xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_tx.c (revision 15f0b8c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
41 
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43     uint64_t arg1, uint64_t arg2);
44 
45 dmu_tx_stats_t dmu_tx_stats = {
46 	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
47 	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
48 	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
49 	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
50 	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
51 	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
52 	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
53 	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
54 	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
55 	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
56 	{ "dmu_tx_dirty_frees_delay",	KSTAT_DATA_UINT64 },
57 	{ "dmu_tx_wrlog_delay",		KSTAT_DATA_UINT64 },
58 	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
59 };
60 
61 static kstat_t *dmu_tx_ksp;
62 
63 dmu_tx_t *
64 dmu_tx_create_dd(dsl_dir_t *dd)
65 {
66 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
67 	tx->tx_dir = dd;
68 	if (dd != NULL)
69 		tx->tx_pool = dd->dd_pool;
70 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
71 	    offsetof(dmu_tx_hold_t, txh_node));
72 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
73 	    offsetof(dmu_tx_callback_t, dcb_node));
74 	tx->tx_start = gethrtime();
75 	return (tx);
76 }
77 
78 dmu_tx_t *
79 dmu_tx_create(objset_t *os)
80 {
81 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
82 	tx->tx_objset = os;
83 	return (tx);
84 }
85 
86 dmu_tx_t *
87 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
88 {
89 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
90 
91 	TXG_VERIFY(dp->dp_spa, txg);
92 	tx->tx_pool = dp;
93 	tx->tx_txg = txg;
94 	tx->tx_anyobj = TRUE;
95 
96 	return (tx);
97 }
98 
99 int
100 dmu_tx_is_syncing(dmu_tx_t *tx)
101 {
102 	return (tx->tx_anyobj);
103 }
104 
105 int
106 dmu_tx_private_ok(dmu_tx_t *tx)
107 {
108 	return (tx->tx_anyobj);
109 }
110 
111 static dmu_tx_hold_t *
112 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
113     uint64_t arg1, uint64_t arg2)
114 {
115 	dmu_tx_hold_t *txh;
116 
117 	if (dn != NULL) {
118 		(void) zfs_refcount_add(&dn->dn_holds, tx);
119 		if (tx->tx_txg != 0) {
120 			mutex_enter(&dn->dn_mtx);
121 			/*
122 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 			 * problem, but there's no way for it to happen (for
124 			 * now, at least).
125 			 */
126 			ASSERT(dn->dn_assigned_txg == 0);
127 			dn->dn_assigned_txg = tx->tx_txg;
128 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
129 			mutex_exit(&dn->dn_mtx);
130 		}
131 	}
132 
133 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
134 	txh->txh_tx = tx;
135 	txh->txh_dnode = dn;
136 	zfs_refcount_create(&txh->txh_space_towrite);
137 	zfs_refcount_create(&txh->txh_memory_tohold);
138 	txh->txh_type = type;
139 	txh->txh_arg1 = arg1;
140 	txh->txh_arg2 = arg2;
141 	list_insert_tail(&tx->tx_holds, txh);
142 
143 	return (txh);
144 }
145 
146 static dmu_tx_hold_t *
147 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
148     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
149 {
150 	dnode_t *dn = NULL;
151 	dmu_tx_hold_t *txh;
152 	int err;
153 
154 	if (object != DMU_NEW_OBJECT) {
155 		err = dnode_hold(os, object, FTAG, &dn);
156 		if (err != 0) {
157 			tx->tx_err = err;
158 			return (NULL);
159 		}
160 	}
161 	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
162 	if (dn != NULL)
163 		dnode_rele(dn, FTAG);
164 	return (txh);
165 }
166 
167 void
168 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
169 {
170 	/*
171 	 * If we're syncing, they can manipulate any object anyhow, and
172 	 * the hold on the dnode_t can cause problems.
173 	 */
174 	if (!dmu_tx_is_syncing(tx))
175 		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
176 }
177 
178 /*
179  * This function reads specified data from disk.  The specified data will
180  * be needed to perform the transaction -- i.e, it will be read after
181  * we do dmu_tx_assign().  There are two reasons that we read the data now
182  * (before dmu_tx_assign()):
183  *
184  * 1. Reading it now has potentially better performance.  The transaction
185  * has not yet been assigned, so the TXG is not held open, and also the
186  * caller typically has less locks held when calling dmu_tx_hold_*() than
187  * after the transaction has been assigned.  This reduces the lock (and txg)
188  * hold times, thus reducing lock contention.
189  *
190  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191  * that are detected before they start making changes to the DMU state
192  * (i.e. now).  Once the transaction has been assigned, and some DMU
193  * state has been changed, it can be difficult to recover from an i/o
194  * error (e.g. to undo the changes already made in memory at the DMU
195  * layer).  Typically code to do so does not exist in the caller -- it
196  * assumes that the data has already been cached and thus i/o errors are
197  * not possible.
198  *
199  * It has been observed that the i/o initiated here can be a performance
200  * problem, and it appears to be optional, because we don't look at the
201  * data which is read.  However, removing this read would only serve to
202  * move the work elsewhere (after the dmu_tx_assign()), where it may
203  * have a greater impact on performance (in addition to the impact on
204  * fault tolerance noted above).
205  */
206 static int
207 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
208 {
209 	int err;
210 	dmu_buf_impl_t *db;
211 
212 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
213 	db = dbuf_hold_level(dn, level, blkid, FTAG);
214 	rw_exit(&dn->dn_struct_rwlock);
215 	if (db == NULL)
216 		return (SET_ERROR(EIO));
217 	/*
218 	 * PARTIAL_FIRST allows caching for uncacheable blocks.  It will
219 	 * be cleared after dmu_buf_will_dirty() call dbuf_read() again.
