1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  */
31 
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zvol.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dsl_destroy.h>
57 #include <sys/blkptr.h>
58 #include <sys/dsl_bookmark.h>
59 #include <sys/zfeature.h>
60 #include <sys/bqueue.h>
61 #include <sys/objlist.h>
62 #ifdef _KERNEL
63 #include <sys/zfs_vfsops.h>
64 #endif
65 #include <sys/zfs_file.h>
66 
67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
68 static int zfs_recv_queue_ff = 20;
69 static int zfs_recv_write_batch_size = 1024 * 1024;
70 
71 static void *const dmu_recv_tag = "dmu_recv_tag";
72 const char *const recv_clone_name = "%recv";
73 
74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
75     void *buf);
76 
77 struct receive_record_arg {
78 	dmu_replay_record_t header;
79 	void *payload; /* Pointer to a buffer containing the payload */
80 	/*
81 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
82 	 * payload.
83 	 */
84 	abd_t *abd;
85 	int payload_size;
86 	uint64_t bytes_read; /* bytes read from stream when record created */
87 	boolean_t eos_marker; /* Marks the end of the stream */
88 	bqueue_node_t node;
89 };
90 
91 struct receive_writer_arg {
92 	objset_t *os;
93 	boolean_t byteswap;
94 	bqueue_t q;
95 
96 	/*
97 	 * These three members are used to signal to the main thread when
98 	 * we're done.
99 	 */
100 	kmutex_t mutex;
101 	kcondvar_t cv;
102 	boolean_t done;
103 
104 	int err;
105 	boolean_t resumable;
106 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
107 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
108 	boolean_t full;  /* this is a full send stream */
109 	uint64_t last_object;
110 	uint64_t last_offset;
111 	uint64_t max_object; /* highest object ID referenced in stream */
112 	uint64_t bytes_read; /* bytes read when current record created */
113 
114 	list_t write_batch;
115 
116 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
117 	boolean_t or_crypt_params_present;
118 	uint64_t or_firstobj;
119 	uint64_t or_numslots;
120 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
121 	uint8_t or_iv[ZIO_DATA_IV_LEN];
122 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
123 	boolean_t or_byteorder;
124 };
125 
126 typedef struct dmu_recv_begin_arg {
127 	const char *drba_origin;
128 	dmu_recv_cookie_t *drba_cookie;
129 	cred_t *drba_cred;
130 	proc_t *drba_proc;
131 	dsl_crypto_params_t *drba_dcp;
132 } dmu_recv_begin_arg_t;
133 
134 static void
135 byteswap_record(dmu_replay_record_t *drr)
136 {
137 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
138 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
139 	drr->drr_type = BSWAP_32(drr->drr_type);
140 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
141 
142 	switch (drr->drr_type) {
143 	case DRR_BEGIN:
144 		DO64(drr_begin.drr_magic);
145 		DO64(drr_begin.drr_versioninfo);
146 		DO64(drr_begin.drr_creation_time);
147 		DO32(drr_begin.drr_type);
148 		DO32(drr_begin.drr_flags);
149 		DO64(drr_begin.drr_toguid);
150 		DO64(drr_begin.drr_fromguid);
151 		break;
152 	case DRR_OBJECT:
153 		DO64(drr_object.drr_object);
154 		DO32(drr_object.drr_type);
155 		DO32(drr_object.drr_bonustype);
156 		DO32(drr_object.drr_blksz);
157 		DO32(drr_object.drr_bonuslen);
158 		DO32(drr_object.drr_raw_bonuslen);
159 		DO64(drr_object.drr_toguid);
160 		DO64(drr_object.drr_maxblkid);
161 		break;
162 	case DRR_FREEOBJECTS:
163 		DO64(drr_freeobjects.drr_firstobj);
164 		DO64(drr_freeobjects.drr_numobjs);
165 		DO64(drr_freeobjects.drr_toguid);
166 		break;
167 	case DRR_WRITE:
168 		DO64(drr_write.drr_object);
169 		DO32(drr_write.drr_type);
170 		DO64(drr_write.drr_offset);
171 		DO64(drr_write.drr_logical_size);
172 		DO64(drr_write.drr_toguid);
173 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
174 		DO64(drr_write.drr_key.ddk_prop);
175 		DO64(drr_write.drr_compressed_size);
176 		break;
177 	case DRR_WRITE_EMBEDDED:
178 		DO64(drr_write_embedded.drr_object);
179 		DO64(drr_write_embedded.drr_offset);
180 		DO64(drr_write_embedded.drr_length);
181 		DO64(drr_write_embedded.drr_toguid);
182 		DO32(drr_write_embedded.drr_lsize);
183 		DO32(drr_write_embedded.drr_psize);
184 		break;
185 	case DRR_FREE:
186 		DO64(drr_free.drr_object);
187 		DO64(drr_free.drr_offset);
188 		DO64(drr_free.drr_length);
189 		DO64(drr_free.drr_toguid);
190 		break;
191 	case DRR_SPILL:
192 		DO64(drr_spill.drr_object);
193 		DO64(drr_spill.drr_length);
194 		DO64(drr_spill.drr_toguid);
195 		DO64(drr_spill.drr_compressed_size);
196 		DO32(drr_spill.drr_type);
197 		break;
198 	case DRR_OBJECT_RANGE:
199 		DO64(drr_object_range.drr_firstobj);
200 		DO64(drr_object_range.drr_numslots);
201 		DO64(drr_object_range.drr_toguid);
202 		break;
203 	case DRR_REDACT:
204 		DO64(drr_redact.drr_object);
205 		DO64(drr_redact.drr_offset);
206 		DO64(drr_redact.drr_length);
207 		DO64(drr_redact.drr_toguid);
208 		break;
209 	case DRR_END:
210 		DO64(drr_end.drr_toguid);
211 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	if (drr->drr_type != DRR_BEGIN) {
218 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
219 	}
220 
221 #undef DO64
222 #undef DO32
223 }
224 
225 static boolean_t
226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
227 {
228 	for (int i = 0; i < num_snaps; i++) {
229 		if (snaps[i] == guid)
230 			return (B_TRUE);
231 	}
232 	return (B_FALSE);
233 }
234 
235 /*
236  * Check that the new stream we're trying to receive is redacted with respect to
237  * a subset of the snapshots that the origin was redacted with respect to.  For
238  * the reasons behind this, see the man page on redacted zfs sends and receives.
239  */
240 static boolean_t
241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
242     uint64_t *redact_snaps, uint64_t num_redact_snaps)
243 {
244 	/*
245 	 * Short circuit the comparison; if we are redacted with respect to
246 	 * more snapshots than the origin, we can't be redacted with respect
247 	 * to a subset.
248 	 */
249 	if (num_redact_snaps > origin_num_snaps) {
250 		return (B_FALSE);
251 	}
252 
253 	for (int i = 0; i < num_redact_snaps; i++) {
254 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
255 		    redact_snaps[i])) {
256 			return (B_FALSE);
257 		}
258 	}
259 	return (B_TRUE);
260 }
261 
262 static boolean_t
263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
264 {
265 	uint64_t *origin_snaps;
266 	uint64_t origin_num_snaps;
267 	dmu_recv_cookie_t *drc = drba->drba_cookie;
268 	struct drr_begin *drrb = drc->drc_drrb;
269 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
270 	int err = 0;
271 	boolean_t ret = B_TRUE;
272 	uint64_t *redact_snaps;
273 	uint_t numredactsnaps;
274 
275 	/*
276 	 * If this is a full send stream, we're safe no matter what.
277 	 */
278 	if (drrb->drr_fromguid == 0)
279 		return (ret);
280 
281 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
282 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
283 
284 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
285 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
286 	    0) {
287 		/*
288 		 * If the send stream was sent from the redaction bookmark or
289 		 * the redacted version of the dataset, then we're safe.  Verify
290 		 * that this is from the a compatible redaction bookmark or
291 		 * redacted dataset.
292 		 */
293 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
294 		    redact_snaps, numredactsnaps)) {
295 			err = EINVAL;
296 		}
297 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
298 		/*
299 		 * If the stream is redacted, it must be redacted with respect
300 		 * to a subset of what the origin is redacted with respect to.
301 		 * See case number 2 in the zfs man page section on redacted zfs
302 		 * send.
303 		 */
304 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
305 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
306 
307 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
308 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
309 			err = EINVAL;
310 		}
311 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
312 	    drrb->drr_toguid)) {
313 		/*
314 		 * If the stream isn't redacted but the origin is, this must be
315 		 * one of the snapshots the origin is redacted with respect to.
316 		 * See case number 1 in the zfs man page section on redacted zfs
317 		 * send.
318 		 */
319 		err = EINVAL;
320 	}
321 
322 	if (err != 0)
323 		ret = B_FALSE;
324 	return (ret);
325 }
326 
327 /*
328  * If we previously received a stream with --large-block, we don't support
329  * receiving an incremental on top of it without --large-block.  This avoids
330  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
331  * records.
332  */
333 static int
334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
335 {
336 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
337 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
338 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
339 	return (0);
340 }
341 
342 static int
343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
344     uint64_t fromguid, uint64_t featureflags)
345 {
346 	uint64_t val;
347 	uint64_t children;
348 	int error;
349 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
350 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
351 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
352 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
353 
354 	/* Temporary clone name must not exist. */
355 	error = zap_lookup(dp->dp_meta_objset,
356 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
357 	    8, 1, &val);
358 	if (error != ENOENT)
359 		return (error == 0 ? SET_ERROR(EBUSY) : error);
360 
361 	/* Resume state must not be set. */
362 	if (dsl_dataset_has_resume_receive_state(ds))
363 		return (SET_ERROR(EBUSY));
364 
365 	/* New snapshot name must not exist. */
366 	error = zap_lookup(dp->dp_meta_objset,
367 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
368 	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
369 	if (error != ENOENT)
370 		return (error == 0 ? SET_ERROR(EEXIST) : error);
371 
372 	/* Must not have children if receiving a ZVOL. */
373 	error = zap_count(dp->dp_meta_objset,
374 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
375 	if (error != 0)
376 		return (error);
377 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
378 	    children > 0)
379 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
380 
381 	/*
382 	 * Check snapshot limit before receiving. We'll recheck again at the
383 	 * end, but might as well abort before receiving if we're already over
384 	 * the limit.
385 	 *
386 	 * Note that we do not check the file system limit with
387 	 * dsl_dir_fscount_check because the temporary %clones don't count
388 	 * against that limit.
389 	 */
390 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
391 	    NULL, drba->drba_cred, drba->drba_proc);
392 	if (error != 0)
393 		return (error);
394 
395 	if (fromguid != 0) {
396 		dsl_dataset_t *snap;
397 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
398 
399 		/* Can't perform a raw receive on top of a non-raw receive */
400 		if (!encrypted && raw)
401 			return (SET_ERROR(EINVAL));
402 
403 		/* Encryption is incompatible with embedded data */
404 		if (encrypted && embed)
405 			return (SET_ERROR(EINVAL));
406 
407 		/* Find snapshot in this dir that matches fromguid. */
408 		while (obj != 0) {
409 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
410 			    &snap);
411 			if (error != 0)
412 				return (SET_ERROR(ENODEV));
413 			if (snap->ds_dir != ds->ds_dir) {
414 				dsl_dataset_rele(snap, FTAG);
415 				return (SET_ERROR(ENODEV));
416 			}
417 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
418 				break;
419 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
420 			dsl_dataset_rele(snap, FTAG);
421 		}
422 		if (obj == 0)
423 			return (SET_ERROR(ENODEV));
424 
425 		if (drba->drba_cookie->drc_force) {
426 			drba->drba_cookie->drc_fromsnapobj = obj;
427 		} else {
428 			/*
429 			 * If we are not forcing, there must be no
430 			 * changes since fromsnap. Raw sends have an
431 			 * additional constraint that requires that
432 			 * no "noop" snapshots exist between fromsnap
433 			 * and tosnap for the IVset checking code to
434 			 * work properly.
435 			 */
436 			if (dsl_dataset_modified_since_snap(ds, snap) ||
437 			    (raw &&
438 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
439 			    snap->ds_object)) {
440 				dsl_dataset_rele(snap, FTAG);
441 				return (SET_ERROR(ETXTBSY));
442 			}
443 			drba->drba_cookie->drc_fromsnapobj =
444 			    ds->ds_prev->ds_object;
445 		}
446 
447 		if (dsl_dataset_feature_is_active(snap,
448 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
449 		    snap)) {
450 			dsl_dataset_rele(snap, FTAG);
451 			return (SET_ERROR(EINVAL));
452 		}
453 
454 		error = recv_check_large_blocks(snap, featureflags);
455 		if (error != 0) {
456 			dsl_dataset_rele(snap, FTAG);
457 			return (error);
458 		}
459 
460 		dsl_dataset_rele(snap, FTAG);
461 	} else {
462 		/* if full, then must be forced */
463 		if (!drba->drba_cookie->drc_force)
464 			return (SET_ERROR(EEXIST));
465 
466 		/*
467 		 * We don't support using zfs recv -F to blow away
468 		 * encrypted filesystems. This would require the
469 		 * dsl dir to point to the old encryption key and
470 		 * the new one at the same time during the receive.
