkid = dbuf_whichblock(dn, 0, offset);
551 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
552 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
553 		/*
554 		 * Prepare the zfetch before initiating the demand reads, so
555 		 * that if multiple threads block on same indirect block, we
556 		 * base predictions on the original less racy request order.
557 		 */
558 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
559 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
560 	}
561 	for (i = 0; i < nblks; i++) {
562 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
563 		if (db == NULL) {
564 			if (zs)
565 				dmu_zfetch_run(zs, missed, B_TRUE);
566 			rw_exit(&dn->dn_struct_rwlock);
567 			dmu_buf_rele_array(dbp, nblks, tag);
568 			if (read)
569 				zio_nowait(zio);
570 			return (SET_ERROR(EIO));
571 		}
572 
573 		/*
574 		 * Initiate async demand data read.
575 		 * We check the db_state after calling dbuf_read() because
576 		 * (1) dbuf_read() may change the state to CACHED due to a
577 		 * hit in the ARC, and (2) on a cache miss, a child will
578 		 * have been added to "zio" but not yet completed, so the
579 		 * state will not yet be CACHED.
580 		 */
581 		if (read) {
582 			(void) dbuf_read(db, zio, dbuf_flags);
583 			if (db->db_state != DB_CACHED)
584 				missed = B_TRUE;
585 		}
586 		dbp[i] = &db->db;
587 	}
588 
589 	if (!read)
590 		zfs_racct_write(length, nblks);
591 
592 	if (zs)
593 		dmu_zfetch_run(zs, missed, B_TRUE);
594 	rw_exit(&dn->dn_struct_rwlock);
595 
596 	if (read) {
597 		/* wait for async read i/o */
598 		err = zio_wait(zio);
599 		if (err) {
600 			dmu_buf_rele_array(dbp, nblks, tag);
601 			return (err);
602 		}
603 
604 		/* wait for other io to complete */
605 		for (i = 0; i < nblks; i++) {
606 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
607 			mutex_enter(&db->db_mtx);
608 			while (db->db_state == DB_READ ||
609 			    db->db_state == DB_FILL)
610 				cv_wait(&db->db_changed, &db->db_mtx);
611 			if (db->db_state == DB_UNCACHED)
612 				err = SET_ERROR(EIO);
613 			mutex_exit(&db->db_mtx);
614 			if (err) {
615 				dmu_buf_rele_array(dbp, nblks, tag);
616 				return (err);
617 			}
618 		}
619 	}
620 
621 	*numbufsp = nblks;
622 	*dbpp = dbp;
623 	return (0);
624 }
625 
626 int
627 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
628     uint64_t length, int read, const void *tag, int *numbufsp,
629     dmu_buf_t ***dbpp)
630 {
631 	dnode_t *dn;
632 	int err;
633 
634 	err = dnode_hold(os, object, FTAG, &dn);
635 	if (err)
636 		return (err);
637 
638 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
639 	    numbufsp, dbpp, DMU_READ_PREFETCH);
640 
641 	dnode_rele(dn, FTAG);
642 
643 	return (err);
644 }
645 
646 int
647 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
648     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
649     dmu_buf_t ***dbpp)
650 {
651 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
652 	dnode_t *dn;
653 	int err;
654 
655 	DB_DNODE_ENTER(db);
656 	dn = DB_DNODE(db);
657 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
658 	    numbufsp, dbpp, DMU_READ_PREFETCH);
659 	DB_DNODE_EXIT(db);
660 
661 	return (err);
662 }
663 
664 void
665 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
666 {
667 	int i;
668 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
669 
670 	if (numbufs == 0)
671 		return;
672 
673 	for (i = 0; i < numbufs; i++) {
674 		if (dbp[i])
675 			dbuf_rele(dbp[i], tag);
676 	}
677 
678 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
679 }
680 
681 /*
682  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
683  * indirect blocks prefetched will be those that point to the blocks containing
684  * the data starting at offset, and continuing to offset + len.
685  *
686  * Note that if the indirect blocks above the blocks being prefetched are not
687  * in cache, they will be asynchronously read in.
688  */
689 void
690 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
691     uint64_t len, zio_priority_t pri)
692 {
693 	dnode_t *dn;
694 	uint64_t blkid;
695 	int nblks, err;
696 
697 	if (len == 0) {  /* they're interested in the bonus buffer */
698 		dn = DMU_META_DNODE(os);
699 
700 		if (object == 0 || object >= DN_MAX_OBJECT)
701 			return;
702 
703 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
704 		blkid = dbuf_whichblock(dn, level,
705 		    object * sizeof (dnode_phys_t));
706 		dbuf_prefetch(dn, level, blkid, pri, 0);
707 		rw_exit(&dn->dn_struct_rwlock);
708 		return;
709 	}
710 
711 	/*
712 	 * See comment before the definition of dmu_prefetch_max.
713 	 */
714 	len = MIN(len, dmu_prefetch_max);
715 
716 	/*
717 	 * XXX - Note, if the dnode for the requested object is not
718 	 * already cached, we will do a *synchronous* read in the
719 	 * dnode_hold() call.  The same is true for any indirects.
720 	 */
721 	err = dnode_hold(os, object, FTAG, &dn);
722 	if (err != 0)
723 		return;
724 
725 	/*
726 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
727 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
728 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
729 	 * offset)  is the first.  Then the number we need to prefetch is the
730 	 * last - first + 1.
731 	 */
732 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
733 	if (level > 0 || dn->dn_datablkshift != 0) {
734 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
735 		    dbuf_whichblock(dn, level, offset) + 1;
736 	} else {
737 		nblks = (offset < dn->dn_datablksz);
738 	}
739 
740 	if (nblks != 0) {
741 		blkid = dbuf_whichblock(dn, level, offset);
742 		for (int i = 0; i < nblks; i++)
743 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
744 	}
745 	rw_exit(&dn->dn_struct_rwlock);
746 
747 	dnode_rele(dn, FTAG);
748 }
749 
750 /*
751  * Get the next "chunk" of file data to free.  We traverse the file from
752  * the end so that the file gets shorter over time (if we crashes in the
753  * middle, this will leave us in a better state).  We find allocated file
754  * data by simply searching the allocated level 1 indirects.
755  *
756  * On input, *start should be the first offset that does not need to be
757  * freed (e.g. "offset + length").  On return, *start will be the first
758  * offset that should be freed and l1blks is set to the number of level 1
759  * indirect blocks found within the chunk.
760  */
761 static int
762 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
763 {
764 	uint64_t blks;
765 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
766 	/* bytes of data covered by a level-1 indirect block */
767 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
768 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
769 
770 	ASSERT3U(minimum, <=, *start);
771 
772 	/*
773 	 * Check if we can free the entire range assuming that all of the
774 	 * L1 blocks in this range have data. If we can, we use this
775 	 * worst case value as an estimate so we can avoid having to look
776 	 * at the object's actual data.