220 	 */
221 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH |
222 	    (level == 0 ? DB_RF_PARTIAL_FIRST : 0));
223 	dbuf_rele(db, FTAG);
224 	return (err);
225 }
226 
227 static void
228 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
229 {
230 	dnode_t *dn = txh->txh_dnode;
231 	int err = 0;
232 
233 	if (len == 0)
234 		return;
235 
236 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
237 
238 	if (dn == NULL)
239 		return;
240 
241 	/*
242 	 * For i/o error checking, read the blocks that will be needed
243 	 * to perform the write: the first and last level-0 blocks (if
244 	 * they are not aligned, i.e. if they are partial-block writes),
245 	 * and all the level-1 blocks.
246 	 */
247 	if (dn->dn_maxblkid == 0) {
248 		if (off < dn->dn_datablksz &&
249 		    (off > 0 || len < dn->dn_datablksz)) {
250 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
251 			if (err != 0) {
252 				txh->txh_tx->tx_err = err;
253 			}
254 		}
255 	} else {
256 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
257 		    NULL, NULL, ZIO_FLAG_CANFAIL);
258 
259 		/* first level-0 block */
260 		uint64_t start = off >> dn->dn_datablkshift;
261 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
262 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
263 			if (err != 0) {
264 				txh->txh_tx->tx_err = err;
265 			}
266 		}
267 
268 		/* last level-0 block */
269 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
270 		if (end != start && end <= dn->dn_maxblkid &&
271 		    P2PHASE(off + len, dn->dn_datablksz)) {
272 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
273 			if (err != 0) {
274 				txh->txh_tx->tx_err = err;
275 			}
276 		}
277 
278 		/* level-1 blocks */
279 		if (dn->dn_nlevels > 1) {
280 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
281 			for (uint64_t i = (start >> shft) + 1;
282 			    i < end >> shft; i++) {
283 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
284 				if (err != 0) {
285 					txh->txh_tx->tx_err = err;
286 				}
287 			}
288 		}
289 
290 		err = zio_wait(zio);
291 		if (err != 0) {
292 			txh->txh_tx->tx_err = err;
293 		}
294 	}
295 }
296 
297 static void
298 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
299 {
300 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
301 	    DNODE_MIN_SIZE, FTAG);
302 }
303 
304 void
305 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
306 {
307 	dmu_tx_hold_t *txh;
308 
309 	ASSERT0(tx->tx_txg);
310 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
311 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
312 
313 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
314 	    object, THT_WRITE, off, len);
315 	if (txh != NULL) {
316 		dmu_tx_count_write(txh, off, len);
317 		dmu_tx_count_dnode(txh);
318 	}
319 }
320 
321 void
322 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
323 {
324 	dmu_tx_hold_t *txh;
325 
326 	ASSERT0(tx->tx_txg);
327 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
328 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
329 
330 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
331 	if (txh != NULL) {
332 		dmu_tx_count_write(txh, off, len);
333 		dmu_tx_count_dnode(txh);
334 	}
335 }
336 
337 /*
338  * This function marks the transaction as being a "net free".  The end
339  * result is that refquotas will be disabled for this transaction, and
340  * this transaction will be able to use half of the pool space overhead
341  * (see dsl_pool_adjustedsize()).  Therefore this function should only
342  * be called for transactions that we expect will not cause a net increase
343  * in the amount of space used (but it's OK if that is occasionally not true).
344  */
345 void
346 dmu_tx_mark_netfree(dmu_tx_t *tx)
347 {
348 	tx->tx_netfree = B_TRUE;
349 }
350 
351 static void
352 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
353 {
354 	dmu_tx_t *tx = txh->txh_tx;
355 	dnode_t *dn = txh->txh_dnode;
356 	int err;
357 
358 	ASSERT(tx->tx_txg == 0);
359 
360 	dmu_tx_count_dnode(txh);
361 
362 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
363 		return;
364 	if (len == DMU_OBJECT_END)
365 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
366 
367 	dmu_tx_count_dnode(txh);
368 
369 	/*
370 	 * For i/o error checking, we read the first and last level-0
371 	 * blocks if they are not aligned, and all the level-1 blocks.
372 	 *
373 	 * Note:  dbuf_free_range() assumes that we have not instantiated
374 	 * any level-0 dbufs that will be completely freed.  Therefore we must
375 	 * exercise care to not read or count the first and last blocks
376 	 * if they are blocksize-aligned.
377 	 */
378 	if (dn->dn_datablkshift == 0) {
379 		if (off != 0 || len < dn->dn_datablksz)
380 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
381 	} else {
382 		/* first block will be modified if it is not aligned */
383 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
384 			dmu_tx_count_write(txh, off, 1);
385 		/* last block will be modified if it is not aligned */
386 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
387 			dmu_tx_count_write(txh, off + len, 1);
388 	}
389 
390 	/*
391 	 * Check level-1 blocks.
392 	 */
393 	if (dn->dn_nlevels > 1) {
394 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
395 		    SPA_BLKPTRSHIFT;
396 		uint64_t start = off >> shift;
397 		uint64_t end = (off + len) >> shift;
398 
399 		ASSERT(dn->dn_indblkshift != 0);
400 
401 		/*
402 		 * dnode_reallocate() can result in an object with indirect
403 		 * blocks having an odd data block size.  In this case,
404 		 * just check the single block.