471 		 */
472 		if ((!encrypted && raw) || encrypted)
473 			return (SET_ERROR(EINVAL));
474 
475 		/*
476 		 * Perform the same encryption checks we would if
477 		 * we were creating a new dataset from scratch.
478 		 */
479 		if (!raw) {
480 			boolean_t will_encrypt;
481 
482 			error = dmu_objset_create_crypt_check(
483 			    ds->ds_dir->dd_parent, drba->drba_dcp,
484 			    &will_encrypt);
485 			if (error != 0)
486 				return (error);
487 
488 			if (will_encrypt && embed)
489 				return (SET_ERROR(EINVAL));
490 		}
491 	}
492 
493 	return (0);
494 }
495 
496 /*
497  * Check that any feature flags used in the data stream we're receiving are
498  * supported by the pool we are receiving into.
499  *
500  * Note that some of the features we explicitly check here have additional
501  * (implicit) features they depend on, but those dependencies are enforced
502  * through the zfeature_register() calls declaring the features that we
503  * explicitly check.
504  */
505 static int
506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
507 {
508 	/*
509 	 * Check if there are any unsupported feature flags.
510 	 */
511 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
512 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
513 	}
514 
515 	/* Verify pool version supports SA if SA_SPILL feature set */
516 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
517 	    spa_version(spa) < SPA_VERSION_SA)
518 		return (SET_ERROR(ENOTSUP));
519 
520 	/*
521 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
522 	 * and large_dnodes in the stream can only be used if those pool
523 	 * features are enabled because we don't attempt to decompress /
524 	 * un-embed / un-mooch / split up the blocks / dnodes during the
525 	 * receive process.
526 	 */
527 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
528 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
529 		return (SET_ERROR(ENOTSUP));
530 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
531 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
532 		return (SET_ERROR(ENOTSUP));
533 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
534 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
535 		return (SET_ERROR(ENOTSUP));
536 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
537 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
538 		return (SET_ERROR(ENOTSUP));
539 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
540 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
541 		return (SET_ERROR(ENOTSUP));
542 
543 	/*
544 	 * Receiving redacted streams requires that redacted datasets are
545 	 * enabled.
546 	 */
547 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
548 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
549 		return (SET_ERROR(ENOTSUP));
550 
551 	return (0);
552 }
553 
554 static int
555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
556 {
557 	dmu_recv_begin_arg_t *drba = arg;
558 	dsl_pool_t *dp = dmu_tx_pool(tx);
559 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
560 	uint64_t fromguid = drrb->drr_fromguid;
561 	int flags = drrb->drr_flags;
562 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
563 	int error;
564 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
565 	dsl_dataset_t *ds;
566 	const char *tofs = drba->drba_cookie->drc_tofs;
567 
568 	/* already checked */
569 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
570 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
571 
572 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
573 	    DMU_COMPOUNDSTREAM ||
574 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
575 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
576 		return (SET_ERROR(EINVAL));
577 
578 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
579 	if (error != 0)
580 		return (error);
581 
582 	/* Resumable receives require extensible datasets */
583 	if (drba->drba_cookie->drc_resumable &&
584 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
585 		return (SET_ERROR(ENOTSUP));
586 
587 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
588 		/* raw receives require the encryption feature */
589 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
590 			return (SET_ERROR(ENOTSUP));
591 
592 		/* embedded data is incompatible with encryption and raw recv */
593 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
594 			return (SET_ERROR(EINVAL));
595 
596 		/* raw receives require spill block allocation flag */
597 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
598 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
599 	} else {
600 		/*
601 		 * We support unencrypted datasets below encrypted ones now,
602 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
603 		 * with a dataset we may encrypt.
604 		 */
605 		if (drba->drba_dcp != NULL &&
606 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
607 			dsflags |= DS_HOLD_FLAG_DECRYPT;
608 		}
609 	}
610 
611 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
612 	if (error == 0) {
613 		/* target fs already exists; recv into temp clone */
614 
615 		/* Can't recv a clone into an existing fs */
616 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
617 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
618 			return (SET_ERROR(EINVAL));
619 		}
620 
621 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
622 		    featureflags);
623 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
624 	} else if (error == ENOENT) {
625 		/* target fs does not exist; must be a full backup or clone */
626 		char buf[ZFS_MAX_DATASET_NAME_LEN];
627 		objset_t *os;
628 
629 		/*
630 		 * If it's a non-clone incremental, we are missing the
631 		 * target fs, so fail the recv.
632 		 */
633 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
634 		    drba->drba_origin))
635 			return (SET_ERROR(ENOENT));
636 
637 		/*
638 		 * If we're receiving a full send as a clone, and it doesn't
639 		 * contain all the necessary free records and freeobject
640 		 * records, reject it.
641 		 */
642 		if (fromguid == 0 && drba->drba_origin != NULL &&
643 		    !(flags & DRR_FLAG_FREERECORDS))
644 			return (SET_ERROR(EINVAL));
645 
646 		/* Open the parent of tofs */
647 		ASSERT3U(strlen(tofs), <, sizeof (buf));
648 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
649 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
650 		if (error != 0)
651 			return (error);
652 
653 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
654 		    drba->drba_origin == NULL) {
655 			boolean_t will_encrypt;
656 
657 			/*
658 			 * Check that we aren't breaking any encryption rules
659 			 * and that we have all the parameters we need to
660 			 * create an encrypted dataset if necessary. If we are
661 			 * making an encrypted dataset the stream can't have
662 			 * embedded data.
663 			 */
664 			error = dmu_objset_create_crypt_check(ds->ds_dir,
665 			    drba->drba_dcp, &will_encrypt);
666 			if (error != 0) {
667 				dsl_dataset_rele(ds, FTAG);
668 				return (error);
669 			}
670 
671 			if (will_encrypt &&
672 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
673 				dsl_dataset_rele(ds, FTAG);
674 				return (SET_ERROR(EINVAL));
675 			}
676 		}
677 
678 		/*
679 		 * Check filesystem and snapshot limits before receiving. We'll
680 		 * recheck snapshot limits again at the end (we create the
681 		 * filesystems and increment those counts during begin_sync).
682 		 */
683 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
684 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
685 		    drba->drba_cred, drba->drba_proc);
686 		if (error != 0) {
687 			dsl_dataset_rele(ds, FTAG);
688 			return (error);
689 		}
690 
691 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
692 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
693 		    drba->drba_cred, drba->drba_proc);
694 		if (error != 0) {
695 			dsl_dataset_rele(ds, FTAG);
696 			return (error);
697 		}
698 
699 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
700 		error = dmu_objset_from_ds(ds, &os);
701 		if (error != 0) {
702 			dsl_dataset_rele(ds, FTAG);
703 			return (error);
704 		}
705 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
706 			dsl_dataset_rele(ds, FTAG);
707 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
708 		}
709 
710 		if (drba->drba_origin != NULL) {
711 			dsl_dataset_t *origin;
712 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
713 			    dsflags, FTAG, &origin);
714 			if (error != 0) {
715 				dsl_dataset_rele(ds, FTAG);
716 				return (error);
717 			}
718 			if (!origin->ds_is_snapshot) {
719 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
720 				dsl_dataset_rele(ds, FTAG);
721 				return (SET_ERROR(EINVAL));
722 			}
723 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
724 			    fromguid != 0) {
725 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
726 				dsl_dataset_rele(ds, FTAG);
727 				return (SET_ERROR(ENODEV));
728 			}
729 
730 			if (origin->ds_dir->dd_crypto_obj != 0 &&
731 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
732 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
733 				dsl_dataset_rele(ds, FTAG);
734 				return (SET_ERROR(EINVAL));
735 			}
736 
737 			/*
738 			 * If the origin is redacted we need to verify that this
739 			 * send stream can safely be received on top of the
740 			 * origin.
741 			 */
742 			if (dsl_dataset_feature_is_active(origin,
743 			    SPA_FEATURE_REDACTED_DATASETS)) {
744 				if (!redact_check(drba, origin)) {
745 					dsl_dataset_rele_flags(origin, dsflags,
746 					    FTAG);
747 					dsl_dataset_rele_flags(ds, dsflags,
748 					    FTAG);
749 					return (SET_ERROR(EINVAL));
750 				}
751 			}
752 
753 			error = recv_check_large_blocks(ds, featureflags);
754 			if (error != 0) {
755 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
756 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
757 				return (error);
758 			}
759 
760 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
761 		}
762 
763 		dsl_dataset_rele(ds, FTAG);
764 		error = 0;
765 	}
766 	return (error);
767 }
768 
769 static void
770 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
771 {
772 	dmu_recv_begin_arg_t *drba = arg;
773 	dsl_pool_t *dp = dmu_tx_pool(tx);
774 	objset_t *mos = dp->dp_meta_objset;
775 	dmu_recv_cookie_t *drc = drba->drba_cookie;
776 	struct drr_begin *drrb = drc->drc_drrb;
777 	const char *tofs = drc->drc_tofs;
778 	uint64_t featureflags = drc->drc_featureflags;
779 	dsl_dataset_t *ds, *newds;
780 	objset_t *os;
781 	uint64_t dsobj;
782 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
783 	int error;
784 	uint64_t crflags = 0;
785 	dsl_crypto_params_t dummy_dcp = { 0 };
786 	dsl_crypto_params_t *dcp = drba->drba_dcp;
787 
788 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
789 		crflags |= DS_FLAG_CI_DATASET;
790 
791 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
792 		dsflags |= DS_HOLD_FLAG_DECRYPT;
793 
794 	/*
795 	 * Raw, non-incremental recvs always use a dummy dcp with
796 	 * the raw cmd set. Raw incremental recvs do not use a dcp
797 	 * since the encryption parameters are already set in stone.
798 	 */
799 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
800 	    drba->drba_origin == NULL) {
801 		ASSERT3P(dcp, ==, NULL);
802 		dcp = &dummy_dcp;
803 
804 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
805 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
806 	}
807 
808 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
809 	if (error == 0) {
810 		/* create temporary clone */
811 		dsl_dataset_t *snap = NULL;
812 
813 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
814 			VERIFY0(dsl_dataset_hold_obj(dp,
815 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
816 			ASSERT3P(dcp, ==, NULL);
817 		}
818 		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
819 		    snap, crflags, drba->drba_cred, dcp, tx);
820 		if (drba->drba_cookie->drc_fromsnapobj != 0)
821 			dsl_dataset_rele(snap, FTAG);
822 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
823 	} else {
824 		dsl_dir_t *dd;
825 		const char *tail;
826 		dsl_dataset_t *origin = NULL;
827 
828 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
829 
830 		if (drba->drba_origin != NULL) {
831 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
832 			    FTAG, &origin));
833 			ASSERT3P(dcp, ==, NULL);
834 		}
835 
836 		/* Create new dataset. */
837 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
838 		    origin, crflags, drba->drba_cred, dcp, tx);
839 		if (origin != NULL)
840 			dsl_dataset_rele(origin, FTAG);
841 		dsl_dir_rele(dd, FTAG);
842 		drc->drc_newfs = B_TRUE;
843 	}
844 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
845 	    &newds));
846 	if (dsl_dataset_feature_is_active(newds,
847 	    SPA_FEATURE_REDACTED_DATASETS)) {
848 		/*
849 		 * If the origin dataset is redacted, the child will be redacted
850 		 * when we create it.  We clear the new dataset's
851 		 * redaction info; if it should be redacted, we'll fill
852 		 * in its information later.
853 		 */
854 		dsl_dataset_deactivate_feature(newds,
855 		    SPA_FEATURE_REDACTED_DATASETS, tx);
856 	}
857 	VERIFY0(dmu_objset_from_ds(newds, &os));
858 
859 	if (drc->drc_resumable) {
860 		dsl_dataset_zapify(newds, tx);
861 		if (drrb->drr_fromguid != 0) {
862 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
863 			    8, 1, &drrb->drr_fromguid, tx));
864 		}
865 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
866 		    8, 1, &drrb->drr_toguid, tx));
867 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
868 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
869 		uint64_t one = 1;
870 		uint64_t zero = 0;
871 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
872 		    8, 1, &one, tx));
873 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
874 		    8, 1, &zero, tx));
875 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
876 		    8, 1, &zero, tx));
877 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
878 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
879 			    8, 1, &one, tx));
880 		}
881 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
882 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
883 			    8, 1, &one, tx));
884 		}
885 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
886 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
887 			    8, 1, &one, tx));
888 		}
889 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
890 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
891 			    8, 1, &one, tx));
892 		}
893 
894 		uint64_t *redact_snaps;
895 		uint_t numredactsnaps;
896 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
897 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
898 		    &numredactsnaps) == 0) {
899 			VERIFY0(zap_add(mos, dsobj,
900 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
901 			    sizeof (*redact_snaps), numredactsnaps,
902 			    redact_snaps, tx));
903 		}
904 	}
905 
906 	/*
907 	 * Usually the os->os_encrypted value is tied to the presence of a
908 	 * DSL Crypto Key object in the dd. However, that will not be received
909 	 * until dmu_recv_stream(), so we set the value manually for now.
