1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright 2016 RackTop Systems.
28  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 static int zfs_send_corrupt_data = B_FALSE;
71 /*
72  * This tunable controls the amount of data (measured in bytes) that will be
73  * prefetched by zfs send.  If the main thread is blocking on reads that haven't
74  * completed, this variable might need to be increased.  If instead the main
75  * thread is issuing new reads because the prefetches have fallen out of the
76  * cache, this may need to be decreased.
77  */
78 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80  * This tunable controls the length of the queues that zfs send worker threads
81  * use to communicate.  If the send_main_thread is blocking on these queues,
82  * this variable may need to be increased.  If there is a significant slowdown
83  * at the start of a send as these threads consume all the available IO
84  * resources, this variable may need to be decreased.
85  */
86 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88  * These tunables control the fill fraction of the queues by zfs send.  The fill
89  * fraction controls the frequency with which threads have to be cv_signaled.
90  * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91  * down.  If the queues empty before the signalled thread can catch up, then
92  * these should be tuned up.
93  */
94 static uint_t zfs_send_queue_ff = 20;
95 static uint_t zfs_send_no_prefetch_queue_ff = 20;
96 
97 /*
98  * Use this to override the recordsize calculation for fast zfs send estimates.
99  */
100 static uint_t zfs_override_estimate_recordsize = 0;
101 
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104 
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 static int zfs_send_unmodified_spill_blocks = B_TRUE;
107 
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 	uint64_t temp = a * b;
112 	if (b != 0 && temp / b != a)
113 		return (B_FALSE);
114 	*c = temp;
115 	return (B_TRUE);
116 }
117 
118 struct send_thread_arg {
119 	bqueue_t	q;
120 	objset_t	*os;		/* Objset to traverse */
121 	uint64_t	fromtxg;	/* Traverse from this txg */
122 	int		flags;		/* flags to pass to traverse_dataset */
123 	int		error_code;
124 	boolean_t	cancel;
125 	zbookmark_phys_t resume;
126 	uint64_t	*num_blocks_visited;
127 };
128 
129 struct redact_list_thread_arg {
130 	boolean_t		cancel;
131 	bqueue_t		q;
132 	zbookmark_phys_t	resume;
133 	redaction_list_t	*rl;
134 	boolean_t		mark_redact;
135 	int			error_code;
136 	uint64_t		*num_blocks_visited;
137 };
138 
139 struct send_merge_thread_arg {
140 	bqueue_t			q;
141 	objset_t			*os;
142 	struct redact_list_thread_arg	*from_arg;
143 	struct send_thread_arg		*to_arg;
144 	struct redact_list_thread_arg	*redact_arg;
145 	int				error;
146 	boolean_t			cancel;
147 };
148 
149 struct send_range {
150 	boolean_t		eos_marker; /* Marks the end of the stream */
151 	uint64_t		object;
152 	uint64_t		start_blkid;
153 	uint64_t		end_blkid;
154 	bqueue_node_t		ln;
155 	enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 	    PREVIOUSLY_REDACTED} type;
157 	union {
158 		struct srd {
159 			dmu_object_type_t	obj_type;
160 			uint32_t		datablksz; // logical size
161 			uint32_t		datasz; // payload size
162 			blkptr_t		bp;
163 			arc_buf_t		*abuf;
164 			abd_t			*abd;
165 			kmutex_t		lock;
166 			kcondvar_t		cv;
167 			boolean_t		io_outstanding;
168 			boolean_t		io_compressed;
169 			int			io_err;
170 		} data;
171 		struct srh {
172 			uint32_t		datablksz;
173 		} hole;
174 		struct sro {
175 			/*
176 			 * This is a pointer because embedding it in the
177 			 * struct causes these structures to be massively larger
178 			 * for all range types; this makes the code much less
179 			 * memory efficient.
180 			 */
181 			dnode_phys_t		*dnp;
182 			blkptr_t		bp;
183 		} object;
184 		struct srr {
185 			uint32_t		datablksz;
186 		} redact;
187 		struct sror {
188 			blkptr_t		bp;
189 		} object_range;
190 	} sru;
191 };
192 
193 /*
194  * The list of data whose inclusion in a send stream can be pending from
195  * one call to backup_cb to another.  Multiple calls to dump_free(),
196  * dump_freeobjects(), and dump_redact() can be aggregated into a single
197  * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
198  */
199 typedef enum {
200 	PENDING_NONE,
201 	PENDING_FREE,
202 	PENDING_FREEOBJECTS,
203 	PENDING_REDACT
204 } dmu_pendop_t;
205 
206 typedef struct dmu_send_cookie {
207 	dmu_replay_record_t *dsc_drr;
208 	dmu_send_outparams_t *dsc_dso;
209 	offset_t *dsc_off;
210 	objset_t *dsc_os;
211 	zio_cksum_t dsc_zc;
212 	uint64_t dsc_toguid;
213 	uint64_t dsc_fromtxg;
214 	int dsc_err;
215 	dmu_pendop_t dsc_pending_op;
216 	uint64_t dsc_featureflags;
217 	uint64_t dsc_last_data_object;
218 	uint64_t dsc_last_data_offset;
219 	uint64_t dsc_resume_object;
220 	uint64_t dsc_resume_offset;
221 	boolean_t dsc_sent_begin;
222 	boolean_t dsc_sent_end;
223 } dmu_send_cookie_t;
224 
225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
226 
227 static void
228 range_free(struct send_range *range)
229 {
230 	if (range->type == OBJECT) {
231 		size_t size = sizeof (dnode_phys_t) *
232 		    (range->sru.object.dnp->dn_extra_slots + 1);
233 		kmem_free(range->sru.object.dnp, size);
234 	} else if (range->type == DATA) {
235 		mutex_enter(&range->sru.data.lock);
236 		while (range->sru.data.io_outstanding)
237 			cv_wait(&range->sru.data.cv, &range->sru.data.lock);
238 		if (range->sru.data.abd != NULL)
239 			abd_free(range->sru.data.abd);
240 		if (range->sru.data.abuf != NULL) {
241 			arc_buf_destroy(range->sru.data.abuf,
242 			    &range->sru.data.abuf);
243 		}
244 		mutex_exit(&range->sru.data.lock);
245 
246 		cv_destroy(&range->sru.data.cv);
247 		mutex_destroy(&range->sru.data.lock);
248 	}
249 	kmem_free(range, sizeof (*range));
250 }
251 
252 /*
253  * For all record types except BEGIN, fill in the checksum (overlaid in
254  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
255  * up to the start of the checksum itself.
256  */
257 static int
258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
259 {
260 	dmu_send_outparams_t *dso = dscp->dsc_dso;
261 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
262 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
263 	(void) fletcher_4_incremental_native(dscp->dsc_drr,
264 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
265 	    &dscp->dsc_zc);
266 	if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
267 		dscp->dsc_sent_begin = B_TRUE;
268 	} else {
269 		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
270 		    drr_checksum.drr_checksum));
271 		dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
272 	}
273 	if (dscp->dsc_drr->drr_type == DRR_END) {
274 		dscp->dsc_sent_end = B_TRUE;
275 	}
276 	(void) fletcher_4_incremental_native(&dscp->dsc_drr->
277 	    drr_u.drr_checksum.drr_checksum,
278 	    sizeof (zio_cksum_t), &dscp->dsc_zc);
279 	*dscp->dsc_off += sizeof (dmu_replay_record_t);
280 	dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
281 	    sizeof (dmu_replay_record_t), dso->dso_arg);
282 	if (dscp->dsc_err != 0)
283 		return (SET_ERROR(EINTR));
284 	if (payload_len != 0) {
285 		*dscp->dsc_off += payload_len;
286 		/*
287 		 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
288 		 * doing a send size calculation)
289 		 */
290 		if (payload != NULL) {
291 			(void) fletcher_4_incremental_native(
292 			    payload, payload_len, &dscp->dsc_zc);
293 		}
294 
295 		/*
296 		 * The code does not rely on this (len being a multiple of 8).
297 		 * We keep this assertion because of the corresponding assertion
298 		 * in receive_read().  Keeping this assertion ensures that we do
299 		 * not inadvertently break backwards compatibility (causing the
300 		 * assertion in receive_read() to trigger on old software).
301 		 *
302 		 * Raw sends cannot be received on old software, and so can
303 		 * bypass this assertion.
304 		 */
305 
306 		ASSERT((payload_len % 8 == 0) ||
307 		    (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
308 
309 		dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
310 		    payload_len, dso->dso_arg);
311 		if (dscp->dsc_err != 0)
312 			return (SET_ERROR(EINTR));
313 	}
314 	return (0);
315 }
316 
317 /*
318  * Fill in the drr_free struct, or perform aggregation if the previous record is
319  * also a free record, and the two are adjacent.
320  *
321  * Note that we send free records even for a full send, because we want to be
322  * able to receive a full send as a clone, which requires a list of all the free
323  * and freeobject records that were generated on the source.
324  */
325 static int
326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
327     uint64_t length)
328 {
329 	struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
330 
331 	/*
332 	 * When we receive a free record, dbuf_free_range() assumes
333 	 * that the receiving system doesn't have any dbufs in the range
334 	 * being freed.  This is always true because there is a one-record
335 	 * constraint: we only send one WRITE record for any given
336 	 * object,offset.  We know that the one-record constraint is
337 	 * true because we always send data in increasing order by
338 	 * object,offset.
339 	 *
340 	 * If the increasing-order constraint ever changes, we should find
341 	 * another way to assert that the one-record constraint is still
342 	 * satisfied.
343 	 */
344 	ASSERT(object > dscp->dsc_last_data_object ||
345 	    (object == dscp->dsc_last_data_object &&
346 	    offset > dscp->dsc_last_data_offset));
347 
348 	/*
349 	 * If there is a pending op, but it's not PENDING_FREE, push it out,
350 	 * since free block aggregation can only be done for blocks of the
351 	 * same type (i.e., DRR_FREE records can only be aggregated with
352 	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
353 	 * aggregated with other DRR_FREEOBJECTS records).
354 	 */
355 	if (dscp->dsc_pending_op != PENDING_NONE &&
356 	    dscp->dsc_pending_op != PENDING_FREE) {
357 		if (dump_record(dscp, NULL, 0) != 0)
358 			return (SET_ERROR(EINTR));
359 		dscp->dsc_pending_op = PENDING_NONE;
360 	}
361 
362 	if (dscp->dsc_pending_op == PENDING_FREE) {
363 		/*
364 		 * Check to see whether this free block can be aggregated
365 		 * with pending one.
366 		 */
367 		if (drrf->drr_object == object && drrf->drr_offset +
368 		    drrf->drr_length == offset) {
369 			if (offset + length < offset || length == UINT64_MAX)
370 				drrf->drr_length = UINT64_MAX;
371 			else
372 				drrf->drr_length += length;
373 			return (0);
374 		} else {
375 			/* not a continuation.  Push out pending record */
376 			if (dump_record(dscp, NULL, 0) != 0)
377 				return (SET_ERROR(EINTR));
378 			dscp->dsc_pending_op = PENDING_NONE;
379 		}
380 	}
381 	/* create a FREE record and make it pending */
382 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
383 	dscp->dsc_drr->drr_type = DRR_FREE;
384 	drrf->drr_object = object;
385 	drrf->drr_offset = offset;
386 	if (offset + length < offset)
387 		drrf->drr_length = DMU_OBJECT_END;
388 	else
389 		drrf->drr_length = length;
390 	drrf->drr_toguid = dscp->dsc_toguid;
391 	if (length == DMU_OBJECT_END) {
392 		if (dump_record(dscp, NULL, 0) != 0)
393 			return (SET_ERROR(EINTR));
394 	} else {
395 		dscp->dsc_pending_op = PENDING_FREE;
396 	}
397 
398 	return (0);
399 }
400 
401 /*
402  * Fill in the drr_redact struct, or perform aggregation if the previous record
403  * is also a redaction record, and the two are adjacent.
404  */
405 static int
406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
407     uint64_t length)
408 {
409 	struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
410 
411 	/*
412 	 * If there is a pending op, but it's not PENDING_REDACT, push it out,
413 	 * since free block aggregation can only be done for blocks of the
414 	 * same type (i.e., DRR_REDACT records can only be aggregated with
415 	 * other DRR_REDACT records).
416 	 */
417 	if (dscp->dsc_pending_op != PENDING_NONE &&
418 	    dscp->dsc_pending_op != PENDING_REDACT) {
419 		if (dump_record(dscp, NULL, 0) != 0)
420 			return (SET_ERROR(EINTR));
421 		dscp->dsc_pending_op = PENDING_NONE;
422 	}
423 
424 	if (dscp->dsc_pending_op == PENDING_REDACT) {
425 		/*
426 		 * Check to see whether this redacted block can be aggregated
427 		 * with pending one.
428 		 */
429 		if (drrr->drr_object == object && drrr->drr_offset +
430 		    drrr->drr_length == offset) {
431 			drrr->drr_length += length;
432 			return (0);
433 		} else {
434 			/* not a continuation.  Push out pending record */
435 			if (dump_record(dscp, NULL, 0) != 0)
436 				return (SET_ERROR(EINTR));
437 			dscp->dsc_pending_op = PENDING_NONE;
438 		}
439 	}
440 	/* create a REDACT record and make it pending */
441 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
442 	dscp->dsc_drr->drr_type = DRR_REDACT;
443 	drrr->drr_object = object;
444 	drrr->drr_offset = offset;
445 	drrr->drr_length = length;
446 	drrr->drr_toguid = dscp->dsc_toguid;
447 	dscp->dsc_pending_op = PENDING_REDACT;
448 
449 	return (0);
450 }
451 
452 static int
453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
454     uint64_t offset, int lsize, int psize, const blkptr_t *bp,
455     boolean_t io_compressed, void *data)
456 {
457 	uint64_t payload_size;
458 	boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
459 	struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
460 
461 	/*
462 	 * We send data in increasing object, offset order.