405 		 */
406 		if (dn->dn_datablkshift == 0)
407 			start = end = 0;
408 
409 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
410 		    NULL, NULL, ZIO_FLAG_CANFAIL);
411 		for (uint64_t i = start; i <= end; i++) {
412 			uint64_t ibyte = i << shift;
413 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
414 			i = ibyte >> shift;
415 			if (err == ESRCH || i > end)
416 				break;
417 			if (err != 0) {
418 				tx->tx_err = err;
419 				(void) zio_wait(zio);
420 				return;
421 			}
422 
423 			(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
424 			    1 << dn->dn_indblkshift, FTAG);
425 
426 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
427 			if (err != 0) {
428 				tx->tx_err = err;
429 				(void) zio_wait(zio);
430 				return;
431 			}
432 		}
433 		err = zio_wait(zio);
434 		if (err != 0) {
435 			tx->tx_err = err;
436 			return;
437 		}
438 	}
439 }
440 
441 void
442 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
443 {
444 	dmu_tx_hold_t *txh;
445 
446 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
447 	    object, THT_FREE, off, len);
448 	if (txh != NULL)
449 		(void) dmu_tx_hold_free_impl(txh, off, len);
450 }
451 
452 void
453 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
454 {
455 	dmu_tx_hold_t *txh;
456 
457 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
458 	if (txh != NULL)
459 		(void) dmu_tx_hold_free_impl(txh, off, len);
460 }
461 
462 static void
463 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
464 {
465 	dmu_tx_t *tx = txh->txh_tx;
466 	dnode_t *dn = txh->txh_dnode;
467 	int err;
468 	extern int zap_micro_max_size;
469 
470 	ASSERT(tx->tx_txg == 0);
471 
472 	dmu_tx_count_dnode(txh);
473 
474 	/*
475 	 * Modifying a almost-full microzap is around the worst case (128KB)
476 	 *
477 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
478 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
479 	 * - 4 new blocks written if adding:
480 	 *    - 2 blocks for possibly split leaves,
481 	 *    - 2 grown ptrtbl blocks
482 	 */
483 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
484 	    zap_micro_max_size, FTAG);
485 
486 	if (dn == NULL)
487 		return;
488 
489 	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
490 
491 	if (dn->dn_maxblkid == 0 || name == NULL) {
492 		/*
493 		 * This is a microzap (only one block), or we don't know
494 		 * the name.  Check the first block for i/o errors.
495 		 */
496 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
497 		if (err != 0) {
498 			tx->tx_err = err;
499 		}
500 	} else {
501 		/*
502 		 * Access the name so that we'll check for i/o errors to
503 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
504 		 * may not yet exist.
505 		 */
506 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
507 		if (err == EIO || err == ECKSUM || err == ENXIO) {
508 			tx->tx_err = err;
509 		}
510 	}
511 }
512 
513 void
514 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
515 {
516 	dmu_tx_hold_t *txh;
517 
518 	ASSERT0(tx->tx_txg);
519 
520 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
521 	    object, THT_ZAP, add, (uintptr_t)name);
522 	if (txh != NULL)
523 		dmu_tx_hold_zap_impl(txh, name);
524 }
525 
526 void
527 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
528 {
529 	dmu_tx_hold_t *txh;
530 
531 	ASSERT0(tx->tx_txg);
532 	ASSERT(dn != NULL);
533 
534 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
535 	if (txh != NULL)
536 		dmu_tx_hold_zap_impl(txh, name);
537 }
538 
539 void
540 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
541 {
542 	dmu_tx_hold_t *txh;
543 
544 	ASSERT(tx->tx_txg == 0);
545 
546 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
547 	    object, THT_BONUS, 0, 0);
548 	if (txh)
549 		dmu_tx_count_dnode(txh);
550 }
551 
552 void
553 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
554 {
555 	dmu_tx_hold_t *txh;
556 
557 	ASSERT0(tx->tx_txg);
558 
559 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
560 	if (txh)
561 		dmu_tx_count_dnode(txh);
562 }
563 
564 void
565 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
566 {
567 	dmu_tx_hold_t *txh;
568 
569 	ASSERT(tx->tx_txg == 0);
570 
571 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
572 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
573 	if (txh) {
574 		(void) zfs_refcount_add_many(
575 		    &txh->txh_space_towrite, space, FTAG);
576 	}
577 }
578 
579 #ifdef ZFS_DEBUG
580 void
581 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
582 {
583 	boolean_t match_object = B_FALSE;
584 	boolean_t match_offset = B_FALSE;
585 
586 	DB_DNODE_ENTER(db);
587 	dnode_t *dn = DB_DNODE(db);
588 	ASSERT(tx->tx_txg != 0);
589 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
590 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
591 
592 	if (tx->tx_anyobj) {
593 		DB_DNODE_EXIT(db);
594 		return;
595 	}
596 
597 	/* XXX No checking on the meta dnode for now */
598 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
599 		DB_DNODE_EXIT(db);
600 		return;
601 	}
602 
603 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
604 	    txh = list_next(&tx->tx_holds, txh)) {
605 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
606 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
607 			match_object = TRUE;
608 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
609 			int datablkshift = dn->dn_datablkshift ?
