xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_tx.c (revision e3aa18ad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
41 
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43     uint64_t arg1, uint64_t arg2);
44 
45 dmu_tx_stats_t dmu_tx_stats = {
46 	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
47 	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
48 	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
49 	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
50 	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
51 	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
52 	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
53 	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
54 	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
55 	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
56 	{ "dmu_tx_dirty_frees_delay",	KSTAT_DATA_UINT64 },
57 	{ "dmu_tx_wrlog_delay",		KSTAT_DATA_UINT64 },
58 	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
59 };
60 
61 static kstat_t *dmu_tx_ksp;
62 
63 dmu_tx_t *
64 dmu_tx_create_dd(dsl_dir_t *dd)
65 {
66 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
67 	tx->tx_dir = dd;
68 	if (dd != NULL)
69 		tx->tx_pool = dd->dd_pool;
70 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
71 	    offsetof(dmu_tx_hold_t, txh_node));
72 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
73 	    offsetof(dmu_tx_callback_t, dcb_node));
74 	tx->tx_start = gethrtime();
75 	return (tx);
76 }
77 
78 dmu_tx_t *
79 dmu_tx_create(objset_t *os)
80 {
81 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
82 	tx->tx_objset = os;
83 	return (tx);
84 }
85 
86 dmu_tx_t *
87 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
88 {
89 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
90 
91 	TXG_VERIFY(dp->dp_spa, txg);
92 	tx->tx_pool = dp;
93 	tx->tx_txg = txg;
94 	tx->tx_anyobj = TRUE;
95 
96 	return (tx);
97 }
98 
99 int
100 dmu_tx_is_syncing(dmu_tx_t *tx)
101 {
102 	return (tx->tx_anyobj);
103 }
104 
105 int
106 dmu_tx_private_ok(dmu_tx_t *tx)
107 {
108 	return (tx->tx_anyobj);
109 }
110 
111 static dmu_tx_hold_t *
112 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
113     uint64_t arg1, uint64_t arg2)
114 {
115 	dmu_tx_hold_t *txh;
116 
117 	if (dn != NULL) {
118 		(void) zfs_refcount_add(&dn->dn_holds, tx);
119 		if (tx->tx_txg != 0) {
120 			mutex_enter(&dn->dn_mtx);
121 			/*
122 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 			 * problem, but there's no way for it to happen (for
124 			 * now, at least).
125 			 */
126 			ASSERT(dn->dn_assigned_txg == 0);
127 			dn->dn_assigned_txg = tx->tx_txg;
128 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
129 			mutex_exit(&dn->dn_mtx);
130 		}
131 	}
132 
133 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
134 	txh->txh_tx = tx;
135 	txh->txh_dnode = dn;
136 	zfs_refcount_create(&txh->txh_space_towrite);
137 	zfs_refcount_create(&txh->txh_memory_tohold);
138 	txh->txh_type = type;
139 	txh->txh_arg1 = arg1;
140 	txh->txh_arg2 = arg2;
141 	list_insert_tail(&tx->tx_holds, txh);
142 
143 	return (txh);
144 }
145 
146 static dmu_tx_hold_t *
147 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
148     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
149 {
150 	dnode_t *dn = NULL;
151 	dmu_tx_hold_t *txh;
152 	int err;
153 
154 	if (object != DMU_NEW_OBJECT) {
155 		err = dnode_hold(os, object, FTAG, &dn);
156 		if (err != 0) {
157 			tx->tx_err = err;
158 			return (NULL);
159 		}
160 	}
161 	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
162 	if (dn != NULL)
163 		dnode_rele(dn, FTAG);
164 	return (txh);
165 }
166 
167 void
168 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
169 {
170 	/*
171 	 * If we're syncing, they can manipulate any object anyhow, and
172 	 * the hold on the dnode_t can cause problems.
173 	 */
174 	if (!dmu_tx_is_syncing(tx))
175 		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
176 }
177 
178 /*
179  * This function reads specified data from disk.  The specified data will
180  * be needed to perform the transaction -- i.e, it will be read after
181  * we do dmu_tx_assign().  There are two reasons that we read the data now
182  * (before dmu_tx_assign()):
183  *
184  * 1. Reading it now has potentially better performance.  The transaction
185  * has not yet been assigned, so the TXG is not held open, and also the
186  * caller typically has less locks held when calling dmu_tx_hold_*() than
187  * after the transaction has been assigned.  This reduces the lock (and txg)
188  * hold times, thus reducing lock contention.
189  *
190  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191  * that are detected before they start making changes to the DMU state
192  * (i.e. now).  Once the transaction has been assigned, and some DMU
193  * state has been changed, it can be difficult to recover from an i/o
194  * error (e.g. to undo the changes already made in memory at the DMU
195  * layer).  Typically code to do so does not exist in the caller -- it
196  * assumes that the data has already been cached and thus i/o errors are
197  * not possible.
198  *
199  * It has been observed that the i/o initiated here can be a performance
200  * problem, and it appears to be optional, because we don't look at the
201  * data which is read.  However, removing this read would only serve to
202  * move the work elsewhere (after the dmu_tx_assign()), where it may
203  * have a greater impact on performance (in addition to the impact on
204  * fault tolerance noted above).