777 	 */
778 	uint64_t total_l1blks =
779 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
780 	    iblkrange;
781 	if (total_l1blks <= maxblks) {
782 		*l1blks = total_l1blks;
783 		*start = minimum;
784 		return (0);
785 	}
786 	ASSERT(ISP2(iblkrange));
787 
788 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
789 		int err;
790 
791 		/*
792 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
793 		 * indirect block at or before the input offset.  We must
794 		 * decrement *start so that it is at the end of the region
795 		 * to search.
796 		 */
797 		(*start)--;
798 
799 		err = dnode_next_offset(dn,
800 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
801 
802 		/* if there are no indirect blocks before start, we are done */
803 		if (err == ESRCH) {
804 			*start = minimum;
805 			break;
806 		} else if (err != 0) {
807 			*l1blks = blks;
808 			return (err);
809 		}
810 
811 		/* set start to the beginning of this L1 indirect */
812 		*start = P2ALIGN(*start, iblkrange);
813 	}
814 	if (*start < minimum)
815 		*start = minimum;
816 	*l1blks = blks;
817 
818 	return (0);
819 }
820 
821 /*
822  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
823  * otherwise return false.
824  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
825  */
826 static boolean_t
827 dmu_objset_zfs_unmounting(objset_t *os)
828 {
829 #ifdef _KERNEL
830 	if (dmu_objset_type(os) == DMU_OST_ZFS)
831 		return (zfs_get_vfs_flag_unmounted(os));
832 #else
833 	(void) os;
834 #endif
835 	return (B_FALSE);
836 }
837 
838 static int
839 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
840     uint64_t length)
841 {
842 	uint64_t object_size;
843 	int err;
844 	uint64_t dirty_frees_threshold;
845 	dsl_pool_t *dp = dmu_objset_pool(os);
846 
847 	if (dn == NULL)
848 		return (SET_ERROR(EINVAL));
849 
850 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
851 	if (offset >= object_size)
852 		return (0);
853 
854 	if (zfs_per_txg_dirty_frees_percent <= 100)
855 		dirty_frees_threshold =
856 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
857 	else
858 		dirty_frees_threshold = zfs_dirty_data_max / 20;
859 
860 	if (length == DMU_OBJECT_END || offset + length > object_size)
861 		length = object_size - offset;
862 
863 	while (length != 0) {
864 		uint64_t chunk_end, chunk_begin, chunk_len;
865 		uint64_t l1blks;
866 		dmu_tx_t *tx;
867 
868 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
869 			return (SET_ERROR(EINTR));
870 
871 		chunk_end = chunk_begin = offset + length;
872 
873 		/* move chunk_begin backwards to the beginning of this chunk */
874 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
875 		if (err)
876 			return (err);
877 		ASSERT3U(chunk_begin, >=, offset);
878 		ASSERT3U(chunk_begin, <=, chunk_end);
879 
880 		chunk_len = chunk_end - chunk_begin;
881 
882 		tx = dmu_tx_create(os);
883 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
884 
885 		/*
886 		 * Mark this transaction as typically resulting in a net
887 		 * reduction in space used.
888 		 */
889 		dmu_tx_mark_netfree(tx);
890 		err = dmu_tx_assign(tx, TXG_WAIT);
891 		if (err) {
892 			dmu_tx_abort(tx);
893 			return (err);
894 		}
895 
896 		uint64_t txg = dmu_tx_get_txg(tx);
897 
898 		mutex_enter(&dp->dp_lock);
899 		uint64_t long_free_dirty =
900 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
901 		mutex_exit(&dp->dp_lock);
902 
903 		/*
904 		 * To avoid filling up a TXG with just frees, wait for
905 		 * the next TXG to open before freeing more chunks if
906 		 * we have reached the threshold of frees.
907 		 */
908 		if (dirty_frees_threshold != 0 &&
909 		    long_free_dirty >= dirty_frees_threshold) {
910 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
911 			dmu_tx_commit(tx);
912 			txg_wait_open(dp, 0, B_TRUE);
913 			continue;
914 		}
915 
916 		/*
917 		 * In order to prevent unnecessary write throttling, for each
918 		 * TXG, we track the cumulative size of L1 blocks being dirtied
919 		 * in dnode_free_range() below. We compare this number to a
920 		 * tunable threshold, past which we prevent new L1 dirty freeing
921 		 * blocks from being added into the open TXG. See
922 		 * dmu_free_long_range_impl() for details. The threshold
923 		 * prevents write throttle activation due to dirty freeing L1
924 		 * blocks taking up a large percentage of zfs_dirty_data_max.
925 		 */
926 		mutex_enter(&dp->dp_lock);
927 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
928 		    l1blks << dn->dn_indblkshift;
929 		mutex_exit(&dp->dp_lock);
930 		DTRACE_PROBE3(free__long__range,
931 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
932 		    uint64_t, txg);
933 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
934 
935 		dmu_tx_commit(tx);
936 
937 		length -= chunk_len;
938 	}
939 	return (0);
940 }
941 
942 int
943 dmu_free_long_range(objset_t *os, uint64_t object,
944     uint64_t offset, uint64_t length)
945 {
946 	dnode_t *dn;
947 	int err;
948 
949 	err = dnode_hold(os, object, FTAG, &dn);
950 	if (err != 0)
951 		return (err);
952 	err = dmu_free_long_range_impl(os, dn, offset, length);
953 
954 	/*
955 	 * It is important to zero out the maxblkid when freeing the entire
956 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
957 	 * will take the fast path, and (b) dnode_reallocate() can verify
958 	 * that the entire file has been freed.
959 	 */
960 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
961 		dn->dn_maxblkid = 0;
962 
963 	dnode_rele(dn, FTAG);
964 	return (err);
965 }
966 
967 int
968 dmu_free_long_object(objset_t *os, uint64_t object)
969 {
970 	dmu_tx_t *tx;
971 	int err;
972 
973 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
974 	if (err != 0)
975 		return (err);
976 
977 	tx = dmu_tx_create(os);
978 	dmu_tx_hold_bonus(tx, object);
979 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
980 	dmu_tx_mark_netfree(tx);
981 	err = dmu_tx_assign(tx, TXG_WAIT);
982 	if (err == 0) {
983 		err = dmu_object_free(os, object, tx);
984 		dmu_tx_commit(tx);
985 	} else {
986 		dmu_tx_abort(tx);
987 	}
988 
989 	return (err);
990 }
991 
992 int
993 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
994     uint64_t size, dmu_tx_t *tx)
995 {
996 	dnode_t *dn;
997 	int err = dnode_hold(os, object, FTAG, &dn);
998 	if (err)
999 		return (err);
1000 	ASSERT(offset < UINT64_MAX);
1001 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1002 	dnode_free_range(dn, offset, size, tx);
1003 	dnode_rele(dn, FTAG);
1004 	return (0);
1005 }
1006 
1007 static int
1008 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1009     void *buf, uint32_t flags)
1010 {
1011 	dmu_buf_t **dbp;
1012 	int numbufs, err = 0;
1013 
1014 	/*
1015 	 * Deal with odd block sizes, where there can't be data past the first
1016 	 * block.  If we ever do the tail block optimization, we will need to
1017 	 * handle that here as well.