610 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
611 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
612 			int shift = datablkshift + epbs * db->db_level;
613 			uint64_t beginblk = shift >= 64 ? 0 :
614 			    (txh->txh_arg1 >> shift);
615 			uint64_t endblk = shift >= 64 ? 0 :
616 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
617 			uint64_t blkid = db->db_blkid;
618 
619 			/* XXX txh_arg2 better not be zero... */
620 
621 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
622 			    txh->txh_type, (u_longlong_t)beginblk,
623 			    (u_longlong_t)endblk);
624 
625 			switch (txh->txh_type) {
626 			case THT_WRITE:
627 				if (blkid >= beginblk && blkid <= endblk)
628 					match_offset = TRUE;
629 				/*
630 				 * We will let this hold work for the bonus
631 				 * or spill buffer so that we don't need to
632 				 * hold it when creating a new object.
633 				 */
634 				if (blkid == DMU_BONUS_BLKID ||
635 				    blkid == DMU_SPILL_BLKID)
636 					match_offset = TRUE;
637 				/*
638 				 * They might have to increase nlevels,
639 				 * thus dirtying the new TLIBs.  Or the
640 				 * might have to change the block size,
641 				 * thus dirying the new lvl=0 blk=0.
642 				 */
643 				if (blkid == 0)
644 					match_offset = TRUE;
645 				break;
646 			case THT_FREE:
647 				/*
648 				 * We will dirty all the level 1 blocks in
649 				 * the free range and perhaps the first and
650 				 * last level 0 block.
651 				 */
652 				if (blkid >= beginblk && (blkid <= endblk ||
653 				    txh->txh_arg2 == DMU_OBJECT_END))
654 					match_offset = TRUE;
655 				break;
656 			case THT_SPILL:
657 				if (blkid == DMU_SPILL_BLKID)
658 					match_offset = TRUE;
659 				break;
660 			case THT_BONUS:
661 				if (blkid == DMU_BONUS_BLKID)
662 					match_offset = TRUE;
663 				break;
664 			case THT_ZAP:
665 				match_offset = TRUE;
666 				break;
667 			case THT_NEWOBJECT:
668 				match_object = TRUE;
669 				break;
670 			default:
671 				cmn_err(CE_PANIC, "bad txh_type %d",
672 				    txh->txh_type);
673 			}
674 		}
675 		if (match_object && match_offset) {
676 			DB_DNODE_EXIT(db);
677 			return;
678 		}
679 	}
680 	DB_DNODE_EXIT(db);
681 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
682 	    (u_longlong_t)db->db.db_object, db->db_level,
683 	    (u_longlong_t)db->db_blkid);
684 }
685 #endif
686 
687 /*
688  * If we can't do 10 iops, something is wrong.  Let us go ahead
689  * and hit zfs_dirty_data_max.
690  */
691 static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
692 
693 /*
694  * We delay transactions when we've determined that the backend storage
695  * isn't able to accommodate the rate of incoming writes.
696  *
697  * If there is already a transaction waiting, we delay relative to when
698  * that transaction finishes waiting.  This way the calculated min_time
699  * is independent of the number of threads concurrently executing
700  * transactions.
701  *
702  * If we are the only waiter, wait relative to when the transaction
703  * started, rather than the current time.  This credits the transaction for
704  * "time already served", e.g. reading indirect blocks.
705  *
706  * The minimum time for a transaction to take is calculated as:
707  *     min_time = scale * (dirty - min) / (max - dirty)
708  *     min_time is then capped at zfs_delay_max_ns.
709  *
710  * The delay has two degrees of freedom that can be adjusted via tunables.
711  * The percentage of dirty data at which we start to delay is defined by
712  * zfs_delay_min_dirty_percent. This should typically be at or above
713  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
714  * delay after writing at full speed has failed to keep up with the incoming
715  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
716  * speaking, this variable determines the amount of delay at the midpoint of
717  * the curve.
718  *
719  * delay
720  *  10ms +-------------------------------------------------------------*+
721  *       |                                                             *|
722  *   9ms +                                                             *+
723  *       |                                                             *|
724  *   8ms +                                                             *+
725  *       |                                                            * |
726  *   7ms +                                                            * +
727  *       |                                                            * |
728  *   6ms +                                                            * +
729  *       |                                                            * |
730  *   5ms +                                                           *  +
731  *       |                                                           *  |
732  *   4ms +                                                           *  +
733  *       |                                                           *  |
734  *   3ms +                                                          *   +
735  *       |                                                          *   |
736  *   2ms +                                              (midpoint) *    +
737  *       |                                                  |    **     |
738  *   1ms +                                                  v ***       +
739  *       |             zfs_delay_scale ---------->     ********         |
740  *     0 +-------------------------------------*********----------------+
741  *       0%                    <- zfs_dirty_data_max ->               100%
742  *
743  * Note that since the delay is added to the outstanding time remaining on the
744  * most recent transaction, the delay is effectively the inverse of IOPS.
745  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
746  * was chosen such that small changes in the amount of accumulated dirty data
747  * in the first 3/4 of the curve yield relatively small differences in the
748  * amount of delay.
749  *
750  * The effects can be easier to understand when the amount of delay is
751  * represented on a log scale:
752  *
753  * delay
754  * 100ms +-------------------------------------------------------------++
755  *       +                                                              +
756  *       |                                                              |
757  *       +                                                             *+
758  *  10ms +                                                             *+
759  *       +                                                           ** +
760  *       |                                              (midpoint)  **  |
761  *       +                                                  |     **    +
762  *   1ms +                                                  v ****      +
763  *       +             zfs_delay_scale ---------->        *****         +
764  *       |                                             ****             |
765  *       +                                          ****                +
766  * 100us +                                        **                    +
767  *       +                                       *                      +
768  *       |                                      *                       |
769  *       +                                     *                        +
770  *  10us +                                     *                        +
771  *       +                                                              +
772  *       |                                                              |
773  *       +                                                              +
774  *       +--------------------------------------------------------------+
775  *       0%                    <- zfs_dirty_data_max ->               100%
776  *
777  * Note here that only as the amount of dirty data approaches its limit does
778  * the delay start to increase rapidly. The goal of a properly tuned system
779  * should be to keep the amount of dirty data out of that range by first
780  * ensuring that the appropriate limits are set for the I/O scheduler to reach
781  * optimal throughput on the backend storage, and then by changing the value
782  * of zfs_delay_scale to increase the steepness of the curve.