463 	 * See comment in dump_free() for details.
464 	 */
465 	ASSERT(object > dscp->dsc_last_data_object ||
466 	    (object == dscp->dsc_last_data_object &&
467 	    offset > dscp->dsc_last_data_offset));
468 	dscp->dsc_last_data_object = object;
469 	dscp->dsc_last_data_offset = offset + lsize - 1;
470 
471 	/*
472 	 * If there is any kind of pending aggregation (currently either
473 	 * a grouping of free objects or free blocks), push it out to
474 	 * the stream, since aggregation can't be done across operations
475 	 * of different types.
476 	 */
477 	if (dscp->dsc_pending_op != PENDING_NONE) {
478 		if (dump_record(dscp, NULL, 0) != 0)
479 			return (SET_ERROR(EINTR));
480 		dscp->dsc_pending_op = PENDING_NONE;
481 	}
482 	/* write a WRITE record */
483 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
484 	dscp->dsc_drr->drr_type = DRR_WRITE;
485 	drrw->drr_object = object;
486 	drrw->drr_type = type;
487 	drrw->drr_offset = offset;
488 	drrw->drr_toguid = dscp->dsc_toguid;
489 	drrw->drr_logical_size = lsize;
490 
491 	/* only set the compression fields if the buf is compressed or raw */
492 	boolean_t compressed =
493 	    (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
494 	    io_compressed : lsize != psize);
495 	if (raw || compressed) {
496 		ASSERT(bp != NULL);
497 		ASSERT(raw || dscp->dsc_featureflags &
498 		    DMU_BACKUP_FEATURE_COMPRESSED);
499 		ASSERT(!BP_IS_EMBEDDED(bp));
500 		ASSERT3S(psize, >, 0);
501 
502 		if (raw) {
503 			ASSERT(BP_IS_PROTECTED(bp));
504 
505 			/*
506 			 * This is a raw protected block so we need to pass
507 			 * along everything the receiving side will need to
508 			 * interpret this block, including the byteswap, salt,
509 			 * IV, and MAC.
510 			 */
511 			if (BP_SHOULD_BYTESWAP(bp))
512 				drrw->drr_flags |= DRR_RAW_BYTESWAP;
513 			zio_crypt_decode_params_bp(bp, drrw->drr_salt,
514 			    drrw->drr_iv);
515 			zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
516 		} else {
517 			/* this is a compressed block */
518 			ASSERT(dscp->dsc_featureflags &
519 			    DMU_BACKUP_FEATURE_COMPRESSED);
520 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
521 			ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
522 			ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
523 			ASSERT3S(lsize, >=, psize);
524 		}
525 
526 		/* set fields common to compressed and raw sends */
527 		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
528 		drrw->drr_compressed_size = psize;
529 		payload_size = drrw->drr_compressed_size;
530 	} else {
531 		payload_size = drrw->drr_logical_size;
532 	}
533 
534 	if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
535 		/*
536 		 * There's no pre-computed checksum for partial-block writes,
537 		 * embedded BP's, or encrypted BP's that are being sent as
538 		 * plaintext, so (like fletcher4-checksummed blocks) userland
539 		 * will have to compute a dedup-capable checksum itself.
540 		 */
541 		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
542 	} else {
543 		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
544 		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
545 		    ZCHECKSUM_FLAG_DEDUP)
546 			drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
547 		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
548 		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
549 		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
550 		DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
551 		drrw->drr_key.ddk_cksum = bp->blk_cksum;
552 	}
553 
554 	if (dump_record(dscp, data, payload_size) != 0)
555 		return (SET_ERROR(EINTR));
556 	return (0);
557 }
558 
559 static int
560 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
561     int blksz, const blkptr_t *bp)
562 {
563 	char buf[BPE_PAYLOAD_SIZE];
564 	struct drr_write_embedded *drrw =
565 	    &(dscp->dsc_drr->drr_u.drr_write_embedded);
566 
567 	if (dscp->dsc_pending_op != PENDING_NONE) {
568 		if (dump_record(dscp, NULL, 0) != 0)
569 			return (SET_ERROR(EINTR));
570 		dscp->dsc_pending_op = PENDING_NONE;
571 	}
572 
573 	ASSERT(BP_IS_EMBEDDED(bp));
574 
575 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
576 	dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
577 	drrw->drr_object = object;
578 	drrw->drr_offset = offset;
579 	drrw->drr_length = blksz;
580 	drrw->drr_toguid = dscp->dsc_toguid;
581 	drrw->drr_compression = BP_GET_COMPRESS(bp);
582 	drrw->drr_etype = BPE_GET_ETYPE(bp);
583 	drrw->drr_lsize = BPE_GET_LSIZE(bp);
584 	drrw->drr_psize = BPE_GET_PSIZE(bp);
585 
586 	decode_embedded_bp_compressed(bp, buf);
587 
588 	uint32_t psize = drrw->drr_psize;
589 	uint32_t rsize = P2ROUNDUP(psize, 8);
590 
591 	if (psize != rsize)
592 		memset(buf + psize, 0, rsize - psize);
593 
594 	if (dump_record(dscp, buf, rsize) != 0)
595 		return (SET_ERROR(EINTR));
596 	return (0);
597 }
598 
599 static int
600 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
601     void *data)
602 {
603 	struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
604 	uint64_t blksz = BP_GET_LSIZE(bp);
605 	uint64_t payload_size = blksz;
606 
607 	if (dscp->dsc_pending_op != PENDING_NONE) {
608 		if (dump_record(dscp, NULL, 0) != 0)
609 			return (SET_ERROR(EINTR));
610 		dscp->dsc_pending_op = PENDING_NONE;
611 	}
612 
613 	/* write a SPILL record */
614 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
615 	dscp->dsc_drr->drr_type = DRR_SPILL;
616 	drrs->drr_object = object;
617 	drrs->drr_length = blksz;
618 	drrs->drr_toguid = dscp->dsc_toguid;
619 
620 	/* See comment in dump_dnode() for full details */
621 	if (zfs_send_unmodified_spill_blocks &&
622 	    (bp->blk_birth <= dscp->dsc_fromtxg)) {
623 		drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
624 	}
625 
626 	/* handle raw send fields */
627 	if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
628 		ASSERT(BP_IS_PROTECTED(bp));
629 
630 		if (BP_SHOULD_BYTESWAP(bp))
631 			drrs->drr_flags |= DRR_RAW_BYTESWAP;
632 		drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
633 		drrs->drr_compressed_size = BP_GET_PSIZE(bp);
634 		zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
635 		zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
636 		payload_size = drrs->drr_compressed_size;
637 	}
638 
639 	if (dump_record(dscp, data, payload_size) != 0)
640 		return (SET_ERROR(EINTR));
641 	return (0);
642 }
643 
644 static int
645 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
646 {
647 	struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
648 	uint64_t maxobj = DNODES_PER_BLOCK *
649 	    (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
650 
651 	/*
652 	 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
653 	 * leading to zfs recv never completing. to avoid this issue, don't
654 	 * send FREEOBJECTS records for object IDs which cannot exist on the
655 	 * receiving side.
656 	 */
657 	if (maxobj > 0) {
658 		if (maxobj <= firstobj)
659 			return (0);
660 
661 		if (maxobj < firstobj + numobjs)
662 			numobjs = maxobj - firstobj;
663 	}
664 
665 	/*
666 	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
667 	 * push it out, since free block aggregation can only be done for
668 	 * blocks of the same type (i.e., DRR_FREE records can only be
669 	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
670 	 * can only be aggregated with other DRR_FREEOBJECTS records).
671 	 */
672 	if (dscp->dsc_pending_op != PENDING_NONE &&
673 	    dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
674 		if (dump_record(dscp, NULL, 0) != 0)
675 			return (SET_ERROR(EINTR));
676 		dscp->dsc_pending_op = PENDING_NONE;
677 	}
678 
679 	if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
680 		/*
681 		 * See whether this free object array can be aggregated
682 		 * with pending one
683 		 */
684 		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
685 			drrfo->drr_numobjs += numobjs;
686 			return (0);
687 		} else {
688 			/* can't be aggregated.  Push out pending record */
689 			if (dump_record(dscp, NULL, 0) != 0)
690 				return (SET_ERROR(EINTR));
691 			dscp->dsc_pending_op = PENDING_NONE;
692 		}
693 	}
694 
695 	/* write a FREEOBJECTS record */
696 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
697 	dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
698 	drrfo->drr_firstobj = firstobj;
699 	drrfo->drr_numobjs = numobjs;
700 	drrfo->drr_toguid = dscp->dsc_toguid;
701 
702 	dscp->dsc_pending_op = PENDING_FREEOBJECTS;
703 
704 	return (0);
705 }
706 
707 static int
708 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
709     dnode_phys_t *dnp)
710 {
711 	struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
712 	int bonuslen;
713 
714 	if (object < dscp->dsc_resume_object) {
715 		/*
716 		 * Note: when resuming, we will visit all the dnodes in
717 		 * the block of dnodes that we are resuming from.  In
718 		 * this case it's unnecessary to send the dnodes prior to
719 		 * the one we are resuming from.  We should be at most one
720 		 * block's worth of dnodes behind the resume point.
721 		 */
722 		ASSERT3U(dscp->dsc_resume_object - object, <,
723 		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
724 		return (0);
725 	}
726 
727 	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
728 		return (dump_freeobjects(dscp, object, 1));
729 
730 	if (dscp->dsc_pending_op != PENDING_NONE) {
731 		if (dump_record(dscp, NULL, 0) != 0)
732 			return (SET_ERROR(EINTR));
733 		dscp->dsc_pending_op = PENDING_NONE;
734 	}
735 
736 	/* write an OBJECT record */
737 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
738 	dscp->dsc_drr->drr_type = DRR_OBJECT;
739 	drro->drr_object = object;
740 	drro->drr_type = dnp->dn_type;
741 	drro->drr_bonustype = dnp->dn_bonustype;
742 	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
743 	drro->drr_bonuslen = dnp->dn_bonuslen;
744 	drro->drr_dn_slots = dnp->dn_extra_slots + 1;
745 	drro->drr_checksumtype = dnp->dn_checksum;
746 	drro->drr_compress = dnp->dn_compress;
747 	drro->drr_toguid = dscp->dsc_toguid;
748 
749 	if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
750 	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
751 		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
752 
753 	bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
754 
755 	if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
756 		ASSERT(BP_IS_ENCRYPTED(bp));
757 
758 		if (BP_SHOULD_BYTESWAP(bp))
759 			drro->drr_flags |= DRR_RAW_BYTESWAP;
760 
761 		/* needed for reconstructing dnp on recv side */
762 		drro->drr_maxblkid = dnp->dn_maxblkid;
763 		drro->drr_indblkshift = dnp->dn_indblkshift;
764 		drro->drr_nlevels = dnp->dn_nlevels;
765 		drro->drr_nblkptr = dnp->dn_nblkptr;
766 
767 		/*
768 		 * Since we encrypt the entire bonus area, the (raw) part
769 		 * beyond the bonuslen is actually nonzero, so we need
770 		 * to send it.
771 		 */
772 		if (bonuslen != 0) {
773 			if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
774 				return (SET_ERROR(EINVAL));
775 			drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
776 			bonuslen = drro->drr_raw_bonuslen;
777 		}
778 	}
779 
780 	/*
781 	 * DRR_OBJECT_SPILL is set for every dnode which references a
782 	 * spill block.	 This allows the receiving pool to definitively
783 	 * determine when a spill block should be kept or freed.
784 	 */
785 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
786 		drro->drr_flags |= DRR_OBJECT_SPILL;
787 
788 	if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
789 		return (SET_ERROR(EINTR));
790 
791 	/* Free anything past the end of the file. */
792 	if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
793 	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
794 		return (SET_ERROR(EINTR));
795 
796 	/*
797 	 * Send DRR_SPILL records for unmodified spill blocks.	This is useful
798 	 * because changing certain attributes of the object (e.g. blocksize)
799 	 * can cause old versions of ZFS to incorrectly remove a spill block.
800 	 * Including these records in the stream forces an up to date version
801 	 * to always be written ensuring they're never lost.  Current versions
802 	 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
803 	 * ignore these unmodified spill blocks.
804 	 */
805 	if (zfs_send_unmodified_spill_blocks &&
806 	    (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
807 	    (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
808 		struct send_range record;
809 		blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
810 
811 		memset(&record, 0, sizeof (struct send_range));
812 		record.type = DATA;
813 		record.object = object;
814 		record.eos_marker = B_FALSE;
815 		record.start_blkid = DMU_SPILL_BLKID;
816 		record.end_blkid = record.start_blkid + 1;
817 		record.sru.data.bp = *bp;
818 		record.sru.data.obj_type = dnp->dn_type;
819 		record.sru.data.datablksz = BP_GET_LSIZE(bp);
820 
821 		if (do_dump(dscp, &record) != 0)
822 			return (SET_ERROR(EINTR));
823 	}
824 
825 	if (dscp->dsc_err != 0)
826 		return (SET_ERROR(EINTR));
827 
828 	return (0);
829 }
830 
831 static int
832 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
833     uint64_t firstobj, uint64_t numslots)
834 {
835 	struct drr_object_range *drror =
836 	    &(dscp->dsc_drr->drr_u.drr_object_range);
837 
838 	/* we only use this record type for raw sends */
839 	ASSERT(BP_IS_PROTECTED(bp));
840 	ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
841 	ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
842 	ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
843 	ASSERT0(BP_GET_LEVEL(bp));
844 
845 	if (dscp->dsc_pending_op != PENDING_NONE) {
846 		if (dump_record(dscp, NULL, 0) != 0)
847 			return (SET_ERROR(EINTR));
848 		dscp->dsc_pending_op = PENDING_NONE;
849 	}
850 
851 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
852 	dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
853 	drror->drr_firstobj = firstobj;
854 	drror->drr_numslots = numslots;
855 	drror->drr_toguid = dscp->dsc_toguid;
856 	if (BP_SHOULD_BYTESWAP(bp))
857 		drror->drr_flags |= DRR_RAW_BYTESWAP;
858 	zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
859 	zio_crypt_decode_mac_bp(bp, drror->drr_mac);
860 
861 	if (dump_record(dscp, NULL, 0) != 0)
862 		return (SET_ERROR(EINTR));
863 	return (0);
864 }
865 
866 static boolean_t
867 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
868 {
869 	if (!BP_IS_EMBEDDED(bp))
870 		return (B_FALSE);
871 
872 	/*
873 	 * Compression function must be legacy, or explicitly enabled.