1018 	 */
1019 	if (dn->dn_maxblkid == 0) {
1020 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1021 		    MIN(size, dn->dn_datablksz - offset);
1022 		memset((char *)buf + newsz, 0, size - newsz);
1023 		size = newsz;
1024 	}
1025 
1026 	while (size > 0) {
1027 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1028 		int i;
1029 
1030 		/*
1031 		 * NB: we could do this block-at-a-time, but it's nice
1032 		 * to be reading in parallel.
1033 		 */
1034 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1035 		    TRUE, FTAG, &numbufs, &dbp, flags);
1036 		if (err)
1037 			break;
1038 
1039 		for (i = 0; i < numbufs; i++) {
1040 			uint64_t tocpy;
1041 			int64_t bufoff;
1042 			dmu_buf_t *db = dbp[i];
1043 
1044 			ASSERT(size > 0);
1045 
1046 			bufoff = offset - db->db_offset;
1047 			tocpy = MIN(db->db_size - bufoff, size);
1048 
1049 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1050 
1051 			offset += tocpy;
1052 			size -= tocpy;
1053 			buf = (char *)buf + tocpy;
1054 		}
1055 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1056 	}
1057 	return (err);
1058 }
1059 
1060 int
1061 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1062     void *buf, uint32_t flags)
1063 {
1064 	dnode_t *dn;
1065 	int err;
1066 
1067 	err = dnode_hold(os, object, FTAG, &dn);
1068 	if (err != 0)
1069 		return (err);
1070 
1071 	err = dmu_read_impl(dn, offset, size, buf, flags);
1072 	dnode_rele(dn, FTAG);
1073 	return (err);
1074 }
1075 
1076 int
1077 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1078     uint32_t flags)
1079 {
1080 	return (dmu_read_impl(dn, offset, size, buf, flags));
1081 }
1082 
1083 static void
1084 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1085     const void *buf, dmu_tx_t *tx)
1086 {
1087 	int i;
1088 
1089 	for (i = 0; i < numbufs; i++) {
1090 		uint64_t tocpy;
1091 		int64_t bufoff;
1092 		dmu_buf_t *db = dbp[i];
1093 
1094 		ASSERT(size > 0);
1095 
1096 		bufoff = offset - db->db_offset;
1097 		tocpy = MIN(db->db_size - bufoff, size);
1098 
1099 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1100 
1101 		if (tocpy == db->db_size)
1102 			dmu_buf_will_fill(db, tx);
1103 		else
1104 			dmu_buf_will_dirty(db, tx);
1105 
1106 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1107 
1108 		if (tocpy == db->db_size)
1109 			dmu_buf_fill_done(db, tx);
1110 
1111 		offset += tocpy;
1112 		size -= tocpy;
1113 		buf = (char *)buf + tocpy;
1114 	}
1115 }
1116 
1117 void
1118 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1119     const void *buf, dmu_tx_t *tx)
1120 {
1121 	dmu_buf_t **dbp;
1122 	int numbufs;
1123 
1124 	if (size == 0)
1125 		return;
1126 
1127 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1128 	    FALSE, FTAG, &numbufs, &dbp));
1129 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1130 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1131 }
1132 
1133 /*
1134  * Note: Lustre is an external consumer of this interface.
1135  */
1136 void
1137 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1138     const void *buf, dmu_tx_t *tx)
1139 {
1140 	dmu_buf_t **dbp;
1141 	int numbufs;
1142 
1143 	if (size == 0)
1144 		return;
1145 
1146 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1147 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1148 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1149 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1150 }
1151 
1152 void
1153 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1154     dmu_tx_t *tx)
1155 {
1156 	dmu_buf_t **dbp;
1157 	int numbufs, i;
1158 
1159 	if (size == 0)
1160 		return;
1161 
1162 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1163 	    FALSE, FTAG, &numbufs, &dbp));
1164 
1165 	for (i = 0; i < numbufs; i++) {
1166 		dmu_buf_t *db = dbp[i];
1167 
1168 		dmu_buf_will_not_fill(db, tx);
1169 	}
1170 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1171 }
1172 
1173 void
1174 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1175     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1176     int compressed_size, int byteorder, dmu_tx_t *tx)
1177 {
1178 	dmu_buf_t *db;
1179 
1180 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1181 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1182 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1183 	    FTAG, &db));
1184 
1185 	dmu_buf_write_embedded(db,
1186 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1187 	    uncompressed_size, compressed_size, byteorder, tx);
1188 
1189 	dmu_buf_rele(db, FTAG);
1190 }
1191 
1192 void
1193 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1194     dmu_tx_t *tx)
1195 {
1196 	int numbufs, i;
1197 	dmu_buf_t **dbp;
1198 
1199 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1200 	    &numbufs, &dbp));
1201 	for (i = 0; i < numbufs; i++)
1202 		dmu_buf_redact(dbp[i], tx);
1203 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1204 }
1205 
1206 #ifdef _KERNEL
1207 int
1208 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1209 {
1210 	dmu_buf_t **dbp;
1211 	int numbufs, i, err;
1212 
1213 	/*
1214 	 * NB: we could do this block-at-a-time, but it's nice
1215 	 * to be reading in parallel.
1216 	 */
1217 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1218 	    TRUE, FTAG, &numbufs, &dbp, 0);
1219 	if (err)
1220 		return (err);
1221 
1222 	for (i = 0; i < numbufs; i++) {
1223 		uint64_t tocpy;
1224 		int64_t bufoff;
1225 		dmu_buf_t *db = dbp[i];
1226 
1227 		ASSERT(size > 0);
1228 
1229 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1230 		tocpy = MIN(db->db_size - bufoff, size);
1231 
1232 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1233 		    UIO_READ, uio);
1234 
1235 		if (err)
1236 			break;
1237 
1238 		size -= tocpy;
1239 	}
1240 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1241 
1242 	return (err);
1243 }
1244 
1245 /*
1246  * Read 'size' bytes into the uio buffer.
1247  * From object zdb->db_object.
1248  * Starting at zfs_uio_offset(uio).
1249  *
1250  * If the caller already has a dbuf in the target object
1251  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1252  * because we don't have to find the dnode_t for the object.
1253  */
1254 int
1255 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1256 {
1257 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1258 	dnode_t *dn;
1259 	int err;
1260 
1261 	if (size == 0)
1262 		return (0);
1263 
1264 	DB_DNODE_ENTER(db);
1265 	dn = DB_DNODE(db);
1266 	err = dmu_read_uio_dnode(dn, uio, size);
1267 	DB_DNODE_EXIT(db);
1268 
1269 	return (err);
1270 }
1271 
1272 /*
1273  * Read 'size' bytes into the uio buffer.
1274  * From the specified object
1275  * Starting at offset zfs_uio_offset(uio).