783  */
784 static void
785 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
786 {
787 	dsl_pool_t *dp = tx->tx_pool;
788 	uint64_t delay_min_bytes, wrlog;
789 	hrtime_t wakeup, tx_time = 0, now;
790 
791 	/* Calculate minimum transaction time for the dirty data amount. */
792 	delay_min_bytes =
793 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
794 	if (dirty > delay_min_bytes) {
795 		/*
796 		 * The caller has already waited until we are under the max.
797 		 * We make them pass us the amount of dirty data so we don't
798 		 * have to handle the case of it being >= the max, which
799 		 * could cause a divide-by-zero if it's == the max.
800 		 */
801 		ASSERT3U(dirty, <, zfs_dirty_data_max);
802 
803 		tx_time = zfs_delay_scale * (dirty - delay_min_bytes) /
804 		    (zfs_dirty_data_max - dirty);
805 	}
806 
807 	/* Calculate minimum transaction time for the TX_WRITE log size. */
808 	wrlog = aggsum_upper_bound(&dp->dp_wrlog_total);
809 	delay_min_bytes =
810 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
811 	if (wrlog >= zfs_wrlog_data_max) {
812 		tx_time = zfs_delay_max_ns;
813 	} else if (wrlog > delay_min_bytes) {
814 		tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) /
815 		    (zfs_wrlog_data_max - wrlog), tx_time);
816 	}
817 
818 	if (tx_time == 0)
819 		return;
820 
821 	tx_time = MIN(tx_time, zfs_delay_max_ns);
822 	now = gethrtime();
823 	if (now > tx->tx_start + tx_time)
824 		return;
825 
826 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
827 	    uint64_t, tx_time);
828 
829 	mutex_enter(&dp->dp_lock);
830 	wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time);
831 	dp->dp_last_wakeup = wakeup;
832 	mutex_exit(&dp->dp_lock);
833 
834 	zfs_sleep_until(wakeup);
835 }
836 
837 /*
838  * This routine attempts to assign the transaction to a transaction group.
839  * To do so, we must determine if there is sufficient free space on disk.
840  *
841  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
842  * on it), then it is assumed that there is sufficient free space,
843  * unless there's insufficient slop space in the pool (see the comment
844  * above spa_slop_shift in spa_misc.c).
845  *
846  * If it is not a "netfree" transaction, then if the data already on disk
847  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
848  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
849  * plus the rough estimate of this transaction's changes, may exceed the
850  * allowed usage, then this will fail with ERESTART, which will cause the
851  * caller to wait for the pending changes to be written to disk (by waiting
852  * for the next TXG to open), and then check the space usage again.
853  *
854  * The rough estimate of pending changes is comprised of the sum of:
855  *
856  *  - this transaction's holds' txh_space_towrite
857  *
858  *  - dd_tempreserved[], which is the sum of in-flight transactions'
859  *    holds' txh_space_towrite (i.e. those transactions that have called
860  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
861  *
862  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
863  *
864  * Note that all of these values are inflated by spa_get_worst_case_asize(),
865  * which means that we may get ERESTART well before we are actually in danger
866  * of running out of space, but this also mitigates any small inaccuracies
867  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
868  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
869  * to the MOS).
870  *
871  * Note that due to this algorithm, it is possible to exceed the allowed
872  * usage by one transaction.  Also, as we approach the allowed usage,
873  * we will allow a very limited amount of changes into each TXG, thus
874  * decreasing performance.
875  */
876 static int
877 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
878 {
879 	spa_t *spa = tx->tx_pool->dp_spa;
880 
881 	ASSERT0(tx->tx_txg);
882 
883 	if (tx->tx_err) {
884 		DMU_TX_STAT_BUMP(dmu_tx_error);
885 		return (tx->tx_err);
886 	}
887 
888 	if (spa_suspended(spa)) {
889 		DMU_TX_STAT_BUMP(dmu_tx_suspended);
890 
891 		/*
892 		 * If the user has indicated a blocking failure mode
893 		 * then return ERESTART which will block in dmu_tx_wait().
894 		 * Otherwise, return EIO so that an error can get
895 		 * propagated back to the VOP calls.
896 		 *
897 		 * Note that we always honor the txg_how flag regardless
898 		 * of the failuremode setting.
899 		 */
900 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
901 		    !(txg_how & TXG_WAIT))
902 			return (SET_ERROR(EIO));
903 
904 		return (SET_ERROR(ERESTART));
905 	}
906 
907 	if (!tx->tx_dirty_delayed &&
908 	    dsl_pool_need_wrlog_delay(tx->tx_pool)) {
909 		tx->tx_wait_dirty = B_TRUE;
910 		DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay);
911 		return (SET_ERROR(ERESTART));
912 	}
913 
914 	if (!tx->tx_dirty_delayed &&
915 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
916 		tx->tx_wait_dirty = B_TRUE;
917 		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
918 		return (SET_ERROR(ERESTART));
919 	}
920 
921 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
922 	tx->tx_needassign_txh = NULL;
923 
924 	/*
925 	 * NB: No error returns are allowed after txg_hold_open, but
926 	 * before processing the dnode holds, due to the
927 	 * dmu_tx_unassign() logic.