874 	 */
875 	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
876 	    !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
877 		return (B_FALSE);
878 
879 	/*
880 	 * If we have not set the ZSTD feature flag, we can't send ZSTD
881 	 * compressed embedded blocks, as the receiver may not support them.
882 	 */
883 	if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
884 	    !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
885 		return (B_FALSE);
886 
887 	/*
888 	 * Embed type must be explicitly enabled.
889 	 */
890 	switch (BPE_GET_ETYPE(bp)) {
891 	case BP_EMBEDDED_TYPE_DATA:
892 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
893 			return (B_TRUE);
894 		break;
895 	default:
896 		return (B_FALSE);
897 	}
898 	return (B_FALSE);
899 }
900 
901 /*
902  * This function actually handles figuring out what kind of record needs to be
903  * dumped, and calling the appropriate helper function.  In most cases,
904  * the data has already been read by send_reader_thread().
905  */
906 static int
907 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
908 {
909 	int err = 0;
910 	switch (range->type) {
911 	case OBJECT:
912 		err = dump_dnode(dscp, &range->sru.object.bp, range->object,
913 		    range->sru.object.dnp);
914 		return (err);
915 	case OBJECT_RANGE: {
916 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
917 		if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
918 			return (0);
919 		}
920 		uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
921 		    DNODE_SHIFT;
922 		uint64_t firstobj = range->start_blkid * epb;
923 		err = dump_object_range(dscp, &range->sru.object_range.bp,
924 		    firstobj, epb);
925 		break;
926 	}
927 	case REDACT: {
928 		struct srr *srrp = &range->sru.redact;
929 		err = dump_redact(dscp, range->object, range->start_blkid *
930 		    srrp->datablksz, (range->end_blkid - range->start_blkid) *
931 		    srrp->datablksz);
932 		return (err);
933 	}
934 	case DATA: {
935 		struct srd *srdp = &range->sru.data;
936 		blkptr_t *bp = &srdp->bp;
937 		spa_t *spa =
938 		    dmu_objset_spa(dscp->dsc_os);
939 
940 		ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
941 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
942 		if (BP_GET_TYPE(bp) == DMU_OT_SA) {
943 			arc_flags_t aflags = ARC_FLAG_WAIT;
944 			zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
945 
946 			if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
947 				ASSERT(BP_IS_PROTECTED(bp));
948 				zioflags |= ZIO_FLAG_RAW;
949 			}
950 
951 			zbookmark_phys_t zb;
952 			ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
953 			zb.zb_objset = dmu_objset_id(dscp->dsc_os);
954 			zb.zb_object = range->object;
955 			zb.zb_level = 0;
956 			zb.zb_blkid = range->start_blkid;
957 
958 			arc_buf_t *abuf = NULL;
959 			if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
960 			    bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
961 			    zioflags, &aflags, &zb) != 0)
962 				return (SET_ERROR(EIO));
963 
964 			err = dump_spill(dscp, bp, zb.zb_object,
965 			    (abuf == NULL ? NULL : abuf->b_data));
966 			if (abuf != NULL)
967 				arc_buf_destroy(abuf, &abuf);
968 			return (err);
969 		}
970 		if (send_do_embed(bp, dscp->dsc_featureflags)) {
971 			err = dump_write_embedded(dscp, range->object,
972 			    range->start_blkid * srdp->datablksz,
973 			    srdp->datablksz, bp);
974 			return (err);
975 		}
976 		ASSERT(range->object > dscp->dsc_resume_object ||
977 		    (range->object == dscp->dsc_resume_object &&
978 		    range->start_blkid * srdp->datablksz >=
979 		    dscp->dsc_resume_offset));
980 		/* it's a level-0 block of a regular object */
981 
982 		mutex_enter(&srdp->lock);
983 		while (srdp->io_outstanding)
984 			cv_wait(&srdp->cv, &srdp->lock);
985 		err = srdp->io_err;
986 		mutex_exit(&srdp->lock);
987 
988 		if (err != 0) {
989 			if (zfs_send_corrupt_data &&
990 			    !dscp->dsc_dso->dso_dryrun) {
991 				/*
992 				 * Send a block filled with 0x"zfs badd bloc"
993 				 */
994 				srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
995 				    ARC_BUFC_DATA, srdp->datablksz);
996 				uint64_t *ptr;
997 				for (ptr = srdp->abuf->b_data;
998 				    (char *)ptr < (char *)srdp->abuf->b_data +
999 				    srdp->datablksz; ptr++)
1000 					*ptr = 0x2f5baddb10cULL;
1001 			} else {
1002 				return (SET_ERROR(EIO));
1003 			}
1004 		}
1005 
1006 		ASSERT(dscp->dsc_dso->dso_dryrun ||
1007 		    srdp->abuf != NULL || srdp->abd != NULL);
1008 
1009 		uint64_t offset = range->start_blkid * srdp->datablksz;
1010 
1011 		char *data = NULL;
1012 		if (srdp->abd != NULL) {
1013 			data = abd_to_buf(srdp->abd);
1014 			ASSERT3P(srdp->abuf, ==, NULL);
1015 		} else if (srdp->abuf != NULL) {
1016 			data = srdp->abuf->b_data;
1017 		}
1018 
1019 		/*
1020 		 * If we have large blocks stored on disk but the send flags
1021 		 * don't allow us to send large blocks, we split the data from
1022 		 * the arc buf into chunks.
1023 		 */
1024 		if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1025 		    !(dscp->dsc_featureflags &
1026 		    DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1027 			while (srdp->datablksz > 0 && err == 0) {
1028 				int n = MIN(srdp->datablksz,
1029 				    SPA_OLD_MAXBLOCKSIZE);
1030 				err = dmu_dump_write(dscp, srdp->obj_type,
1031 				    range->object, offset, n, n, NULL, B_FALSE,
1032 				    data);
1033 				offset += n;
1034 				/*
1035 				 * When doing dry run, data==NULL is used as a
1036 				 * sentinel value by
1037 				 * dmu_dump_write()->dump_record().
1038 				 */
1039 				if (data != NULL)
1040 					data += n;
1041 				srdp->datablksz -= n;
1042 			}
1043 		} else {
1044 			err = dmu_dump_write(dscp, srdp->obj_type,
1045 			    range->object, offset,
1046 			    srdp->datablksz, srdp->datasz, bp,
1047 			    srdp->io_compressed, data);
1048 		}
1049 		return (err);
1050 	}
1051 	case HOLE: {
1052 		struct srh *srhp = &range->sru.hole;
1053 		if (range->object == DMU_META_DNODE_OBJECT) {
1054 			uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1055 			uint64_t first_obj = range->start_blkid * span;
1056 			uint64_t numobj = range->end_blkid * span - first_obj;
1057 			return (dump_freeobjects(dscp, first_obj, numobj));
1058 		}
1059 		uint64_t offset = 0;
1060 
1061 		/*
1062 		 * If this multiply overflows, we don't need to send this block.
1063 		 * Even if it has a birth time, it can never not be a hole, so
1064 		 * we don't need to send records for it.
1065 		 */
1066 		if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1067 		    &offset)) {
1068 			return (0);
1069 		}
1070 		uint64_t len = 0;
1071 
1072 		if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1073 			len = UINT64_MAX;
1074 		len = len - offset;
1075 		return (dump_free(dscp, range->object, offset, len));
1076 	}
1077 	default:
1078 		panic("Invalid range type in do_dump: %d", range->type);
1079 	}
1080 	return (err);
1081 }
1082 
1083 static struct send_range *
1084 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1085     uint64_t end_blkid, boolean_t eos)
1086 {
1087 	struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1088 	range->type = type;
1089 	range->object = object;
1090 	range->start_blkid = start_blkid;
1091 	range->end_blkid = end_blkid;
1092 	range->eos_marker = eos;
1093 	if (type == DATA) {
1094 		range->sru.data.abd = NULL;
1095 		range->sru.data.abuf = NULL;
1096 		mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1097 		cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1098 		range->sru.data.io_outstanding = 0;
1099 		range->sru.data.io_err = 0;
1100 		range->sru.data.io_compressed = B_FALSE;
1101 	}
1102 	return (range);
1103 }
1104 
1105 /*
1106  * This is the callback function to traverse_dataset that acts as a worker
1107  * thread for dmu_send_impl.
1108  */
1109 static int
1110 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1111     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1112 {
1113 	(void) zilog;
1114 	struct send_thread_arg *sta = arg;
1115 	struct send_range *record;
1116 
1117 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1118 	    zb->zb_object >= sta->resume.zb_object);
1119 
1120 	/*
1121 	 * All bps of an encrypted os should have the encryption bit set.
1122 	 * If this is not true it indicates tampering and we report an error.
1123 	 */
1124 	if (sta->os->os_encrypted &&
1125 	    !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1126 		spa_log_error(spa, zb, &bp->blk_birth);
1127 		zfs_panic_recover("unencrypted block in encrypted "
1128 		    "object set %llu", dmu_objset_id(sta->os));
1129 		return (SET_ERROR(EIO));
1130 	}
1131 
1132 	if (sta->cancel)
1133 		return (SET_ERROR(EINTR));
1134 	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1135 	    DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1136 		return (0);
1137 	atomic_inc_64(sta->num_blocks_visited);
1138 
1139 	if (zb->zb_level == ZB_DNODE_LEVEL) {
1140 		if (zb->zb_object == DMU_META_DNODE_OBJECT)
1141 			return (0);
1142 		record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1143 		record->sru.object.bp = *bp;
1144 		size_t size  = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1145 		record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1146 		memcpy(record->sru.object.dnp, dnp, size);
1147 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1148 		return (0);
1149 	}
1150 	if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1151 	    !BP_IS_HOLE(bp)) {
1152 		record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1153 		    zb->zb_blkid + 1, B_FALSE);
1154 		record->sru.object_range.bp = *bp;
1155 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1156 		return (0);
1157 	}
1158 	if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1159 		return (0);
1160 	if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1161 		return (0);
1162 
1163 	uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1164 	uint64_t start;
1165 
1166 	/*
1167 	 * If this multiply overflows, we don't need to send this block.
1168 	 * Even if it has a birth time, it can never not be a hole, so
1169 	 * we don't need to send records for it.
1170 	 */
1171 	if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1172 	    DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1173 	    span * zb->zb_blkid > dnp->dn_maxblkid)) {
1174 		ASSERT(BP_IS_HOLE(bp));
1175 		return (0);
1176 	}
1177 
1178 	if (zb->zb_blkid == DMU_SPILL_BLKID)
1179 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1180 
1181 	enum type record_type = DATA;
1182 	if (BP_IS_HOLE(bp))
1183 		record_type = HOLE;
1184 	else if (BP_IS_REDACTED(bp))
1185 		record_type = REDACT;
1186 	else
1187 		record_type = DATA;
1188 
1189 	record = range_alloc(record_type, zb->zb_object, start,
1190 	    (start + span < start ? 0 : start + span), B_FALSE);
1191 
1192 	uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1193 	    BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1194 
1195 	if (BP_IS_HOLE(bp)) {
1196 		record->sru.hole.datablksz = datablksz;
1197 	} else if (BP_IS_REDACTED(bp)) {
1198 		record->sru.redact.datablksz = datablksz;
1199 	} else {
1200 		record->sru.data.datablksz = datablksz;
1201 		record->sru.data.obj_type = dnp->dn_type;
1202 		record->sru.data.bp = *bp;
1203 	}
1204 
1205 	bqueue_enqueue(&sta->q, record, sizeof (*record));
1206 	return (0);
1207 }
1208 
1209 struct redact_list_cb_arg {
1210 	uint64_t *num_blocks_visited;
1211 	bqueue_t *q;
1212 	boolean_t *cancel;
1213 	boolean_t mark_redact;
1214 };
1215 
1216 static int
1217 redact_list_cb(redact_block_phys_t *rb, void *arg)
1218 {
1219 	struct redact_list_cb_arg *rlcap = arg;
1220 
1221 	atomic_inc_64(rlcap->num_blocks_visited);
1222 	if (*rlcap->cancel)
1223 		return (-1);
1224 
1225 	struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1226 	    rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1227 	ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1228 	if (rlcap->mark_redact) {
1229 		data->type = REDACT;
1230 		data->sru.redact.datablksz = redact_block_get_size(rb);
1231 	} else {
1232 		data->type = PREVIOUSLY_REDACTED;
1233 	}
1234 	bqueue_enqueue(rlcap->q, data, sizeof (*data));
1235 
1236 	return (0);
1237 }
1238 
1239 /*
1240  * This function kicks off the traverse_dataset.  It also handles setting the
1241  * error code of the thread in case something goes wrong, and pushes the End of
1242  * Stream record when the traverse_dataset call has finished.
