1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/txg.h>
27 #include <sys/dmu_objset.h>
28 #include <sys/dmu_traverse.h>
29 #include <sys/dmu_redact.h>
30 #include <sys/bqueue.h>
31 #include <sys/objlist.h>
32 #include <sys/dmu_tx.h>
33 #ifdef _KERNEL
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zap.h>
36 #include <sys/zfs_znode.h>
37 #endif
38 
39 /*
40  * This controls the number of entries in the buffer the redaction_list_update
41  * synctask uses to buffer writes to the redaction list.
42  */
43 static const int redact_sync_bufsize = 1024;
44 
45 /*
46  * Controls how often to update the redaction list when creating a redaction
47  * list.
48  */
49 static const uint64_t redaction_list_update_interval_ns =
50     1000 * 1000 * 1000ULL; /* 1s */
51 
52 /*
53  * This tunable controls the length of the queues that zfs redact worker threads
54  * use to communicate.  If the dmu_redact_snap thread is blocking on these
55  * queues, this variable may need to be increased.  If there is a significant
56  * slowdown at the start of a redact operation as these threads consume all the
57  * available IO resources, or the queues are consuming too much memory, this
58  * variable may need to be decreased.
59  */
60 static const int zfs_redact_queue_length = 1024 * 1024;
61 
62 /*
63  * These tunables control the fill fraction of the queues by zfs redact. The
64  * fill fraction controls the frequency with which threads have to be
65  * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
66  * should be tuned down.  If the queues empty before the signalled thread can
67  * catch up, then these should be tuned up.
68  */
69 static const uint64_t zfs_redact_queue_ff = 20;
70 
71 struct redact_record {
72 	bqueue_node_t		ln;
73 	boolean_t		eos_marker; /* Marks the end of the stream */
74 	uint64_t		start_object;
75 	uint64_t		start_blkid;
76 	uint64_t		end_object;
77 	uint64_t		end_blkid;
78 	uint8_t			indblkshift;
79 	uint32_t		datablksz;
80 };
81 
82 struct redact_thread_arg {
83 	bqueue_t	q;
84 	objset_t	*os;		/* Objset to traverse */
85 	dsl_dataset_t	*ds;		/* Dataset to traverse */
86 	struct redact_record *current_record;
87 	int		error_code;
88 	boolean_t	cancel;
89 	zbookmark_phys_t resume;
90 	objlist_t	*deleted_objs;
91 	uint64_t	*num_blocks_visited;
92 	uint64_t	ignore_object;	/* ignore further callbacks on this */
93 	uint64_t	txg; /* txg to traverse since */
94 };
95 
96 /*
97  * The redaction node is a wrapper around the redaction record that is used
98  * by the redaction merging thread to sort the records and determine overlaps.
99  *
100  * It contains two nodes; one sorts the records by their start_zb, and the other
101  * sorts the records by their end_zb.
102  */
103 struct redact_node {
104 	avl_node_t			avl_node_start;
105 	avl_node_t			avl_node_end;
106 	struct redact_record		*record;
107 	struct redact_thread_arg	*rt_arg;
108 	uint32_t			thread_num;
109 };
110 
111 struct merge_data {
112 	list_t				md_redact_block_pending;
113 	redact_block_phys_t		md_coalesce_block;
114 	uint64_t			md_last_time;
115 	redact_block_phys_t		md_furthest[TXG_SIZE];
116 	/* Lists of struct redact_block_list_node. */
117 	list_t				md_blocks[TXG_SIZE];
118 	boolean_t			md_synctask_txg[TXG_SIZE];
119 	uint64_t			md_latest_synctask_txg;
120 	redaction_list_t		*md_redaction_list;
121 };
122 
123 /*
124  * A wrapper around struct redact_block so it can be stored in a list_t.
125  */
126 struct redact_block_list_node {
127 	redact_block_phys_t	block;
128 	list_node_t		node;
129 };
130 
131 /*
132  * We've found a new redaction candidate.  In order to improve performance, we
133  * coalesce these blocks when they're adjacent to each other.  This function
134  * handles that.  If the new candidate block range is immediately after the
135  * range we're building, coalesce it into the range we're building.  Otherwise,
136  * put the record we're building on the queue, and update the build pointer to
137  * point to the new record.
138  */
139 static void
140 record_merge_enqueue(bqueue_t *q, struct redact_record **build,
141     struct redact_record *new)
142 {
143 	if (new->eos_marker) {
144 		if (*build != NULL)
145 			bqueue_enqueue(q, *build, sizeof (*build));
146 		bqueue_enqueue_flush(q, new, sizeof (*new));
147 		return;
148 	}
149 	if (*build == NULL) {
150 		*build = new;
151 		return;
152 	}
153 	struct redact_record *curbuild = *build;
154 	if ((curbuild->end_object == new->start_object &&
155 	    curbuild->end_blkid + 1 == new->start_blkid &&
156 	    curbuild->end_blkid != UINT64_MAX) ||
157 	    (curbuild->end_object + 1 == new->start_object &&
158 	    curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
159 		curbuild->end_object = new->end_object;
160 		curbuild->end_blkid = new->end_blkid;
161 		kmem_free(new, sizeof (*new));
162 	} else {
163 		bqueue_enqueue(q, curbuild, sizeof (*curbuild));
164 		*build = new;
165 	}
166 }
167 #ifdef _KERNEL
168 struct objnode {
169 	avl_node_t node;
170 	uint64_t obj;
171 };
172 
173 static int
174 objnode_compare(const void *o1, const void *o2)
175 {
176 	const struct objnode *obj1 = o1;
177 	const struct objnode *obj2 = o2;
178 	if (obj1->obj < obj2->obj)
179 		return (-1);
180 	if (obj1->obj > obj2->obj)
181 		return (1);
182 	return (0);
183 }
184 
185 
186 static objlist_t *
187 zfs_get_deleteq(objset_t *os)
188 {
189 	objlist_t *deleteq_objlist = objlist_create();
190 	uint64_t deleteq_obj;
191 	zap_cursor_t zc;
192 	zap_attribute_t za;
193 	dmu_object_info_t doi;
194 
195 	ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
196 	VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
197 	ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
198 
199 	VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
200 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
201 
202 	/*
203 	 * In order to insert objects into the objlist, they must be in sorted
204 	 * order. We don't know what order we'll get them out of the ZAP in, so
205 	 * we insert them into and remove them from an avl_tree_t to sort them.