928 	 */
929 
930 	uint64_t towrite = 0;
931 	uint64_t tohold = 0;
932 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
933 	    txh = list_next(&tx->tx_holds, txh)) {
934 		dnode_t *dn = txh->txh_dnode;
935 		if (dn != NULL) {
936 			/*
937 			 * This thread can't hold the dn_struct_rwlock
938 			 * while assigning the tx, because this can lead to
939 			 * deadlock. Specifically, if this dnode is already
940 			 * assigned to an earlier txg, this thread may need
941 			 * to wait for that txg to sync (the ERESTART case
942 			 * below).  The other thread that has assigned this
943 			 * dnode to an earlier txg prevents this txg from
944 			 * syncing until its tx can complete (calling
945 			 * dmu_tx_commit()), but it may need to acquire the
946 			 * dn_struct_rwlock to do so (e.g. via
947 			 * dmu_buf_hold*()).
948 			 *
949 			 * Note that this thread can't hold the lock for
950 			 * read either, but the rwlock doesn't record
951 			 * enough information to make that assertion.
952 			 */
953 			ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
954 
955 			mutex_enter(&dn->dn_mtx);
956 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
957 				mutex_exit(&dn->dn_mtx);
958 				tx->tx_needassign_txh = txh;
959 				DMU_TX_STAT_BUMP(dmu_tx_group);
960 				return (SET_ERROR(ERESTART));
961 			}
962 			if (dn->dn_assigned_txg == 0)
963 				dn->dn_assigned_txg = tx->tx_txg;
964 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
965 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
966 			mutex_exit(&dn->dn_mtx);
967 		}
968 		towrite += zfs_refcount_count(&txh->txh_space_towrite);
969 		tohold += zfs_refcount_count(&txh->txh_memory_tohold);
970 	}
971 
972 	/* needed allocation: worst-case estimate of write space */
973 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
974 	/* calculate memory footprint estimate */
975 	uint64_t memory = towrite + tohold;
976 
977 	if (tx->tx_dir != NULL && asize != 0) {
978 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
979 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
980 		if (err != 0)
981 			return (err);
982 	}
983 
984 	DMU_TX_STAT_BUMP(dmu_tx_assigned);
985 
986 	return (0);
987 }
988 
989 static void
990 dmu_tx_unassign(dmu_tx_t *tx)
991 {
992 	if (tx->tx_txg == 0)
993 		return;
994 
995 	txg_rele_to_quiesce(&tx->tx_txgh);
996 
997 	/*
998 	 * Walk the transaction's hold list, removing the hold on the
999 	 * associated dnode, and notifying waiters if the refcount drops to 0.
1000 	 */
1001 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
1002 	    txh && txh != tx->tx_needassign_txh;
1003 	    txh = list_next(&tx->tx_holds, txh)) {
1004 		dnode_t *dn = txh->txh_dnode;
1005 
1006 		if (dn == NULL)
1007 			continue;
1008 		mutex_enter(&dn->dn_mtx);
1009 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1010 
1011 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1012 			dn->dn_assigned_txg = 0;
1013 			cv_broadcast(&dn->dn_notxholds);
1014 		}
1015 		mutex_exit(&dn->dn_mtx);
1016 	}
1017 
1018 	txg_rele_to_sync(&tx->tx_txgh);
1019 
1020 	tx->tx_lasttried_txg = tx->tx_txg;
1021 	tx->tx_txg = 0;
1022 }
1023 
1024 /*
1025  * Assign tx to a transaction group; txg_how is a bitmask:
1026  *
1027  * If TXG_WAIT is set and the currently open txg is full, this function
1028  * will wait until there's a new txg. This should be used when no locks
1029  * are being held. With this bit set, this function will only fail if
1030  * we're truly out of space (or over quota).
1031  *
1032  * If TXG_WAIT is *not* set and we can't assign into the currently open
1033  * txg without blocking, this function will return immediately with
1034  * ERESTART. This should be used whenever locks are being held.  On an
1035  * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1036  * and try again.
1037  *
1038  * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1039  * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1040  * details on the throttle). This is used by the VFS operations, after
1041  * they have already called dmu_tx_wait() (though most likely on a
1042  * different tx).
1043  *
1044  * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1045  * will assign the tx to monotonically increasing txgs. Of course this is
1046  * not strong monotonicity, because the same txg can be returned multiple
1047  * times in a row. This guarantee holds both for subsequent calls from
1048  * one thread and for multiple threads. For example, it is impossible to
1049  * observe the following sequence of events:
1050  *
1051  *          Thread 1                            Thread 2
1052  *
1053  *     dmu_tx_assign(T1, ...)
1054  *     1 <- dmu_tx_get_txg(T1)
1055  *                                       dmu_tx_assign(T2, ...)
1056  *                                       2 <- dmu_tx_get_txg(T2)
1057  *     dmu_tx_assign(T3, ...)