205  */
206 static int
207 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
208 {
209 	int err;
210 	dmu_buf_impl_t *db;
211 
212 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
213 	db = dbuf_hold_level(dn, level, blkid, FTAG);
214 	rw_exit(&dn->dn_struct_rwlock);
215 	if (db == NULL)
216 		return (SET_ERROR(EIO));
217 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
218 	dbuf_rele(db, FTAG);
219 	return (err);
220 }
221 
222 static void
223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
224 {
225 	dnode_t *dn = txh->txh_dnode;
226 	int err = 0;
227 
228 	if (len == 0)
229 		return;
230 
231 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
232 
233 	if (dn == NULL)
234 		return;
235 
236 	/*
237 	 * For i/o error checking, read the blocks that will be needed
238 	 * to perform the write: the first and last level-0 blocks (if
239 	 * they are not aligned, i.e. if they are partial-block writes),
240 	 * and all the level-1 blocks.
241 	 */
242 	if (dn->dn_maxblkid == 0) {
243 		if (off < dn->dn_datablksz &&
244 		    (off > 0 || len < dn->dn_datablksz)) {
245 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
246 			if (err != 0) {
247 				txh->txh_tx->tx_err = err;
248 			}
249 		}
250 	} else {
251 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
252 		    NULL, NULL, ZIO_FLAG_CANFAIL);
253 
254 		/* first level-0 block */
255 		uint64_t start = off >> dn->dn_datablkshift;
256 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
257 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
258 			if (err != 0) {
259 				txh->txh_tx->tx_err = err;
260 			}
261 		}
262 
263 		/* last level-0 block */
264 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
265 		if (end != start && end <= dn->dn_maxblkid &&
266 		    P2PHASE(off + len, dn->dn_datablksz)) {
267 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
268 			if (err != 0) {
269 				txh->txh_tx->tx_err = err;
270 			}
271 		}
272 
273 		/* level-1 blocks */
274 		if (dn->dn_nlevels > 1) {
275 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
276 			for (uint64_t i = (start >> shft) + 1;
277 			    i < end >> shft; i++) {
278 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
279 				if (err != 0) {
280 					txh->txh_tx->tx_err = err;
281 				}
282 			}
283 		}
284 
285 		err = zio_wait(zio);
286 		if (err != 0) {
287 			txh->txh_tx->tx_err = err;
288 		}
289 	}
290 }
291 
292 static void
293 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
294 {
295 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
296 	    DNODE_MIN_SIZE, FTAG);
297 }
298 
299 void
300 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
301 {
302 	dmu_tx_hold_t *txh;
303 
304 	ASSERT0(tx->tx_txg);
305 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
306 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
307 
308 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
309 	    object, THT_WRITE, off, len);
310 	if (txh != NULL) {
311 		dmu_tx_count_write(txh, off, len);
312 		dmu_tx_count_dnode(txh);
313 	}
314 }
315 
316 void
317 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
318 {
319 	dmu_tx_hold_t *txh;
320 
321 	ASSERT0(tx->tx_txg);
322 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
323 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
324 
325 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
326 	if (txh != NULL) {
327 		dmu_tx_count_write(txh, off, len);
328 		dmu_tx_count_dnode(txh);
329 	}
330 }
331 
332 /*
333  * This function marks the transaction as being a "net free".  The end
334  * result is that refquotas will be disabled for this transaction, and
335  * this transaction will be able to use half of the pool space overhead
336  * (see dsl_pool_adjustedsize()).  Therefore this function should only
337  * be called for transactions that we expect will not cause a net increase
338  * in the amount of space used (but it's OK if that is occasionally not true).
339  */
340 void
341 dmu_tx_mark_netfree(dmu_tx_t *tx)
342 {
343 	tx->tx_netfree = B_TRUE;
344 }
345 
346 static void
347 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
348 {
349 	dmu_tx_t *tx = txh->txh_tx;
350 	dnode_t *dn = txh->txh_dnode;
351 	int err;
352 
353 	ASSERT(tx->tx_txg == 0);
354 
355 	dmu_tx_count_dnode(txh);
356 
357 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
358 		return;
359 	if (len == DMU_OBJECT_END)
360 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
361 
362 	dmu_tx_count_dnode(txh);
363 
364 	/*
365 	 * For i/o error checking, we read the first and last level-0
366 	 * blocks if they are not aligned, and all the level-1 blocks.
367 	 *
368 	 * Note:  dbuf_free_range() assumes that we have not instantiated
369 	 * any level-0 dbufs that will be completely freed.  Therefore we must
370 	 * exercise care to not read or count the first and last blocks
371 	 * if they are blocksize-aligned.
372 	 */
373 	if (dn->dn_datablkshift == 0) {
374 		if (off != 0 || len < dn->dn_datablksz)
375 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
376 	} else {
377 		/* first block will be modified if it is not aligned */
378 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
379 			dmu_tx_count_write(txh, off, 1);
380 		/* last block will be modified if it is not aligned */
381 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
382 			dmu_tx_count_write(txh, off + len, 1);
383 	}
384 
385 	/*
386 	 * Check level-1 blocks.