206 	 */
207 	avl_tree_t at;
208 	avl_create(&at, objnode_compare, sizeof (struct objnode),
209 	    offsetof(struct objnode, node));
210 
211 	for (zap_cursor_init(&zc, os, deleteq_obj);
212 	    zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) {
213 		struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
214 		obj->obj = za.za_first_integer;
215 		avl_add(&at, obj);
216 	}
217 	zap_cursor_fini(&zc);
218 
219 	struct objnode *next, *found = avl_first(&at);
220 	while (found != NULL) {
221 		next = AVL_NEXT(&at, found);
222 		objlist_insert(deleteq_objlist, found->obj);
223 		found = next;
224 	}
225 
226 	void *cookie = NULL;
227 	while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
228 		kmem_free(found, sizeof (*found));
229 	avl_destroy(&at);
230 	return (deleteq_objlist);
231 }
232 #endif
233 
234 /*
235  * This is the callback function to traverse_dataset for the redaction threads
236  * for dmu_redact_snap.  This thread is responsible for creating redaction
237  * records for all the data that is modified by the snapshots we're redacting
238  * with respect to.  Redaction records represent ranges of data that have been
239  * modified by one of the redaction snapshots, and are stored in the
240  * redact_record struct. We need to create redaction records for three
241  * cases:
242  *
243  * First, if there's a normal write, we need to create a redaction record for
244  * that block.
245  *
246  * Second, if there's a hole, we need to create a redaction record that covers
247  * the whole range of the hole.  If the hole is in the meta-dnode, it must cover
248  * every block in all of the objects in the hole.
249  *
250  * Third, if there is a deleted object, we need to create a redaction record for
251  * all of the blocks in that object.
252  */
253 static int
254 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
255     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
256 {
257 	(void) spa, (void) zilog;
258 	struct redact_thread_arg *rta = arg;
259 	struct redact_record *record;
260 
261 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
262 	    zb->zb_object >= rta->resume.zb_object);
263 
264 	if (rta->cancel)
265 		return (SET_ERROR(EINTR));
266 
267 	if (rta->ignore_object == zb->zb_object)
268 		return (0);
269 
270 	/*
271 	 * If we're visiting a dnode, we need to handle the case where the
272 	 * object has been deleted.
273 	 */
274 	if (zb->zb_level == ZB_DNODE_LEVEL) {
275 		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
276 
277 		if (zb->zb_object == 0)
278 			return (0);
279 
280 		/*
281 		 * If the object has been deleted, redact all of the blocks in
282 		 * it.
283 		 */
284 		if (dnp->dn_type == DMU_OT_NONE ||
285 		    objlist_exists(rta->deleted_objs, zb->zb_object)) {
286 			rta->ignore_object = zb->zb_object;
287 			record = kmem_zalloc(sizeof (struct redact_record),
288 			    KM_SLEEP);
289 
290 			record->eos_marker = B_FALSE;
291 			record->start_object = record->end_object =
292 			    zb->zb_object;
293 			record->start_blkid = 0;
294 			record->end_blkid = UINT64_MAX;
295 			record_merge_enqueue(&rta->q,
296 			    &rta->current_record, record);
297 		}
298 		return (0);
299 	} else if (zb->zb_level < 0) {
300 		return (0);
301 	} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
302 		/*
303 		 * If this is an indirect block, but not a hole, it doesn't
304 		 * provide any useful information for redaction, so ignore it.
305 		 */
306 		return (0);
307 	}
308 
309 	/*
310 	 * At this point, there are two options left for the type of block we're
311 	 * looking at.  Either this is a hole (which could be in the dnode or
312 	 * the meta-dnode), or it's a level 0 block of some sort.  If it's a
313 	 * hole, we create a redaction record that covers the whole range.  If
314 	 * the hole is in a dnode, we need to redact all the blocks in that
315 	 * hole.  If the hole is in the meta-dnode, we instead need to redact
316 	 * all blocks in every object covered by that hole.  If it's a level 0
317 	 * block, we only need to redact that single block.