1276  */
1277 int
1278 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1279 {
1280 	dnode_t *dn;
1281 	int err;
1282 
1283 	if (size == 0)
1284 		return (0);
1285 
1286 	err = dnode_hold(os, object, FTAG, &dn);
1287 	if (err)
1288 		return (err);
1289 
1290 	err = dmu_read_uio_dnode(dn, uio, size);
1291 
1292 	dnode_rele(dn, FTAG);
1293 
1294 	return (err);
1295 }
1296 
1297 int
1298 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1299 {
1300 	dmu_buf_t **dbp;
1301 	int numbufs;
1302 	int err = 0;
1303 	int i;
1304 
1305 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1306 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1307 	if (err)
1308 		return (err);
1309 
1310 	for (i = 0; i < numbufs; i++) {
1311 		uint64_t tocpy;
1312 		int64_t bufoff;
1313 		dmu_buf_t *db = dbp[i];
1314 
1315 		ASSERT(size > 0);
1316 
1317 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1318 		tocpy = MIN(db->db_size - bufoff, size);
1319 
1320 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1321 
1322 		if (tocpy == db->db_size)
1323 			dmu_buf_will_fill(db, tx);
1324 		else
1325 			dmu_buf_will_dirty(db, tx);
1326 
1327 		/*
1328 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1329 		 * pages).  There needs to be a uiolockdown() function
1330 		 * to lock the pages in memory, so that zfs_uiomove won't
1331 		 * block.
1332 		 */
1333 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1334 		    tocpy, UIO_WRITE, uio);
1335 
1336 		if (tocpy == db->db_size)
1337 			dmu_buf_fill_done(db, tx);
1338 
1339 		if (err)
1340 			break;
1341 
1342 		size -= tocpy;
1343 	}
1344 
1345 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1346 	return (err);
1347 }
1348 
1349 /*
1350  * Write 'size' bytes from the uio buffer.
1351  * To object zdb->db_object.
1352  * Starting at offset zfs_uio_offset(uio).
1353  *
1354  * If the caller already has a dbuf in the target object
1355  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1356  * because we don't have to find the dnode_t for the object.
1357  */
1358 int
1359 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1360     dmu_tx_t *tx)
1361 {
1362 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1363 	dnode_t *dn;
1364 	int err;
1365 
1366 	if (size == 0)
1367 		return (0);
1368 
1369 	DB_DNODE_ENTER(db);
1370 	dn = DB_DNODE(db);
1371 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1372 	DB_DNODE_EXIT(db);
1373 
1374 	return (err);
1375 }
1376 
1377 /*
1378  * Write 'size' bytes from the uio buffer.
1379  * To the specified object.
1380  * Starting at offset zfs_uio_offset(uio).
1381  */
1382 int
1383 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1384     dmu_tx_t *tx)
1385 {
1386 	dnode_t *dn;
1387 	int err;
1388 
1389 	if (size == 0)
1390 		return (0);
1391 
1392 	err = dnode_hold(os, object, FTAG, &dn);
1393 	if (err)
1394 		return (err);
1395 
1396 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1397 
1398 	dnode_rele(dn, FTAG);
1399 
1400 	return (err);
1401 }
1402 #endif /* _KERNEL */
1403 
1404 /*
1405  * Allocate a loaned anonymous arc buffer.
1406  */
1407 arc_buf_t *
1408 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1409 {
1410 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1411 
1412 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1413 }
1414 
1415 /*
1416  * Free a loaned arc buffer.
1417  */
1418 void
1419 dmu_return_arcbuf(arc_buf_t *buf)
1420 {
1421 	arc_return_buf(buf, FTAG);
1422 	arc_buf_destroy(buf, FTAG);
1423 }
1424 
1425 /*
1426  * A "lightweight" write is faster than a regular write (e.g.
1427  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1428  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1429  * data can not be read or overwritten until the transaction's txg has been
1430  * synced.  This makes it appropriate for workloads that are known to be
1431  * (temporarily) write-only, like "zfs receive".
1432  *
1433  * A single block is written, starting at the specified offset in bytes.  If
1434  * the call is successful, it returns 0 and the provided abd has been
1435  * consumed (the caller should not free it).
1436  */
1437 int
1438 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1439     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1440 {
1441 	dbuf_dirty_record_t *dr =
1442 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1443 	if (dr == NULL)
1444 		return (SET_ERROR(EIO));
1445 	dr->dt.dll.dr_abd = abd;
1446 	dr->dt.dll.dr_props = *zp;
1447 	dr->dt.dll.dr_flags = flags;
1448 	return (0);
1449 }
1450 
1451 /*
1452  * When possible directly assign passed loaned arc buffer to a dbuf.
1453  * If this is not possible copy the contents of passed arc buf via
1454  * dmu_write().
1455  */
1456 int
1457 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1458     dmu_tx_t *tx)
1459 {
1460 	dmu_buf_impl_t *db;
1461 	objset_t *os = dn->dn_objset;
1462 	uint64_t object = dn->dn_object;
1463 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1464 	uint64_t blkid;
1465 
1466 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1467 	blkid = dbuf_whichblock(dn, 0, offset);
1468 	db = dbuf_hold(dn, blkid, FTAG);
1469 	if (db == NULL)
1470 		return (SET_ERROR(EIO));
1471 	rw_exit(&dn->dn_struct_rwlock);
1472 
1473 	/*
1474 	 * We can only assign if the offset is aligned and the arc buf is the
1475 	 * same size as the dbuf.
1476 	 */
1477 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1478 		zfs_racct_write(blksz, 1);
1479 		dbuf_assign_arcbuf(db, buf, tx);
1480 		dbuf_rele(db, FTAG);
1481 	} else {
1482 		/* compressed bufs must always be assignable to their dbuf */
1483 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1484 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1485 
1486 		dbuf_rele(db, FTAG);
1487 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1488 		dmu_return_arcbuf(buf);
1489 	}
1490 
1491 	return (0);
1492 }
1493 
1494 int
1495 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1496     dmu_tx_t *tx)
1497 {
1498 	int err;
1499 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1500 
1501 	DB_DNODE_ENTER(dbuf);
1502 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1503 	DB_DNODE_EXIT(dbuf);
1504 
1505 	return (err);
1506 }
1507 
1508 typedef struct {
1509 	dbuf_dirty_record_t	*dsa_dr;
1510 	dmu_sync_cb_t		*dsa_done;
1511 	zgd_t			*dsa_zgd;
1512 	dmu_tx_t		*dsa_tx;
1513 } dmu_sync_arg_t;
1514 
1515 static void
1516 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1517 {
1518 	(void) buf;
1519 	dmu_sync_arg_t *dsa = varg;
1520 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1521 	blkptr_t *bp = zio->io_bp;
1522 
1523 	if (zio->io_error == 0) {
1524 		if (BP_IS_HOLE(bp)) {
1525 			/*
1526 			 * A block of zeros may compress to a hole, but the
1527 			 * block size still needs to be known for replay.