387 	 */
388 	if (dn->dn_nlevels > 1) {
389 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
390 		    SPA_BLKPTRSHIFT;
391 		uint64_t start = off >> shift;
392 		uint64_t end = (off + len) >> shift;
393 
394 		ASSERT(dn->dn_indblkshift != 0);
395 
396 		/*
397 		 * dnode_reallocate() can result in an object with indirect
398 		 * blocks having an odd data block size.  In this case,
399 		 * just check the single block.
400 		 */
401 		if (dn->dn_datablkshift == 0)
402 			start = end = 0;
403 
404 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
405 		    NULL, NULL, ZIO_FLAG_CANFAIL);
406 		for (uint64_t i = start; i <= end; i++) {
407 			uint64_t ibyte = i << shift;
408 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
409 			i = ibyte >> shift;
410 			if (err == ESRCH || i > end)
411 				break;
412 			if (err != 0) {
413 				tx->tx_err = err;
414 				(void) zio_wait(zio);
415 				return;
416 			}
417 
418 			(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
419 			    1 << dn->dn_indblkshift, FTAG);
420 
421 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
422 			if (err != 0) {
423 				tx->tx_err = err;
424 				(void) zio_wait(zio);
425 				return;
426 			}
427 		}
428 		err = zio_wait(zio);
429 		if (err != 0) {
430 			tx->tx_err = err;
431 			return;
432 		}
433 	}
434 }
435 
436 void
437 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
438 {
439 	dmu_tx_hold_t *txh;
440 
441 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
442 	    object, THT_FREE, off, len);
443 	if (txh != NULL)
444 		(void) dmu_tx_hold_free_impl(txh, off, len);
445 }
446 
447 void
448 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
449 {
450 	dmu_tx_hold_t *txh;
451 
452 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
453 	if (txh != NULL)
454 		(void) dmu_tx_hold_free_impl(txh, off, len);
455 }
456 
457 static void
458 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
459 {
460 	dmu_tx_t *tx = txh->txh_tx;
461 	dnode_t *dn = txh->txh_dnode;
462 	int err;
463 
464 	ASSERT(tx->tx_txg == 0);
465 
466 	dmu_tx_count_dnode(txh);
467 
468 	/*
469 	 * Modifying a almost-full microzap is around the worst case (128KB)
470 	 *
471 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
472 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
473 	 * - 4 new blocks written if adding:
474 	 *    - 2 blocks for possibly split leaves,
475 	 *    - 2 grown ptrtbl blocks
476 	 */
477 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
478 	    MZAP_MAX_BLKSZ, FTAG);
479 
480 	if (dn == NULL)
481 		return;
482 
483 	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
484 
485 	if (dn->dn_maxblkid == 0 || name == NULL) {
486 		/*
487 		 * This is a microzap (only one block), or we don't know
488 		 * the name.  Check the first block for i/o errors.
489 		 */
490 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
491 		if (err != 0) {
492 			tx->tx_err = err;
493 		}
494 	} else {
495 		/*
496 		 * Access the name so that we'll check for i/o errors to
497 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
498 		 * may not yet exist.
499 		 */
500 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
501 		if (err == EIO || err == ECKSUM || err == ENXIO) {
502 			tx->tx_err = err;
503 		}
504 	}
505 }
506 
507 void
508 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
509 {
510 	dmu_tx_hold_t *txh;
511 
512 	ASSERT0(tx->tx_txg);
513 
514 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
515 	    object, THT_ZAP, add, (uintptr_t)name);
516 	if (txh != NULL)
517 		dmu_tx_hold_zap_impl(txh, name);
518 }
519 
520 void
521 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
522 {
523 	dmu_tx_hold_t *txh;
524 
525 	ASSERT0(tx->tx_txg);
526 	ASSERT(dn != NULL);
527 
528 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
529 	if (txh != NULL)
530 		dmu_tx_hold_zap_impl(txh, name);
531 }
532 
533 void
534 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
535 {
536 	dmu_tx_hold_t *txh;
537 
538 	ASSERT(tx->tx_txg == 0);
539 
540 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
541 	    object, THT_BONUS, 0, 0);
542 	if (txh)
543 		dmu_tx_count_dnode(txh);
544 }
545 
546 void
547 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
548 {
549 	dmu_tx_hold_t *txh;
550 
551 	ASSERT0(tx->tx_txg);
552 
553 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
554 	if (txh)
555 		dmu_tx_count_dnode(txh);
556 }
557 
558 void
559 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
560 {
561 	dmu_tx_hold_t *txh;
562 
563 	ASSERT(tx->tx_txg == 0);
564 
565 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
566 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
567 	if (txh) {
568 		(void) zfs_refcount_add_many(
569 		    &txh->txh_space_towrite, space, FTAG);
570 	}
571 }
572 
573 #ifdef ZFS_DEBUG
574 void
575 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
576 {
577 	boolean_t match_object = B_FALSE;
578 	boolean_t match_offset = B_FALSE;
579 
580 	DB_DNODE_ENTER(db);
581 	dnode_t *dn = DB_DNODE(db);
582 	ASSERT(tx->tx_txg != 0);
583 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
584 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
585 
586 	if (tx->tx_anyobj) {
587 		DB_DNODE_EXIT(db);
588 		return;
589 	}
590 
591 	/* XXX No checking on the meta dnode for now */
592 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
593 		DB_DNODE_EXIT(db);
594 		return;
595 	}
596 
597 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
598 	    txh = list_next(&tx->tx_holds, txh)) {
599 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
600 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
601 			match_object = TRUE;
602 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
603 			int datablkshift = dn->dn_datablkshift ?