910 	 */
911 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
912 		os->os_encrypted = B_TRUE;
913 		drba->drba_cookie->drc_raw = B_TRUE;
914 	}
915 
916 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
917 		uint64_t *redact_snaps;
918 		uint_t numredactsnaps;
919 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
920 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
921 		dsl_dataset_activate_redaction(newds, redact_snaps,
922 		    numredactsnaps, tx);
923 	}
924 
925 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
926 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
927 
928 	/*
929 	 * If we actually created a non-clone, we need to create the objset
930 	 * in our new dataset. If this is a raw send we postpone this until
931 	 * dmu_recv_stream() so that we can allocate the metadnode with the
932 	 * properties from the DRR_BEGIN payload.
933 	 */
934 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
935 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
936 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
937 		(void) dmu_objset_create_impl(dp->dp_spa,
938 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
939 	}
940 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
941 
942 	drba->drba_cookie->drc_ds = newds;
943 	drba->drba_cookie->drc_os = os;
944 
945 	spa_history_log_internal_ds(newds, "receive", tx, " ");
946 }
947 
948 static int
949 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
950 {
951 	dmu_recv_begin_arg_t *drba = arg;
952 	dmu_recv_cookie_t *drc = drba->drba_cookie;
953 	dsl_pool_t *dp = dmu_tx_pool(tx);
954 	struct drr_begin *drrb = drc->drc_drrb;
955 	int error;
956 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
957 	dsl_dataset_t *ds;
958 	const char *tofs = drc->drc_tofs;
959 
960 	/* already checked */
961 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
962 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
963 
964 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
965 	    DMU_COMPOUNDSTREAM ||
966 	    drrb->drr_type >= DMU_OST_NUMTYPES)
967 		return (SET_ERROR(EINVAL));
968 
969 	/*
970 	 * This is mostly a sanity check since we should have already done these
971 	 * checks during a previous attempt to receive the data.
972 	 */
973 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
974 	    dp->dp_spa);
975 	if (error != 0)
976 		return (error);
977 
978 	/* 6 extra bytes for /%recv */
979 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
980 
981 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
982 	    tofs, recv_clone_name);
983 
984 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
985 		/* raw receives require spill block allocation flag */
986 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
987 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
988 	} else {
989 		dsflags |= DS_HOLD_FLAG_DECRYPT;
990 	}
991 
992 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
993 		/* %recv does not exist; continue in tofs */
994 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
995 		if (error != 0)
996 			return (error);
997 	}
998 
999 	/* check that ds is marked inconsistent */
1000 	if (!DS_IS_INCONSISTENT(ds)) {
1001 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1002 		return (SET_ERROR(EINVAL));
1003 	}
1004 
1005 	/* check that there is resuming data, and that the toguid matches */
1006 	if (!dsl_dataset_is_zapified(ds)) {
1007 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1008 		return (SET_ERROR(EINVAL));
1009 	}
1010 	uint64_t val;
1011 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1012 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1013 	if (error != 0 || drrb->drr_toguid != val) {
1014 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1015 		return (SET_ERROR(EINVAL));
1016 	}
1017 
1018 	/*
1019 	 * Check if the receive is still running.  If so, it will be owned.
1020 	 * Note that nothing else can own the dataset (e.g. after the receive
1021 	 * fails) because it will be marked inconsistent.
1022 	 */
1023 	if (dsl_dataset_has_owner(ds)) {
1024 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1025 		return (SET_ERROR(EBUSY));
1026 	}
1027 
1028 	/* There should not be any snapshots of this fs yet. */
1029 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1030 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1031 		return (SET_ERROR(EINVAL));
1032 	}
1033 
1034 	/*
1035 	 * Note: resume point will be checked when we process the first WRITE
1036 	 * record.
1037 	 */
1038 
1039 	/* check that the origin matches */
1040 	val = 0;
1041 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1042 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1043 	if (drrb->drr_fromguid != val) {
1044 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1045 		return (SET_ERROR(EINVAL));
1046 	}
1047 
1048 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1049 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1050 
1051 	/*
1052 	 * If we're resuming, and the send is redacted, then the original send
1053 	 * must have been redacted, and must have been redacted with respect to
1054 	 * the same snapshots.
1055 	 */
1056 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1057 		uint64_t num_ds_redact_snaps;
1058 		uint64_t *ds_redact_snaps;
1059 
1060 		uint_t num_stream_redact_snaps;
1061 		uint64_t *stream_redact_snaps;
1062 
1063 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1064 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1065 		    &num_stream_redact_snaps) != 0) {
1066 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1067 			return (SET_ERROR(EINVAL));
1068 		}
1069 
1070 		if (!dsl_dataset_get_uint64_array_feature(ds,
1071 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1072 		    &ds_redact_snaps)) {
1073 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1074 			return (SET_ERROR(EINVAL));
1075 		}
1076 
1077 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1078 			if (!redact_snaps_contains(ds_redact_snaps,
1079 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1080 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081 				return (SET_ERROR(EINVAL));
1082 			}
1083 		}
1084 	}
1085 
1086 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1087 	if (error != 0) {
1088 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1089 		return (error);
1090 	}
1091 
1092 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1093 	return (0);
1094 }
1095 
1096 static void
1097 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1098 {
1099 	dmu_recv_begin_arg_t *drba = arg;
1100 	dsl_pool_t *dp = dmu_tx_pool(tx);
1101 	const char *tofs = drba->drba_cookie->drc_tofs;
1102 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1103 	dsl_dataset_t *ds;
1104 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1105 	/* 6 extra bytes for /%recv */
1106 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1107 
1108 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1109 	    recv_clone_name);
1110 
1111 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1112 		drba->drba_cookie->drc_raw = B_TRUE;
1113 	} else {
1114 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1115 	}
1116 
1117 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1118 	    != 0) {
1119 		/* %recv does not exist; continue in tofs */
1120 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1121 		    &ds));
1122 		drba->drba_cookie->drc_newfs = B_TRUE;
1123 	}
1124 
1125 	ASSERT(DS_IS_INCONSISTENT(ds));
1126 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1127 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1128 	    drba->drba_cookie->drc_raw);
1129 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1130 
1131 	drba->drba_cookie->drc_ds = ds;
1132 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1133 	drba->drba_cookie->drc_should_save = B_TRUE;
1134 
1135 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1136 }
1137 
1138 /*
1139  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1140  * succeeds; otherwise we will leak the holds on the datasets.
1141  */
1142 int
1143 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1144     boolean_t force, boolean_t resumable, nvlist_t *localprops,
1145     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1146     zfs_file_t *fp, offset_t *voffp)
1147 {
1148 	dmu_recv_begin_arg_t drba = { 0 };
1149 	int err;
1150 
1151 	bzero(drc, sizeof (dmu_recv_cookie_t));
1152 	drc->drc_drr_begin = drr_begin;
1153 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1154 	drc->drc_tosnap = tosnap;
1155 	drc->drc_tofs = tofs;
1156 	drc->drc_force = force;
1157 	drc->drc_resumable = resumable;
1158 	drc->drc_cred = CRED();
1159 	drc->drc_proc = curproc;
1160 	drc->drc_clone = (origin != NULL);
1161 
1162 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1163 		drc->drc_byteswap = B_TRUE;
1164 		(void) fletcher_4_incremental_byteswap(drr_begin,
1165 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1166 		byteswap_record(drr_begin);
1167 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1168 		(void) fletcher_4_incremental_native(drr_begin,
1169 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1170 	} else {
1171 		return (SET_ERROR(EINVAL));
1172 	}
1173 
1174 	drc->drc_fp = fp;
1175 	drc->drc_voff = *voffp;
1176 	drc->drc_featureflags =
1177 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1178 
1179 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1180 	void *payload = NULL;
1181 	if (payloadlen != 0)
1182 		payload = kmem_alloc(payloadlen, KM_SLEEP);
1183 
1184 	err = receive_read_payload_and_next_header(drc, payloadlen,
1185 	    payload);
1186 	if (err != 0) {
1187 		kmem_free(payload, payloadlen);
1188 		return (err);
1189 	}
1190 	if (payloadlen != 0) {
1191 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1192 		    KM_SLEEP);
1193 		kmem_free(payload, payloadlen);
1194 		if (err != 0) {
1195 			kmem_free(drc->drc_next_rrd,
1196 			    sizeof (*drc->drc_next_rrd));
1197 			return (err);
1198 		}
1199 	}
1200 
1201 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1202 		drc->drc_spill = B_TRUE;
1203 
1204 	drba.drba_origin = origin;
1205 	drba.drba_cookie = drc;
1206 	drba.drba_cred = CRED();
1207 	drba.drba_proc = curproc;
1208 
1209 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1210 		err = dsl_sync_task(tofs,
1211 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1212 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1213 	} else {
1214 
1215 		/*
1216 		 * For non-raw, non-incremental, non-resuming receives the
1217 		 * user can specify encryption parameters on the command line
1218 		 * with "zfs recv -o". For these receives we create a dcp and
1219 		 * pass it to the sync task. Creating the dcp will implicitly
1220 		 * remove the encryption params from the localprops nvlist,
1221 		 * which avoids errors when trying to set these normally
1222 		 * read-only properties. Any other kind of receive that
1223 		 * attempts to set these properties will fail as a result.
1224 		 */
1225 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1226 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1227 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1228 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1229 			    localprops, hidden_args, &drba.drba_dcp);
1230 		}
1231 
1232 		if (err == 0) {
1233 			err = dsl_sync_task(tofs,
1234 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1235 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1236 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1237 		}
1238 	}
1239 
1240 	if (err != 0) {
1241 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1242 		nvlist_free(drc->drc_begin_nvl);
1243 	}
1244 	return (err);
1245 }
1246 
1247 static int
1248 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1249 {
1250 	int done = 0;
1251 
1252 	/*
1253 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1254 	 * comment in dump_bytes.
1255 	 */
1256 	ASSERT(len % 8 == 0 ||
1257 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1258 
1259 	while (done < len) {
1260 		ssize_t resid;
1261 		zfs_file_t *fp = drc->drc_fp;
1262 		int err = zfs_file_read(fp, (char *)buf + done,
1263 		    len - done, &resid);
1264 		if (resid == len - done) {
1265 			/*
1266 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1267 			 * that the receive was interrupted and can
1268 			 * potentially be resumed.
1269 			 */
1270 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1271 		}
1272 		drc->drc_voff += len - done - resid;
1273 		done = len - resid;
1274 		if (err != 0)
1275 			return (err);
1276 	}
1277 
1278 	drc->drc_bytes_read += len;
1279 
1280 	ASSERT3U(done, ==, len);
1281 	return (0);
1282 }
1283 
1284 static inline uint8_t
1285 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1286 {
1287 	if (bonus_type == DMU_OT_SA) {
1288 		return (1);
1289 	} else {
1290 		return (1 +
1291 		    ((DN_OLD_MAX_BONUSLEN -
1292 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1293 	}
1294 }
1295 
1296 static void
1297 save_resume_state(struct receive_writer_arg *rwa,
1298     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1299 {
1300 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1301 
1302 	if (!rwa->resumable)
1303 		return;
1304 
1305 	/*
1306 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1307 	 * update this on disk, so it must not be 0.
1308 	 */
1309 	ASSERT(rwa->bytes_read != 0);
1310 
1311 	/*
1312 	 * We only resume from write records, which have a valid
1313 	 * (non-meta-dnode) object number.
1314 	 */
1315 	ASSERT(object != 0);
1316 
1317 	/*
1318 	 * For resuming to work correctly, we must receive records in order,
1319 	 * sorted by object,offset.  This is checked by the callers, but
1320 	 * assert it here for good measure.
1321 	 */
1322 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1323 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1324 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1325 	ASSERT3U(rwa->bytes_read, >=,
1326 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1327 
1328 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1329 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1330 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1331 }
1332 
1333 static int
1334 receive_object_is_same_generation(objset_t *os, uint64_t object,
1335     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1336     const void *new_bonus, boolean_t *samegenp)
1337 {
1338 	zfs_file_info_t zoi;
1339 	int err;
1340 
1341 	dmu_buf_t *old_bonus_dbuf;
1342 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1343 	if (err != 0)
1344 		return (err);
1345 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1346 	    &zoi);
1347 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1348 	if (err != 0)
1349 		return (err);
1350 	uint64_t old_gen = zoi.zfi_generation;
1351 
1352 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1353 	if (err != 0)
1354 		return (err);
1355 	uint64_t new_gen = zoi.zfi_generation;
1356 
1357 	*samegenp = (old_gen == new_gen);
1358 	return (0);
1359 }
1360 
1361 static int
1362 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1363     const struct drr_object *drro, const dmu_object_info_t *doi,
1364     const void *bonus_data,
1365     uint64_t *object_to_hold, uint32_t *new_blksz)
1366 {
1367 	uint32_t indblksz = drro->drr_indblkshift ?
1368 	    1ULL << drro->drr_indblkshift : 0;
1369 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1370 	    drro->drr_bonuslen);
1371 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1372 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1373 	boolean_t do_free_range = B_FALSE;
1374 	int err;
1375 
1376 	*object_to_hold = drro->drr_object;
1377 
1378 	/* nblkptr should be bounded by the bonus size and type */
1379 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1380 		return (SET_ERROR(EINVAL));
1381 
1382 	/*
1383 	 * After the previous send stream, the sending system may
1384 	 * have freed this object, and then happened to re-allocate
1385 	 * this object number in a later txg. In this case, we are
1386 	 * receiving a different logical file, and the block size may
1387 	 * appear to be different.  i.e. we may have a different
1388 	 * block size for this object than what the send stream says.