318 	 */
319 	record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
320 	record->eos_marker = B_FALSE;
321 
322 	record->start_object = record->end_object = zb->zb_object;
323 	if (BP_IS_HOLE(bp)) {
324 		record->start_blkid = zb->zb_blkid *
325 		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
326 
327 		record->end_blkid = ((zb->zb_blkid + 1) *
328 		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
329 
330 		if (zb->zb_object == DMU_META_DNODE_OBJECT) {
331 			record->start_object = record->start_blkid *
332 			    ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
333 			    sizeof (dnode_phys_t));
334 			record->start_blkid = 0;
335 			record->end_object = ((record->end_blkid +
336 			    1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
337 			    sizeof (dnode_phys_t))) - 1;
338 			record->end_blkid = UINT64_MAX;
339 		}
340 	} else if (zb->zb_level != 0 ||
341 	    zb->zb_object == DMU_META_DNODE_OBJECT) {
342 		kmem_free(record, sizeof (*record));
343 		return (0);
344 	} else {
345 		record->start_blkid = record->end_blkid = zb->zb_blkid;
346 	}
347 	record->indblkshift = dnp->dn_indblkshift;
348 	record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
349 	record_merge_enqueue(&rta->q, &rta->current_record, record);
350 
351 	return (0);
352 }
353 
354 static __attribute__((noreturn)) void
355 redact_traverse_thread(void *arg)
356 {
357 	struct redact_thread_arg *rt_arg = arg;
358 	int err;
359 	struct redact_record *data;
360 #ifdef _KERNEL
361 	if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
362 		rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
363 	else
364 		rt_arg->deleted_objs = objlist_create();
365 #else
366 	rt_arg->deleted_objs = objlist_create();
367 #endif
368 
369 	err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
370 	    &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
371 	    redact_cb, rt_arg);
372 
373 	if (err != EINTR)
374 		rt_arg->error_code = err;
375 	objlist_destroy(rt_arg->deleted_objs);
376 	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
377 	data->eos_marker = B_TRUE;
378 	record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
379 	thread_exit();
380 }
381 
382 static inline void
383 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
384     uint64_t blkid)
385 {
386 	zb->zb_object = object;
387 	zb->zb_level = 0;
388 	zb->zb_blkid = blkid;
389 }
390 
391 /*
392  * This is a utility function that can do the comparison for the start or ends
393  * of the ranges in a redact_record.
394  */
395 static int
396 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
397     uint64_t obj2, uint64_t off2, uint32_t dbss2)
398 {
399 	zbookmark_phys_t z1, z2;
400 	create_zbookmark_from_obj_off(&z1, obj1, off1);
401 	create_zbookmark_from_obj_off(&z2, obj2, off2);
402 
403 	return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
404 	    dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
405 }
406 
407 /*
408  * Compare two redaction records by their range's start location.  Also makes
409  * eos records always compare last.  We use the thread number in the redact_node
410  * to ensure that records do not compare equal (which is not allowed in our avl
411  * trees).
412  */
413 static int
414 redact_node_compare_start(const void *arg1, const void *arg2)
415 {
416 	const struct redact_node *rn1 = arg1;
417 	const struct redact_node *rn2 = arg2;
418 	const struct redact_record *rr1 = rn1->record;
419 	const struct redact_record *rr2 = rn2->record;
420 	if (rr1->eos_marker)
421 		return (1);
422 	if (rr2->eos_marker)
423 		return (-1);
424 
425 	int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
426 	    rr1->datablksz, rr2->start_object, rr2->start_blkid,
427 	    rr2->datablksz);
428 	if (cmp == 0)
429 		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
430 	return (cmp);
431 }
432 
433 /*
434  * Compare two redaction records by their range's end location.  Also makes
435  * eos records always compare last.  We use the thread number in the redact_node
436  * to ensure that records do not compare equal (which is not allowed in our avl
437  * trees).
438  */
439 static int
440 redact_node_compare_end(const void *arg1, const void *arg2)
441 {
442 	const struct redact_node *rn1 = arg1;
443 	const struct redact_node *rn2 = arg2;
444 	const struct redact_record *srr1 = rn1->record;
445 	const struct redact_record *srr2 = rn2->record;
446 	if (srr1->eos_marker)
447 		return (1);
448 	if (srr2->eos_marker)
449 		return (-1);
450 
451 	int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
452 	    srr1->datablksz, srr2->end_object, srr2->end_blkid,
453 	    srr2->datablksz);
454 	if (cmp == 0)
455 		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
456 	return (cmp);
457 }
458 
459 /*
460  * Utility function that compares two redaction records to determine if any part
461  * of the "from" record is before any part of the "to" record. Also causes End
462  * of Stream redaction records to compare after all others, so that the
463  * redaction merging logic can stay simple.
464  */
465 static boolean_t
466 redact_record_before(const struct redact_record *from,
467     const struct redact_record *to)
468 {
469 	if (from->eos_marker == B_TRUE)
470 		return (B_FALSE);
471 	else if (to->eos_marker == B_TRUE)
472 		return (B_TRUE);
473 	return (redact_range_compare(from->start_object, from->start_blkid,
474 	    from->datablksz, to->end_object, to->end_blkid,
475 	    to->datablksz) <= 0);
476 }
477 
478 /*
479  * Pop a new redaction record off the queue, check that the records are in the
480  * right order, and free the old data.
481  */
482 static struct redact_record *
483 get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
484 {
485 	struct redact_record *next = bqueue_dequeue(bq);
486 	ASSERT(redact_record_before(prev, next));
487 	kmem_free(prev, sizeof (*prev));
488 	return (next);
489 }
490 
491 /*
492  * Remove the given redaction node from both trees, pull a new redaction record
493  * off the queue, free the old redaction record, update the redaction node, and
494  * reinsert the node into the trees.