1528 			 */
1529 			BP_SET_LSIZE(bp, db->db_size);
1530 		} else if (!BP_IS_EMBEDDED(bp)) {
1531 			ASSERT(BP_GET_LEVEL(bp) == 0);
1532 			BP_SET_FILL(bp, 1);
1533 		}
1534 	}
1535 }
1536 
1537 static void
1538 dmu_sync_late_arrival_ready(zio_t *zio)
1539 {
1540 	dmu_sync_ready(zio, NULL, zio->io_private);
1541 }
1542 
1543 static void
1544 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1545 {
1546 	(void) buf;
1547 	dmu_sync_arg_t *dsa = varg;
1548 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1549 	dmu_buf_impl_t *db = dr->dr_dbuf;
1550 	zgd_t *zgd = dsa->dsa_zgd;
1551 
1552 	/*
1553 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1554 	 * the writes for the lwb have completed.
1555 	 */
1556 	if (zio->io_error == 0) {
1557 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1558 	}
1559 
1560 	mutex_enter(&db->db_mtx);
1561 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1562 	if (zio->io_error == 0) {
1563 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1564 		if (dr->dt.dl.dr_nopwrite) {
1565 			blkptr_t *bp = zio->io_bp;
1566 			blkptr_t *bp_orig = &zio->io_bp_orig;
1567 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1568 
1569 			ASSERT(BP_EQUAL(bp, bp_orig));
1570 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1571 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1572 			VERIFY(zio_checksum_table[chksum].ci_flags &
1573 			    ZCHECKSUM_FLAG_NOPWRITE);
1574 		}
1575 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1576 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1577 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1578 
1579 		/*
1580 		 * Old style holes are filled with all zeros, whereas
1581 		 * new-style holes maintain their lsize, type, level,
1582 		 * and birth time (see zio_write_compress). While we
1583 		 * need to reset the BP_SET_LSIZE() call that happened
1584 		 * in dmu_sync_ready for old style holes, we do *not*
1585 		 * want to wipe out the information contained in new
1586 		 * style holes. Thus, only zero out the block pointer if
1587 		 * it's an old style hole.
1588 		 */
1589 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1590 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1591 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1592 	} else {
1593 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1594 	}
1595 	cv_broadcast(&db->db_changed);
1596 	mutex_exit(&db->db_mtx);
1597 
1598 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1599 
1600 	kmem_free(dsa, sizeof (*dsa));
1601 }
1602 
1603 static void
1604 dmu_sync_late_arrival_done(zio_t *zio)
1605 {
1606 	blkptr_t *bp = zio->io_bp;
1607 	dmu_sync_arg_t *dsa = zio->io_private;
1608 	zgd_t *zgd = dsa->dsa_zgd;
1609 
1610 	if (zio->io_error == 0) {
1611 		/*
1612 		 * Record the vdev(s) backing this blkptr so they can be
1613 		 * flushed after the writes for the lwb have completed.
1614 		 */
1615 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1616 
1617 		if (!BP_IS_HOLE(bp)) {
1618 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1619 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1620 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1621 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1622 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1623 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1624 		}
1625 	}
1626 
1627 	dmu_tx_commit(dsa->dsa_tx);
1628 
1629 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1630 
1631 	abd_free(zio->io_abd);
1632 	kmem_free(dsa, sizeof (*dsa));
1633 }
1634 
1635 static int
1636 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1637     zio_prop_t *zp, zbookmark_phys_t *zb)
1638 {
1639 	dmu_sync_arg_t *dsa;
1640 	dmu_tx_t *tx;
1641 
1642 	tx = dmu_tx_create(os);
1643 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1644 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1645 		dmu_tx_abort(tx);
1646 		/* Make zl_get_data do txg_waited_synced() */
1647 		return (SET_ERROR(EIO));
1648 	}
1649 
1650 	/*
1651 	 * In order to prevent the zgd's lwb from being free'd prior to
1652 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1653 	 * the lwb's "max txg" takes this tx's txg into account.
1654 	 */
1655 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1656 
1657 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1658 	dsa->dsa_dr = NULL;
1659 	dsa->dsa_done = done;
1660 	dsa->dsa_zgd = zgd;
1661 	dsa->dsa_tx = tx;
1662 
1663 	/*
1664 	 * Since we are currently syncing this txg, it's nontrivial to
1665 	 * determine what BP to nopwrite against, so we disable nopwrite.
1666 	 *
1667 	 * When syncing, the db_blkptr is initially the BP of the previous
1668 	 * txg.  We can not nopwrite against it because it will be changed
1669 	 * (this is similar to the non-late-arrival case where the dbuf is
1670 	 * dirty in a future txg).
1671 	 *
1672 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1673 	 * We can not nopwrite against it because although the BP will not
1674 	 * (typically) be changed, the data has not yet been persisted to this
1675 	 * location.
1676 	 *
1677 	 * Finally, when dbuf_write_done() is called, it is theoretically
1678 	 * possible to always nopwrite, because the data that was written in
1679 	 * this txg is the same data that we are trying to write.  However we
1680 	 * would need to check that this dbuf is not dirty in any future
1681 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1682 	 * don't nopwrite in this case.
1683 	 */
1684 	zp->zp_nopwrite = B_FALSE;
1685 
1686 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1687 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1688 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1689 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1690 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1691 
1692 	return (0);
1693 }
1694 
1695 /*
1696  * Intent log support: sync the block associated with db to disk.
1697  * N.B. and XXX: the caller is responsible for making sure that the
1698  * data isn't changing while dmu_sync() is writing it.
1699  *
1700  * Return values:
1701  *
1702  *	EEXIST: this txg has already been synced, so there's nothing to do.
1703  *		The caller should not log the write.
1704  *
1705  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1706  *		The caller should not log the write.
1707  *
1708  *	EALREADY: this block is already in the process of being synced.
1709  *		The caller should track its progress (somehow).
1710  *
1711  *	EIO: could not do the I/O.
1712  *		The caller should do a txg_wait_synced().
1713  *
1714  *	0: the I/O has been initiated.
1715  *		The caller should log this blkptr in the done callback.
1716  *		It is possible that the I/O will fail, in which case
1717  *		the error will be reported to the done callback and
1718  *		propagated to pio from zio_done().
1719  */
1720 int
1721 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1722 {
1723 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1724 	objset_t *os = db->db_objset;
1725 	dsl_dataset_t *ds = os->os_dsl_dataset;
1726 	dbuf_dirty_record_t *dr, *dr_next;
1727 	dmu_sync_arg_t *dsa;
1728 	zbookmark_phys_t zb;
1729 	zio_prop_t zp;
1730 	dnode_t *dn;
1731 
1732 	ASSERT(pio != NULL);
1733 	ASSERT(txg != 0);
1734 
1735 	SET_BOOKMARK(&zb, ds->ds_object,
1736 	    db->db.db_object, db->db_level, db->db_blkid);
1737 
1738 	DB_DNODE_ENTER(db);
1739 	dn = DB_DNODE(db);
1740 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1741 	DB_DNODE_EXIT(db);
1742 
1743 	/*
1744 	 * If we're frozen (running ziltest), we always need to generate a bp.