1058  *     1 <- dmu_tx_get_txg(T3)
1059  */
1060 int
1061 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1062 {
1063 	int err;
1064 
1065 	ASSERT(tx->tx_txg == 0);
1066 	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1067 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1068 
1069 	/* If we might wait, we must not hold the config lock. */
1070 	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1071 
1072 	if ((txg_how & TXG_NOTHROTTLE))
1073 		tx->tx_dirty_delayed = B_TRUE;
1074 
1075 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1076 		dmu_tx_unassign(tx);
1077 
1078 		if (err != ERESTART || !(txg_how & TXG_WAIT))
1079 			return (err);
1080 
1081 		dmu_tx_wait(tx);
1082 	}
1083 
1084 	txg_rele_to_quiesce(&tx->tx_txgh);
1085 
1086 	return (0);
1087 }
1088 
1089 void
1090 dmu_tx_wait(dmu_tx_t *tx)
1091 {
1092 	spa_t *spa = tx->tx_pool->dp_spa;
1093 	dsl_pool_t *dp = tx->tx_pool;
1094 	hrtime_t before;
1095 
1096 	ASSERT(tx->tx_txg == 0);
1097 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1098 
1099 	before = gethrtime();
1100 
1101 	if (tx->tx_wait_dirty) {
1102 		uint64_t dirty;
1103 
1104 		/*
1105 		 * dmu_tx_try_assign() has determined that we need to wait
1106 		 * because we've consumed much or all of the dirty buffer
1107 		 * space.
1108 		 */
1109 		mutex_enter(&dp->dp_lock);
1110 		if (dp->dp_dirty_total >= zfs_dirty_data_max)
1111 			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1112 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1113 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1114 		dirty = dp->dp_dirty_total;
1115 		mutex_exit(&dp->dp_lock);
1116 
1117 		dmu_tx_delay(tx, dirty);
1118 
1119 		tx->tx_wait_dirty = B_FALSE;
1120 
1121 		/*
1122 		 * Note: setting tx_dirty_delayed only has effect if the
1123 		 * caller used TX_WAIT.  Otherwise they are going to
1124 		 * destroy this tx and try again.  The common case,
1125 		 * zfs_write(), uses TX_WAIT.
1126 		 */
1127 		tx->tx_dirty_delayed = B_TRUE;
1128 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1129 		/*
1130 		 * If the pool is suspended we need to wait until it
1131 		 * is resumed.  Note that it's possible that the pool
1132 		 * has become active after this thread has tried to
1133 		 * obtain a tx.  If that's the case then tx_lasttried_txg
1134 		 * would not have been set.
1135 		 */
1136 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1137 	} else if (tx->tx_needassign_txh) {
1138 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1139 
1140 		mutex_enter(&dn->dn_mtx);
1141 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1142 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1143 		mutex_exit(&dn->dn_mtx);
1144 		tx->tx_needassign_txh = NULL;
1145 	} else {
1146 		/*
1147 		 * If we have a lot of dirty data just wait until we sync
1148 		 * out a TXG at which point we'll hopefully have synced
1149 		 * a portion of the changes.
1150 		 */
1151 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1152 	}
1153 
1154 	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1155 }
1156 
1157 static void
1158 dmu_tx_destroy(dmu_tx_t *tx)
1159 {
1160 	dmu_tx_hold_t *txh;
1161 
1162 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1163 		dnode_t *dn = txh->txh_dnode;
1164 
1165 		list_remove(&tx->tx_holds, txh);
1166 		zfs_refcount_destroy_many(&txh->txh_space_towrite,
1167 		    zfs_refcount_count(&txh->txh_space_towrite));
1168 		zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1169 		    zfs_refcount_count(&txh->txh_memory_tohold));
1170 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1171 		if (dn != NULL)
1172 			dnode_rele(dn, tx);
1173 	}
1174 
1175 	list_destroy(&tx->tx_callbacks);
1176 	list_destroy(&tx->tx_holds);
1177 	kmem_free(tx, sizeof (dmu_tx_t));
1178 }
1179 
1180 void
1181 dmu_tx_commit(dmu_tx_t *tx)
1182 {
1183 	ASSERT(tx->tx_txg != 0);
1184 
1185 	/*
1186 	 * Go through the transaction's hold list and remove holds on
1187 	 * associated dnodes, notifying waiters if no holds remain.
1188 	 */
1189 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1190 	    txh = list_next(&tx->tx_holds, txh)) {
1191 		dnode_t *dn = txh->txh_dnode;
1192 
1193 		if (dn == NULL)
1194 			continue;
1195 
1196 		mutex_enter(&dn->dn_mtx);
1197 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1198 
1199 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1200 			dn->dn_assigned_txg = 0;
1201 			cv_broadcast(&dn->dn_notxholds);
1202 		}
1203 		mutex_exit(&dn->dn_mtx);
1204 	}
1205 
1206 	if (tx->tx_tempreserve_cookie)
1207 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1208 
1209 	if (!list_is_empty(&tx->tx_callbacks))
1210 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1211 
1212 	if (tx->tx_anyobj == FALSE)
1213 		txg_rele_to_sync(&tx->tx_txgh);
1214 
1215 	dmu_tx_destroy(tx);
1216 }
1217 
1218 void
1219 dmu_tx_abort(dmu_tx_t *tx)
1220 {
1221 	ASSERT(tx->tx_txg == 0);
1222 
1223 	/*
1224 	 * Call any registered callbacks with an error code.
1225 	 */
1226 	if (!list_is_empty(&tx->tx_callbacks))
1227 		dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1228 
1229 	dmu_tx_destroy(tx);
1230 }
1231 
1232 uint64_t
1233 dmu_tx_get_txg(dmu_tx_t *tx)
1234 {
1235 	ASSERT(tx->tx_txg != 0);
1236 	return (tx->tx_txg);
1237 }
1238 
1239 dsl_pool_t *
1240 dmu_tx_pool(dmu_tx_t *tx)
1241 {
1242 	ASSERT(tx->tx_pool != NULL);
1243 	return (tx->tx_pool);
1244 }
1245 
1246 void
1247 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1248 {
1249 	dmu_tx_callback_t *dcb;
1250 
1251 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1252 
1253 	dcb->dcb_func = func;
1254 	dcb->dcb_data = data;
1255 
1256 	list_insert_tail(&tx->tx_callbacks, dcb);
1257 }
1258 
1259 /*
1260  * Call all the commit callbacks on a list, with a given error code.