1389 	 * In this case we need to remove the object's contents,
1390 	 * so that its structure can be changed and then its contents
1391 	 * entirely replaced by subsequent WRITE records.
1392 	 *
1393 	 * If this is a -L (--large-block) incremental stream, and
1394 	 * the previous stream was not -L, the block size may appear
1395 	 * to increase.  i.e. we may have a smaller block size for
1396 	 * this object than what the send stream says.  In this case
1397 	 * we need to keep the object's contents and block size
1398 	 * intact, so that we don't lose parts of the object's
1399 	 * contents that are not changed by this incremental send
1400 	 * stream.
1401 	 *
1402 	 * We can distinguish between the two above cases by using
1403 	 * the ZPL's generation number (see
1404 	 * receive_object_is_same_generation()).  However, we only
1405 	 * want to rely on the generation number when absolutely
1406 	 * necessary, because with raw receives, the generation is
1407 	 * encrypted.  We also want to minimize dependence on the
1408 	 * ZPL, so that other types of datasets can also be received
1409 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1410 	 * reallocate their objects or change their structure).
1411 	 * Therefore, we check a number of different cases where we
1412 	 * know it is safe to discard the object's contents, before
1413 	 * using the ZPL's generation number to make the above
1414 	 * distinction.
1415 	 */
1416 	if (drro->drr_blksz != doi->doi_data_block_size) {
1417 		if (rwa->raw) {
1418 			/*
1419 			 * RAW streams always have large blocks, so
1420 			 * we are sure that the data is not needed
1421 			 * due to changing --large-block to be on.
1422 			 * Which is fortunate since the bonus buffer
1423 			 * (which contains the ZPL generation) is
1424 			 * encrypted, and the key might not be
1425 			 * loaded.
1426 			 */
1427 			do_free_range = B_TRUE;
1428 		} else if (rwa->full) {
1429 			/*
1430 			 * This is a full send stream, so it always
1431 			 * replaces what we have.  Even if the
1432 			 * generation numbers happen to match, this
1433 			 * can not actually be the same logical file.
1434 			 * This is relevant when receiving a full
1435 			 * send as a clone.
1436 			 */
1437 			do_free_range = B_TRUE;
1438 		} else if (drro->drr_type !=
1439 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1440 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1441 			/*
1442 			 * PLAIN_FILE_CONTENTS are the only type of
1443 			 * objects that have ever been stored with
1444 			 * large blocks, so we don't need the special
1445 			 * logic below.  ZAP blocks can shrink (when
1446 			 * there's only one block), so we don't want
1447 			 * to hit the error below about block size
1448 			 * only increasing.
1449 			 */
1450 			do_free_range = B_TRUE;
1451 		} else if (doi->doi_max_offset <=
1452 		    doi->doi_data_block_size) {
1453 			/*
1454 			 * There is only one block.  We can free it,
1455 			 * because its contents will be replaced by a
1456 			 * WRITE record.  This can not be the no-L ->
1457 			 * -L case, because the no-L case would have
1458 			 * resulted in multiple blocks.  If we
1459 			 * supported -L -> no-L, it would not be safe
1460 			 * to free the file's contents.  Fortunately,
1461 			 * that is not allowed (see
1462 			 * recv_check_large_blocks()).
1463 			 */
1464 			do_free_range = B_TRUE;
1465 		} else {
1466 			boolean_t is_same_gen;
1467 			err = receive_object_is_same_generation(rwa->os,
1468 			    drro->drr_object, doi->doi_bonus_type,
1469 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1470 			if (err != 0)
1471 				return (SET_ERROR(EINVAL));
1472 
1473 			if (is_same_gen) {
1474 				/*
1475 				 * This is the same logical file, and
1476 				 * the block size must be increasing.
1477 				 * It could only decrease if
1478 				 * --large-block was changed to be
1479 				 * off, which is checked in
1480 				 * recv_check_large_blocks().
1481 				 */
1482 				if (drro->drr_blksz <=
1483 				    doi->doi_data_block_size)
1484 					return (SET_ERROR(EINVAL));
1485 				/*
1486 				 * We keep the existing blocksize and
1487 				 * contents.
1488 				 */
1489 				*new_blksz =
1490 				    doi->doi_data_block_size;
1491 			} else {
1492 				do_free_range = B_TRUE;
1493 			}
1494 		}
1495 	}
1496 
1497 	/* nblkptr can only decrease if the object was reallocated */
1498 	if (nblkptr < doi->doi_nblkptr)
1499 		do_free_range = B_TRUE;
1500 
1501 	/* number of slots can only change on reallocation */
1502 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1503 		do_free_range = B_TRUE;
1504 
1505 	/*
1506 	 * For raw sends we also check a few other fields to
1507 	 * ensure we are preserving the objset structure exactly
1508 	 * as it was on the receive side:
1509 	 *     - A changed indirect block size
1510 	 *     - A smaller nlevels
1511 	 */
1512 	if (rwa->raw) {
1513 		if (indblksz != doi->doi_metadata_block_size)
1514 			do_free_range = B_TRUE;
1515 		if (drro->drr_nlevels < doi->doi_indirection)
1516 			do_free_range = B_TRUE;
1517 	}
1518 
1519 	if (do_free_range) {
1520 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1521 		    0, DMU_OBJECT_END);
1522 		if (err != 0)
1523 			return (SET_ERROR(EINVAL));
1524 	}
1525 
1526 	/*
1527 	 * The dmu does not currently support decreasing nlevels
1528 	 * or changing the number of dnode slots on an object. For
1529 	 * non-raw sends, this does not matter and the new object
1530 	 * can just use the previous one's nlevels. For raw sends,
1531 	 * however, the structure of the received dnode (including
1532 	 * nlevels and dnode slots) must match that of the send
1533 	 * side. Therefore, instead of using dmu_object_reclaim(),
1534 	 * we must free the object completely and call
1535 	 * dmu_object_claim_dnsize() instead.
1536 	 */
1537 	if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1538 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1539 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1540 		if (err != 0)
1541 			return (SET_ERROR(EINVAL));
1542 
1543 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1544 		*object_to_hold = DMU_NEW_OBJECT;
1545 	}
1546 
1547 	/*
1548 	 * For raw receives, free everything beyond the new incoming
1549 	 * maxblkid. Normally this would be done with a DRR_FREE
1550 	 * record that would come after this DRR_OBJECT record is
1551 	 * processed. However, for raw receives we manually set the
1552 	 * maxblkid from the drr_maxblkid and so we must first free
1553 	 * everything above that blkid to ensure the DMU is always
1554 	 * consistent with itself. We will never free the first block
1555 	 * of the object here because a maxblkid of 0 could indicate
1556 	 * an object with a single block or one with no blocks. This
1557 	 * free may be skipped when dmu_free_long_range() was called
1558 	 * above since it covers the entire object's contents.
1559 	 */
1560 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1561 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1562 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1563 		    DMU_OBJECT_END);
1564 		if (err != 0)
1565 			return (SET_ERROR(EINVAL));
1566 	}
1567 	return (0);
1568 }
1569 
1570 noinline static int
1571 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1572     void *data)
1573 {
1574 	dmu_object_info_t doi;
1575 	dmu_tx_t *tx;
1576 	int err;
1577 	uint32_t new_blksz = drro->drr_blksz;
1578 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1579 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1580 
1581 	if (drro->drr_type == DMU_OT_NONE ||
1582 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1583 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1584 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1585 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1586 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1587 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1588 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1589 	    drro->drr_bonuslen >
1590 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1591 	    dn_slots >
1592 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1593 		return (SET_ERROR(EINVAL));
1594 	}
1595 
1596 	if (rwa->raw) {
1597 		/*
1598 		 * We should have received a DRR_OBJECT_RANGE record
1599 		 * containing this block and stored it in rwa.
1600 		 */
1601 		if (drro->drr_object < rwa->or_firstobj ||
1602 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1603 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1604 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1605 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1606 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1607 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1608 		    drro->drr_raw_bonuslen)
1609 			return (SET_ERROR(EINVAL));
1610 	} else {
1611 		/*
1612 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1613 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1614 		 */
1615 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1616 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1617 			return (SET_ERROR(EINVAL));
1618 		}
1619 
1620 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1621 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1622 			return (SET_ERROR(EINVAL));
1623 		}
1624 	}
1625 
1626 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1627 
1628 	if (err != 0 && err != ENOENT && err != EEXIST)
1629 		return (SET_ERROR(EINVAL));
1630 
1631 	if (drro->drr_object > rwa->max_object)
1632 		rwa->max_object = drro->drr_object;
1633 
1634 	/*
1635 	 * If we are losing blkptrs or changing the block size this must
1636 	 * be a new file instance.  We must clear out the previous file
1637 	 * contents before we can change this type of metadata in the dnode.
1638 	 * Raw receives will also check that the indirect structure of the
1639 	 * dnode hasn't changed.
1640 	 */
1641 	uint64_t object_to_hold;
1642 	if (err == 0) {
1643 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1644 		    &object_to_hold, &new_blksz);
1645 	} else if (err == EEXIST) {
1646 		/*
1647 		 * The object requested is currently an interior slot of a
1648 		 * multi-slot dnode. This will be resolved when the next txg
1649 		 * is synced out, since the send stream will have told us
1650 		 * to free this slot when we freed the associated dnode
1651 		 * earlier in the stream.
1652 		 */
1653 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1654 
1655 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1656 			return (SET_ERROR(EINVAL));
1657 
1658 		/* object was freed and we are about to allocate a new one */
1659 		object_to_hold = DMU_NEW_OBJECT;
1660 	} else {
1661 		/* object is free and we are about to allocate a new one */
1662 		object_to_hold = DMU_NEW_OBJECT;
1663 	}
1664 
1665 	/*
1666 	 * If this is a multi-slot dnode there is a chance that this
1667 	 * object will expand into a slot that is already used by
1668 	 * another object from the previous snapshot. We must free
1669 	 * these objects before we attempt to allocate the new dnode.
1670 	 */
1671 	if (dn_slots > 1) {
1672 		boolean_t need_sync = B_FALSE;
1673 
1674 		for (uint64_t slot = drro->drr_object + 1;
1675 		    slot < drro->drr_object + dn_slots;
1676 		    slot++) {
1677 			dmu_object_info_t slot_doi;
1678 
1679 			err = dmu_object_info(rwa->os, slot, &slot_doi);
1680 			if (err == ENOENT || err == EEXIST)
1681 				continue;
1682 			else if (err != 0)
1683 				return (err);
1684 
1685 			err = dmu_free_long_object(rwa->os, slot);
1686 			if (err != 0)
1687 				return (err);
1688 
1689 			need_sync = B_TRUE;
1690 		}
1691 
1692 		if (need_sync)
1693 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1694 	}
1695 
1696 	tx = dmu_tx_create(rwa->os);
1697 	dmu_tx_hold_bonus(tx, object_to_hold);
1698 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1699 	err = dmu_tx_assign(tx, TXG_WAIT);
1700 	if (err != 0) {
1701 		dmu_tx_abort(tx);
1702 		return (err);
1703 	}
1704 
1705 	if (object_to_hold == DMU_NEW_OBJECT) {
1706 		/* Currently free, wants to be allocated */
1707 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1708 		    drro->drr_type, new_blksz,
1709 		    drro->drr_bonustype, drro->drr_bonuslen,
1710 		    dn_slots << DNODE_SHIFT, tx);
1711 	} else if (drro->drr_type != doi.doi_type ||
1712 	    new_blksz != doi.doi_data_block_size ||
1713 	    drro->drr_bonustype != doi.doi_bonus_type ||
1714 	    drro->drr_bonuslen != doi.doi_bonus_size) {
1715 		/* Currently allocated, but with different properties */
1716 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1717 		    drro->drr_type, new_blksz,
1718 		    drro->drr_bonustype, drro->drr_bonuslen,
1719 		    dn_slots << DNODE_SHIFT, rwa->spill ?
1720 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1721 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1722 		/*
1723 		 * Currently allocated, the existing version of this object
1724 		 * may reference a spill block that is no longer allocated
1725 		 * at the source and needs to be freed.
1726 		 */
1727 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1728 	}
1729 
1730 	if (err != 0) {
1731 		dmu_tx_commit(tx);
1732 		return (SET_ERROR(EINVAL));
1733 	}
1734 
1735 	if (rwa->or_crypt_params_present) {
1736 		/*
1737 		 * Set the crypt params for the buffer associated with this
1738 		 * range of dnodes.  This causes the blkptr_t to have the
1739 		 * same crypt params (byteorder, salt, iv, mac) as on the
1740 		 * sending side.
1741 		 *
1742 		 * Since we are committing this tx now, it is possible for
1743 		 * the dnode block to end up on-disk with the incorrect MAC,
1744 		 * if subsequent objects in this block are received in a
1745 		 * different txg.  However, since the dataset is marked as
1746 		 * inconsistent, no code paths will do a non-raw read (or
1747 		 * decrypt the block / verify the MAC). The receive code and
1748 		 * scrub code can safely do raw reads and verify the
1749 		 * checksum.  They don't need to verify the MAC.