1745 	 */
1746 	if (txg > spa_freeze_txg(os->os_spa))
1747 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1748 
1749 	/*
1750 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1751 	 * and us.  If we determine that this txg is not yet syncing,
1752 	 * but it begins to sync a moment later, that's OK because the
1753 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1754 	 */
1755 	mutex_enter(&db->db_mtx);
1756 
1757 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1758 		/*
1759 		 * This txg has already synced.  There's nothing to do.
1760 		 */
1761 		mutex_exit(&db->db_mtx);
1762 		return (SET_ERROR(EEXIST));
1763 	}
1764 
1765 	if (txg <= spa_syncing_txg(os->os_spa)) {
1766 		/*
1767 		 * This txg is currently syncing, so we can't mess with
1768 		 * the dirty record anymore; just write a new log block.
1769 		 */
1770 		mutex_exit(&db->db_mtx);
1771 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1772 	}
1773 
1774 	dr = dbuf_find_dirty_eq(db, txg);
1775 
1776 	if (dr == NULL) {
1777 		/*
1778 		 * There's no dr for this dbuf, so it must have been freed.
1779 		 * There's no need to log writes to freed blocks, so we're done.
1780 		 */
1781 		mutex_exit(&db->db_mtx);
1782 		return (SET_ERROR(ENOENT));
1783 	}
1784 
1785 	dr_next = list_next(&db->db_dirty_records, dr);
1786 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1787 
1788 	if (db->db_blkptr != NULL) {
1789 		/*
1790 		 * We need to fill in zgd_bp with the current blkptr so that
1791 		 * the nopwrite code can check if we're writing the same
1792 		 * data that's already on disk.  We can only nopwrite if we
1793 		 * are sure that after making the copy, db_blkptr will not
1794 		 * change until our i/o completes.  We ensure this by
1795 		 * holding the db_mtx, and only allowing nopwrite if the
1796 		 * block is not already dirty (see below).  This is verified
1797 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1798 		 * not changed.
1799 		 */
1800 		*zgd->zgd_bp = *db->db_blkptr;
1801 	}
1802 
1803 	/*
1804 	 * Assume the on-disk data is X, the current syncing data (in
1805 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1806 	 * in dmu_sync).
1807 	 *
1808 	 * We usually want to perform a nopwrite if X and Z are the
1809 	 * same.  However, if Y is different (i.e. the BP is going to
1810 	 * change before this write takes effect), then a nopwrite will
1811 	 * be incorrect - we would override with X, which could have
1812 	 * been freed when Y was written.
1813 	 *
1814 	 * (Note that this is not a concern when we are nop-writing from
1815 	 * syncing context, because X and Y must be identical, because
1816 	 * all previous txgs have been synced.)
1817 	 *
1818 	 * Therefore, we disable nopwrite if the current BP could change
1819 	 * before this TXG.  There are two ways it could change: by
1820 	 * being dirty (dr_next is non-NULL), or by being freed
1821 	 * (dnode_block_freed()).  This behavior is verified by
1822 	 * zio_done(), which VERIFYs that the override BP is identical
1823 	 * to the on-disk BP.
1824 	 */
1825 	DB_DNODE_ENTER(db);
1826 	dn = DB_DNODE(db);
1827 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1828 		zp.zp_nopwrite = B_FALSE;
1829 	DB_DNODE_EXIT(db);
1830 
1831 	ASSERT(dr->dr_txg == txg);
1832 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1833 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1834 		/*
1835 		 * We have already issued a sync write for this buffer,
1836 		 * or this buffer has already been synced.  It could not
1837 		 * have been dirtied since, or we would have cleared the state.
1838 		 */
1839 		mutex_exit(&db->db_mtx);
1840 		return (SET_ERROR(EALREADY));
1841 	}
1842 
1843 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1844 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1845 	mutex_exit(&db->db_mtx);
1846 
1847 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1848 	dsa->dsa_dr = dr;
1849 	dsa->dsa_done = done;
1850 	dsa->dsa_zgd = zgd;
1851 	dsa->dsa_tx = NULL;
1852 
1853 	zio_nowait(arc_write(pio, os->os_spa, txg,
1854 	    zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db),
1855 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1856 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1857 
1858 	return (0);
1859 }
1860 
1861 int
1862 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1863 {
1864 	dnode_t *dn;
1865 	int err;
1866 
1867 	err = dnode_hold(os, object, FTAG, &dn);
1868 	if (err)
1869 		return (err);
1870 	err = dnode_set_nlevels(dn, nlevels, tx);
1871 	dnode_rele(dn, FTAG);
1872 	return (err);
1873 }
1874 
1875 int
1876 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1877     dmu_tx_t *tx)
1878 {
1879 	dnode_t *dn;
1880 	int err;
1881 
1882 	err = dnode_hold(os, object, FTAG, &dn);
1883 	if (err)
1884 		return (err);
1885 	err = dnode_set_blksz(dn, size, ibs, tx);
1886 	dnode_rele(dn, FTAG);
1887 	return (err);
1888 }
1889 
1890 int
1891 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1892     dmu_tx_t *tx)
1893 {
1894 	dnode_t *dn;
1895 	int err;
1896 
1897 	err = dnode_hold(os, object, FTAG, &dn);
1898 	if (err)
1899 		return (err);
1900 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1901 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1902 	rw_exit(&dn->dn_struct_rwlock);
1903 	dnode_rele(dn, FTAG);
1904 	return (0);
1905 }
1906 
1907 void
1908 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1909     dmu_tx_t *tx)
1910 {
1911 	dnode_t *dn;
1912 
1913 	/*
1914 	 * Send streams include each object's checksum function.  This
1915 	 * check ensures that the receiving system can understand the
1916 	 * checksum function transmitted.
1917 	 */
1918 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1919 
1920 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1921 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1922 	dn->dn_checksum = checksum;
1923 	dnode_setdirty(dn, tx);
1924 	dnode_rele(dn, FTAG);
1925 }
1926 
1927 void
1928 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1929     dmu_tx_t *tx)
1930 {
1931 	dnode_t *dn;
1932 
1933 	/*
1934 	 * Send streams include each object's compression function.  This
1935 	 * check ensures that the receiving system can understand the
1936 	 * compression function transmitted.
1937 	 */
1938 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1939 
1940 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1941 	dn->dn_compress = compress;
1942 	dnode_setdirty(dn, tx);
1943 	dnode_rele(dn, FTAG);
1944 }
1945 
1946 /*
1947  * When the "redundant_metadata" property is set to "most", only indirect
1948  * blocks of this level and higher will have an additional ditto block.