1243  */
1244 static __attribute__((noreturn)) void
1245 send_traverse_thread(void *arg)
1246 {
1247 	struct send_thread_arg *st_arg = arg;
1248 	int err = 0;
1249 	struct send_range *data;
1250 	fstrans_cookie_t cookie = spl_fstrans_mark();
1251 
1252 	err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1253 	    st_arg->fromtxg, &st_arg->resume,
1254 	    st_arg->flags, send_cb, st_arg);
1255 
1256 	if (err != EINTR)
1257 		st_arg->error_code = err;
1258 	data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1259 	bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1260 	spl_fstrans_unmark(cookie);
1261 	thread_exit();
1262 }
1263 
1264 /*
1265  * Utility function that causes End of Stream records to compare after of all
1266  * others, so that other threads' comparison logic can stay simple.
1267  */
1268 static int __attribute__((unused))
1269 send_range_after(const struct send_range *from, const struct send_range *to)
1270 {
1271 	if (from->eos_marker == B_TRUE)
1272 		return (1);
1273 	if (to->eos_marker == B_TRUE)
1274 		return (-1);
1275 
1276 	uint64_t from_obj = from->object;
1277 	uint64_t from_end_obj = from->object + 1;
1278 	uint64_t to_obj = to->object;
1279 	uint64_t to_end_obj = to->object + 1;
1280 	if (from_obj == 0) {
1281 		ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1282 		from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1283 		from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1284 	}
1285 	if (to_obj == 0) {
1286 		ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1287 		to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1288 		to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1289 	}
1290 
1291 	if (from_end_obj <= to_obj)
1292 		return (-1);
1293 	if (from_obj >= to_end_obj)
1294 		return (1);
1295 	int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1296 	    OBJECT_RANGE);
1297 	if (unlikely(cmp))
1298 		return (cmp);
1299 	cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1300 	if (unlikely(cmp))
1301 		return (cmp);
1302 	if (from->end_blkid <= to->start_blkid)
1303 		return (-1);
1304 	if (from->start_blkid >= to->end_blkid)
1305 		return (1);
1306 	return (0);
1307 }
1308 
1309 /*
1310  * Pop the new data off the queue, check that the records we receive are in
1311  * the right order, but do not free the old data.  This is used so that the
1312  * records can be sent on to the main thread without copying the data.
1313  */
1314 static struct send_range *
1315 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1316 {
1317 	struct send_range *next = bqueue_dequeue(bq);
1318 	ASSERT3S(send_range_after(prev, next), ==, -1);
1319 	return (next);
1320 }
1321 
1322 /*
1323  * Pop the new data off the queue, check that the records we receive are in
1324  * the right order, and free the old data.
1325  */
1326 static struct send_range *
1327 get_next_range(bqueue_t *bq, struct send_range *prev)
1328 {
1329 	struct send_range *next = get_next_range_nofree(bq, prev);
1330 	range_free(prev);
1331 	return (next);
1332 }
1333 
1334 static __attribute__((noreturn)) void
1335 redact_list_thread(void *arg)
1336 {
1337 	struct redact_list_thread_arg *rlt_arg = arg;
1338 	struct send_range *record;
1339 	fstrans_cookie_t cookie = spl_fstrans_mark();
1340 	if (rlt_arg->rl != NULL) {
1341 		struct redact_list_cb_arg rlcba = {0};
1342 		rlcba.cancel = &rlt_arg->cancel;
1343 		rlcba.q = &rlt_arg->q;
1344 		rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1345 		rlcba.mark_redact = rlt_arg->mark_redact;
1346 		int err = dsl_redaction_list_traverse(rlt_arg->rl,
1347 		    &rlt_arg->resume, redact_list_cb, &rlcba);
1348 		if (err != EINTR)
1349 			rlt_arg->error_code = err;
1350 	}
1351 	record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1352 	bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1353 	spl_fstrans_unmark(cookie);
1354 
1355 	thread_exit();
1356 }
1357 
1358 /*
1359  * Compare the start point of the two provided ranges. End of stream ranges
1360  * compare last, objects compare before any data or hole inside that object and
1361  * multi-object holes that start at the same object.
1362  */
1363 static int
1364 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1365 {
1366 	uint64_t r1_objequiv = r1->object;
1367 	uint64_t r1_l0equiv = r1->start_blkid;
1368 	uint64_t r2_objequiv = r2->object;
1369 	uint64_t r2_l0equiv = r2->start_blkid;
1370 	int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1371 	if (unlikely(cmp))
1372 		return (cmp);
1373 	if (r1->object == 0) {
1374 		r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1375 		r1_l0equiv = 0;
1376 	}
1377 	if (r2->object == 0) {
1378 		r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1379 		r2_l0equiv = 0;
1380 	}
1381 
1382 	cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1383 	if (likely(cmp))
1384 		return (cmp);
1385 	cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1386 	if (unlikely(cmp))
1387 		return (cmp);
1388 	cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1389 	if (unlikely(cmp))
1390 		return (cmp);
1391 
1392 	return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1393 }
1394 
1395 enum q_idx {
1396 	REDACT_IDX = 0,
1397 	TO_IDX,
1398 	FROM_IDX,
1399 	NUM_THREADS
1400 };
1401 
1402 /*
1403  * This function returns the next range the send_merge_thread should operate on.
1404  * The inputs are two arrays; the first one stores the range at the front of the
1405  * queues stored in the second one.  The ranges are sorted in descending
1406  * priority order; the metadata from earlier ranges overrules metadata from
1407  * later ranges.  out_mask is used to return which threads the ranges came from;
1408  * bit i is set if ranges[i] started at the same place as the returned range.
1409  *
1410  * This code is not hardcoded to compare a specific number of threads; it could
1411  * be used with any number, just by changing the q_idx enum.
1412  *
1413  * The "next range" is the one with the earliest start; if two starts are equal,
1414  * the highest-priority range is the next to operate on.  If a higher-priority
1415  * range starts in the middle of the first range, then the first range will be
1416  * truncated to end where the higher-priority range starts, and we will operate
1417  * on that one next time.   In this way, we make sure that each block covered by
1418  * some range gets covered by a returned range, and each block covered is
1419  * returned using the metadata of the highest-priority range it appears in.
1420  *
1421  * For example, if the three ranges at the front of the queues were [2,4),
1422  * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1423  * from the third range, [2,4) with the metadata from the first range, and then
1424  * [4,5) with the metadata from the second.
1425  */
1426 static struct send_range *
1427 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1428 {
1429 	int idx = 0; // index of the range with the earliest start
1430 	int i;
1431 	uint64_t bmask = 0;
1432 	for (i = 1; i < NUM_THREADS; i++) {
1433 		if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1434 			idx = i;
1435 	}
1436 	if (ranges[idx]->eos_marker) {
1437 		struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1438 		*out_mask = 0;
1439 		return (ret);
1440 	}
1441 	/*
1442 	 * Find all the ranges that start at that same point.
1443 	 */
1444 	for (i = 0; i < NUM_THREADS; i++) {
1445 		if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1446 			bmask |= 1 << i;
1447 	}
1448 	*out_mask = bmask;
1449 	/*
1450 	 * OBJECT_RANGE records only come from the TO thread, and should always
1451 	 * be treated as overlapping with nothing and sent on immediately.  They
1452 	 * are only used in raw sends, and are never redacted.
1453 	 */
1454 	if (ranges[idx]->type == OBJECT_RANGE) {
1455 		ASSERT3U(idx, ==, TO_IDX);
1456 		ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1457 		struct send_range *ret = ranges[idx];
1458 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1459 		return (ret);
1460 	}
1461 	/*
1462 	 * Find the first start or end point after the start of the first range.
1463 	 */
1464 	uint64_t first_change = ranges[idx]->end_blkid;
1465 	for (i = 0; i < NUM_THREADS; i++) {
1466 		if (i == idx || ranges[i]->eos_marker ||
1467 		    ranges[i]->object > ranges[idx]->object ||
1468 		    ranges[i]->object == DMU_META_DNODE_OBJECT)
1469 			continue;
1470 		ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1471 		if (first_change > ranges[i]->start_blkid &&
1472 		    (bmask & (1 << i)) == 0)
1473 			first_change = ranges[i]->start_blkid;
1474 		else if (first_change > ranges[i]->end_blkid)
1475 			first_change = ranges[i]->end_blkid;
1476 	}
1477 	/*
1478 	 * Update all ranges to no longer overlap with the range we're
1479 	 * returning. All such ranges must start at the same place as the range
1480 	 * being returned, and end at or after first_change. Thus we update
1481 	 * their start to first_change. If that makes them size 0, then free
1482 	 * them and pull a new range from that thread.
1483 	 */
1484 	for (i = 0; i < NUM_THREADS; i++) {
1485 		if (i == idx || (bmask & (1 << i)) == 0)
1486 			continue;
1487 		ASSERT3U(first_change, >, ranges[i]->start_blkid);
1488 		ranges[i]->start_blkid = first_change;
1489 		ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1490 		if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1491 			ranges[i] = get_next_range(qs[i], ranges[i]);
1492 	}
1493 	/*
1494 	 * Short-circuit the simple case; if the range doesn't overlap with
1495 	 * anything else, or it only overlaps with things that start at the same
1496 	 * place and are longer, send it on.
1497 	 */
1498 	if (first_change == ranges[idx]->end_blkid) {
1499 		struct send_range *ret = ranges[idx];
1500 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1501 		return (ret);
1502 	}
1503 
1504 	/*
1505 	 * Otherwise, return a truncated copy of ranges[idx] and move the start
1506 	 * of ranges[idx] back to first_change.
1507 	 */
1508 	struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1509 	*ret = *ranges[idx];
1510 	ret->end_blkid = first_change;
1511 	ranges[idx]->start_blkid = first_change;
1512 	return (ret);
1513 }
1514 
1515 #define	FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1516 
1517 /*
1518  * Merge the results from the from thread and the to thread, and then hand the
1519  * records off to send_prefetch_thread to prefetch them.  If this is not a
1520  * send from a redaction bookmark, the from thread will push an end of stream
1521  * record and stop, and we'll just send everything that was changed in the
1522  * to_ds since the ancestor's creation txg. If it is, then since
1523  * traverse_dataset has a canonical order, we can compare each change as
1524  * they're pulled off the queues.  That will give us a stream that is
1525  * appropriately sorted, and covers all records.  In addition, we pull the
1526  * data from the redact_list_thread and use that to determine which blocks
1527  * should be redacted.
1528  */
1529 static __attribute__((noreturn)) void
1530 send_merge_thread(void *arg)
1531 {
1532 	struct send_merge_thread_arg *smt_arg = arg;
1533 	struct send_range *front_ranges[NUM_THREADS];
1534 	bqueue_t *queues[NUM_THREADS];
1535 	int err = 0;
1536 	fstrans_cookie_t cookie = spl_fstrans_mark();
1537 
1538 	if (smt_arg->redact_arg == NULL) {
1539 		front_ranges[REDACT_IDX] =
1540 		    kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1541 		front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1542 		front_ranges[REDACT_IDX]->type = REDACT;
1543 		queues[REDACT_IDX] = NULL;
1544 	} else {
1545 		front_ranges[REDACT_IDX] =
1546 		    bqueue_dequeue(&smt_arg->redact_arg->q);
1547 		queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1548 	}
1549 	front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1550 	queues[TO_IDX] = &smt_arg->to_arg->q;
1551 	front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1552 	queues[FROM_IDX] = &smt_arg->from_arg->q;
1553 	uint64_t mask = 0;
1554 	struct send_range *range;
1555 	for (range = find_next_range(front_ranges, queues, &mask);
1556 	    !range->eos_marker && err == 0 && !smt_arg->cancel;
1557 	    range = find_next_range(front_ranges, queues, &mask)) {
1558 		/*
1559 		 * If the range in question was in both the from redact bookmark
1560 		 * and the bookmark we're using to redact, then don't send it.
1561 		 * It's already redacted on the receiving system, so a redaction
1562 		 * record would be redundant.
1563 		 */
1564 		if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1565 			ASSERT3U(range->type, ==, REDACT);
1566 			range_free(range);
1567 			continue;
1568 		}
1569 		bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1570 
1571 		if (smt_arg->to_arg->error_code != 0) {
1572 			err = smt_arg->to_arg->error_code;
1573 		} else if (smt_arg->from_arg->error_code != 0) {
1574 			err = smt_arg->from_arg->error_code;
1575 		} else if (smt_arg->redact_arg != NULL &&
1576 		    smt_arg->redact_arg->error_code != 0) {
1577 			err = smt_arg->redact_arg->error_code;
1578 		}
1579 	}
1580 	if (smt_arg->cancel && err == 0)
1581 		err = SET_ERROR(EINTR);
1582 	smt_arg->error = err;
1583 	if (smt_arg->error != 0) {
1584 		smt_arg->to_arg->cancel = B_TRUE;
1585 		smt_arg->from_arg->cancel = B_TRUE;
1586 		if (smt_arg->redact_arg != NULL)
1587 			smt_arg->redact_arg->cancel = B_TRUE;
1588 	}
1589 	for (int i = 0; i < NUM_THREADS; i++) {
1590 		while (!front_ranges[i]->eos_marker) {
1591 			front_ranges[i] = get_next_range(queues[i],
1592 			    front_ranges[i]);
1593 		}
1594 		range_free(front_ranges[i]);
1595 	}
1596 	range->eos_marker = B_TRUE;
1597 	bqueue_enqueue_flush(&smt_arg->q, range, 1);
1598 	spl_fstrans_unmark(cookie);
1599 	thread_exit();
1600 }
1601 
1602 struct send_reader_thread_arg {
1603 	struct send_merge_thread_arg *smta;
1604 	bqueue_t q;
1605 	boolean_t cancel;
1606 	boolean_t issue_reads;
1607 	uint64_t featureflags;
1608 	int error;
1609 };
1610 
1611 static void
1612 dmu_send_read_done(zio_t *zio)
1613 {
1614 	struct send_range *range = zio->io_private;
1615 
1616 	mutex_enter(&range->sru.data.lock);
1617 	if (zio->io_error != 0) {
1618 		abd_free(range->sru.data.abd);
1619 		range->sru.data.abd = NULL;
1620 		range->sru.data.io_err = zio->io_error;
1621 	}
1622 
1623 	ASSERT(range->sru.data.io_outstanding);
1624 	range->sru.data.io_outstanding = B_FALSE;
1625 	cv_broadcast(&range->sru.data.cv);
1626 	mutex_exit(&range->sru.data.lock);
1627 }
1628 
1629 static void
1630 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1631 {
1632 	struct srd *srdp = &range->sru.data;
1633 	blkptr_t *bp = &srdp->bp;
1634 	objset_t *os = srta->smta->os;
1635 
1636 	ASSERT3U(range->type, ==, DATA);
1637 	ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1638 	/*
1639 	 * If we have large blocks stored on disk but
1640 	 * the send flags don't allow us to send large
1641 	 * blocks, we split the data from the arc buf
1642 	 * into chunks.