604 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
605 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
606 			int shift = datablkshift + epbs * db->db_level;
607 			uint64_t beginblk = shift >= 64 ? 0 :
608 			    (txh->txh_arg1 >> shift);
609 			uint64_t endblk = shift >= 64 ? 0 :
610 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
611 			uint64_t blkid = db->db_blkid;
612 
613 			/* XXX txh_arg2 better not be zero... */
614 
615 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
616 			    txh->txh_type, (u_longlong_t)beginblk,
617 			    (u_longlong_t)endblk);
618 
619 			switch (txh->txh_type) {
620 			case THT_WRITE:
621 				if (blkid >= beginblk && blkid <= endblk)
622 					match_offset = TRUE;
623 				/*
624 				 * We will let this hold work for the bonus
625 				 * or spill buffer so that we don't need to
626 				 * hold it when creating a new object.
627 				 */
628 				if (blkid == DMU_BONUS_BLKID ||
629 				    blkid == DMU_SPILL_BLKID)
630 					match_offset = TRUE;
631 				/*
632 				 * They might have to increase nlevels,
633 				 * thus dirtying the new TLIBs.  Or the
634 				 * might have to change the block size,
635 				 * thus dirying the new lvl=0 blk=0.
636 				 */
637 				if (blkid == 0)
638 					match_offset = TRUE;
639 				break;
640 			case THT_FREE:
641 				/*
642 				 * We will dirty all the level 1 blocks in
643 				 * the free range and perhaps the first and
644 				 * last level 0 block.
645 				 */
646 				if (blkid >= beginblk && (blkid <= endblk ||
647 				    txh->txh_arg2 == DMU_OBJECT_END))
648 					match_offset = TRUE;
649 				break;
650 			case THT_SPILL:
651 				if (blkid == DMU_SPILL_BLKID)
652 					match_offset = TRUE;
653 				break;
654 			case THT_BONUS:
655 				if (blkid == DMU_BONUS_BLKID)
656 					match_offset = TRUE;
657 				break;
658 			case THT_ZAP:
659 				match_offset = TRUE;
660 				break;
661 			case THT_NEWOBJECT:
662 				match_object = TRUE;
663 				break;
664 			default:
665 				cmn_err(CE_PANIC, "bad txh_type %d",
666 				    txh->txh_type);
667 			}
668 		}
669 		if (match_object && match_offset) {
670 			DB_DNODE_EXIT(db);
671 			return;
672 		}
673 	}
674 	DB_DNODE_EXIT(db);
675 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
676 	    (u_longlong_t)db->db.db_object, db->db_level,
677 	    (u_longlong_t)db->db_blkid);
678 }
679 #endif
680 
681 /*
682  * If we can't do 10 iops, something is wrong.  Let us go ahead
683  * and hit zfs_dirty_data_max.
684  */
685 static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
686 
687 /*
688  * We delay transactions when we've determined that the backend storage
689  * isn't able to accommodate the rate of incoming writes.
690  *
691  * If there is already a transaction waiting, we delay relative to when
692  * that transaction finishes waiting.  This way the calculated min_time
693  * is independent of the number of threads concurrently executing
694  * transactions.
695  *
696  * If we are the only waiter, wait relative to when the transaction
697  * started, rather than the current time.  This credits the transaction for
698  * "time already served", e.g. reading indirect blocks.
699  *
700  * The minimum time for a transaction to take is calculated as:
701  *     min_time = scale * (dirty - min) / (max - dirty)
702  *     min_time is then capped at zfs_delay_max_ns.
703  *
704  * The delay has two degrees of freedom that can be adjusted via tunables.
705  * The percentage of dirty data at which we start to delay is defined by
706  * zfs_delay_min_dirty_percent. This should typically be at or above
707  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
708  * delay after writing at full speed has failed to keep up with the incoming
709  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
710  * speaking, this variable determines the amount of delay at the midpoint of
711  * the curve.
712  *
713  * delay
714  *  10ms +-------------------------------------------------------------*+
715  *       |                                                             *|
716  *   9ms +                                                             *+
717  *       |                                                             *|
718  *   8ms +                                                             *+
719  *       |                                                            * |
720  *   7ms +                                                            * +
721  *       |                                                            * |
722  *   6ms +                                                            * +
723  *       |                                                            * |
724  *   5ms +                                                           *  +
725  *       |                                                           *  |
726  *   4ms +                                                           *  +
727  *       |                                                           *  |
728  *   3ms +                                                          *   +
729  *       |                                                          *   |
730  *   2ms +                                              (midpoint) *    +
731  *       |                                                  |    **     |
732  *   1ms +                                                  v ***       +
733  *       |             zfs_delay_scale ---------->     ********         |
734  *     0 +-------------------------------------*********----------------+
735  *       0%                    <- zfs_dirty_data_max ->               100%
736  *
737  * Note that since the delay is added to the outstanding time remaining on the
738  * most recent transaction, the delay is effectively the inverse of IOPS.