1949  */
1950 static const int zfs_redundant_metadata_most_ditto_level = 2;
1951 
1952 void
1953 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1954 {
1955 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1956 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1957 	    (wp & WP_SPILL));
1958 	enum zio_checksum checksum = os->os_checksum;
1959 	enum zio_compress compress = os->os_compress;
1960 	uint8_t complevel = os->os_complevel;
1961 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1962 	boolean_t dedup = B_FALSE;
1963 	boolean_t nopwrite = B_FALSE;
1964 	boolean_t dedup_verify = os->os_dedup_verify;
1965 	boolean_t encrypt = B_FALSE;
1966 	int copies = os->os_copies;
1967 
1968 	/*
1969 	 * We maintain different write policies for each of the following
1970 	 * types of data:
1971 	 *	 1. metadata
1972 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1973 	 *	 3. all other level 0 blocks
1974 	 */
1975 	if (ismd) {
1976 		/*
1977 		 * XXX -- we should design a compression algorithm
1978 		 * that specializes in arrays of bps.
1979 		 */
1980 		compress = zio_compress_select(os->os_spa,
1981 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1982 
1983 		/*
1984 		 * Metadata always gets checksummed.  If the data
1985 		 * checksum is multi-bit correctable, and it's not a
1986 		 * ZBT-style checksum, then it's suitable for metadata
1987 		 * as well.  Otherwise, the metadata checksum defaults
1988 		 * to fletcher4.
1989 		 */
1990 		if (!(zio_checksum_table[checksum].ci_flags &
1991 		    ZCHECKSUM_FLAG_METADATA) ||
1992 		    (zio_checksum_table[checksum].ci_flags &
1993 		    ZCHECKSUM_FLAG_EMBEDDED))
1994 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1995 
1996 		switch (os->os_redundant_metadata) {
1997 		case ZFS_REDUNDANT_METADATA_ALL:
1998 			copies++;
1999 			break;
2000 		case ZFS_REDUNDANT_METADATA_MOST:
2001 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2002 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2003 				copies++;
2004 			break;
2005 		case ZFS_REDUNDANT_METADATA_SOME:
2006 			if (DMU_OT_IS_CRITICAL(type))
2007 				copies++;
2008 			break;
2009 		case ZFS_REDUNDANT_METADATA_NONE:
2010 			break;
2011 		}
2012 	} else if (wp & WP_NOFILL) {
2013 		ASSERT(level == 0);
2014 
2015 		/*
2016 		 * If we're writing preallocated blocks, we aren't actually
2017 		 * writing them so don't set any policy properties.  These
2018 		 * blocks are currently only used by an external subsystem
2019 		 * outside of zfs (i.e. dump) and not written by the zio
2020 		 * pipeline.
2021 		 */
2022 		compress = ZIO_COMPRESS_OFF;
2023 		checksum = ZIO_CHECKSUM_OFF;
2024 	} else {
2025 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2026 		    compress);
2027 		complevel = zio_complevel_select(os->os_spa, compress,
2028 		    complevel, complevel);
2029 
2030 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2031 		    zio_checksum_select(dn->dn_checksum, checksum) :
2032 		    dedup_checksum;
2033 
2034 		/*
2035 		 * Determine dedup setting.  If we are in dmu_sync(),
2036 		 * we won't actually dedup now because that's all
2037 		 * done in syncing context; but we do want to use the
2038 		 * dedup checksum.  If the checksum is not strong
2039 		 * enough to ensure unique signatures, force
2040 		 * dedup_verify.
2041 		 */
2042 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2043 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2044 			if (!(zio_checksum_table[checksum].ci_flags &
2045 			    ZCHECKSUM_FLAG_DEDUP))
2046 				dedup_verify = B_TRUE;
2047 		}
2048 
2049 		/*
2050 		 * Enable nopwrite if we have secure enough checksum
2051 		 * algorithm (see comment in zio_nop_write) and
2052 		 * compression is enabled.  We don't enable nopwrite if
2053 		 * dedup is enabled as the two features are mutually
2054 		 * exclusive.
2055 		 */
2056 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2057 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2058 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2059 	}
2060 
2061 	/*
2062 	 * All objects in an encrypted objset are protected from modification
2063 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2064 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2065 	 * not subject to nopwrite since writing the same data will still
2066 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2067 	 * to avoid ambiguity in the dedup code since the DDT does not store
2068 	 * object types.
2069 	 */
2070 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2071 		encrypt = B_TRUE;
2072 
2073 		if (DMU_OT_IS_ENCRYPTED(type)) {
2074 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2075 			nopwrite = B_FALSE;
2076 		} else {
2077 			dedup = B_FALSE;
2078 		}
2079 
2080 		if (level <= 0 &&
2081 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2082 			compress = ZIO_COMPRESS_EMPTY;
2083 		}
2084 	}
2085 
2086 	zp->zp_compress = compress;
2087 	zp->zp_complevel = complevel;
2088 	zp->zp_checksum = checksum;
2089 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2090 	zp->zp_level = level;
2091 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2092 	zp->zp_dedup = dedup;
2093 	zp->zp_dedup_verify = dedup && dedup_verify;
2094 	zp->zp_nopwrite = nopwrite;
2095 	zp->zp_encrypt = encrypt;
2096 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2097 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2098 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2099 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2100 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2101 	    os->os_zpl_special_smallblock : 0;
2102 
2103 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2104 }
2105 
2106 /*
2107  * This function is only called from zfs_holey_common() for zpl_llseek()
2108  * in order to determine the location of holes.  In order to accurately
2109  * report holes all dirty data must be synced to disk.  This causes extremely
2110  * poor performance when seeking for holes in a dirty file.  As a compromise,
2111  * only provide hole data when the dnode is clean.  When a dnode is dirty
2112  * report the dnode as having no holes which is always a safe thing to do.
2113  */
2114 int
2115 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2116 {
2117 	dnode_t *dn;
2118 	int err;
2119 
2120 restart:
2121 	err = dnode_hold(os, object, FTAG, &dn);
2122 	if (err)
2123 		return (err);
2124 
2125 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2126 
2127 	if (dnode_is_dirty(dn)) {
2128 		/*
2129 		 * If the zfs_dmu_offset_next_sync module option is enabled
2130 		 * then strict hole reporting has been requested.  Dirty
2131 		 * dnodes must be synced to disk to accurately report all
2132 		 * holes.  When disabled dirty dnodes are reported to not
2133 		 * have any holes which is always safe.
2134 		 *
2135 		 * When called by zfs_holey_common() the zp->z_rangelock
2136 		 * is held to prevent zfs_write() and mmap writeback from
2137 		 * re-dirtying the dnode after txg_wait_synced().