1643 	 */
1644 	boolean_t split_large_blocks =
1645 	    srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1646 	    !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1647 	/*
1648 	 * We should only request compressed data from the ARC if all
1649 	 * the following are true:
1650 	 *  - stream compression was requested
1651 	 *  - we aren't splitting large blocks into smaller chunks
1652 	 *  - the data won't need to be byteswapped before sending
1653 	 *  - this isn't an embedded block
1654 	 *  - this isn't metadata (if receiving on a different endian
1655 	 *    system it can be byteswapped more easily)
1656 	 */
1657 	boolean_t request_compressed =
1658 	    (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1659 	    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1660 	    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1661 
1662 	zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1663 
1664 	if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1665 		zioflags |= ZIO_FLAG_RAW;
1666 		srdp->io_compressed = B_TRUE;
1667 	} else if (request_compressed) {
1668 		zioflags |= ZIO_FLAG_RAW_COMPRESS;
1669 		srdp->io_compressed = B_TRUE;
1670 	}
1671 
1672 	srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1673 	    BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1674 
1675 	if (!srta->issue_reads)
1676 		return;
1677 	if (BP_IS_REDACTED(bp))
1678 		return;
1679 	if (send_do_embed(bp, srta->featureflags))
1680 		return;
1681 
1682 	zbookmark_phys_t zb = {
1683 	    .zb_objset = dmu_objset_id(os),
1684 	    .zb_object = range->object,
1685 	    .zb_level = 0,
1686 	    .zb_blkid = range->start_blkid,
1687 	};
1688 
1689 	arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1690 
1691 	int arc_err = arc_read(NULL, os->os_spa, bp,
1692 	    arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1693 	    zioflags, &aflags, &zb);
1694 	/*
1695 	 * If the data is not already cached in the ARC, we read directly
1696 	 * from zio.  This avoids the performance overhead of adding a new
1697 	 * entry to the ARC, and we also avoid polluting the ARC cache with
1698 	 * data that is not likely to be used in the future.
1699 	 */
1700 	if (arc_err != 0) {
1701 		srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1702 		srdp->io_outstanding = B_TRUE;
1703 		zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1704 		    srdp->datasz, dmu_send_read_done, range,
1705 		    ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1706 	}
1707 }
1708 
1709 /*
1710  * Create a new record with the given values.
1711  */
1712 static void
1713 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1714     uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1715 {
1716 	enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1717 	    (BP_IS_REDACTED(bp) ? REDACT : DATA));
1718 
1719 	struct send_range *range = range_alloc(range_type, dn->dn_object,
1720 	    blkid, blkid + count, B_FALSE);
1721 
1722 	if (blkid == DMU_SPILL_BLKID) {
1723 		ASSERT3P(bp, !=, NULL);
1724 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1725 	}
1726 
1727 	switch (range_type) {
1728 	case HOLE:
1729 		range->sru.hole.datablksz = datablksz;
1730 		break;
1731 	case DATA:
1732 		ASSERT3U(count, ==, 1);
1733 		range->sru.data.datablksz = datablksz;
1734 		range->sru.data.obj_type = dn->dn_type;
1735 		range->sru.data.bp = *bp;
1736 		issue_data_read(srta, range);
1737 		break;
1738 	case REDACT:
1739 		range->sru.redact.datablksz = datablksz;
1740 		break;
1741 	default:
1742 		break;
1743 	}
1744 	bqueue_enqueue(q, range, datablksz);
1745 }
1746 
1747 /*
1748  * This thread is responsible for two things: First, it retrieves the correct
1749  * blkptr in the to ds if we need to send the data because of something from
1750  * the from thread.  As a result of this, we're the first ones to discover that
1751  * some indirect blocks can be discarded because they're not holes. Second,
1752  * it issues prefetches for the data we need to send.
1753  */
1754 static __attribute__((noreturn)) void
1755 send_reader_thread(void *arg)
1756 {
1757 	struct send_reader_thread_arg *srta = arg;
1758 	struct send_merge_thread_arg *smta = srta->smta;
1759 	bqueue_t *inq = &smta->q;
1760 	bqueue_t *outq = &srta->q;
1761 	objset_t *os = smta->os;
1762 	fstrans_cookie_t cookie = spl_fstrans_mark();
1763 	struct send_range *range = bqueue_dequeue(inq);
1764 	int err = 0;
1765 
1766 	/*
1767 	 * If the record we're analyzing is from a redaction bookmark from the
1768 	 * fromds, then we need to know whether or not it exists in the tods so
1769 	 * we know whether to create records for it or not. If it does, we need
1770 	 * the datablksz so we can generate an appropriate record for it.
1771 	 * Finally, if it isn't redacted, we need the blkptr so that we can send
1772 	 * a WRITE record containing the actual data.
1773 	 */
1774 	uint64_t last_obj = UINT64_MAX;
1775 	uint64_t last_obj_exists = B_TRUE;
1776 	while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1777 	    err == 0) {
1778 		switch (range->type) {
1779 		case DATA:
1780 			issue_data_read(srta, range);
1781 			bqueue_enqueue(outq, range, range->sru.data.datablksz);
1782 			range = get_next_range_nofree(inq, range);
1783 			break;
1784 		case HOLE:
1785 		case OBJECT:
1786 		case OBJECT_RANGE:
1787 		case REDACT: // Redacted blocks must exist
1788 			bqueue_enqueue(outq, range, sizeof (*range));
1789 			range = get_next_range_nofree(inq, range);
1790 			break;
1791 		case PREVIOUSLY_REDACTED: {
1792 			/*
1793 			 * This entry came from the "from bookmark" when
1794 			 * sending from a bookmark that has a redaction
1795 			 * list.  We need to check if this object/blkid
1796 			 * exists in the target ("to") dataset, and if
1797 			 * not then we drop this entry.  We also need
1798 			 * to fill in the block pointer so that we know
1799 			 * what to prefetch.
1800 			 *
1801 			 * To accomplish the above, we first cache whether or
1802 			 * not the last object we examined exists.  If it
1803 			 * doesn't, we can drop this record. If it does, we hold
1804 			 * the dnode and use it to call dbuf_dnode_findbp. We do
1805 			 * this instead of dbuf_bookmark_findbp because we will
1806 			 * often operate on large ranges, and holding the dnode
1807 			 * once is more efficient.
1808 			 */
1809 			boolean_t object_exists = B_TRUE;
1810 			/*
1811 			 * If the data is redacted, we only care if it exists,
1812 			 * so that we don't send records for objects that have
1813 			 * been deleted.
1814 			 */
1815 			dnode_t *dn;
1816 			if (range->object == last_obj && !last_obj_exists) {
1817 				/*
1818 				 * If we're still examining the same object as
1819 				 * previously, and it doesn't exist, we don't
1820 				 * need to call dbuf_bookmark_findbp.
1821 				 */
1822 				object_exists = B_FALSE;
1823 			} else {
1824 				err = dnode_hold(os, range->object, FTAG, &dn);
1825 				if (err == ENOENT) {
1826 					object_exists = B_FALSE;
1827 					err = 0;
1828 				}
1829 				last_obj = range->object;
1830 				last_obj_exists = object_exists;
1831 			}
1832 
1833 			if (err != 0) {
1834 				break;
1835 			} else if (!object_exists) {
1836 				/*
1837 				 * The block was modified, but doesn't
1838 				 * exist in the to dataset; if it was
1839 				 * deleted in the to dataset, then we'll
1840 				 * visit the hole bp for it at some point.
1841 				 */
1842 				range = get_next_range(inq, range);
1843 				continue;
1844 			}
1845 			uint64_t file_max =
1846 			    MIN(dn->dn_maxblkid, range->end_blkid);
1847 			/*
1848 			 * The object exists, so we need to try to find the
1849 			 * blkptr for each block in the range we're processing.
1850 			 */
1851 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
1852 			for (uint64_t blkid = range->start_blkid;
1853 			    blkid < file_max; blkid++) {
1854 				blkptr_t bp;
1855 				uint32_t datablksz =
1856 				    dn->dn_phys->dn_datablkszsec <<
1857 				    SPA_MINBLOCKSHIFT;
1858 				uint64_t offset = blkid * datablksz;
1859 				/*
1860 				 * This call finds the next non-hole block in
1861 				 * the object. This is to prevent a
1862 				 * performance problem where we're unredacting
1863 				 * a large hole. Using dnode_next_offset to
1864 				 * skip over the large hole avoids iterating
1865 				 * over every block in it.
1866 				 */
1867 				err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1868 				    &offset, 1, 1, 0);
1869 				if (err == ESRCH) {
1870 					offset = UINT64_MAX;
1871 					err = 0;
1872 				} else if (err != 0) {
1873 					break;
1874 				}
1875 				if (offset != blkid * datablksz) {
1876 					/*
1877 					 * if there is a hole from here
1878 					 * (blkid) to offset
1879 					 */
1880 					offset = MIN(offset, file_max *
1881 					    datablksz);
1882 					uint64_t nblks = (offset / datablksz) -
1883 					    blkid;
1884 					enqueue_range(srta, outq, dn, blkid,
1885 					    nblks, NULL, datablksz);
1886 					blkid += nblks;
1887 				}
1888 				if (blkid >= file_max)
1889 					break;
1890 				err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1891 				    NULL, NULL);
1892 				if (err != 0)
1893 					break;
1894 				ASSERT(!BP_IS_HOLE(&bp));
1895 				enqueue_range(srta, outq, dn, blkid, 1, &bp,
1896 				    datablksz);
1897 			}
1898 			rw_exit(&dn->dn_struct_rwlock);
1899 			dnode_rele(dn, FTAG);
1900 			range = get_next_range(inq, range);
1901 		}
1902 		}
1903 	}
1904 	if (srta->cancel || err != 0) {
1905 		smta->cancel = B_TRUE;
1906 		srta->error = err;
1907 	} else if (smta->error != 0) {
1908 		srta->error = smta->error;
1909 	}
1910 	while (!range->eos_marker)
1911 		range = get_next_range(inq, range);
1912 
1913 	bqueue_enqueue_flush(outq, range, 1);
1914 	spl_fstrans_unmark(cookie);
1915 	thread_exit();
1916 }
1917 
1918 #define	NUM_SNAPS_NOT_REDACTED UINT64_MAX
1919 
1920 struct dmu_send_params {
1921 	/* Pool args */
1922 	const void *tag; // Tag dp was held with, will be used to release dp.