495  */
496 static int
497 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
498     struct redact_node *redact_node)
499 {
500 	avl_remove(start_tree, redact_node);
501 	avl_remove(end_tree, redact_node);
502 	redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
503 	    redact_node->record);
504 	avl_add(end_tree, redact_node);
505 	avl_add(start_tree, redact_node);
506 	return (redact_node->rt_arg->error_code);
507 }
508 
509 /*
510  * Synctask for updating redaction lists.  We first take this txg's list of
511  * redacted blocks and append those to the redaction list.  We then update the
512  * redaction list's bonus buffer.  We store the furthest blocks we visited and
513  * the list of snapshots that we're redacting with respect to.  We need these so
514  * that redacted sends and receives can be correctly resumed.
515  */
516 static void
517 redaction_list_update_sync(void *arg, dmu_tx_t *tx)
518 {
519 	struct merge_data *md = arg;
520 	uint64_t txg = dmu_tx_get_txg(tx);
521 	list_t *list = &md->md_blocks[txg & TXG_MASK];
522 	redact_block_phys_t *furthest_visited =
523 	    &md->md_furthest[txg & TXG_MASK];
524 	objset_t *mos = tx->tx_pool->dp_meta_objset;
525 	redaction_list_t *rl = md->md_redaction_list;
526 	int bufsize = redact_sync_bufsize;
527 	redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
528 	    KM_SLEEP);
529 	int index = 0;
530 
531 	dmu_buf_will_dirty(rl->rl_dbuf, tx);
532 
533 	for (struct redact_block_list_node *rbln = list_remove_head(list);
534 	    rbln != NULL; rbln = list_remove_head(list)) {
535 		ASSERT3U(rbln->block.rbp_object, <=,
536 		    furthest_visited->rbp_object);
537 		ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
538 		    rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
539 		buf[index] = rbln->block;
540 		index++;
541 		if (index == bufsize) {
542 			dmu_write(mos, rl->rl_object,
543 			    rl->rl_phys->rlp_num_entries * sizeof (*buf),
544 			    bufsize * sizeof (*buf), buf, tx);
545 			rl->rl_phys->rlp_num_entries += bufsize;
546 			index = 0;
547 		}
548 		kmem_free(rbln, sizeof (*rbln));
549 	}
550 	if (index > 0) {
551 		dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
552 		    sizeof (*buf), index * sizeof (*buf), buf, tx);
553 		rl->rl_phys->rlp_num_entries += index;
554 	}
555 	kmem_free(buf, bufsize * sizeof (*buf));
556 
557 	md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
558 	rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
559 	rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
560 }
561 
562 static void
563 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
564     uint64_t blkid)
565 {
566 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
567 	dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
568 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
569 	uint64_t txg = dmu_tx_get_txg(tx);
570 	if (!md->md_synctask_txg[txg & TXG_MASK]) {
571 		dsl_sync_task_nowait(dmu_tx_pool(tx),
572 		    redaction_list_update_sync, md, tx);
573 		md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
574 		md->md_latest_synctask_txg = txg;
575 	}
576 	md->md_furthest[txg & TXG_MASK].rbp_object = object;
577 	md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
578 	list_move_tail(&md->md_blocks[txg & TXG_MASK],
579 	    &md->md_redact_block_pending);
580 	dmu_tx_commit(tx);
581 	md->md_last_time = gethrtime();
582 }
583 
584 /*
585  * We want to store the list of blocks that we're redacting in the bookmark's
586  * redaction list.  However, this list is stored in the MOS, which means it can
587  * only be written to in syncing context.  To get around this, we create a
588  * synctask that will write to the mos for us.  We tell it what to write by
589  * a linked list for each current transaction group; every time we decide to
590  * redact a block, we append it to the transaction group that is currently in
591  * open context.  We also update some progress information that the synctask
592  * will store to enable resumable redacted sends.