1750 		 */
1751 		dmu_buf_t *db = NULL;
1752 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1753 
1754 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1755 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1756 		if (err != 0) {
1757 			dmu_tx_commit(tx);
1758 			return (SET_ERROR(EINVAL));
1759 		}
1760 
1761 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1762 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1763 
1764 		dmu_buf_rele(db, FTAG);
1765 
1766 		rwa->or_crypt_params_present = B_FALSE;
1767 	}
1768 
1769 	dmu_object_set_checksum(rwa->os, drro->drr_object,
1770 	    drro->drr_checksumtype, tx);
1771 	dmu_object_set_compress(rwa->os, drro->drr_object,
1772 	    drro->drr_compress, tx);
1773 
1774 	/* handle more restrictive dnode structuring for raw recvs */
1775 	if (rwa->raw) {
1776 		/*
1777 		 * Set the indirect block size, block shift, nlevels.
1778 		 * This will not fail because we ensured all of the
1779 		 * blocks were freed earlier if this is a new object.
1780 		 * For non-new objects block size and indirect block
1781 		 * shift cannot change and nlevels can only increase.
1782 		 */
1783 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
1784 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1785 		    drro->drr_blksz, drro->drr_indblkshift, tx));
1786 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1787 		    drro->drr_nlevels, tx));
1788 
1789 		/*
1790 		 * Set the maxblkid. This will always succeed because
1791 		 * we freed all blocks beyond the new maxblkid above.
1792 		 */
1793 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1794 		    drro->drr_maxblkid, tx));
1795 	}
1796 
1797 	if (data != NULL) {
1798 		dmu_buf_t *db;
1799 		dnode_t *dn;
1800 		uint32_t flags = DMU_READ_NO_PREFETCH;
1801 
1802 		if (rwa->raw)
1803 			flags |= DMU_READ_NO_DECRYPT;
1804 
1805 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1806 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1807 
1808 		dmu_buf_will_dirty(db, tx);
1809 
1810 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1811 		bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1812 
1813 		/*
1814 		 * Raw bonus buffers have their byteorder determined by the
1815 		 * DRR_OBJECT_RANGE record.
1816 		 */
1817 		if (rwa->byteswap && !rwa->raw) {
1818 			dmu_object_byteswap_t byteswap =
1819 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
1820 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1821 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
1822 		}
1823 		dmu_buf_rele(db, FTAG);
1824 		dnode_rele(dn, FTAG);
1825 	}
1826 	dmu_tx_commit(tx);
1827 
1828 	return (0);
1829 }
1830 
1831 noinline static int
1832 receive_freeobjects(struct receive_writer_arg *rwa,
1833     struct drr_freeobjects *drrfo)
1834 {
1835 	uint64_t obj;
1836 	int next_err = 0;
1837 
1838 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1839 		return (SET_ERROR(EINVAL));
1840 
1841 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1842 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1843 	    obj < DN_MAX_OBJECT && next_err == 0;
1844 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1845 		dmu_object_info_t doi;
1846 		int err;
1847 
1848 		err = dmu_object_info(rwa->os, obj, &doi);
1849 		if (err == ENOENT)
1850 			continue;
1851 		else if (err != 0)
1852 			return (err);
1853 
1854 		err = dmu_free_long_object(rwa->os, obj);
1855 
1856 		if (err != 0)
1857 			return (err);
1858 	}
1859 	if (next_err != ESRCH)
1860 		return (next_err);
1861 	return (0);
1862 }
1863 
1864 /*
1865  * Note: if this fails, the caller will clean up any records left on the
1866  * rwa->write_batch list.
1867  */
1868 static int
1869 flush_write_batch_impl(struct receive_writer_arg *rwa)
1870 {
1871 	dnode_t *dn;
1872 	int err;
1873 
1874 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1875 		return (SET_ERROR(EINVAL));
1876 
1877 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1878 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1879 
1880 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1881 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1882 
1883 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1884 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1885 
1886 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
1887 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1888 	    last_drrw->drr_offset - first_drrw->drr_offset +
1889 	    last_drrw->drr_logical_size);
1890 	err = dmu_tx_assign(tx, TXG_WAIT);
1891 	if (err != 0) {
1892 		dmu_tx_abort(tx);
1893 		dnode_rele(dn, FTAG);
1894 		return (err);
1895 	}
1896 
1897 	struct receive_record_arg *rrd;
1898 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1899 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1900 		abd_t *abd = rrd->abd;
1901 
1902 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1903 
1904 		if (drrw->drr_logical_size != dn->dn_datablksz) {
1905 			/*
1906 			 * The WRITE record is larger than the object's block
1907 			 * size.  We must be receiving an incremental
1908 			 * large-block stream into a dataset that previously did
1909 			 * a non-large-block receive.  Lightweight writes must
1910 			 * be exactly one block, so we need to decompress the
1911 			 * data (if compressed) and do a normal dmu_write().
1912 			 */
1913 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1914 			if (DRR_WRITE_COMPRESSED(drrw)) {
1915 				abd_t *decomp_abd =
1916 				    abd_alloc_linear(drrw->drr_logical_size,
1917 				    B_FALSE);
1918 
1919 				err = zio_decompress_data(
1920 				    drrw->drr_compressiontype,
1921 				    abd, abd_to_buf(decomp_abd),
1922 				    abd_get_size(abd),
1923 				    abd_get_size(decomp_abd), NULL);
1924 
1925 				if (err == 0) {
1926 					dmu_write_by_dnode(dn,
1927 					    drrw->drr_offset,
1928 					    drrw->drr_logical_size,
1929 					    abd_to_buf(decomp_abd), tx);
1930 				}
1931 				abd_free(decomp_abd);
1932 			} else {
1933 				dmu_write_by_dnode(dn,
1934 				    drrw->drr_offset,
1935 				    drrw->drr_logical_size,
1936 				    abd_to_buf(abd), tx);
1937 			}
1938 			if (err == 0)
1939 				abd_free(abd);
1940 		} else {
1941 			zio_prop_t zp;
1942 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
1943 
1944 			enum zio_flag zio_flags = 0;
1945 
1946 			if (rwa->raw) {
1947 				zp.zp_encrypt = B_TRUE;
1948 				zp.zp_compress = drrw->drr_compressiontype;
1949 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
1950 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1951 				    rwa->byteswap;
1952 				bcopy(drrw->drr_salt, zp.zp_salt,
1953 				    ZIO_DATA_SALT_LEN);
1954 				bcopy(drrw->drr_iv, zp.zp_iv,
1955 				    ZIO_DATA_IV_LEN);
1956 				bcopy(drrw->drr_mac, zp.zp_mac,
1957 				    ZIO_DATA_MAC_LEN);
1958 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
1959 					zp.zp_nopwrite = B_FALSE;
1960 					zp.zp_copies = MIN(zp.zp_copies,
1961 					    SPA_DVAS_PER_BP - 1);
1962 				}
1963 				zio_flags |= ZIO_FLAG_RAW;
1964 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
1965 				ASSERT3U(drrw->drr_compressed_size, >, 0);
1966 				ASSERT3U(drrw->drr_logical_size, >=,
1967 				    drrw->drr_compressed_size);
1968 				zp.zp_compress = drrw->drr_compressiontype;
1969 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
1970 			} else if (rwa->byteswap) {
1971 				/*
1972 				 * Note: compressed blocks never need to be
1973 				 * byteswapped, because WRITE records for
1974 				 * metadata blocks are never compressed. The
1975 				 * exception is raw streams, which are written
1976 				 * in the original byteorder, and the byteorder
1977 				 * bit is preserved in the BP by setting
1978 				 * zp_byteorder above.
1979 				 */
1980 				dmu_object_byteswap_t byteswap =
1981 				    DMU_OT_BYTESWAP(drrw->drr_type);
1982 				dmu_ot_byteswap[byteswap].ob_func(
1983 				    abd_to_buf(abd),
1984 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
1985 			}
1986 
1987 			/*
1988 			 * Since this data can't be read until the receive
1989 			 * completes, we can do a "lightweight" write for
1990 			 * improved performance.
1991 			 */
1992 			err = dmu_lightweight_write_by_dnode(dn,
1993 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
1994 		}
1995 
1996 		if (err != 0) {
1997 			/*
1998 			 * This rrd is left on the list, so the caller will
1999 			 * free it (and the abd).
2000 			 */
2001 			break;
2002 		}
2003 
2004 		/*
2005 		 * Note: If the receive fails, we want the resume stream to
2006 		 * start with the same record that we last successfully
2007 		 * received (as opposed to the next record), so that we can
2008 		 * verify that we are resuming from the correct location.
2009 		 */
2010 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2011 
2012 		list_remove(&rwa->write_batch, rrd);
2013 		kmem_free(rrd, sizeof (*rrd));
2014 	}
2015 
2016 	dmu_tx_commit(tx);
2017 	dnode_rele(dn, FTAG);
2018 	return (err);
2019 }
2020 
2021 noinline static int
2022 flush_write_batch(struct receive_writer_arg *rwa)
2023 {
2024 	if (list_is_empty(&rwa->write_batch))
2025 		return (0);
2026 	int err = rwa->err;
2027 	if (err == 0)
2028 		err = flush_write_batch_impl(rwa);
2029 	if (err != 0) {
2030 		struct receive_record_arg *rrd;
2031 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2032 			abd_free(rrd->abd);
2033 			kmem_free(rrd, sizeof (*rrd));
2034 		}
2035 	}
2036 	ASSERT(list_is_empty(&rwa->write_batch));
2037 	return (err);
2038 }
2039 
2040 noinline static int
2041 receive_process_write_record(struct receive_writer_arg *rwa,
2042     struct receive_record_arg *rrd)
2043 {
2044 	int err = 0;
2045 
2046 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2047 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2048 
2049 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2050 	    !DMU_OT_IS_VALID(drrw->drr_type))
2051 		return (SET_ERROR(EINVAL));
2052 
2053 	/*
2054 	 * For resuming to work, records must be in increasing order
2055 	 * by (object, offset).
2056 	 */
2057 	if (drrw->drr_object < rwa->last_object ||
2058 	    (drrw->drr_object == rwa->last_object &&
2059 	    drrw->drr_offset < rwa->last_offset)) {
2060 		return (SET_ERROR(EINVAL));
2061 	}
2062 
2063 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2064 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2065 	uint64_t batch_size =
2066 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2067 	if (first_rrd != NULL &&
2068 	    (drrw->drr_object != first_drrw->drr_object ||
2069 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2070 		err = flush_write_batch(rwa);
2071 		if (err != 0)
2072 			return (err);
2073 	}
2074 
2075 	rwa->last_object = drrw->drr_object;
2076 	rwa->last_offset = drrw->drr_offset;
2077 
2078 	if (rwa->last_object > rwa->max_object)
2079 		rwa->max_object = rwa->last_object;
2080 
2081 	list_insert_tail(&rwa->write_batch, rrd);
2082 	/*
2083 	 * Return EAGAIN to indicate that we will use this rrd again,
2084 	 * so the caller should not free it
2085 	 */
2086 	return (EAGAIN);
2087 }
2088 
2089 static int
2090 receive_write_embedded(struct receive_writer_arg *rwa,
2091     struct drr_write_embedded *drrwe, void *data)
2092 {
2093 	dmu_tx_t *tx;
2094 	int err;
2095 
2096 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2097 		return (SET_ERROR(EINVAL));
2098 
2099 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2100 		return (SET_ERROR(EINVAL));
2101 
2102 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2103 		return (SET_ERROR(EINVAL));
2104 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2105 		return (SET_ERROR(EINVAL));
2106 	if (rwa->raw)
2107 		return (SET_ERROR(EINVAL));
2108 
2109 	if (drrwe->drr_object > rwa->max_object)
2110 		rwa->max_object = drrwe->drr_object;
2111 
2112 	tx = dmu_tx_create(rwa->os);
2113 
2114 	dmu_tx_hold_write(tx, drrwe->drr_object,
2115 	    drrwe->drr_offset, drrwe->drr_length);
2116 	err = dmu_tx_assign(tx, TXG_WAIT);
2117 	if (err != 0) {
2118 		dmu_tx_abort(tx);
2119 		return (err);
2120 	}
2121 
2122 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2123 	    drrwe->drr_offset, data, drrwe->drr_etype,
2124 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2125 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2126 
2127 	/* See comment in restore_write. */
2128 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2129 	dmu_tx_commit(tx);
2130 	return (0);
2131 }
2132 
2133 static int
2134 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2135     abd_t *abd)
2136 {
2137 	dmu_buf_t *db, *db_spill;
2138 	int err;
2139 
2140 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2141 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2142 		return (SET_ERROR(EINVAL));
2143 
2144 	/*
2145 	 * This is an unmodified spill block which was added to the stream
2146 	 * to resolve an issue with incorrectly removing spill blocks.  It
2147 	 * should be ignored by current versions of the code which support
2148 	 * the DRR_FLAG_SPILL_BLOCK flag.