1923 	dsl_pool_t *dp;
1924 	/* To snapshot args */
1925 	const char *tosnap;
1926 	dsl_dataset_t *to_ds;
1927 	/* From snapshot args */
1928 	zfs_bookmark_phys_t ancestor_zb;
1929 	uint64_t *fromredactsnaps;
1930 	/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1931 	uint64_t numfromredactsnaps;
1932 	/* Stream params */
1933 	boolean_t is_clone;
1934 	boolean_t embedok;
1935 	boolean_t large_block_ok;
1936 	boolean_t compressok;
1937 	boolean_t rawok;
1938 	boolean_t savedok;
1939 	uint64_t resumeobj;
1940 	uint64_t resumeoff;
1941 	uint64_t saved_guid;
1942 	zfs_bookmark_phys_t *redactbook;
1943 	/* Stream output params */
1944 	dmu_send_outparams_t *dso;
1945 
1946 	/* Stream progress params */
1947 	offset_t *off;
1948 	int outfd;
1949 	char saved_toname[MAXNAMELEN];
1950 };
1951 
1952 static int
1953 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1954     uint64_t *featureflags)
1955 {
1956 	dsl_dataset_t *to_ds = dspp->to_ds;
1957 	dsl_pool_t *dp = dspp->dp;
1958 
1959 	if (dmu_objset_type(os) == DMU_OST_ZFS) {
1960 		uint64_t version;
1961 		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1962 			return (SET_ERROR(EINVAL));
1963 
1964 		if (version >= ZPL_VERSION_SA)
1965 			*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1966 	}
1967 
1968 	/* raw sends imply large_block_ok */
1969 	if ((dspp->rawok || dspp->large_block_ok) &&
1970 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1971 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1972 	}
1973 
1974 	/* encrypted datasets will not have embedded blocks */
1975 	if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1976 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1977 		*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1978 	}
1979 
1980 	/* raw send implies compressok */
1981 	if (dspp->compressok || dspp->rawok)
1982 		*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1983 
1984 	if (dspp->rawok && os->os_encrypted)
1985 		*featureflags |= DMU_BACKUP_FEATURE_RAW;
1986 
1987 	if ((*featureflags &
1988 	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1989 	    DMU_BACKUP_FEATURE_RAW)) != 0 &&
1990 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1991 		*featureflags |= DMU_BACKUP_FEATURE_LZ4;
1992 	}
1993 
1994 	/*
1995 	 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1996 	 * allow sending ZSTD compressed datasets to a receiver that does not
1997 	 * support ZSTD
1998 	 */
1999 	if ((*featureflags &
2000 	    (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
2001 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2002 		*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2003 	}
2004 
2005 	if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2006 		*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2007 	}
2008 
2009 	if (dspp->redactbook != NULL) {
2010 		*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2011 	}
2012 
2013 	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2014 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2015 	}
2016 	return (0);
2017 }
2018 
2019 static dmu_replay_record_t *
2020 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2021     uint64_t featureflags)
2022 {
2023 	dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2024 	    KM_SLEEP);
2025 	drr->drr_type = DRR_BEGIN;
2026 
2027 	struct drr_begin *drrb = &drr->drr_u.drr_begin;
2028 	dsl_dataset_t *to_ds = dspp->to_ds;
2029 
2030 	drrb->drr_magic = DMU_BACKUP_MAGIC;
2031 	drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2032 	drrb->drr_type = dmu_objset_type(os);
2033 	drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2034 	drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2035 
2036 	DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2037 	DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2038 
2039 	if (dspp->is_clone)
2040 		drrb->drr_flags |= DRR_FLAG_CLONE;
2041 	if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2042 		drrb->drr_flags |= DRR_FLAG_CI_DATA;
2043 	if (zfs_send_set_freerecords_bit)
2044 		drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2045 	drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2046 
2047 	if (dspp->savedok) {
2048 		drrb->drr_toguid = dspp->saved_guid;
2049 		strlcpy(drrb->drr_toname, dspp->saved_toname,
2050 		    sizeof (drrb->drr_toname));
2051 	} else {
2052 		dsl_dataset_name(to_ds, drrb->drr_toname);
2053 		if (!to_ds->ds_is_snapshot) {
2054 			(void) strlcat(drrb->drr_toname, "@--head--",
2055 			    sizeof (drrb->drr_toname));
2056 		}
2057 	}
2058 	return (drr);
2059 }
2060 
2061 static void
2062 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2063     dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2064 {
2065 	VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2066 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2067 	    offsetof(struct send_range, ln)));
2068 	to_arg->error_code = 0;
2069 	to_arg->cancel = B_FALSE;
2070 	to_arg->os = to_os;
2071 	to_arg->fromtxg = fromtxg;
2072 	to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2073 	if (rawok)
2074 		to_arg->flags |= TRAVERSE_NO_DECRYPT;
2075 	if (zfs_send_corrupt_data)
2076 		to_arg->flags |= TRAVERSE_HARD;
2077 	to_arg->num_blocks_visited = &dssp->dss_blocks;
2078 	(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2079 	    curproc, TS_RUN, minclsyspri);
2080 }
2081 
2082 static void
2083 setup_from_thread(struct redact_list_thread_arg *from_arg,
2084     redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2085 {
2086 	VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2087 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2088 	    offsetof(struct send_range, ln)));
2089 	from_arg->error_code = 0;
2090 	from_arg->cancel = B_FALSE;
2091 	from_arg->rl = from_rl;
2092 	from_arg->mark_redact = B_FALSE;
2093 	from_arg->num_blocks_visited = &dssp->dss_blocks;
2094 	/*
2095 	 * If from_ds is null, send_traverse_thread just returns success and
2096 	 * enqueues an eos marker.
2097 	 */
2098 	(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2099 	    curproc, TS_RUN, minclsyspri);
2100 }
2101 
2102 static void
2103 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2104     struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2105 {
2106 	if (dspp->redactbook == NULL)
2107 		return;
2108 
2109 	rlt_arg->cancel = B_FALSE;
2110 	VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2111 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2112 	    offsetof(struct send_range, ln)));
2113 	rlt_arg->error_code = 0;
2114 	rlt_arg->mark_redact = B_TRUE;
2115 	rlt_arg->rl = rl;
2116 	rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2117 
2118 	(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2119 	    curproc, TS_RUN, minclsyspri);
2120 }
2121 
2122 static void
2123 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2124     struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2125     struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2126     objset_t *os)
2127 {
2128 	VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2129 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2130 	    offsetof(struct send_range, ln)));
2131 	smt_arg->cancel = B_FALSE;
2132 	smt_arg->error = 0;
2133 	smt_arg->from_arg = from_arg;
2134 	smt_arg->to_arg = to_arg;
2135 	if (dspp->redactbook != NULL)
2136 		smt_arg->redact_arg = rlt_arg;
2137 
2138 	smt_arg->os = os;
2139 	(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2140 	    TS_RUN, minclsyspri);
2141 }
2142 
2143 static void
2144 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2145     struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2146     uint64_t featureflags)
2147 {
2148 	VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2149 	    MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2150 	    offsetof(struct send_range, ln)));
2151 	srt_arg->smta = smt_arg;
2152 	srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2153 	srt_arg->featureflags = featureflags;
2154 	(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2155 	    curproc, TS_RUN, minclsyspri);
2156 }
2157 
2158 static int
2159 setup_resume_points(struct dmu_send_params *dspp,
2160     struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2161     struct redact_list_thread_arg *rlt_arg,
2162     struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2163     redaction_list_t *redact_rl, nvlist_t *nvl)
2164 {
2165 	(void) smt_arg;
2166 	dsl_dataset_t *to_ds = dspp->to_ds;
2167 	int err = 0;
2168 
2169 	uint64_t obj = 0;
2170 	uint64_t blkid = 0;
2171 	if (resuming) {
2172 		obj = dspp->resumeobj;
2173 		dmu_object_info_t to_doi;
2174 		err = dmu_object_info(os, obj, &to_doi);
2175 		if (err != 0)
2176 			return (err);
2177 
2178 		blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2179 	}
2180 	/*
2181 	 * If we're resuming a redacted send, we can skip to the appropriate
2182 	 * point in the redaction bookmark by binary searching through it.
2183 	 */
2184 	if (redact_rl != NULL) {
2185 		SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2186 	}
2187 
2188 	SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2189 	if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2190 		uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2191 		/*
2192 		 * Note: If the resume point is in an object whose
2193 		 * blocksize is different in the from vs to snapshots,
2194 		 * we will have divided by the "wrong" blocksize.
2195 		 * However, in this case fromsnap's send_cb() will
2196 		 * detect that the blocksize has changed and therefore
2197 		 * ignore this object.
2198 		 *
2199 		 * If we're resuming a send from a redaction bookmark,
2200 		 * we still cannot accidentally suggest blocks behind
2201 		 * the to_ds.  In addition, we know that any blocks in
2202 		 * the object in the to_ds will have to be sent, since
2203 		 * the size changed.  Therefore, we can't cause any harm
2204 		 * this way either.
2205 		 */
2206 		SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2207 	}
2208 	if (resuming) {
2209 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2210 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2211 	}
2212 	return (0);
2213 }
2214 
2215 static dmu_sendstatus_t *
2216 setup_send_progress(struct dmu_send_params *dspp)
2217 {
2218 	dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2219 	dssp->dss_outfd = dspp->outfd;
2220 	dssp->dss_off = dspp->off;
2221 	dssp->dss_proc = curproc;
2222 	mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2223 	list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2224 	mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2225 	return (dssp);
2226 }
2227 
2228 /*
2229  * Actually do the bulk of the work in a zfs send.
2230  *
2231  * The idea is that we want to do a send from ancestor_zb to to_ds.  We also
2232  * want to not send any data that has been modified by all the datasets in
2233  * redactsnaparr, and store the list of blocks that are redacted in this way in
2234  * a bookmark named redactbook, created on the to_ds.  We do this by creating
2235  * several worker threads, whose function is described below.
2236  *
2237  * There are three cases.
2238  * The first case is a redacted zfs send.  In this case there are 5 threads.
2239  * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2240  * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2241  * it's a full send, that's all blocks in the dataset).  It then sends those
2242  * blocks on to the send merge thread. The redact list thread takes the data
2243  * from the redaction bookmark and sends those blocks on to the send merge
2244  * thread.  The send merge thread takes the data from the to_ds traversal
2245  * thread, and combines it with the redaction records from the redact list
2246  * thread.  If a block appears in both the to_ds's data and the redaction data,
2247  * the send merge thread will mark it as redacted and send it on to the prefetch
2248  * thread.  Otherwise, the send merge thread will send the block on to the
2249  * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2250  * any data that isn't redacted, and then send the data on to the main thread.
2251  * The main thread behaves the same as in a normal send case, issuing demand
2252  * reads for data blocks and sending out records over the network
2253  *
2254  * The graphic below diagrams the flow of data in the case of a redacted zfs
2255  * send.  Each box represents a thread, and each line represents the flow of
2256  * data.
2257  *
2258  *             Records from the |
2259  *           redaction bookmark |
2260  * +--------------------+       |  +---------------------------+
2261  * |                    |       v  | Send Merge Thread         |
2262  * | Redact List Thread +----------> Apply redaction marks to  |
2263  * |                    |          | records as specified by   |
2264  * +--------------------+          | redaction ranges          |
2265  *                                 +----^---------------+------+
2266  *                                      |               | Merged data
2267  *                                      |               |
2268  *                                      |  +------------v--------+
2269  *                                      |  | Prefetch Thread     |
2270  * +--------------------+               |  | Issues prefetch     |
2271  * | to_ds Traversal    |               |  | reads of data blocks|
2272  * | Thread (finds      +---------------+  +------------+--------+
2273  * | candidate blocks)  |  Blocks modified              | Prefetched data
2274  * +--------------------+  by to_ds since               |
2275  *                         ancestor_zb     +------------v----+
2276  *                                         | Main Thread     |  File Descriptor
2277  *                                         | Sends data over +->(to zfs receive)
2278  *                                         | wire            |
2279  *                                         +-----------------+
2280  *
2281  * The second case is an incremental send from a redaction bookmark.  The to_ds
2282  * traversal thread and the main thread behave the same as in the redacted
2283  * send case.  The new thread is the from bookmark traversal thread.  It
2284  * iterates over the redaction list in the redaction bookmark, and enqueues
2285  * records for each block that was redacted in the original send.  The send
2286  * merge thread now has to merge the data from the two threads.  For details
2287  * about that process, see the header comment of send_merge_thread().  Any data
2288  * it decides to send on will be prefetched by the prefetch thread.  Note that
2289  * you can perform a redacted send from a redaction bookmark; in that case,
2290  * the data flow behaves very similarly to the flow in the redacted send case,
2291  * except with the addition of the bookmark traversal thread iterating over the
2292  * redaction bookmark.  The send_merge_thread also has to take on the
2293  * responsibility of merging the redact list thread's records, the bookmark
2294  * traversal thread's records, and the to_ds records.
2295  *
2296  * +---------------------+
2297  * |                     |
2298  * | Redact List Thread  +--------------+
2299  * |                     |              |
2300  * +---------------------+              |
2301  *        Blocks in redaction list      | Ranges modified by every secure snap
2302  *        of from bookmark              | (or EOS if not readcted)
2303  *                                      |
2304  * +---------------------+   |     +----v----------------------+
2305  * | bookmark Traversal  |   v     | Send Merge Thread         |
2306  * | Thread (finds       +---------> Merges bookmark, rlt, and |
2307  * | candidate blocks)   |         | to_ds send records        |
2308  * +---------------------+         +----^---------------+------+
2309  *                                      |               | Merged data
2310  *                                      |  +------------v--------+
2311  *                                      |  | Prefetch Thread     |
2312  * +--------------------+               |  | Issues prefetch     |
2313  * | to_ds Traversal    |               |  | reads of data blocks|
2314  * | Thread (finds      +---------------+  +------------+--------+
2315  * | candidate blocks)  |  Blocks modified              | Prefetched data
2316  * +--------------------+  by to_ds since  +------------v----+
2317  *                         ancestor_zb     | Main Thread     |  File Descriptor
2318  *                                         | Sends data over +->(to zfs receive)
2319  *                                         | wire            |
2320  *                                         +-----------------+
2321  *
2322  * The final case is a simple zfs full or incremental send.  The to_ds traversal
2323  * thread behaves the same as always. The redact list thread is never started.
2324  * The send merge thread takes all the blocks that the to_ds traversal thread
2325  * sends it, prefetches the data, and sends the blocks on to the main thread.
2326  * The main thread sends the data over the wire.
2327  *
2328  * To keep performance acceptable, we want to prefetch the data in the worker
2329  * threads.  While the to_ds thread could simply use the TRAVERSE_PREFETCH
2330  * feature built into traverse_dataset, the combining and deletion of records
2331  * due to redaction and sends from redaction bookmarks mean that we could
2332  * issue many unnecessary prefetches.  As a result, we only prefetch data
2333  * after we've determined that the record is not going to be redacted.  To
2334  * prevent the prefetching from getting too far ahead of the main thread, the
2335  * blocking queues that are used for communication are capped not by the
2336  * number of entries in the queue, but by the sum of the size of the
2337  * prefetches associated with them.  The limit on the amount of data that the
2338  * thread can prefetch beyond what the main thread has reached is controlled
2339  * by the global variable zfs_send_queue_length.  In addition, to prevent poor
2340  * performance in the beginning of a send, we also limit the distance ahead
2341  * that the traversal threads can be.  That distance is controlled by the
2342  * zfs_send_no_prefetch_queue_length tunable.
2343  *
2344  * Note: Releases dp using the specified tag.