593  */
594 static void
595 update_redaction_list(struct merge_data *md, objset_t *os,
596     uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
597 {
598 	boolean_t enqueue = B_FALSE;
599 	redact_block_phys_t cur = {0};
600 	uint64_t count = endblkid - blkid + 1;
601 	while (count > REDACT_BLOCK_MAX_COUNT) {
602 		update_redaction_list(md, os, object, blkid,
603 		    blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
604 		blkid += REDACT_BLOCK_MAX_COUNT;
605 		count -= REDACT_BLOCK_MAX_COUNT;
606 	}
607 	redact_block_phys_t *coalesce = &md->md_coalesce_block;
608 	boolean_t new;
609 	if (coalesce->rbp_size_count == 0) {
610 		new = B_TRUE;
611 		enqueue = B_FALSE;
612 	} else  {
613 		uint64_t old_count = redact_block_get_count(coalesce);
614 		if (coalesce->rbp_object == object &&
615 		    coalesce->rbp_blkid + old_count == blkid &&
616 		    old_count + count <= REDACT_BLOCK_MAX_COUNT) {
617 			ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
618 			redact_block_set_count(coalesce, old_count + count);
619 			new = B_FALSE;
620 			enqueue = B_FALSE;
621 		} else {
622 			new = B_TRUE;
623 			enqueue = B_TRUE;
624 		}
625 	}
626 
627 	if (new) {
628 		cur = *coalesce;
629 		coalesce->rbp_blkid = blkid;
630 		coalesce->rbp_object = object;
631 
632 		redact_block_set_count(coalesce, count);
633 		redact_block_set_size(coalesce, blksz);
634 	}
635 
636 	if (enqueue && redact_block_get_size(&cur) != 0) {
637 		struct redact_block_list_node *rbln =
638 		    kmem_alloc(sizeof (struct redact_block_list_node),
639 		    KM_SLEEP);
640 		rbln->block = cur;
641 		list_insert_tail(&md->md_redact_block_pending, rbln);
642 	}
643 
644 	if (gethrtime() > md->md_last_time +
645 	    redaction_list_update_interval_ns) {
646 		commit_rl_updates(os, md, object, blkid);
647 	}
648 }
649 
650 /*
651  * This thread merges all the redaction records provided by the worker threads,
652  * and determines which blocks are redacted by all the snapshots.  The algorithm
653  * for doing so is similar to performing a merge in mergesort with n sub-lists
654  * instead of 2, with some added complexity due to the fact that the entries are
655  * ranges, not just single blocks.  This algorithm relies on the fact that the
656  * queues are sorted, which is ensured by the fact that traverse_dataset
657  * traverses the dataset in a consistent order.  We pull one entry off the front
658  * of the queues of each secure dataset traversal thread.  Then we repeat the
659  * following: each record represents a range of blocks modified by one of the
660  * redaction snapshots, and each block in that range may need to be redacted in
661  * the send stream.  Find the record with the latest start of its range, and the
662  * record with the earliest end of its range. If the last start is before the
663  * first end, then we know that the blocks in the range [last_start, first_end]
664  * are covered by all of the ranges at the front of the queues, which means
665  * every thread redacts that whole range.  For example, let's say the ranges on
666  * each queue look like this:
667  *
668  * Block Id   1  2  3  4  5  6  7  8  9 10 11
669  * Thread 1 |    [====================]
670  * Thread 2 |       [========]
671  * Thread 3 |             [=================]
672  *
673  * Thread 3 has the last start (5), and the thread 2 has the last end (6).  All
674  * three threads modified the range [5,6], so that data should not be sent over
675  * the wire.  After we've determined whether or not to redact anything, we take
676  * the record with the first end.  We discard that record, and pull a new one
677  * off the front of the queue it came from.  In the above example, we would
678  * discard Thread 2's record, and pull a new one.  Let's say the next record we
679  * pulled from Thread 2 covered range [10,11].  The new layout would look like
680  * this:
681  *
682  * Block Id   1  2  3  4  5  6  7  8  9 10 11
683  * Thread 1 |    [====================]
684  * Thread 2 |                            [==]
685  * Thread 3 |             [=================]
686  *
687  * When we compare the last start (10, from Thread 2) and the first end (9, from
688  * Thread 1), we see that the last start is greater than the first end.
689  * Therefore, we do not redact anything from these records.  We'll iterate by
690  * replacing the record from Thread 1.
691  *
692  * We iterate by replacing the record with the lowest end because we know
693  * that the record with the lowest end has helped us as much as it can.  All the
694  * ranges before it that we will ever redact have been redacted.  In addition,
695  * by replacing the one with the lowest end, we guarantee we catch all ranges
696  * that need to be redacted.  For example, if in the case above we had replaced
697  * the record from Thread 1 instead, we might have ended up with the following:
698  *
699  * Block Id   1  2  3  4  5  6  7  8  9 10 11 12
700  * Thread 1 |                               [==]
701  * Thread 2 |       [========]
702  * Thread 3 |             [=================]
703  *
704  * If the next record from Thread 2 had been [8,10], for example, we should have
705  * redacted part of that range, but because we updated Thread 1's record, we
706  * missed it.
707  *
708  * We implement this algorithm by using two trees.  The first sorts the
709  * redaction records by their start_zb, and the second sorts them by their
710  * end_zb.  We use these to find the record with the last start and the record
711  * with the first end.  We create a record with that start and end, and send it
712  * on.  The overall runtime of this implementation is O(n log m), where n is the
713  * total number of redaction records from all the different redaction snapshots,
714  * and m is the number of redaction snapshots.
715  *
716  * If we redact with respect to zero snapshots, we create a redaction
717  * record with the start object and blkid to 0, and the end object and blkid to
718  * UINT64_MAX.  This will result in us redacting every block.
719  */
720 static int
721 perform_thread_merge(bqueue_t *q, uint32_t num_threads,
722     struct redact_thread_arg *thread_args, boolean_t *cancel)
723 {
724 	struct redact_node *redact_nodes = NULL;
725 	avl_tree_t start_tree, end_tree;
726 	struct redact_record *record;
727 	struct redact_record *current_record = NULL;
728 	int err = 0;
729 	struct merge_data md = { {0} };
730 	list_create(&md.md_redact_block_pending,
731 	    sizeof (struct redact_block_list_node),
732 	    offsetof(struct redact_block_list_node, node));
733 
734 	/*
735 	 * If we're redacting with respect to zero snapshots, then no data is
736 	 * permitted to be sent.  We enqueue a record that redacts all blocks,
737 	 * and an eos marker.
738 	 */
739 	if (num_threads == 0) {
740 		record = kmem_zalloc(sizeof (struct redact_record),
741 		    KM_SLEEP);
742 		// We can't redact object 0, so don't try.