2149 	 */
2150 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2151 		abd_free(abd);
2152 		return (0);
2153 	}
2154 
2155 	if (rwa->raw) {
2156 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2157 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2158 		    drrs->drr_compressed_size == 0)
2159 			return (SET_ERROR(EINVAL));
2160 	}
2161 
2162 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2163 		return (SET_ERROR(EINVAL));
2164 
2165 	if (drrs->drr_object > rwa->max_object)
2166 		rwa->max_object = drrs->drr_object;
2167 
2168 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2169 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2170 	    &db_spill)) != 0) {
2171 		dmu_buf_rele(db, FTAG);
2172 		return (err);
2173 	}
2174 
2175 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2176 
2177 	dmu_tx_hold_spill(tx, db->db_object);
2178 
2179 	err = dmu_tx_assign(tx, TXG_WAIT);
2180 	if (err != 0) {
2181 		dmu_buf_rele(db, FTAG);
2182 		dmu_buf_rele(db_spill, FTAG);
2183 		dmu_tx_abort(tx);
2184 		return (err);
2185 	}
2186 
2187 	/*
2188 	 * Spill blocks may both grow and shrink.  When a change in size
2189 	 * occurs any existing dbuf must be updated to match the logical
2190 	 * size of the provided arc_buf_t.
2191 	 */
2192 	if (db_spill->db_size != drrs->drr_length) {
2193 		dmu_buf_will_fill(db_spill, tx);
2194 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2195 		    drrs->drr_length, tx));
2196 	}
2197 
2198 	arc_buf_t *abuf;
2199 	if (rwa->raw) {
2200 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2201 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2202 		    rwa->byteswap;
2203 
2204 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2205 		    drrs->drr_object, byteorder, drrs->drr_salt,
2206 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2207 		    drrs->drr_compressed_size, drrs->drr_length,
2208 		    drrs->drr_compressiontype, 0);
2209 	} else {
2210 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2211 		    DMU_OT_IS_METADATA(drrs->drr_type),
2212 		    drrs->drr_length);
2213 		if (rwa->byteswap) {
2214 			dmu_object_byteswap_t byteswap =
2215 			    DMU_OT_BYTESWAP(drrs->drr_type);
2216 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2217 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2218 		}
2219 	}
2220 
2221 	bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs));
2222 	abd_free(abd);
2223 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2224 
2225 	dmu_buf_rele(db, FTAG);
2226 	dmu_buf_rele(db_spill, FTAG);
2227 
2228 	dmu_tx_commit(tx);
2229 	return (0);
2230 }
2231 
2232 noinline static int
2233 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2234 {
2235 	int err;
2236 
2237 	if (drrf->drr_length != -1ULL &&
2238 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2239 		return (SET_ERROR(EINVAL));
2240 
2241 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2242 		return (SET_ERROR(EINVAL));
2243 
2244 	if (drrf->drr_object > rwa->max_object)
2245 		rwa->max_object = drrf->drr_object;
2246 
2247 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2248 	    drrf->drr_offset, drrf->drr_length);
2249 
2250 	return (err);
2251 }
2252 
2253 static int
2254 receive_object_range(struct receive_writer_arg *rwa,
2255     struct drr_object_range *drror)
2256 {
2257 	/*
2258 	 * By default, we assume this block is in our native format
2259 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2260 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2261 	 * we need to byteswap again if this particular block was
2262 	 * in non-native format on the send side.
2263 	 */
2264 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2265 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2266 
2267 	/*
2268 	 * Since dnode block sizes are constant, we should not need to worry
2269 	 * about making sure that the dnode block size is the same on the
2270 	 * sending and receiving sides for the time being. For non-raw sends,
2271 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2272 	 * record at all). Raw sends require this record type because the
2273 	 * encryption parameters are used to protect an entire block of bonus
2274 	 * buffers. If the size of dnode blocks ever becomes variable,
2275 	 * handling will need to be added to ensure that dnode block sizes
2276 	 * match on the sending and receiving side.
2277 	 */
2278 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2279 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2280 	    !rwa->raw)
2281 		return (SET_ERROR(EINVAL));
2282 
2283 	if (drror->drr_firstobj > rwa->max_object)
2284 		rwa->max_object = drror->drr_firstobj;
2285 
2286 	/*
2287 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2288 	 * so that the block of dnodes is not written out when it's empty,
2289 	 * and converted to a HOLE BP.
2290 	 */
2291 	rwa->or_crypt_params_present = B_TRUE;
2292 	rwa->or_firstobj = drror->drr_firstobj;
2293 	rwa->or_numslots = drror->drr_numslots;
2294 	bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
2295 	bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
2296 	bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
2297 	rwa->or_byteorder = byteorder;
2298 
2299 	return (0);
2300 }
2301 
2302 /*
2303  * Until we have the ability to redact large ranges of data efficiently, we
2304  * process these records as frees.
2305  */
2306 noinline static int
2307 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2308 {
2309 	struct drr_free drrf = {0};
2310 	drrf.drr_length = drrr->drr_length;
2311 	drrf.drr_object = drrr->drr_object;
2312 	drrf.drr_offset = drrr->drr_offset;
2313 	drrf.drr_toguid = drrr->drr_toguid;
2314 	return (receive_free(rwa, &drrf));
2315 }
2316 
2317 /* used to destroy the drc_ds on error */
2318 static void
2319 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2320 {
2321 	dsl_dataset_t *ds = drc->drc_ds;
2322 	ds_hold_flags_t dsflags;
2323 
2324 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2325 	/*
2326 	 * Wait for the txg sync before cleaning up the receive. For
2327 	 * resumable receives, this ensures that our resume state has
2328 	 * been written out to disk. For raw receives, this ensures
2329 	 * that the user accounting code will not attempt to do anything
2330 	 * after we stopped receiving the dataset.
2331 	 */
2332 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2333 	ds->ds_objset->os_raw_receive = B_FALSE;
2334 
2335 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2336 	if (drc->drc_resumable && drc->drc_should_save &&
2337 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2338 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2339 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2340 	} else {
2341 		char name[ZFS_MAX_DATASET_NAME_LEN];
2342 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2343 		dsl_dataset_name(ds, name);
2344 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2345 		(void) dsl_destroy_head(name);
2346 	}
2347 }
2348 
2349 static void
2350 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2351 {
2352 	if (drc->drc_byteswap) {
2353 		(void) fletcher_4_incremental_byteswap(buf, len,
2354 		    &drc->drc_cksum);
2355 	} else {
2356 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2357 	}
2358 }
2359 
2360 /*
2361  * Read the payload into a buffer of size len, and update the current record's
2362  * payload field.
2363  * Allocate drc->drc_next_rrd and read the next record's header into
2364  * drc->drc_next_rrd->header.
2365  * Verify checksum of payload and next record.
2366  */
2367 static int
2368 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2369 {
2370 	int err;
2371 
2372 	if (len != 0) {
2373 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2374 		err = receive_read(drc, len, buf);
2375 		if (err != 0)
2376 			return (err);
2377 		receive_cksum(drc, len, buf);
2378 
2379 		/* note: rrd is NULL when reading the begin record's payload */
2380 		if (drc->drc_rrd != NULL) {
2381 			drc->drc_rrd->payload = buf;
2382 			drc->drc_rrd->payload_size = len;
2383 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2384 		}
2385 	} else {
2386 		ASSERT3P(buf, ==, NULL);
2387 	}
2388 
2389 	drc->drc_prev_cksum = drc->drc_cksum;
2390 
2391 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2392 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2393 	    &drc->drc_next_rrd->header);
2394 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2395 
2396 	if (err != 0) {
2397 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2398 		drc->drc_next_rrd = NULL;
2399 		return (err);
2400 	}
2401 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2402 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2403 		drc->drc_next_rrd = NULL;
2404 		return (SET_ERROR(EINVAL));
2405 	}
2406 
2407 	/*
2408 	 * Note: checksum is of everything up to but not including the
2409 	 * checksum itself.
2410 	 */
2411 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2412 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2413 	receive_cksum(drc,
2414 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2415 	    &drc->drc_next_rrd->header);
2416 
2417 	zio_cksum_t cksum_orig =
2418 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2419 	zio_cksum_t *cksump =
2420 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2421 
2422 	if (drc->drc_byteswap)
2423 		byteswap_record(&drc->drc_next_rrd->header);
2424 
2425 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2426 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2427 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2428 		drc->drc_next_rrd = NULL;
2429 		return (SET_ERROR(ECKSUM));
2430 	}
2431 
2432 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2433 
2434 	return (0);
2435 }
2436 
2437 /*
2438  * Issue the prefetch reads for any necessary indirect blocks.
2439  *
2440  * We use the object ignore list to tell us whether or not to issue prefetches
2441  * for a given object.  We do this for both correctness (in case the blocksize
2442  * of an object has changed) and performance (if the object doesn't exist, don't
2443  * needlessly try to issue prefetches).  We also trim the list as we go through
2444  * the stream to prevent it from growing to an unbounded size.
2445  *
2446  * The object numbers within will always be in sorted order, and any write
2447  * records we see will also be in sorted order, but they're not sorted with
2448  * respect to each other (i.e. we can get several object records before
2449  * receiving each object's write records).  As a result, once we've reached a
2450  * given object number, we can safely remove any reference to lower object
2451  * numbers in the ignore list. In practice, we receive up to 32 object records
2452  * before receiving write records, so the list can have up to 32 nodes in it.
2453  */
2454 static void
2455 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2456     uint64_t length)
2457 {
2458 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2459 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2460 		    ZIO_PRIORITY_SYNC_READ);
2461 	}
2462 }
2463 
2464 /*
2465  * Read records off the stream, issuing any necessary prefetches.
2466  */
2467 static int
2468 receive_read_record(dmu_recv_cookie_t *drc)
2469 {
2470 	int err;
2471 
2472 	switch (drc->drc_rrd->header.drr_type) {
2473 	case DRR_OBJECT:
2474 	{
2475 		struct drr_object *drro =
2476 		    &drc->drc_rrd->header.drr_u.drr_object;
2477 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2478 		void *buf = NULL;
2479 		dmu_object_info_t doi;
2480 
2481 		if (size != 0)
2482 			buf = kmem_zalloc(size, KM_SLEEP);
2483 
2484 		err = receive_read_payload_and_next_header(drc, size, buf);
2485 		if (err != 0) {
2486 			kmem_free(buf, size);
2487 			return (err);
2488 		}
2489 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2490 		/*
2491 		 * See receive_read_prefetch for an explanation why we're
2492 		 * storing this object in the ignore_obj_list.
2493 		 */
2494 		if (err == ENOENT || err == EEXIST ||
2495 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2496 			objlist_insert(drc->drc_ignore_objlist,
2497 			    drro->drr_object);
2498 			err = 0;
2499 		}
2500 		return (err);
2501 	}
2502 	case DRR_FREEOBJECTS:
2503 	{
2504 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2505 		return (err);
2506 	}
2507 	case DRR_WRITE:
2508 	{
2509 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2510 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2511 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2512 		err = receive_read_payload_and_next_header(drc, size,
2513 		    abd_to_buf(abd));
2514 		if (err != 0) {
2515 			abd_free(abd);
2516 			return (err);
2517 		}
2518 		drc->drc_rrd->abd = abd;
2519 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2520 		    drrw->drr_logical_size);
2521 		return (err);
2522 	}
2523 	case DRR_WRITE_EMBEDDED:
2524 	{
2525 		struct drr_write_embedded *drrwe =
2526 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2527 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2528 		void *buf = kmem_zalloc(size, KM_SLEEP);
2529 
2530 		err = receive_read_payload_and_next_header(drc, size, buf);
2531 		if (err != 0) {
2532 			kmem_free(buf, size);
2533 			return (err);
2534 		}
2535 
2536 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2537 		    drrwe->drr_length);
2538 		return (err);
2539 	}
2540 	case DRR_FREE:
2541 	case DRR_REDACT:
2542 	{
2543 		/*
2544 		 * It might be beneficial to prefetch indirect blocks here, but
2545 		 * we don't really have the data to decide for sure.