739  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
740  * was chosen such that small changes in the amount of accumulated dirty data
741  * in the first 3/4 of the curve yield relatively small differences in the
742  * amount of delay.
743  *
744  * The effects can be easier to understand when the amount of delay is
745  * represented on a log scale:
746  *
747  * delay
748  * 100ms +-------------------------------------------------------------++
749  *       +                                                              +
750  *       |                                                              |
751  *       +                                                             *+
752  *  10ms +                                                             *+
753  *       +                                                           ** +
754  *       |                                              (midpoint)  **  |
755  *       +                                                  |     **    +
756  *   1ms +                                                  v ****      +
757  *       +             zfs_delay_scale ---------->        *****         +
758  *       |                                             ****             |
759  *       +                                          ****                +
760  * 100us +                                        **                    +
761  *       +                                       *                      +
762  *       |                                      *                       |
763  *       +                                     *                        +
764  *  10us +                                     *                        +
765  *       +                                                              +
766  *       |                                                              |
767  *       +                                                              +
768  *       +--------------------------------------------------------------+
769  *       0%                    <- zfs_dirty_data_max ->               100%
770  *
771  * Note here that only as the amount of dirty data approaches its limit does
772  * the delay start to increase rapidly. The goal of a properly tuned system
773  * should be to keep the amount of dirty data out of that range by first
774  * ensuring that the appropriate limits are set for the I/O scheduler to reach
775  * optimal throughput on the backend storage, and then by changing the value
776  * of zfs_delay_scale to increase the steepness of the curve.
777  */
778 static void
779 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
780 {
781 	dsl_pool_t *dp = tx->tx_pool;
782 	uint64_t delay_min_bytes, wrlog;
783 	hrtime_t wakeup, tx_time = 0, now;
784 
785 	/* Calculate minimum transaction time for the dirty data amount. */
786 	delay_min_bytes =
787 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
788 	if (dirty > delay_min_bytes) {
789 		/*
790 		 * The caller has already waited until we are under the max.
791 		 * We make them pass us the amount of dirty data so we don't
792 		 * have to handle the case of it being >= the max, which
793 		 * could cause a divide-by-zero if it's == the max.
794 		 */
795 		ASSERT3U(dirty, <, zfs_dirty_data_max);
796 
797 		tx_time = zfs_delay_scale * (dirty - delay_min_bytes) /
798 		    (zfs_dirty_data_max - dirty);
799 	}
800 
801 	/* Calculate minimum transaction time for the TX_WRITE log size. */
802 	wrlog = aggsum_upper_bound(&dp->dp_wrlog_total);
803 	delay_min_bytes =
804 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
805 	if (wrlog >= zfs_wrlog_data_max) {
806 		tx_time = zfs_delay_max_ns;
807 	} else if (wrlog > delay_min_bytes) {
808 		tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) /
809 		    (zfs_wrlog_data_max - wrlog), tx_time);
810 	}
811 
812 	if (tx_time == 0)
813 		return;
814 
815 	tx_time = MIN(tx_time, zfs_delay_max_ns);
816 	now = gethrtime();
817 	if (now > tx->tx_start + tx_time)
818 		return;
819 
820 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
821 	    uint64_t, tx_time);
822 
823 	mutex_enter(&dp->dp_lock);
824 	wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time);
825 	dp->dp_last_wakeup = wakeup;
826 	mutex_exit(&dp->dp_lock);
827 
828 	zfs_sleep_until(wakeup);
829 }
830 
831 /*
832  * This routine attempts to assign the transaction to a transaction group.
833  * To do so, we must determine if there is sufficient free space on disk.
834  *
835  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
836  * on it), then it is assumed that there is sufficient free space,
837  * unless there's insufficient slop space in the pool (see the comment
838  * above spa_slop_shift in spa_misc.c).
839  *
840  * If it is not a "netfree" transaction, then if the data already on disk
841  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
842  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
843  * plus the rough estimate of this transaction's changes, may exceed the
844  * allowed usage, then this will fail with ERESTART, which will cause the
845  * caller to wait for the pending changes to be written to disk (by waiting
846  * for the next TXG to open), and then check the space usage again.
847  *
848  * The rough estimate of pending changes is comprised of the sum of:
849  *
850  *  - this transaction's holds' txh_space_towrite
851  *
852  *  - dd_tempreserved[], which is the sum of in-flight transactions'
853  *    holds' txh_space_towrite (i.e. those transactions that have called
854  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
855  *
856  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
857  *
858  * Note that all of these values are inflated by spa_get_worst_case_asize(),
859  * which means that we may get ERESTART well before we are actually in danger
860  * of running out of space, but this also mitigates any small inaccuracies
861  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
862  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
863  * to the MOS).
864  *
865  * Note that due to this algorithm, it is possible to exceed the allowed
866  * usage by one transaction.  Also, as we approach the allowed usage,
867  * we will allow a very limited amount of changes into each TXG, thus
868  * decreasing performance.
869  */
870 static int
871 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
872 {
873 	spa_t *spa = tx->tx_pool->dp_spa;
874 
875 	ASSERT0(tx->tx_txg);
876 
877 	if (tx->tx_err) {
878 		DMU_TX_STAT_BUMP(dmu_tx_error);
879 		return (tx->tx_err);
880 	}
881 
882 	if (spa_suspended(spa)) {
883 		DMU_TX_STAT_BUMP(dmu_tx_suspended);
884 
885 		/*
886 		 * If the user has indicated a blocking failure mode
887 		 * then return ERESTART which will block in dmu_tx_wait().