743 		record->start_object = 1;
744 		record->start_blkid = 0;
745 		record->end_object = record->end_blkid = UINT64_MAX;
746 		bqueue_enqueue(q, record, sizeof (*record));
747 		return (0);
748 	}
749 	if (num_threads > 0) {
750 		redact_nodes = kmem_zalloc(num_threads *
751 		    sizeof (*redact_nodes), KM_SLEEP);
752 	}
753 
754 	avl_create(&start_tree, redact_node_compare_start,
755 	    sizeof (struct redact_node),
756 	    offsetof(struct redact_node, avl_node_start));
757 	avl_create(&end_tree, redact_node_compare_end,
758 	    sizeof (struct redact_node),
759 	    offsetof(struct redact_node, avl_node_end));
760 
761 	for (int i = 0; i < num_threads; i++) {
762 		struct redact_node *node = &redact_nodes[i];
763 		struct redact_thread_arg *targ = &thread_args[i];
764 		node->record = bqueue_dequeue(&targ->q);
765 		node->rt_arg = targ;
766 		node->thread_num = i;
767 		avl_add(&start_tree, node);
768 		avl_add(&end_tree, node);
769 	}
770 
771 	/*
772 	 * Once the first record in the end tree has returned EOS, every record
773 	 * must be an EOS record, so we should stop.
774 	 */
775 	while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
776 	    record->eos_marker) {
777 		if (*cancel) {
778 			err = EINTR;
779 			break;
780 		}
781 		struct redact_node *last_start = avl_last(&start_tree);
782 		struct redact_node *first_end = avl_first(&end_tree);
783 
784 		/*
785 		 * If the last start record is before the first end record,
786 		 * then we have blocks that are redacted by all threads.
787 		 * Therefore, we should redact them.  Copy the record, and send
788 		 * it to the main thread.
789 		 */
790 		if (redact_record_before(last_start->record,
791 		    first_end->record)) {
792 			record = kmem_zalloc(sizeof (struct redact_record),
793 			    KM_SLEEP);
794 			*record = *first_end->record;
795 			record->start_object = last_start->record->start_object;
796 			record->start_blkid = last_start->record->start_blkid;
797 			record_merge_enqueue(q, &current_record,
798 			    record);
799 		}
800 		err = update_avl_trees(&start_tree, &end_tree, first_end);
801 	}
802 
803 	/*
804 	 * We're done; if we were cancelled, we need to cancel our workers and
805 	 * clear out their queues.  Either way, we need to remove every thread's
806 	 * redact_node struct from the avl trees.
807 	 */
808 	for (int i = 0; i < num_threads; i++) {
809 		if (err != 0) {
810 			thread_args[i].cancel = B_TRUE;
811 			while (!redact_nodes[i].record->eos_marker) {
812 				(void) update_avl_trees(&start_tree, &end_tree,
813 				    &redact_nodes[i]);
814 			}
815 		}
816 		avl_remove(&start_tree, &redact_nodes[i]);
817 		avl_remove(&end_tree, &redact_nodes[i]);
818 		kmem_free(redact_nodes[i].record,
819 		    sizeof (struct redact_record));
820 		bqueue_destroy(&thread_args[i].q);
821 	}
822 
823 	avl_destroy(&start_tree);
824 	avl_destroy(&end_tree);
825 	kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
826 	if (current_record != NULL)
827 		bqueue_enqueue(q, current_record, sizeof (current_record));
828 	return (err);
829 }
830 
831 struct redact_merge_thread_arg {
832 	bqueue_t q;
833 	spa_t *spa;
834 	int numsnaps;
835 	struct redact_thread_arg *thr_args;
836 	boolean_t cancel;
837 	int error_code;
838 };
839 
840 static __attribute__((noreturn)) void
841 redact_merge_thread(void *arg)
842 {
843 	struct redact_merge_thread_arg *rmta = arg;
844 	rmta->error_code = perform_thread_merge(&rmta->q,
845 	    rmta->numsnaps, rmta->thr_args, &rmta->cancel);
846 	struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
847 	rec->eos_marker = B_TRUE;
848 	bqueue_enqueue_flush(&rmta->q, rec, 1);
849 	thread_exit();
850 }
851 
852 /*
853  * Find the next object in or after the redaction range passed in, and hold
854  * its dnode with the provided tag.  Also update *object to contain the new
855  * object number.
856  */
857 static int
858 hold_next_object(objset_t *os, struct redact_record *rec, void *tag,
859     uint64_t *object, dnode_t **dn)
860 {
861 	int err = 0;
862 	if (*dn != NULL)
863 		dnode_rele(*dn, tag);
864 	*dn = NULL;
865 	if (*object < rec->start_object) {
866 		*object = rec->start_object - 1;
867 	}
868 	err = dmu_object_next(os, object, B_FALSE, 0);
869 	if (err != 0)
870 		return (err);
871 
872 	err = dnode_hold(os, *object, tag, dn);
873 	while (err == 0 && (*object < rec->start_object ||
874 	    DMU_OT_IS_METADATA((*dn)->dn_type))) {
875 		dnode_rele(*dn, tag);
876 		*dn = NULL;
877 		err = dmu_object_next(os, object, B_FALSE, 0);
878 		if (err != 0)
879 			break;
880 		err = dnode_hold(os, *object, tag, dn);
881 	}
882 	return (err);
883 }
884 
885 static int
886 perform_redaction(objset_t *os, redaction_list_t *rl,
887     struct redact_merge_thread_arg *rmta)
888 {
889 	int err = 0;
890 	bqueue_t *q = &rmta->q;
891 	struct redact_record *rec = NULL;
892 	struct merge_data md = { {0} };
893 
894 	list_create(&md.md_redact_block_pending,
895 	    sizeof (struct redact_block_list_node),
896 	    offsetof(struct redact_block_list_node, node));
897 	md.md_redaction_list = rl;
898 
899 	for (int i = 0; i < TXG_SIZE; i++) {
900 		list_create(&md.md_blocks[i],
901 		    sizeof (struct redact_block_list_node),
902 		    offsetof(struct redact_block_list_node, node));
903 	}
904 	dnode_t *dn = NULL;
905 	uint64_t prev_obj = 0;
906 	for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
907 	    rec = get_next_redact_record(q, rec)) {
908 		ASSERT3U(rec->start_object, !=, 0);
909 		uint64_t object;
910 		if (prev_obj != rec->start_object) {
911 			object = rec->start_object - 1;
912 			err = hold_next_object(os, rec, FTAG, &object, &dn);
913 		} else {
914 			object = prev_obj;
915 		}
916 		while (err == 0 && object <= rec->end_object) {
917 			if (issig(JUSTLOOKING) && issig(FORREAL)) {
918 				err = EINTR;
919 				break;
920 			}
921 			/*
922 			 * Part of the current object is contained somewhere in
923 			 * the range covered by rec.