2546 		 */
2547 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2548 		return (err);
2549 	}
2550 	case DRR_END:
2551 	{
2552 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2553 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2554 		    drre->drr_checksum))
2555 			return (SET_ERROR(ECKSUM));
2556 		return (0);
2557 	}
2558 	case DRR_SPILL:
2559 	{
2560 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2561 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2562 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2563 		err = receive_read_payload_and_next_header(drc, size,
2564 		    abd_to_buf(abd));
2565 		if (err != 0)
2566 			abd_free(abd);
2567 		else
2568 			drc->drc_rrd->abd = abd;
2569 		return (err);
2570 	}
2571 	case DRR_OBJECT_RANGE:
2572 	{
2573 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2574 		return (err);
2575 
2576 	}
2577 	default:
2578 		return (SET_ERROR(EINVAL));
2579 	}
2580 }
2581 
2582 
2583 
2584 static void
2585 dprintf_drr(struct receive_record_arg *rrd, int err)
2586 {
2587 #ifdef ZFS_DEBUG
2588 	switch (rrd->header.drr_type) {
2589 	case DRR_OBJECT:
2590 	{
2591 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2592 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2593 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2594 		    "compress = %u dn_slots = %u err = %d\n",
2595 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2596 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2597 		    drro->drr_checksumtype, drro->drr_compress,
2598 		    drro->drr_dn_slots, err);
2599 		break;
2600 	}
2601 	case DRR_FREEOBJECTS:
2602 	{
2603 		struct drr_freeobjects *drrfo =
2604 		    &rrd->header.drr_u.drr_freeobjects;
2605 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2606 		    "numobjs = %llu err = %d\n",
2607 		    (u_longlong_t)drrfo->drr_firstobj,
2608 		    (u_longlong_t)drrfo->drr_numobjs, err);
2609 		break;
2610 	}
2611 	case DRR_WRITE:
2612 	{
2613 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2614 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2615 		    "lsize = %llu cksumtype = %u flags = %u "
2616 		    "compress = %u psize = %llu err = %d\n",
2617 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2618 		    (u_longlong_t)drrw->drr_offset,
2619 		    (u_longlong_t)drrw->drr_logical_size,
2620 		    drrw->drr_checksumtype, drrw->drr_flags,
2621 		    drrw->drr_compressiontype,
2622 		    (u_longlong_t)drrw->drr_compressed_size, err);
2623 		break;
2624 	}
2625 	case DRR_WRITE_BYREF:
2626 	{
2627 		struct drr_write_byref *drrwbr =
2628 		    &rrd->header.drr_u.drr_write_byref;
2629 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2630 		    "length = %llu toguid = %llx refguid = %llx "
2631 		    "refobject = %llu refoffset = %llu cksumtype = %u "
2632 		    "flags = %u err = %d\n",
2633 		    (u_longlong_t)drrwbr->drr_object,
2634 		    (u_longlong_t)drrwbr->drr_offset,
2635 		    (u_longlong_t)drrwbr->drr_length,
2636 		    (u_longlong_t)drrwbr->drr_toguid,
2637 		    (u_longlong_t)drrwbr->drr_refguid,
2638 		    (u_longlong_t)drrwbr->drr_refobject,
2639 		    (u_longlong_t)drrwbr->drr_refoffset,
2640 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2641 		break;
2642 	}
2643 	case DRR_WRITE_EMBEDDED:
2644 	{
2645 		struct drr_write_embedded *drrwe =
2646 		    &rrd->header.drr_u.drr_write_embedded;
2647 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2648 		    "length = %llu compress = %u etype = %u lsize = %u "
2649 		    "psize = %u err = %d\n",
2650 		    (u_longlong_t)drrwe->drr_object,
2651 		    (u_longlong_t)drrwe->drr_offset,
2652 		    (u_longlong_t)drrwe->drr_length,
2653 		    drrwe->drr_compression, drrwe->drr_etype,
2654 		    drrwe->drr_lsize, drrwe->drr_psize, err);
2655 		break;
2656 	}
2657 	case DRR_FREE:
2658 	{
2659 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2660 		dprintf("drr_type = FREE obj = %llu offset = %llu "
2661 		    "length = %lld err = %d\n",
2662 		    (u_longlong_t)drrf->drr_object,
2663 		    (u_longlong_t)drrf->drr_offset,
2664 		    (longlong_t)drrf->drr_length,
2665 		    err);
2666 		break;
2667 	}
2668 	case DRR_SPILL:
2669 	{
2670 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2671 		dprintf("drr_type = SPILL obj = %llu length = %llu "
2672 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
2673 		    (u_longlong_t)drrs->drr_length, err);
2674 		break;
2675 	}
2676 	case DRR_OBJECT_RANGE:
2677 	{
2678 		struct drr_object_range *drror =
2679 		    &rrd->header.drr_u.drr_object_range;
2680 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2681 		    "numslots = %llu flags = %u err = %d\n",
2682 		    (u_longlong_t)drror->drr_firstobj,
2683 		    (u_longlong_t)drror->drr_numslots,
2684 		    drror->drr_flags, err);
2685 		break;
2686 	}
2687 	default:
2688 		return;
2689 	}
2690 #endif
2691 }
2692 
2693 /*
2694  * Commit the records to the pool.
2695  */
2696 static int
2697 receive_process_record(struct receive_writer_arg *rwa,
2698     struct receive_record_arg *rrd)
2699 {
2700 	int err;
2701 
2702 	/* Processing in order, therefore bytes_read should be increasing. */
2703 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2704 	rwa->bytes_read = rrd->bytes_read;
2705 
2706 	if (rrd->header.drr_type != DRR_WRITE) {
2707 		err = flush_write_batch(rwa);
2708 		if (err != 0) {
2709 			if (rrd->abd != NULL) {
2710 				abd_free(rrd->abd);
2711 				rrd->abd = NULL;
2712 				rrd->payload = NULL;
2713 			} else if (rrd->payload != NULL) {
2714 				kmem_free(rrd->payload, rrd->payload_size);
2715 				rrd->payload = NULL;
2716 			}
2717 
2718 			return (err);
2719 		}
2720 	}
2721 
2722 	switch (rrd->header.drr_type) {
2723 	case DRR_OBJECT:
2724 	{
2725 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2726 		err = receive_object(rwa, drro, rrd->payload);
2727 		kmem_free(rrd->payload, rrd->payload_size);
2728 		rrd->payload = NULL;
2729 		break;
2730 	}
2731 	case DRR_FREEOBJECTS:
2732 	{
2733 		struct drr_freeobjects *drrfo =
2734 		    &rrd->header.drr_u.drr_freeobjects;
2735 		err = receive_freeobjects(rwa, drrfo);
2736 		break;
2737 	}
2738 	case DRR_WRITE:
2739 	{
2740 		err = receive_process_write_record(rwa, rrd);
2741 		if (err != EAGAIN) {
2742 			/*
2743 			 * On success, receive_process_write_record() returns
2744 			 * EAGAIN to indicate that we do not want to free
2745 			 * the rrd or arc_buf.
2746 			 */
2747 			ASSERT(err != 0);
2748 			abd_free(rrd->abd);
2749 			rrd->abd = NULL;
2750 		}
2751 		break;
2752 	}
2753 	case DRR_WRITE_EMBEDDED:
2754 	{
2755 		struct drr_write_embedded *drrwe =
2756 		    &rrd->header.drr_u.drr_write_embedded;
2757 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2758 		kmem_free(rrd->payload, rrd->payload_size);
2759 		rrd->payload = NULL;
2760 		break;
2761 	}
2762 	case DRR_FREE:
2763 	{
2764 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2765 		err = receive_free(rwa, drrf);
2766 		break;
2767 	}
2768 	case DRR_SPILL:
2769 	{
2770 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2771 		err = receive_spill(rwa, drrs, rrd->abd);
2772 		if (err != 0)
2773 			abd_free(rrd->abd);
2774 		rrd->abd = NULL;
2775 		rrd->payload = NULL;
2776 		break;
2777 	}
2778 	case DRR_OBJECT_RANGE:
2779 	{
2780 		struct drr_object_range *drror =
2781 		    &rrd->header.drr_u.drr_object_range;
2782 		err = receive_object_range(rwa, drror);
2783 		break;
2784 	}
2785 	case DRR_REDACT:
2786 	{
2787 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2788 		err = receive_redact(rwa, drrr);
2789 		break;
2790 	}
2791 	default:
2792 		err = (SET_ERROR(EINVAL));
2793 	}
2794 
2795 	if (err != 0)
2796 		dprintf_drr(rrd, err);
2797 
2798 	return (err);
2799 }
2800 
2801 /*
2802  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2803  * receive_process_record  When we're done, signal the main thread and exit.
2804  */
2805 static _Noreturn void
2806 receive_writer_thread(void *arg)
2807 {
2808 	struct receive_writer_arg *rwa = arg;
2809 	struct receive_record_arg *rrd;
2810 	fstrans_cookie_t cookie = spl_fstrans_mark();
2811 
2812 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2813 	    rrd = bqueue_dequeue(&rwa->q)) {
2814 		/*
2815 		 * If there's an error, the main thread will stop putting things
2816 		 * on the queue, but we need to clear everything in it before we
2817 		 * can exit.
2818 		 */
2819 		int err = 0;
2820 		if (rwa->err == 0) {
2821 			err = receive_process_record(rwa, rrd);
2822 		} else if (rrd->abd != NULL) {
2823 			abd_free(rrd->abd);
2824 			rrd->abd = NULL;
2825 			rrd->payload = NULL;
2826 		} else if (rrd->payload != NULL) {
2827 			kmem_free(rrd->payload, rrd->payload_size);
2828 			rrd->payload = NULL;
2829 		}
2830 		/*
2831 		 * EAGAIN indicates that this record has been saved (on
2832 		 * raw->write_batch), and will be used again, so we don't
2833 		 * free it.
2834 		 */
2835 		if (err != EAGAIN) {
2836 			if (rwa->err == 0)
2837 				rwa->err = err;
2838 			kmem_free(rrd, sizeof (*rrd));
2839 		}
2840 	}
2841 	kmem_free(rrd, sizeof (*rrd));
2842 
2843 	int err = flush_write_batch(rwa);
2844 	if (rwa->err == 0)
2845 		rwa->err = err;
2846 
2847 	mutex_enter(&rwa->mutex);
2848 	rwa->done = B_TRUE;
2849 	cv_signal(&rwa->cv);
2850 	mutex_exit(&rwa->mutex);
2851 	spl_fstrans_unmark(cookie);
2852 	thread_exit();
2853 }
2854 
2855 static int
2856 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
2857 {
2858 	uint64_t val;
2859 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2860 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
2861 	uint64_t resume_obj, resume_off;
2862 
2863 	if (nvlist_lookup_uint64(begin_nvl,
2864 	    "resume_object", &resume_obj) != 0 ||
2865 	    nvlist_lookup_uint64(begin_nvl,
2866 	    "resume_offset", &resume_off) != 0) {
2867 		return (SET_ERROR(EINVAL));
2868 	}
2869 	VERIFY0(zap_lookup(mos, dsobj,
2870 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2871 	if (resume_obj != val)
2872 		return (SET_ERROR(EINVAL));
2873 	VERIFY0(zap_lookup(mos, dsobj,
2874 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2875 	if (resume_off != val)
2876 		return (SET_ERROR(EINVAL));
2877 
2878 	return (0);
2879 }
2880 
2881 /*
2882  * Read in the stream's records, one by one, and apply them to the pool.  There
2883  * are two threads involved; the thread that calls this function will spin up a
2884  * worker thread, read the records off the stream one by one, and issue
2885  * prefetches for any necessary indirect blocks.  It will then push the records
2886  * onto an internal blocking queue.  The worker thread will pull the records off
2887  * the queue, and actually write the data into the DMU.  This way, the worker
2888  * thread doesn't have to wait for reads to complete, since everything it needs
2889  * (the indirect blocks) will be prefetched.
2890  *
2891  * NB: callers *must* call dmu_recv_end() if this succeeds.
2892  */
2893 int
2894 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
2895 {
2896 	int err = 0;
2897 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2898 
2899 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
2900 		uint64_t bytes = 0;
2901 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2902 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2903 		    sizeof (bytes), 1, &bytes);
2904 		drc->drc_bytes_read += bytes;
2905 	}
2906 
2907 	drc->drc_ignore_objlist = objlist_create();
2908 
2909 	/* these were verified in dmu_recv_begin */
2910 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2911 	    DMU_SUBSTREAM);
2912 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2913 
2914 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2915 	ASSERT0(drc->drc_os->os_encrypted &&
2916 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2917 
2918 	/* handle DSL encryption key payload */
2919 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
2920 		nvlist_t *keynvl = NULL;
2921 
2922 		ASSERT(drc->drc_os->os_encrypted);
2923 		ASSERT(drc->drc_raw);
2924 
2925 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2926 		    &keynvl);
2927 		if (err != 0)
2928 			goto out;
2929 
2930 		/*
2931 		 * If this is a new dataset we set the key immediately.
2932 		 * Otherwise we don't want to change the key until we
2933 		 * are sure the rest of the receive succeeded so we stash
2934 		 * the keynvl away until then.
2935 		 */
2936 		err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
2937 		    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2938 		    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2939 		if (err != 0)
2940 			goto out;
2941 
2942 		/* see comment in dmu_recv_end_sync() */
2943 		drc->drc_ivset_guid = 0;
2944 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2945 		    &drc->drc_ivset_guid);
2946 
2947 		if (!drc->drc_newfs)
2948 			drc->drc_keynvl = fnvlist_dup(keynvl);
2949 	}
2950 
2951 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2952 		err = resume_check(drc, drc->drc_begin_nvl);
2953 		if (err != 0)
2954 			goto out;
2955 	}
2956 
2957 	/*
2958 	 * If we failed before this point we will clean up any new resume
2959 	 * state that was created. Now that we've gotten past the initial
2960 	 * checks we are ok to retain that resume state.
2961 	 */
2962 	drc->drc_should_save = B_TRUE;
2963 
2964 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
2965 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2966 	    offsetof(struct receive_record_arg, node));
2967 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2968 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2969 	rwa->os = drc->drc_os;
2970 	rwa->byteswap = drc->drc_byteswap;
2971 	rwa->resumable = drc->drc_resumable;
2972 	rwa->raw = drc->drc_raw;
2973 	rwa->spill = drc->drc_spill;
2974 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
2975 	rwa->os->os_raw_receive = drc->drc_raw;
2976 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2977 	    offsetof(struct receive_record_arg, node.bqn_node));
2978 
2979 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2980 	    TS_RUN, minclsyspri);
2981 	/*
2982 	 * We're reading rwa->err without locks, which is safe since we are the
2983 	 * only reader, and the worker thread is the only writer.  It's ok if we
2984 	 * miss a write for an iteration or two of the loop, since the writer
2985 	 * thread will keep freeing records we send it until we send it an eos
2986 	 * marker.