2138 		 */
2139 		if (zfs_dmu_offset_next_sync) {
2140 			rw_exit(&dn->dn_struct_rwlock);
2141 			dnode_rele(dn, FTAG);
2142 			txg_wait_synced(dmu_objset_pool(os), 0);
2143 			goto restart;
2144 		}
2145 
2146 		err = SET_ERROR(EBUSY);
2147 	} else {
2148 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2149 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2150 	}
2151 
2152 	rw_exit(&dn->dn_struct_rwlock);
2153 	dnode_rele(dn, FTAG);
2154 
2155 	return (err);
2156 }
2157 
2158 void
2159 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2160 {
2161 	dnode_phys_t *dnp = dn->dn_phys;
2162 
2163 	doi->doi_data_block_size = dn->dn_datablksz;
2164 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2165 	    1ULL << dn->dn_indblkshift : 0;
2166 	doi->doi_type = dn->dn_type;
2167 	doi->doi_bonus_type = dn->dn_bonustype;
2168 	doi->doi_bonus_size = dn->dn_bonuslen;
2169 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2170 	doi->doi_indirection = dn->dn_nlevels;
2171 	doi->doi_checksum = dn->dn_checksum;
2172 	doi->doi_compress = dn->dn_compress;
2173 	doi->doi_nblkptr = dn->dn_nblkptr;
2174 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2175 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2176 	doi->doi_fill_count = 0;
2177 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2178 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2179 }
2180 
2181 void
2182 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2183 {
2184 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2185 	mutex_enter(&dn->dn_mtx);
2186 
2187 	__dmu_object_info_from_dnode(dn, doi);
2188 
2189 	mutex_exit(&dn->dn_mtx);
2190 	rw_exit(&dn->dn_struct_rwlock);
2191 }
2192 
2193 /*
2194  * Get information on a DMU object.
2195  * If doi is NULL, just indicates whether the object exists.
2196  */
2197 int
2198 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2199 {
2200 	dnode_t *dn;
2201 	int err = dnode_hold(os, object, FTAG, &dn);
2202 
2203 	if (err)
2204 		return (err);
2205 
2206 	if (doi != NULL)
2207 		dmu_object_info_from_dnode(dn, doi);
2208 
2209 	dnode_rele(dn, FTAG);
2210 	return (0);
2211 }
2212 
2213 /*
2214  * As above, but faster; can be used when you have a held dbuf in hand.
2215  */
2216 void
2217 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2218 {
2219 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2220 
2221 	DB_DNODE_ENTER(db);
2222 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2223 	DB_DNODE_EXIT(db);
2224 }
2225 
2226 /*
2227  * Faster still when you only care about the size.
2228  */
2229 void
2230 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2231     u_longlong_t *nblk512)
2232 {
2233 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2234 	dnode_t *dn;
2235 
2236 	DB_DNODE_ENTER(db);
2237 	dn = DB_DNODE(db);
2238 
2239 	*blksize = dn->dn_datablksz;
2240 	/* add in number of slots used for the dnode itself */
2241 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2242 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2243 	DB_DNODE_EXIT(db);
2244 }
2245 
2246 void
2247 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2248 {
2249 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2250 	dnode_t *dn;
2251 
2252 	DB_DNODE_ENTER(db);
2253 	dn = DB_DNODE(db);
2254 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2255 	DB_DNODE_EXIT(db);
2256 }
2257 
2258 void
2259 byteswap_uint64_array(void *vbuf, size_t size)
2260 {
2261 	uint64_t *buf = vbuf;
2262 	size_t count = size >> 3;
2263 	int i;
2264 
2265 	ASSERT((size & 7) == 0);
2266 
2267 	for (i = 0; i < count; i++)
2268 		buf[i] = BSWAP_64(buf[i]);
2269 }
2270 
2271 void
2272 byteswap_uint32_array(void *vbuf, size_t size)
2273 {
2274 	uint32_t *buf = vbuf;
2275 	size_t count = size >> 2;
2276 	int i;
2277 
2278 	ASSERT((size & 3) == 0);
2279 
2280 	for (i = 0; i < count; i++)
2281 		buf[i] = BSWAP_32(buf[i]);
2282 }
2283 
2284 void
2285 byteswap_uint16_array(void *vbuf, size_t size)
2286 {
2287 	uint16_t *buf = vbuf;
2288 	size_t count = size >> 1;
2289 	int i;
2290 
2291 	ASSERT((size & 1) == 0);
2292 
2293 	for (i = 0; i < count; i++)
2294 		buf[i] = BSWAP_16(buf[i]);
2295 }
2296 
2297 void
2298 byteswap_uint8_array(void *vbuf, size_t size)
2299 {
2300 	(void) vbuf, (void) size;
2301 }
2302 
2303 void
2304 dmu_init(void)
2305 {
2306 	abd_init();
2307 	zfs_dbgmsg_init();
2308 	sa_cache_init();
2309 	dmu_objset_init();
2310 	dnode_init();
2311 	zfetch_init();
2312 	dmu_tx_init();
2313 	l2arc_init();
2314 	arc_init();
2315 	dbuf_init();
2316 }
2317 
2318 void
2319 dmu_fini(void)
2320 {
2321 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2322 	l2arc_fini();
2323 	dmu_tx_fini();
2324 	zfetch_fini();
2325 	dbuf_fini();
2326 	dnode_fini();
2327 	dmu_objset_fini();
2328 	sa_cache_fini();
2329 	zfs_dbgmsg_fini();
2330 	abd_fini();
2331 }
2332 
2333 EXPORT_SYMBOL(dmu_bonus_hold);
2334 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2335 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2336 EXPORT_SYMBOL(dmu_buf_rele_array);
2337 EXPORT_SYMBOL(dmu_prefetch);
2338 EXPORT_SYMBOL(dmu_free_range);
2339 EXPORT_SYMBOL(dmu_free_long_range);
2340 EXPORT_SYMBOL(dmu_free_long_object);
2341 EXPORT_SYMBOL(dmu_read);
2342 EXPORT_SYMBOL(dmu_read_by_dnode);
2343 EXPORT_SYMBOL(dmu_write);
2344 EXPORT_SYMBOL(dmu_write_by_dnode);
2345 EXPORT_SYMBOL(dmu_prealloc);
2346 EXPORT_SYMBOL(dmu_object_info);
2347 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2348 EXPORT_SYMBOL(dmu_object_info_from_db);
2349 EXPORT_SYMBOL(dmu_object_size_from_db);
2350 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2351 EXPORT_SYMBOL(dmu_object_set_nlevels);
2352 EXPORT_SYMBOL(dmu_object_set_blocksize);
2353 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2354 EXPORT_SYMBOL(dmu_object_set_checksum);
2355 EXPORT_SYMBOL(dmu_object_set_compress);
2356 EXPORT_SYMBOL(dmu_offset_next);
2357 EXPORT_SYMBOL(dmu_write_policy);
2358 EXPORT_SYMBOL(dmu_sync);
2359 EXPORT_SYMBOL(dmu_request_arcbuf);
2360 EXPORT_SYMBOL(dmu_return_arcbuf);
2361 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2362 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2363 EXPORT_SYMBOL(dmu_buf_hold);
2364 EXPORT_SYMBOL(dmu_ot);
2365 
2366 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2367 	"Enable NOP writes");
2368 
2369 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2370 	"Percentage of dirtied blocks from frees in one TXG");
2371 
2372 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2373 	"Enable forcing txg sync to find holes");
2374 
2375 /* CSTYLED */
2376 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2377 	"Limit one prefetch call to this size");
2378