924 			 */
925 			uint64_t startblkid;
926 			uint64_t endblkid;
927 			uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
928 
929 			if (rec->start_object < object)
930 				startblkid = 0;
931 			else if (rec->start_blkid > maxblkid)
932 				break;
933 			else
934 				startblkid = rec->start_blkid;
935 
936 			if (rec->end_object > object || rec->end_blkid >
937 			    maxblkid) {
938 				endblkid = maxblkid;
939 			} else {
940 				endblkid = rec->end_blkid;
941 			}
942 			update_redaction_list(&md, os, object, startblkid,
943 			    endblkid, dn->dn_datablksz);
944 
945 			if (object == rec->end_object)
946 				break;
947 			err = hold_next_object(os, rec, FTAG, &object, &dn);
948 		}
949 		if (err == ESRCH)
950 			err = 0;
951 		if (dn != NULL)
952 			prev_obj = object;
953 	}
954 	if (err == 0 && dn != NULL)
955 		dnode_rele(dn, FTAG);
956 
957 	if (err == ESRCH)
958 		err = 0;
959 	rmta->cancel = B_TRUE;
960 	while (!rec->eos_marker)
961 		rec = get_next_redact_record(q, rec);
962 	kmem_free(rec, sizeof (*rec));
963 
964 	/*
965 	 * There may be a block that's being coalesced, sync that out before we
966 	 * return.
967 	 */
968 	if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
969 		struct redact_block_list_node *rbln =
970 		    kmem_alloc(sizeof (struct redact_block_list_node),
971 		    KM_SLEEP);
972 		rbln->block = md.md_coalesce_block;
973 		list_insert_tail(&md.md_redact_block_pending, rbln);
974 	}
975 	commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
976 
977 	/*
978 	 * Wait for all the redaction info to sync out before we return, so that
979 	 * anyone who attempts to resume this redaction will have all the data
980 	 * they need.
981 	 */
982 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
983 	if (md.md_latest_synctask_txg != 0)
984 		txg_wait_synced(dp, md.md_latest_synctask_txg);
985 	for (int i = 0; i < TXG_SIZE; i++)
986 		list_destroy(&md.md_blocks[i]);
987 	return (err);
988 }
989 
990 static boolean_t
991 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
992 {
993 	for (int i = 0; i < num_snaps; i++) {
994 		if (snaps[i] == guid)
995 			return (B_TRUE);
996 	}
997 	return (B_FALSE);
998 }
999 
1000 int
1001 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1002     const char *redactbook)
1003 {
1004 	int err = 0;
1005 	dsl_pool_t *dp = NULL;
1006 	dsl_dataset_t *ds = NULL;
1007 	int numsnaps = 0;
1008 	objset_t *os;
1009 	struct redact_thread_arg *args = NULL;
1010 	redaction_list_t *new_rl = NULL;
1011 	char *newredactbook;
1012 
1013 	if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1014 		return (err);
1015 
1016 	newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1017 	    KM_SLEEP);
1018 
1019 	if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1020 	    FTAG, &ds)) != 0) {
1021 		goto out;
1022 	}
1023 	dsl_dataset_long_hold(ds, FTAG);
1024 	if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1025 		err = EINVAL;
1026 		goto out;
1027 	}
1028 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1029 		err = EALREADY;
1030 		goto out;
1031 	}
1032 
1033 	numsnaps = fnvlist_num_pairs(redactnvl);
1034 	if (numsnaps > 0)
1035 		args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1036 
1037 	nvpair_t *pair = NULL;
1038 	for (int i = 0; i < numsnaps; i++) {
1039 		pair = nvlist_next_nvpair(redactnvl, pair);
1040 		const char *name = nvpair_name(pair);
1041 		struct redact_thread_arg *rta = &args[i];
1042 		err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1043 		    FTAG, &rta->ds);
1044 		if (err != 0)
1045 			break;
1046 		/*
1047 		 * We want to do the long hold before we can get any other
1048 		 * errors, because the cleanup code will release the long
1049 		 * hold if rta->ds is filled in.