888 		 * Otherwise, return EIO so that an error can get
889 		 * propagated back to the VOP calls.
890 		 *
891 		 * Note that we always honor the txg_how flag regardless
892 		 * of the failuremode setting.
893 		 */
894 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
895 		    !(txg_how & TXG_WAIT))
896 			return (SET_ERROR(EIO));
897 
898 		return (SET_ERROR(ERESTART));
899 	}
900 
901 	if (!tx->tx_dirty_delayed &&
902 	    dsl_pool_need_wrlog_delay(tx->tx_pool)) {
903 		tx->tx_wait_dirty = B_TRUE;
904 		DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay);
905 		return (SET_ERROR(ERESTART));
906 	}
907 
908 	if (!tx->tx_dirty_delayed &&
909 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
910 		tx->tx_wait_dirty = B_TRUE;
911 		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
912 		return (SET_ERROR(ERESTART));
913 	}
914 
915 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
916 	tx->tx_needassign_txh = NULL;
917 
918 	/*
919 	 * NB: No error returns are allowed after txg_hold_open, but
920 	 * before processing the dnode holds, due to the
921 	 * dmu_tx_unassign() logic.
922 	 */
923 
924 	uint64_t towrite = 0;
925 	uint64_t tohold = 0;
926 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
927 	    txh = list_next(&tx->tx_holds, txh)) {
928 		dnode_t *dn = txh->txh_dnode;
929 		if (dn != NULL) {
930 			/*
931 			 * This thread can't hold the dn_struct_rwlock
932 			 * while assigning the tx, because this can lead to
933 			 * deadlock. Specifically, if this dnode is already
934 			 * assigned to an earlier txg, this thread may need
935 			 * to wait for that txg to sync (the ERESTART case
936 			 * below).  The other thread that has assigned this
937 			 * dnode to an earlier txg prevents this txg from
938 			 * syncing until its tx can complete (calling
939 			 * dmu_tx_commit()), but it may need to acquire the
940 			 * dn_struct_rwlock to do so (e.g. via
941 			 * dmu_buf_hold*()).
942 			 *
943 			 * Note that this thread can't hold the lock for
944 			 * read either, but the rwlock doesn't record
945 			 * enough information to make that assertion.
946 			 */
947 			ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
948 
949 			mutex_enter(&dn->dn_mtx);
950 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
951 				mutex_exit(&dn->dn_mtx);
952 				tx->tx_needassign_txh = txh;
953 				DMU_TX_STAT_BUMP(dmu_tx_group);
954 				return (SET_ERROR(ERESTART));
955 			}
956 			if (dn->dn_assigned_txg == 0)
957 				dn->dn_assigned_txg = tx->tx_txg;
958 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
959 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
960 			mutex_exit(&dn->dn_mtx);
961 		}
962 		towrite += zfs_refcount_count(&txh->txh_space_towrite);
963 		tohold += zfs_refcount_count(&txh->txh_memory_tohold);
964 	}
965 
966 	/* needed allocation: worst-case estimate of write space */
967 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
968 	/* calculate memory footprint estimate */
969 	uint64_t memory = towrite + tohold;
970 
971 	if (tx->tx_dir != NULL && asize != 0) {
972 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
973 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
974 		if (err != 0)
975 			return (err);
976 	}
977 
978 	DMU_TX_STAT_BUMP(dmu_tx_assigned);
979 
980 	return (0);
981 }
982 
983 static void
984 dmu_tx_unassign(dmu_tx_t *tx)
985 {
986 	if (tx->tx_txg == 0)
987 		return;
988 
989 	txg_rele_to_quiesce(&tx->tx_txgh);
990 
991 	/*
992 	 * Walk the transaction's hold list, removing the hold on the
993 	 * associated dnode, and notifying waiters if the refcount drops to 0.
994 	 */
995 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
996 	    txh && txh != tx->tx_needassign_txh;
997 	    txh = list_next(&tx->tx_holds, txh)) {
998 		dnode_t *dn = txh->txh_dnode;
999 
1000 		if (dn == NULL)
1001 			continue;
1002 		mutex_enter(&dn->dn_mtx);
1003 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1004 
1005 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1006 			dn->dn_assigned_txg = 0;
1007 			cv_broadcast(&dn->dn_notxholds);
1008 		}
1009 		mutex_exit(&dn->dn_mtx);
1010 	}
1011 
1012 	txg_rele_to_sync(&tx->tx_txgh);
1013 
1014 	tx->tx_lasttried_txg = tx->tx_txg;
1015 	tx->tx_txg = 0;
1016 }
1017 
1018 /*
1019  * Assign tx to a transaction group; txg_how is a bitmask:
1020  *
1021  * If TXG_WAIT is set and the currently open txg is full, this function
1022  * will wait until there's a new txg. This should be used when no locks
1023  * are being held. With this bit set, this function will only fail if
1024  * we're truly out of space (or over quota).