2345  */
2346 static int
2347 dmu_send_impl(struct dmu_send_params *dspp)
2348 {
2349 	objset_t *os;
2350 	dmu_replay_record_t *drr;
2351 	dmu_sendstatus_t *dssp;
2352 	dmu_send_cookie_t dsc = {0};
2353 	int err;
2354 	uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2355 	uint64_t featureflags = 0;
2356 	struct redact_list_thread_arg *from_arg;
2357 	struct send_thread_arg *to_arg;
2358 	struct redact_list_thread_arg *rlt_arg;
2359 	struct send_merge_thread_arg *smt_arg;
2360 	struct send_reader_thread_arg *srt_arg;
2361 	struct send_range *range;
2362 	redaction_list_t *from_rl = NULL;
2363 	redaction_list_t *redact_rl = NULL;
2364 	boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2365 	boolean_t book_resuming = resuming;
2366 
2367 	dsl_dataset_t *to_ds = dspp->to_ds;
2368 	zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2369 	dsl_pool_t *dp = dspp->dp;
2370 	const void *tag = dspp->tag;
2371 
2372 	err = dmu_objset_from_ds(to_ds, &os);
2373 	if (err != 0) {
2374 		dsl_pool_rele(dp, tag);
2375 		return (err);
2376 	}
2377 
2378 	/*
2379 	 * If this is a non-raw send of an encrypted ds, we can ensure that
2380 	 * the objset_phys_t is authenticated. This is safe because this is
2381 	 * either a snapshot or we have owned the dataset, ensuring that
2382 	 * it can't be modified.
2383 	 */
2384 	if (!dspp->rawok && os->os_encrypted &&
2385 	    arc_is_unauthenticated(os->os_phys_buf)) {
2386 		zbookmark_phys_t zb;
2387 
2388 		SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2389 		    ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2390 		err = arc_untransform(os->os_phys_buf, os->os_spa,
2391 		    &zb, B_FALSE);
2392 		if (err != 0) {
2393 			dsl_pool_rele(dp, tag);
2394 			return (err);
2395 		}
2396 
2397 		ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2398 	}
2399 
2400 	if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2401 		dsl_pool_rele(dp, tag);
2402 		return (err);
2403 	}
2404 
2405 	/*
2406 	 * If we're doing a redacted send, hold the bookmark's redaction list.
2407 	 */
2408 	if (dspp->redactbook != NULL) {
2409 		err = dsl_redaction_list_hold_obj(dp,
2410 		    dspp->redactbook->zbm_redaction_obj, FTAG,
2411 		    &redact_rl);
2412 		if (err != 0) {
2413 			dsl_pool_rele(dp, tag);
2414 			return (SET_ERROR(EINVAL));
2415 		}
2416 		dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2417 	}
2418 
2419 	/*
2420 	 * If we're sending from a redaction bookmark, hold the redaction list
2421 	 * so that we can consider sending the redacted blocks.
2422 	 */
2423 	if (ancestor_zb->zbm_redaction_obj != 0) {
2424 		err = dsl_redaction_list_hold_obj(dp,
2425 		    ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2426 		if (err != 0) {
2427 			if (redact_rl != NULL) {
2428 				dsl_redaction_list_long_rele(redact_rl, FTAG);
2429 				dsl_redaction_list_rele(redact_rl, FTAG);
2430 			}
2431 			dsl_pool_rele(dp, tag);
2432 			return (SET_ERROR(EINVAL));
2433 		}
2434 		dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2435 	}
2436 
2437 	dsl_dataset_long_hold(to_ds, FTAG);
2438 
2439 	from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2440 	to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2441 	rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2442 	smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2443 	srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2444 
2445 	drr = create_begin_record(dspp, os, featureflags);
2446 	dssp = setup_send_progress(dspp);
2447 
2448 	dsc.dsc_drr = drr;
2449 	dsc.dsc_dso = dspp->dso;
2450 	dsc.dsc_os = os;
2451 	dsc.dsc_off = dspp->off;
2452 	dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2453 	dsc.dsc_fromtxg = fromtxg;
2454 	dsc.dsc_pending_op = PENDING_NONE;
2455 	dsc.dsc_featureflags = featureflags;
2456 	dsc.dsc_resume_object = dspp->resumeobj;
2457 	dsc.dsc_resume_offset = dspp->resumeoff;
2458 
2459 	dsl_pool_rele(dp, tag);
2460 
2461 	void *payload = NULL;
2462 	size_t payload_len = 0;
2463 	nvlist_t *nvl = fnvlist_alloc();
2464 
2465 	/*
2466 	 * If we're doing a redacted send, we include the snapshots we're
2467 	 * redacted with respect to so that the target system knows what send
2468 	 * streams can be correctly received on top of this dataset. If we're
2469 	 * instead sending a redacted dataset, we include the snapshots that the
2470 	 * dataset was created with respect to.
2471 	 */
2472 	if (dspp->redactbook != NULL) {
2473 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2474 		    redact_rl->rl_phys->rlp_snaps,
2475 		    redact_rl->rl_phys->rlp_num_snaps);
2476 	} else if (dsl_dataset_feature_is_active(to_ds,
2477 	    SPA_FEATURE_REDACTED_DATASETS)) {
2478 		uint64_t *tods_guids;
2479 		uint64_t length;
2480 		VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2481 		    SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2482 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2483 		    length);
2484 	}
2485 
2486 	/*
2487 	 * If we're sending from a redaction bookmark, then we should retrieve
2488 	 * the guids of that bookmark so we can send them over the wire.
2489 	 */
2490 	if (from_rl != NULL) {
2491 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2492 		    from_rl->rl_phys->rlp_snaps,
2493 		    from_rl->rl_phys->rlp_num_snaps);
2494 	}
2495 
2496 	/*
2497 	 * If the snapshot we're sending from is redacted, include the redaction
2498 	 * list in the stream.
2499 	 */
2500 	if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2501 		ASSERT3P(from_rl, ==, NULL);
2502 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2503 		    dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2504 		if (dspp->numfromredactsnaps > 0) {
2505 			kmem_free(dspp->fromredactsnaps,
2506 			    dspp->numfromredactsnaps * sizeof (uint64_t));
2507 			dspp->fromredactsnaps = NULL;
2508 		}
2509 	}
2510 
2511 	if (resuming || book_resuming) {
2512 		err = setup_resume_points(dspp, to_arg, from_arg,
2513 		    rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2514 		if (err != 0)
2515 			goto out;
2516 	}
2517 
2518 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2519 		uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2520 		nvlist_t *keynvl = NULL;
2521 		ASSERT(os->os_encrypted);
2522 
2523 		err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2524 		    &keynvl);
2525 		if (err != 0) {
2526 			fnvlist_free(nvl);
2527 			goto out;
2528 		}
2529 
2530 		fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2531 		fnvlist_free(keynvl);
2532 	}
2533 
2534 	if (!nvlist_empty(nvl)) {
2535 		payload = fnvlist_pack(nvl, &payload_len);
2536 		drr->drr_payloadlen = payload_len;
2537 	}
2538 
2539 	fnvlist_free(nvl);
2540 	err = dump_record(&dsc, payload, payload_len);
2541 	fnvlist_pack_free(payload, payload_len);
2542 	if (err != 0) {
2543 		err = dsc.dsc_err;
2544 		goto out;
2545 	}
2546 
2547 	setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2548 	setup_from_thread(from_arg, from_rl, dssp);
2549 	setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2550 	setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2551 	setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2552 
2553 	range = bqueue_dequeue(&srt_arg->q);
2554 	while (err == 0 && !range->eos_marker) {
2555 		err = do_dump(&dsc, range);
2556 		range = get_next_range(&srt_arg->q, range);
2557 		if (issig(JUSTLOOKING) && issig(FORREAL))
2558 			err = SET_ERROR(EINTR);
2559 	}
2560 
2561 	/*
2562 	 * If we hit an error or are interrupted, cancel our worker threads and
2563 	 * clear the queue of any pending records.  The threads will pass the
2564 	 * cancel up the tree of worker threads, and each one will clean up any
2565 	 * pending records before exiting.
2566 	 */
2567 	if (err != 0) {
2568 		srt_arg->cancel = B_TRUE;
2569 		while (!range->eos_marker) {
2570 			range = get_next_range(&srt_arg->q, range);
2571 		}
2572 	}
2573 	range_free(range);
2574 
2575 	bqueue_destroy(&srt_arg->q);
2576 	bqueue_destroy(&smt_arg->q);
2577 	if (dspp->redactbook != NULL)
2578 		bqueue_destroy(&rlt_arg->q);
2579 	bqueue_destroy(&to_arg->q);
2580 	bqueue_destroy(&from_arg->q);
2581 
2582 	if (err == 0 && srt_arg->error != 0)
2583 		err = srt_arg->error;
2584 
2585 	if (err != 0)
2586 		goto out;
2587 
2588 	if (dsc.dsc_pending_op != PENDING_NONE)
2589 		if (dump_record(&dsc, NULL, 0) != 0)
2590 			err = SET_ERROR(EINTR);
2591 
2592 	if (err != 0) {
2593 		if (err == EINTR && dsc.dsc_err != 0)
2594 			err = dsc.dsc_err;
2595 		goto out;
2596 	}
2597 
2598 	/*
2599 	 * Send the DRR_END record if this is not a saved stream.
2600 	 * Otherwise, the omitted DRR_END record will signal to
2601 	 * the receive side that the stream is incomplete.
2602 	 */
2603 	if (!dspp->savedok) {
2604 		memset(drr, 0, sizeof (dmu_replay_record_t));
2605 		drr->drr_type = DRR_END;
2606 		drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2607 		drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2608 
2609 		if (dump_record(&dsc, NULL, 0) != 0)
2610 			err = dsc.dsc_err;
2611 	}
2612 out:
2613 	mutex_enter(&to_ds->ds_sendstream_lock);
2614 	list_remove(&to_ds->ds_sendstreams, dssp);
2615 	mutex_exit(&to_ds->ds_sendstream_lock);
2616 
2617 	VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2618 	    (dsc.dsc_sent_end || dspp->savedok)));
2619 
2620 	kmem_free(drr, sizeof (dmu_replay_record_t));
2621 	kmem_free(dssp, sizeof (dmu_sendstatus_t));
2622 	kmem_free(from_arg, sizeof (*from_arg));
2623 	kmem_free(to_arg, sizeof (*to_arg));
2624 	kmem_free(rlt_arg, sizeof (*rlt_arg));
2625 	kmem_free(smt_arg, sizeof (*smt_arg));
2626 	kmem_free(srt_arg, sizeof (*srt_arg));
2627 
2628 	dsl_dataset_long_rele(to_ds, FTAG);
2629 	if (from_rl != NULL) {
2630 		dsl_redaction_list_long_rele(from_rl, FTAG);
2631 		dsl_redaction_list_rele(from_rl, FTAG);
2632 	}
2633 	if (redact_rl != NULL) {
2634 		dsl_redaction_list_long_rele(redact_rl, FTAG);
2635 		dsl_redaction_list_rele(redact_rl, FTAG);
2636 	}
2637 
2638 	return (err);
2639 }
2640 
2641 int
2642 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2643     boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2644     boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2645     dmu_send_outparams_t *dsop)
2646 {
2647 	int err;
2648 	dsl_dataset_t *fromds;
2649 	ds_hold_flags_t dsflags;
2650 	struct dmu_send_params dspp = {0};
2651 	dspp.embedok = embedok;
2652 	dspp.large_block_ok = large_block_ok;
2653 	dspp.compressok = compressok;
2654 	dspp.outfd = outfd;
2655 	dspp.off = off;
2656 	dspp.dso = dsop;
2657 	dspp.tag = FTAG;
2658 	dspp.rawok = rawok;
2659 	dspp.savedok = savedok;
2660 
2661 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2662 	err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2663 	if (err != 0)
2664 		return (err);
2665 
2666 	err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2667 	    &dspp.to_ds);
2668 	if (err != 0) {
2669 		dsl_pool_rele(dspp.dp, FTAG);
2670 		return (err);
2671 	}
2672 
2673 	if (fromsnap != 0) {
2674 		err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2675 		    FTAG, &fromds);
2676 		if (err != 0) {
2677 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2678 			dsl_pool_rele(dspp.dp, FTAG);
2679 			return (err);
2680 		}
2681 		dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2682 		dspp.ancestor_zb.zbm_creation_txg =
2683 		    dsl_dataset_phys(fromds)->ds_creation_txg;
2684 		dspp.ancestor_zb.zbm_creation_time =
2685 		    dsl_dataset_phys(fromds)->ds_creation_time;
2686 
2687 		if (dsl_dataset_is_zapified(fromds)) {
2688 			(void) zap_lookup(dspp.dp->dp_meta_objset,
2689 			    fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2690 			    &dspp.ancestor_zb.zbm_ivset_guid);
2691 		}
2692 
2693 		/* See dmu_send for the reasons behind this. */
2694 		uint64_t *fromredact;
2695 
2696 		if (!dsl_dataset_get_uint64_array_feature(fromds,
2697 		    SPA_FEATURE_REDACTED_DATASETS,
2698 		    &dspp.numfromredactsnaps,
2699 		    &fromredact)) {
2700 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2701 		} else if (dspp.numfromredactsnaps > 0) {
2702 			uint64_t size = dspp.numfromredactsnaps *
2703 			    sizeof (uint64_t);
2704 			dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2705 			memcpy(dspp.fromredactsnaps, fromredact, size);
2706 		}
2707 
2708 		boolean_t is_before =
2709 		    dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2710 		dspp.is_clone = (dspp.to_ds->ds_dir !=
2711 		    fromds->ds_dir);
2712 		dsl_dataset_rele(fromds, FTAG);
2713 		if (!is_before) {
2714 			dsl_pool_rele(dspp.dp, FTAG);
2715 			err = SET_ERROR(EXDEV);
2716 		} else {
2717 			err = dmu_send_impl(&dspp);
2718 		}
2719 	} else {
2720 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2721 		err = dmu_send_impl(&dspp);
2722 	}
2723 	if (dspp.fromredactsnaps)
2724 		kmem_free(dspp.fromredactsnaps,
2725 		    dspp.numfromredactsnaps * sizeof (uint64_t));
2726 
2727 	dsl_dataset_rele(dspp.to_ds, FTAG);
2728 	return (err);
2729 }
2730 
2731 int
2732 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2733     boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2734     boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2735     const char *redactbook, int outfd, offset_t *off,
2736     dmu_send_outparams_t *dsop)
2737 {
2738 	int err = 0;
2739 	ds_hold_flags_t dsflags;
2740 	boolean_t owned = B_FALSE;
2741 	dsl_dataset_t *fromds = NULL;
2742 	zfs_bookmark_phys_t book = {0};
2743 	struct dmu_send_params dspp = {0};
2744 
2745 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2746 	dspp.tosnap = tosnap;
2747 	dspp.embedok = embedok;
2748 	dspp.large_block_ok = large_block_ok;
2749 	dspp.compressok = compressok;
2750 	dspp.outfd = outfd;
2751 	dspp.off = off;
2752 	dspp.dso = dsop;
2753 	dspp.tag = FTAG;
2754 	dspp.resumeobj = resumeobj;
2755 	dspp.resumeoff = resumeoff;
2756 	dspp.rawok = rawok;
2757 	dspp.savedok = savedok;
2758 
2759 	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2760 		return (SET_ERROR(EINVAL));
2761 
2762 	err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2763 	if (err != 0)
2764 		return (err);
2765 
2766 	if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2767 		/*
2768 		 * We are sending a filesystem or volume.  Ensure
2769 		 * that it doesn't change by owning the dataset.