1261  */
1262 void
1263 dmu_tx_do_callbacks(list_t *cb_list, int error)
1264 {
1265 	dmu_tx_callback_t *dcb;
1266 
1267 	while ((dcb = list_tail(cb_list)) != NULL) {
1268 		list_remove(cb_list, dcb);
1269 		dcb->dcb_func(dcb->dcb_data, error);
1270 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1271 	}
1272 }
1273 
1274 /*
1275  * Interface to hold a bunch of attributes.
1276  * used for creating new files.
1277  * attrsize is the total size of all attributes
1278  * to be added during object creation
1279  *
1280  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1281  */
1282 
1283 /*
1284  * hold necessary attribute name for attribute registration.
1285  * should be a very rare case where this is needed.  If it does
1286  * happen it would only happen on the first write to the file system.
1287  */
1288 static void
1289 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1290 {
1291 	if (!sa->sa_need_attr_registration)
1292 		return;
1293 
1294 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1295 		if (!sa->sa_attr_table[i].sa_registered) {
1296 			if (sa->sa_reg_attr_obj)
1297 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1298 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1299 			else
1300 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1301 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1302 		}
1303 	}
1304 }
1305 
1306 void
1307 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1308 {
1309 	dmu_tx_hold_t *txh;
1310 
1311 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1312 	    THT_SPILL, 0, 0);
1313 	if (txh != NULL)
1314 		(void) zfs_refcount_add_many(&txh->txh_space_towrite,
1315 		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1316 }
1317 
1318 void
1319 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1320 {
1321 	sa_os_t *sa = tx->tx_objset->os_sa;
1322 
1323 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1324 
1325 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1326 		return;
1327 
1328 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1329 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1330 	} else {
1331 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1332 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1333 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1334 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1335 	}
1336 
1337 	dmu_tx_sa_registration_hold(sa, tx);
1338 
1339 	if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1340 		return;
1341 
1342 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1343 	    THT_SPILL, 0, 0);
1344 }
1345 
1346 /*
1347  * Hold SA attribute
1348  *
1349  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1350  *
1351  * variable_size is the total size of all variable sized attributes
1352  * passed to this function.  It is not the total size of all
1353  * variable size attributes that *may* exist on this object.
1354  */
1355 void
1356 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1357 {
1358 	uint64_t object;
1359 	sa_os_t *sa = tx->tx_objset->os_sa;
1360 
1361 	ASSERT(hdl != NULL);
1362 
1363 	object = sa_handle_object(hdl);
1364 
1365 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1366 	DB_DNODE_ENTER(db);
1367 	dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1368 	DB_DNODE_EXIT(db);
1369 
1370 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1371 		return;
1372 
1373 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1374 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1375 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1376 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1377 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1378 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1379 	}
1380 
1381 	dmu_tx_sa_registration_hold(sa, tx);
1382 
1383 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1384 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1385 
1386 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1387 		ASSERT(tx->tx_txg == 0);
1388 		dmu_tx_hold_spill(tx, object);
1389 	} else {
1390 		dnode_t *dn;
1391 
1392 		DB_DNODE_ENTER(db);
1393 		dn = DB_DNODE(db);
1394 		if (dn->dn_have_spill) {
1395 			ASSERT(tx->tx_txg == 0);
1396 			dmu_tx_hold_spill(tx, object);
1397 		}
1398 		DB_DNODE_EXIT(db);
1399 	}
1400 }
1401 
1402 void
1403 dmu_tx_init(void)
1404 {
1405 	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1406 	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1407 	    KSTAT_FLAG_VIRTUAL);
1408 
1409 	if (dmu_tx_ksp != NULL) {
1410 		dmu_tx_ksp->ks_data = &dmu_tx_stats;
1411 		kstat_install(dmu_tx_ksp);
1412 	}
1413 }
1414 
1415 void
1416 dmu_tx_fini(void)
1417 {
1418 	if (dmu_tx_ksp != NULL) {
1419 		kstat_delete(dmu_tx_ksp);
1420 		dmu_tx_ksp = NULL;
1421 	}
1422 }
1423 
1424 #if defined(_KERNEL)
1425 EXPORT_SYMBOL(dmu_tx_create);
1426 EXPORT_SYMBOL(dmu_tx_hold_write);
1427 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1428 EXPORT_SYMBOL(dmu_tx_hold_free);
1429 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1430 EXPORT_SYMBOL(dmu_tx_hold_zap);
1431 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1432 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1433 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1434 EXPORT_SYMBOL(dmu_tx_abort);
1435 EXPORT_SYMBOL(dmu_tx_assign);
1436 EXPORT_SYMBOL(dmu_tx_wait);
1437 EXPORT_SYMBOL(dmu_tx_commit);
1438 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1439 EXPORT_SYMBOL(dmu_tx_get_txg);
1440 EXPORT_SYMBOL(dmu_tx_callback_register);
1441 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1442 EXPORT_SYMBOL(dmu_tx_hold_spill);
1443 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1444 EXPORT_SYMBOL(dmu_tx_hold_sa);
1445 #endif
1446