1025  *
1026  * If TXG_WAIT is *not* set and we can't assign into the currently open
1027  * txg without blocking, this function will return immediately with
1028  * ERESTART. This should be used whenever locks are being held.  On an
1029  * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1030  * and try again.
1031  *
1032  * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1033  * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1034  * details on the throttle). This is used by the VFS operations, after
1035  * they have already called dmu_tx_wait() (though most likely on a
1036  * different tx).
1037  *
1038  * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1039  * will assign the tx to monotonically increasing txgs. Of course this is
1040  * not strong monotonicity, because the same txg can be returned multiple
1041  * times in a row. This guarantee holds both for subsequent calls from
1042  * one thread and for multiple threads. For example, it is impossible to
1043  * observe the following sequence of events:
1044  *
1045  *          Thread 1                            Thread 2
1046  *
1047  *     dmu_tx_assign(T1, ...)
1048  *     1 <- dmu_tx_get_txg(T1)
1049  *                                       dmu_tx_assign(T2, ...)
1050  *                                       2 <- dmu_tx_get_txg(T2)
1051  *     dmu_tx_assign(T3, ...)
1052  *     1 <- dmu_tx_get_txg(T3)
1053  */
1054 int
1055 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1056 {
1057 	int err;
1058 
1059 	ASSERT(tx->tx_txg == 0);
1060 	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1061 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1062 
1063 	/* If we might wait, we must not hold the config lock. */
1064 	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1065 
1066 	if ((txg_how & TXG_NOTHROTTLE))
1067 		tx->tx_dirty_delayed = B_TRUE;
1068 
1069 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1070 		dmu_tx_unassign(tx);
1071 
1072 		if (err != ERESTART || !(txg_how & TXG_WAIT))
1073 			return (err);
1074 
1075 		dmu_tx_wait(tx);
1076 	}
1077 
1078 	txg_rele_to_quiesce(&tx->tx_txgh);
1079 
1080 	return (0);
1081 }
1082 
1083 void
1084 dmu_tx_wait(dmu_tx_t *tx)
1085 {
1086 	spa_t *spa = tx->tx_pool->dp_spa;
1087 	dsl_pool_t *dp = tx->tx_pool;
1088 	hrtime_t before;
1089 
1090 	ASSERT(tx->tx_txg == 0);
1091 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1092 
1093 	before = gethrtime();
1094 
1095 	if (tx->tx_wait_dirty) {
1096 		uint64_t dirty;
1097 
1098 		/*
1099 		 * dmu_tx_try_assign() has determined that we need to wait
1100 		 * because we've consumed much or all of the dirty buffer
1101 		 * space.
1102 		 */
1103 		mutex_enter(&dp->dp_lock);
1104 		if (dp->dp_dirty_total >= zfs_dirty_data_max)
1105 			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1106 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1107 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1108 		dirty = dp->dp_dirty_total;
1109 		mutex_exit(&dp->dp_lock);
1110 
1111 		dmu_tx_delay(tx, dirty);
1112 
1113 		tx->tx_wait_dirty = B_FALSE;
1114 
1115 		/*
1116 		 * Note: setting tx_dirty_delayed only has effect if the
1117 		 * caller used TX_WAIT.  Otherwise they are going to
1118 		 * destroy this tx and try again.  The common case,
1119 		 * zfs_write(), uses TX_WAIT.
1120 		 */
1121 		tx->tx_dirty_delayed = B_TRUE;
1122 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1123 		/*
1124 		 * If the pool is suspended we need to wait until it
1125 		 * is resumed.  Note that it's possible that the pool
1126 		 * has become active after this thread has tried to
1127 		 * obtain a tx.  If that's the case then tx_lasttried_txg
1128 		 * would not have been set.
1129 		 */
1130 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1131 	} else if (tx->tx_needassign_txh) {
1132 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1133 
1134 		mutex_enter(&dn->dn_mtx);
1135 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1136 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1137 		mutex_exit(&dn->dn_mtx);
1138 		tx->tx_needassign_txh = NULL;
1139 	} else {
1140 		/*
1141 		 * If we have a lot of dirty data just wait until we sync
1142 		 * out a TXG at which point we'll hopefully have synced
1143 		 * a portion of the changes.
1144 		 */
1145 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1146 	}
1147 
1148 	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1149 }
1150 
1151 static void
1152 dmu_tx_destroy(dmu_tx_t *tx)
1153 {
1154 	dmu_tx_hold_t *txh;
1155 
1156 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1157 		dnode_t *dn = txh->txh_dnode;
1158 
1159 		list_remove(&tx->tx_holds, txh);
1160 		zfs_refcount_destroy_many(&txh->txh_space_towrite,
1161 		    zfs_refcount_count(&txh->txh_space_towrite));
1162 		zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1163 		    zfs_refcount_count(&txh->txh_memory_tohold));
1164 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1165 		if (dn != NULL)
1166 			dnode_rele(dn, tx);
1167 	}
1168 
1169 	list_destroy(&tx->tx_callbacks);
1170 	list_destroy(&tx->tx_holds);
1171 	kmem_free(tx, sizeof (dmu_tx_t));
1172 }
1173 
1174 void
1175 dmu_tx_commit(dmu_tx_t *tx)
1176 {
1177 	ASSERT(tx->tx_txg != 0);
1178 
1179 	/*
1180 	 * Go through the transaction's hold list and remove holds on
1181 	 * associated dnodes, notifying waiters if no holds remain.