1050 		 */
1051 		dsl_dataset_long_hold(rta->ds, FTAG);
1052 
1053 		err = dmu_objset_from_ds(rta->ds, &rta->os);
1054 		if (err != 0)
1055 			break;
1056 		if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1057 			err = EINVAL;
1058 			break;
1059 		}
1060 		if (dsl_dataset_feature_is_active(rta->ds,
1061 		    SPA_FEATURE_REDACTED_DATASETS)) {
1062 			err = EALREADY;
1063 			break;
1064 
1065 		}
1066 	}
1067 	if (err != 0)
1068 		goto out;
1069 	VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
1070 
1071 	boolean_t resuming = B_FALSE;
1072 	zfs_bookmark_phys_t bookmark;
1073 
1074 	(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1075 	char *c = strchr(newredactbook, '@');
1076 	ASSERT3P(c, !=, NULL);
1077 	int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1078 	    "#%s", redactbook);
1079 	if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1080 		dsl_pool_rele(dp, FTAG);
1081 		kmem_free(newredactbook,
1082 		    sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1083 		if (args != NULL)
1084 			kmem_free(args, numsnaps * sizeof (*args));
1085 		return (SET_ERROR(ENAMETOOLONG));
1086 	}
1087 	err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1088 	if (err == 0) {
1089 		resuming = B_TRUE;
1090 		if (bookmark.zbm_redaction_obj == 0) {
1091 			err = EEXIST;
1092 			goto out;
1093 		}
1094 		err = dsl_redaction_list_hold_obj(dp,
1095 		    bookmark.zbm_redaction_obj, FTAG, &new_rl);
1096 		if (err != 0) {
1097 			err = EIO;
1098 			goto out;
1099 		}
1100 		dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1101 		if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1102 			err = ESRCH;
1103 			goto out;
1104 		}
1105 		for (int i = 0; i < numsnaps; i++) {
1106 			struct redact_thread_arg *rta = &args[i];
1107 			if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1108 			    new_rl->rl_phys->rlp_num_snaps,
1109 			    dsl_dataset_phys(rta->ds)->ds_guid)) {
1110 				err = ESRCH;
1111 				goto out;
1112 			}
1113 		}
1114 		if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1115 		    new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1116 			err = EEXIST;
1117 			goto out;
1118 		}
1119 		dsl_pool_rele(dp, FTAG);
1120 		dp = NULL;
1121 	} else {
1122 		uint64_t *guids = NULL;
1123 		if (numsnaps > 0) {
1124 			guids = kmem_zalloc(numsnaps * sizeof (uint64_t),
1125 			    KM_SLEEP);
1126 		}
1127 		for (int i = 0; i < numsnaps; i++) {
1128 			struct redact_thread_arg *rta = &args[i];
1129 			guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1130 		}
1131 
1132 		dsl_pool_rele(dp, FTAG);
1133 		dp = NULL;
1134 		err = dsl_bookmark_create_redacted(newredactbook, snapname,
1135 		    numsnaps, guids, FTAG, &new_rl);
1136 		kmem_free(guids, numsnaps * sizeof (uint64_t));
1137 		if (err != 0) {
1138 			goto out;
1139 		}
1140 	}
1141 
1142 	for (int i = 0; i < numsnaps; i++) {
1143 		struct redact_thread_arg *rta = &args[i];
1144 		(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1145 		    zfs_redact_queue_length,
1146 		    offsetof(struct redact_record, ln));
1147 		if (resuming) {
1148 			rta->resume.zb_blkid =
1149 			    new_rl->rl_phys->rlp_last_blkid;
1150 			rta->resume.zb_object =
1151 			    new_rl->rl_phys->rlp_last_object;
1152 		}
1153 		rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1154 		(void) thread_create(NULL, 0, redact_traverse_thread, rta,
1155 		    0, curproc, TS_RUN, minclsyspri);
1156 	}
1157 
1158 	struct redact_merge_thread_arg *rmta;
1159 	rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1160 
1161 	(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1162 	    zfs_redact_queue_length, offsetof(struct redact_record, ln));
1163 	rmta->numsnaps = numsnaps;
1164 	rmta->spa = os->os_spa;
1165 	rmta->thr_args = args;
1166 	(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1167 	    TS_RUN, minclsyspri);
1168 	err = perform_redaction(os, new_rl, rmta);
1169 	bqueue_destroy(&rmta->q);
1170 	kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1171 
1172 out:
1173 	kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1174 
1175 	if (new_rl != NULL) {
1176 		dsl_redaction_list_long_rele(new_rl, FTAG);
1177 		dsl_redaction_list_rele(new_rl, FTAG);
1178 	}
1179 	for (int i = 0; i < numsnaps; i++) {
1180 		struct redact_thread_arg *rta = &args[i];
1181 		/*
1182 		 * rta->ds may be NULL if we got an error while filling
1183 		 * it in.
1184 		 */
1185 		if (rta->ds != NULL) {
1186 			dsl_dataset_long_rele(rta->ds, FTAG);
1187 			dsl_dataset_rele_flags(rta->ds,
1188 			    DS_HOLD_FLAG_DECRYPT, FTAG);
1189 		}
1190 	}
1191 
1192 	if (args != NULL)
1193 		kmem_free(args, numsnaps * sizeof (*args));
1194 	if (dp != NULL)
1195 		dsl_pool_rele(dp, FTAG);
1196 	if (ds != NULL) {
1197 		dsl_dataset_long_rele(ds, FTAG);
1198 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1199 	}
1200 	return (SET_ERROR(err));
1201 
1202 }
1203