2770 		 */
2771 
2772 		if (savedok) {
2773 			/*
2774 			 * We are looking for the dataset that represents the
2775 			 * partially received send stream. If this stream was
2776 			 * received as a new snapshot of an existing dataset,
2777 			 * this will be saved in a hidden clone named
2778 			 * "<pool>/<dataset>/%recv". Otherwise, the stream
2779 			 * will be saved in the live dataset itself. In
2780 			 * either case we need to use dsl_dataset_own_force()
2781 			 * because the stream is marked as inconsistent,
2782 			 * which would normally make it unavailable to be
2783 			 * owned.
2784 			 */
2785 			char *name = kmem_asprintf("%s/%s", tosnap,
2786 			    recv_clone_name);
2787 			err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2788 			    FTAG, &dspp.to_ds);
2789 			if (err == ENOENT) {
2790 				err = dsl_dataset_own_force(dspp.dp, tosnap,
2791 				    dsflags, FTAG, &dspp.to_ds);
2792 			}
2793 
2794 			if (err == 0) {
2795 				owned = B_TRUE;
2796 				err = zap_lookup(dspp.dp->dp_meta_objset,
2797 				    dspp.to_ds->ds_object,
2798 				    DS_FIELD_RESUME_TOGUID, 8, 1,
2799 				    &dspp.saved_guid);
2800 			}
2801 
2802 			if (err == 0) {
2803 				err = zap_lookup(dspp.dp->dp_meta_objset,
2804 				    dspp.to_ds->ds_object,
2805 				    DS_FIELD_RESUME_TONAME, 1,
2806 				    sizeof (dspp.saved_toname),
2807 				    dspp.saved_toname);
2808 			}
2809 			/* Only disown if there was an error in the lookups */
2810 			if (owned && (err != 0))
2811 				dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2812 
2813 			kmem_strfree(name);
2814 		} else {
2815 			err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2816 			    FTAG, &dspp.to_ds);
2817 			if (err == 0)
2818 				owned = B_TRUE;
2819 		}
2820 	} else {
2821 		err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2822 		    &dspp.to_ds);
2823 	}
2824 
2825 	if (err != 0) {
2826 		/* Note: dsl dataset is not owned at this point */
2827 		dsl_pool_rele(dspp.dp, FTAG);
2828 		return (err);
2829 	}
2830 
2831 	if (redactbook != NULL) {
2832 		char path[ZFS_MAX_DATASET_NAME_LEN];
2833 		(void) strlcpy(path, tosnap, sizeof (path));
2834 		char *at = strchr(path, '@');
2835 		if (at == NULL) {
2836 			err = EINVAL;
2837 		} else {
2838 			(void) snprintf(at, sizeof (path) - (at - path), "#%s",
2839 			    redactbook);
2840 			err = dsl_bookmark_lookup(dspp.dp, path,
2841 			    NULL, &book);
2842 			dspp.redactbook = &book;
2843 		}
2844 	}
2845 
2846 	if (err != 0) {
2847 		dsl_pool_rele(dspp.dp, FTAG);
2848 		if (owned)
2849 			dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2850 		else
2851 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2852 		return (err);
2853 	}
2854 
2855 	if (fromsnap != NULL) {
2856 		zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2857 		int fsnamelen;
2858 		if (strpbrk(tosnap, "@#") != NULL)
2859 			fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2860 		else
2861 			fsnamelen = strlen(tosnap);
2862 
2863 		/*
2864 		 * If the fromsnap is in a different filesystem, then
2865 		 * mark the send stream as a clone.
2866 		 */
2867 		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2868 		    (fromsnap[fsnamelen] != '@' &&
2869 		    fromsnap[fsnamelen] != '#')) {
2870 			dspp.is_clone = B_TRUE;
2871 		}
2872 
2873 		if (strchr(fromsnap, '@') != NULL) {
2874 			err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2875 			    &fromds);
2876 
2877 			if (err != 0) {
2878 				ASSERT3P(fromds, ==, NULL);
2879 			} else {
2880 				/*
2881 				 * We need to make a deep copy of the redact
2882 				 * snapshots of the from snapshot, because the
2883 				 * array will be freed when we evict from_ds.
2884 				 */
2885 				uint64_t *fromredact;
2886 				if (!dsl_dataset_get_uint64_array_feature(
2887 				    fromds, SPA_FEATURE_REDACTED_DATASETS,
2888 				    &dspp.numfromredactsnaps,
2889 				    &fromredact)) {
2890 					dspp.numfromredactsnaps =
2891 					    NUM_SNAPS_NOT_REDACTED;
2892 				} else if (dspp.numfromredactsnaps > 0) {
2893 					uint64_t size =
2894 					    dspp.numfromredactsnaps *
2895 					    sizeof (uint64_t);
2896 					dspp.fromredactsnaps = kmem_zalloc(size,
2897 					    KM_SLEEP);
2898 					memcpy(dspp.fromredactsnaps, fromredact,
2899 					    size);
2900 				}
2901 				if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2902 				    0)) {
2903 					err = SET_ERROR(EXDEV);
2904 				} else {
2905 					zb->zbm_creation_txg =
2906 					    dsl_dataset_phys(fromds)->
2907 					    ds_creation_txg;
2908 					zb->zbm_creation_time =
2909 					    dsl_dataset_phys(fromds)->
2910 					    ds_creation_time;
2911 					zb->zbm_guid =
2912 					    dsl_dataset_phys(fromds)->ds_guid;
2913 					zb->zbm_redaction_obj = 0;
2914 
2915 					if (dsl_dataset_is_zapified(fromds)) {
2916 						(void) zap_lookup(
2917 						    dspp.dp->dp_meta_objset,
2918 						    fromds->ds_object,
2919 						    DS_FIELD_IVSET_GUID, 8, 1,
2920 						    &zb->zbm_ivset_guid);
2921 					}
2922 				}
2923 				dsl_dataset_rele(fromds, FTAG);
2924 			}
2925 		} else {
2926 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2927 			err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2928 			    zb);
2929 			if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2930 			    zb->zbm_guid ==
2931 			    dsl_dataset_phys(dspp.to_ds)->ds_guid)
2932 				err = 0;
2933 		}
2934 
2935 		if (err == 0) {
2936 			/* dmu_send_impl will call dsl_pool_rele for us. */
2937 			err = dmu_send_impl(&dspp);
2938 		} else {
2939 			if (dspp.fromredactsnaps)
2940 				kmem_free(dspp.fromredactsnaps,
2941 				    dspp.numfromredactsnaps *
2942 				    sizeof (uint64_t));
2943 			dsl_pool_rele(dspp.dp, FTAG);
2944 		}
2945 	} else {
2946 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2947 		err = dmu_send_impl(&dspp);
2948 	}
2949 	if (owned)
2950 		dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2951 	else
2952 		dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2953 	return (err);
2954 }
2955 
2956 static int
2957 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2958     uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2959 {
2960 	int err = 0;
2961 	uint64_t size;
2962 	/*
2963 	 * Assume that space (both on-disk and in-stream) is dominated by
2964 	 * data.  We will adjust for indirect blocks and the copies property,
2965 	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2966 	 */
2967 
2968 	uint64_t recordsize;
2969 	uint64_t record_count;
2970 	objset_t *os;
2971 	VERIFY0(dmu_objset_from_ds(ds, &os));
2972 
2973 	/* Assume all (uncompressed) blocks are recordsize. */
2974 	if (zfs_override_estimate_recordsize != 0) {
2975 		recordsize = zfs_override_estimate_recordsize;
2976 	} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2977 		err = dsl_prop_get_int_ds(ds,
2978 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2979 	} else {
2980 		err = dsl_prop_get_int_ds(ds,
2981 		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2982 	}
2983 	if (err != 0)
2984 		return (err);
2985 	record_count = uncompressed / recordsize;
2986 
2987 	/*
2988 	 * If we're estimating a send size for a compressed stream, use the
2989 	 * compressed data size to estimate the stream size. Otherwise, use the
2990 	 * uncompressed data size.
2991 	 */
2992 	size = stream_compressed ? compressed : uncompressed;
2993 
2994 	/*
2995 	 * Subtract out approximate space used by indirect blocks.
2996 	 * Assume most space is used by data blocks (non-indirect, non-dnode).
2997 	 * Assume no ditto blocks or internal fragmentation.
2998 	 *
2999 	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
3000 	 * block.
3001 	 */
3002 	size -= record_count * sizeof (blkptr_t);
3003 
3004 	/* Add in the space for the record associated with each block. */
3005 	size += record_count * sizeof (dmu_replay_record_t);
3006 
3007 	*sizep = size;
3008 
3009 	return (0);
3010 }
3011 
3012 int
3013 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3014     zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3015     boolean_t saved, uint64_t *sizep)
3016 {
3017 	int err;
3018 	dsl_dataset_t *ds = origds;
3019 	uint64_t uncomp, comp;
3020 
3021 	ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3022 	ASSERT(fromds == NULL || frombook == NULL);
3023 
3024 	/*
3025 	 * If this is a saved send we may actually be sending
3026 	 * from the %recv clone used for resuming.
3027 	 */
3028 	if (saved) {
3029 		objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3030 		uint64_t guid;
3031 		char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3032 
3033 		dsl_dataset_name(origds, dsname);
3034 		(void) strcat(dsname, "/");
3035 		(void) strlcat(dsname, recv_clone_name, sizeof (dsname));
3036 
3037 		err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3038 		    dsname, FTAG, &ds);
3039 		if (err != ENOENT && err != 0) {
3040 			return (err);
3041 		} else if (err == ENOENT) {
3042 			ds = origds;
3043 		}
3044 
3045 		/* check that this dataset has partially received data */
3046 		err = zap_lookup(mos, ds->ds_object,
3047 		    DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3048 		if (err != 0) {
3049 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3050 			goto out;
3051 		}
3052 
3053 		err = zap_lookup(mos, ds->ds_object,
3054 		    DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3055 		if (err != 0) {
3056 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3057 			goto out;
3058 		}
3059 	}
3060 
3061 	/* tosnap must be a snapshot or the target of a saved send */
3062 	if (!ds->ds_is_snapshot && ds == origds)
3063 		return (SET_ERROR(EINVAL));
3064 
3065 	if (fromds != NULL) {
3066 		uint64_t used;
3067 		if (!fromds->ds_is_snapshot) {
3068 			err = SET_ERROR(EINVAL);
3069 			goto out;
3070 		}
3071 
3072 		if (!dsl_dataset_is_before(ds, fromds, 0)) {
3073 			err = SET_ERROR(EXDEV);
3074 			goto out;
3075 		}
3076 
3077 		err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3078 		    &uncomp);
3079 		if (err != 0)
3080 			goto out;
3081 	} else if (frombook != NULL) {
3082 		uint64_t used;
3083 		err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3084 		    &comp, &uncomp);
3085 		if (err != 0)
3086 			goto out;
3087 	} else {
3088 		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3089 		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3090 	}
3091 
3092 	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3093 	    stream_compressed, sizep);
3094 	/*
3095 	 * Add the size of the BEGIN and END records to the estimate.
3096 	 */
3097 	*sizep += 2 * sizeof (dmu_replay_record_t);
3098 
3099 out:
3100 	if (ds != origds)
3101 		dsl_dataset_rele(ds, FTAG);
3102 	return (err);
3103 }
3104 
3105 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3106 	"Allow sending corrupt data");
3107 
3108 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3109 	"Maximum send queue length");
3110 
3111 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3112 	"Send unmodified spill blocks");
3113 
3114 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3115 	"Maximum send queue length for non-prefetch queues");
3116 
3117 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3118 	"Send queue fill fraction");
3119 
3120 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3121 	"Send queue fill fraction for non-prefetch queues");
3122 
3123 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3124 	"Override block size estimate with fixed size");
3125