2987 	 *
2988 	 * We can leave this loop in 3 ways:  First, if rwa->err is
2989 	 * non-zero.  In that case, the writer thread will free the rrd we just
2990 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2991 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
2992 	 * drc->drc_rrd has been handed off to the writer thread who will free
2993 	 * it.  Finally, if receive_read_record fails or we're at the end of the
2994 	 * stream, then we free drc->drc_rrd and exit.
2995 	 */
2996 	while (rwa->err == 0) {
2997 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2998 			err = SET_ERROR(EINTR);
2999 			break;
3000 		}
3001 
3002 		ASSERT3P(drc->drc_rrd, ==, NULL);
3003 		drc->drc_rrd = drc->drc_next_rrd;
3004 		drc->drc_next_rrd = NULL;
3005 		/* Allocates and loads header into drc->drc_next_rrd */
3006 		err = receive_read_record(drc);
3007 
3008 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3009 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3010 			drc->drc_rrd = NULL;
3011 			break;
3012 		}
3013 
3014 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3015 		    sizeof (struct receive_record_arg) +
3016 		    drc->drc_rrd->payload_size);
3017 		drc->drc_rrd = NULL;
3018 	}
3019 
3020 	ASSERT3P(drc->drc_rrd, ==, NULL);
3021 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3022 	drc->drc_rrd->eos_marker = B_TRUE;
3023 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3024 
3025 	mutex_enter(&rwa->mutex);
3026 	while (!rwa->done) {
3027 		/*
3028 		 * We need to use cv_wait_sig() so that any process that may
3029 		 * be sleeping here can still fork.
3030 		 */
3031 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3032 	}
3033 	mutex_exit(&rwa->mutex);
3034 
3035 	/*
3036 	 * If we are receiving a full stream as a clone, all object IDs which
3037 	 * are greater than the maximum ID referenced in the stream are
3038 	 * by definition unused and must be freed.
3039 	 */
3040 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3041 		uint64_t obj = rwa->max_object + 1;
3042 		int free_err = 0;
3043 		int next_err = 0;
3044 
3045 		while (next_err == 0) {
3046 			free_err = dmu_free_long_object(rwa->os, obj);
3047 			if (free_err != 0 && free_err != ENOENT)
3048 				break;
3049 
3050 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3051 		}
3052 
3053 		if (err == 0) {
3054 			if (free_err != 0 && free_err != ENOENT)
3055 				err = free_err;
3056 			else if (next_err != ESRCH)
3057 				err = next_err;
3058 		}
3059 	}
3060 
3061 	cv_destroy(&rwa->cv);
3062 	mutex_destroy(&rwa->mutex);
3063 	bqueue_destroy(&rwa->q);
3064 	list_destroy(&rwa->write_batch);
3065 	if (err == 0)
3066 		err = rwa->err;
3067 
3068 out:
3069 	/*
3070 	 * If we hit an error before we started the receive_writer_thread
3071 	 * we need to clean up the next_rrd we create by processing the
3072 	 * DRR_BEGIN record.
3073 	 */
3074 	if (drc->drc_next_rrd != NULL)
3075 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3076 
3077 	/*
3078 	 * The objset will be invalidated by dmu_recv_end() when we do
3079 	 * dsl_dataset_clone_swap_sync_impl().
3080 	 */
3081 	drc->drc_os = NULL;
3082 
3083 	kmem_free(rwa, sizeof (*rwa));
3084 	nvlist_free(drc->drc_begin_nvl);
3085 
3086 	if (err != 0) {
3087 		/*
3088 		 * Clean up references. If receive is not resumable,
3089 		 * destroy what we created, so we don't leave it in
3090 		 * the inconsistent state.
3091 		 */
3092 		dmu_recv_cleanup_ds(drc);
3093 		nvlist_free(drc->drc_keynvl);
3094 	}
3095 
3096 	objlist_destroy(drc->drc_ignore_objlist);
3097 	drc->drc_ignore_objlist = NULL;
3098 	*voffp = drc->drc_voff;
3099 	return (err);
3100 }
3101 
3102 static int
3103 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3104 {
3105 	dmu_recv_cookie_t *drc = arg;
3106 	dsl_pool_t *dp = dmu_tx_pool(tx);
3107 	int error;
3108 
3109 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3110 
3111 	if (!drc->drc_newfs) {
3112 		dsl_dataset_t *origin_head;
3113 
3114 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3115 		if (error != 0)
3116 			return (error);
3117 		if (drc->drc_force) {
3118 			/*
3119 			 * We will destroy any snapshots in tofs (i.e. before
3120 			 * origin_head) that are after the origin (which is
3121 			 * the snap before drc_ds, because drc_ds can not
3122 			 * have any snaps of its own).
3123 			 */
3124 			uint64_t obj;
3125 
3126 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3127 			while (obj !=
3128 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3129 				dsl_dataset_t *snap;
3130 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3131 				    &snap);
3132 				if (error != 0)
3133 					break;
3134 				if (snap->ds_dir != origin_head->ds_dir)
3135 					error = SET_ERROR(EINVAL);
3136 				if (error == 0)  {
3137 					error = dsl_destroy_snapshot_check_impl(
3138 					    snap, B_FALSE);
3139 				}
3140 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3141 				dsl_dataset_rele(snap, FTAG);
3142 				if (error != 0)
3143 					break;
3144 			}
3145 			if (error != 0) {
3146 				dsl_dataset_rele(origin_head, FTAG);
3147 				return (error);
3148 			}
3149 		}
3150 		if (drc->drc_keynvl != NULL) {
3151 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3152 			    drc->drc_keynvl, tx);
3153 			if (error != 0) {
3154 				dsl_dataset_rele(origin_head, FTAG);
3155 				return (error);
3156 			}
3157 		}
3158 
3159 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3160 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3161 		if (error != 0) {
3162 			dsl_dataset_rele(origin_head, FTAG);
3163 			return (error);
3164 		}
3165 		error = dsl_dataset_snapshot_check_impl(origin_head,
3166 		    drc->drc_tosnap, tx, B_TRUE, 1,
3167 		    drc->drc_cred, drc->drc_proc);
3168 		dsl_dataset_rele(origin_head, FTAG);
3169 		if (error != 0)
3170 			return (error);
3171 
3172 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3173 	} else {
3174 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3175 		    drc->drc_tosnap, tx, B_TRUE, 1,
3176 		    drc->drc_cred, drc->drc_proc);
3177 	}
3178 	return (error);
3179 }
3180 
3181 static void
3182 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3183 {
3184 	dmu_recv_cookie_t *drc = arg;
3185 	dsl_pool_t *dp = dmu_tx_pool(tx);
3186 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3187 	uint64_t newsnapobj;
3188 
3189 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3190 	    tx, "snap=%s", drc->drc_tosnap);
3191 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3192 
3193 	if (!drc->drc_newfs) {
3194 		dsl_dataset_t *origin_head;
3195 
3196 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3197 		    &origin_head));
3198 
3199 		if (drc->drc_force) {
3200 			/*
3201 			 * Destroy any snapshots of drc_tofs (origin_head)
3202 			 * after the origin (the snap before drc_ds).
3203 			 */
3204 			uint64_t obj;
3205 
3206 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3207 			while (obj !=
3208 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3209 				dsl_dataset_t *snap;
3210 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3211 				    &snap));
3212 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3213 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3214 				dsl_destroy_snapshot_sync_impl(snap,
3215 				    B_FALSE, tx);
3216 				dsl_dataset_rele(snap, FTAG);
3217 			}
3218 		}
3219 		if (drc->drc_keynvl != NULL) {
3220 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3221 			    drc->drc_keynvl, tx);
3222 			nvlist_free(drc->drc_keynvl);
3223 			drc->drc_keynvl = NULL;
3224 		}
3225 
3226 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3227 		    origin_head->ds_prev);
3228 
3229 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3230 		    origin_head, tx);
3231 		/*
3232 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3233 		 * so drc_os is no longer valid.
3234 		 */
3235 		drc->drc_os = NULL;
3236 
3237 		dsl_dataset_snapshot_sync_impl(origin_head,
3238 		    drc->drc_tosnap, tx);
3239 
3240 		/* set snapshot's creation time and guid */
3241 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3242 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3243 		    drc->drc_drrb->drr_creation_time;
3244 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3245 		    drc->drc_drrb->drr_toguid;
3246 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3247 		    ~DS_FLAG_INCONSISTENT;
3248 
3249 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3250 		dsl_dataset_phys(origin_head)->ds_flags &=
3251 		    ~DS_FLAG_INCONSISTENT;
3252 
3253 		newsnapobj =
3254 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3255 
3256 		dsl_dataset_rele(origin_head, FTAG);
3257 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3258 
3259 		if (drc->drc_owner != NULL)
3260 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3261 	} else {
3262 		dsl_dataset_t *ds = drc->drc_ds;
3263 
3264 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3265 
3266 		/* set snapshot's creation time and guid */
3267 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3268 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3269 		    drc->drc_drrb->drr_creation_time;
3270 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3271 		    drc->drc_drrb->drr_toguid;
3272 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3273 		    ~DS_FLAG_INCONSISTENT;
3274 
3275 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3276 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3277 		if (dsl_dataset_has_resume_receive_state(ds)) {
3278 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3279 			    DS_FIELD_RESUME_FROMGUID, tx);
3280 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3281 			    DS_FIELD_RESUME_OBJECT, tx);
3282 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3283 			    DS_FIELD_RESUME_OFFSET, tx);
3284 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3285 			    DS_FIELD_RESUME_BYTES, tx);
3286 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3287 			    DS_FIELD_RESUME_TOGUID, tx);
3288 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3289 			    DS_FIELD_RESUME_TONAME, tx);
3290 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3291 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3292 		}
3293 		newsnapobj =
3294 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3295 	}
3296 
3297 	/*
3298 	 * If this is a raw receive, the crypt_keydata nvlist will include
3299 	 * a to_ivset_guid for us to set on the new snapshot. This value
3300 	 * will override the value generated by the snapshot code. However,
3301 	 * this value may not be present, because older implementations of
3302 	 * the raw send code did not include this value, and we are still
3303 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3304 	 * tunable is set, in which case we will leave the newly-generated
3305 	 * value.
3306 	 */
3307 	if (drc->drc_raw && drc->drc_ivset_guid != 0) {
3308 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3309 		    DMU_OT_DSL_DATASET, tx);
3310 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3311 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3312 		    &drc->drc_ivset_guid, tx));
3313 	}
3314 
3315 	/*
3316 	 * Release the hold from dmu_recv_begin.  This must be done before
3317 	 * we return to open context, so that when we free the dataset's dnode
3318 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3319 	 * at this point (and therefore won't have a valid pointer to the spa)
3320 	 * we release the key mapping manually here while we do have a valid
3321 	 * pointer, if it exists.
3322 	 */
3323 	if (!drc->drc_raw && encrypted) {
3324 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3325 		    drc->drc_ds->ds_object, drc->drc_ds);
3326 	}
3327 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3328 	drc->drc_ds = NULL;
3329 }
3330 
3331 static int dmu_recv_end_modified_blocks = 3;
3332 
3333 static int
3334 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3335 {
3336 #ifdef _KERNEL
3337 	/*
3338 	 * We will be destroying the ds; make sure its origin is unmounted if
3339 	 * necessary.
3340 	 */
3341 	char name[ZFS_MAX_DATASET_NAME_LEN];
3342 	dsl_dataset_name(drc->drc_ds, name);
3343 	zfs_destroy_unmount_origin(name);
3344 #endif
3345 
3346 	return (dsl_sync_task(drc->drc_tofs,
3347 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3348 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3349 }
3350 
3351 static int
3352 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3353 {
3354 	return (dsl_sync_task(drc->drc_tofs,
3355 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3356 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3357 }
3358 
3359 int
3360 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3361 {
3362 	int error;
3363 
3364 	drc->drc_owner = owner;
3365 
3366 	if (drc->drc_newfs)
3367 		error = dmu_recv_new_end(drc);
3368 	else
3369 		error = dmu_recv_existing_end(drc);
3370 
3371 	if (error != 0) {
3372 		dmu_recv_cleanup_ds(drc);
3373 		nvlist_free(drc->drc_keynvl);
3374 	} else {
3375 		if (drc->drc_newfs) {
3376 			zvol_create_minor(drc->drc_tofs);
3377 		}
3378 		char *snapname = kmem_asprintf("%s@%s",
3379 		    drc->drc_tofs, drc->drc_tosnap);
3380 		zvol_create_minor(snapname);
3381 		kmem_strfree(snapname);
3382 	}
3383 	return (error);
3384 }
3385 
3386 /*
3387  * Return TRUE if this objset is currently being received into.
3388  */
3389 boolean_t
3390 dmu_objset_is_receiving(objset_t *os)
3391 {
3392 	return (os->os_dsl_dataset != NULL &&
3393 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3394 }
3395 
3396 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3397 	"Maximum receive queue length");
3398 
3399 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3400 	"Receive queue fill fraction");
3401 
3402 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3403 	"Maximum amount of writes to batch into one transaction");
3404