1182 	 */
1183 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1184 	    txh = list_next(&tx->tx_holds, txh)) {
1185 		dnode_t *dn = txh->txh_dnode;
1186 
1187 		if (dn == NULL)
1188 			continue;
1189 
1190 		mutex_enter(&dn->dn_mtx);
1191 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1192 
1193 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1194 			dn->dn_assigned_txg = 0;
1195 			cv_broadcast(&dn->dn_notxholds);
1196 		}
1197 		mutex_exit(&dn->dn_mtx);
1198 	}
1199 
1200 	if (tx->tx_tempreserve_cookie)
1201 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1202 
1203 	if (!list_is_empty(&tx->tx_callbacks))
1204 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1205 
1206 	if (tx->tx_anyobj == FALSE)
1207 		txg_rele_to_sync(&tx->tx_txgh);
1208 
1209 	dmu_tx_destroy(tx);
1210 }
1211 
1212 void
1213 dmu_tx_abort(dmu_tx_t *tx)
1214 {
1215 	ASSERT(tx->tx_txg == 0);
1216 
1217 	/*
1218 	 * Call any registered callbacks with an error code.
1219 	 */
1220 	if (!list_is_empty(&tx->tx_callbacks))
1221 		dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1222 
1223 	dmu_tx_destroy(tx);
1224 }
1225 
1226 uint64_t
1227 dmu_tx_get_txg(dmu_tx_t *tx)
1228 {
1229 	ASSERT(tx->tx_txg != 0);
1230 	return (tx->tx_txg);
1231 }
1232 
1233 dsl_pool_t *
1234 dmu_tx_pool(dmu_tx_t *tx)
1235 {
1236 	ASSERT(tx->tx_pool != NULL);
1237 	return (tx->tx_pool);
1238 }
1239 
1240 void
1241 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1242 {
1243 	dmu_tx_callback_t *dcb;
1244 
1245 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1246 
1247 	dcb->dcb_func = func;
1248 	dcb->dcb_data = data;
1249 
1250 	list_insert_tail(&tx->tx_callbacks, dcb);
1251 }
1252 
1253 /*
1254  * Call all the commit callbacks on a list, with a given error code.
1255  */
1256 void
1257 dmu_tx_do_callbacks(list_t *cb_list, int error)
1258 {
1259 	dmu_tx_callback_t *dcb;
1260 
1261 	while ((dcb = list_tail(cb_list)) != NULL) {
1262 		list_remove(cb_list, dcb);
1263 		dcb->dcb_func(dcb->dcb_data, error);
1264 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1265 	}
1266 }
1267 
1268 /*
1269  * Interface to hold a bunch of attributes.
1270  * used for creating new files.
1271  * attrsize is the total size of all attributes
1272  * to be added during object creation
1273  *
1274  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1275  */
1276 
1277 /*
1278  * hold necessary attribute name for attribute registration.
1279  * should be a very rare case where this is needed.  If it does
1280  * happen it would only happen on the first write to the file system.
1281  */
1282 static void
1283 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1284 {
1285 	if (!sa->sa_need_attr_registration)
1286 		return;
1287 
1288 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1289 		if (!sa->sa_attr_table[i].sa_registered) {
1290 			if (sa->sa_reg_attr_obj)
1291 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1292 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1293 			else
1294 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1295 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1296 		}
1297 	}
1298 }
1299 
1300 void
1301 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1302 {
1303 	dmu_tx_hold_t *txh;
1304 
1305 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1306 	    THT_SPILL, 0, 0);
1307 	if (txh != NULL)
1308 		(void) zfs_refcount_add_many(&txh->txh_space_towrite,
1309 		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1310 }
1311 
1312 void
1313 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1314 {
1315 	sa_os_t *sa = tx->tx_objset->os_sa;
1316 
1317 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1318 
1319 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1320 		return;
1321 
1322 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1323 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1324 	} else {
1325 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1326 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1327 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1328 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1329 	}
1330 
1331 	dmu_tx_sa_registration_hold(sa, tx);
1332 
1333 	if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1334 		return;
1335 
1336 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1337 	    THT_SPILL, 0, 0);
1338 }
1339 
1340 /*
1341  * Hold SA attribute
1342  *
1343  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1344  *
1345  * variable_size is the total size of all variable sized attributes
1346  * passed to this function.  It is not the total size of all
1347  * variable size attributes that *may* exist on this object.
1348  */
1349 void
1350 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1351 {
1352 	uint64_t object;
1353 	sa_os_t *sa = tx->tx_objset->os_sa;
1354 
1355 	ASSERT(hdl != NULL);
1356 
1357 	object = sa_handle_object(hdl);
1358 
1359 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1360 	DB_DNODE_ENTER(db);
1361 	dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1362 	DB_DNODE_EXIT(db);
1363 
1364 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1365 		return;
1366 
1367 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1368 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1369 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1370 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1371 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1372 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1373 	}
1374 
1375 	dmu_tx_sa_registration_hold(sa, tx);
1376 
1377 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1378 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1379 
1380 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1381 		ASSERT(tx->tx_txg == 0);
1382 		dmu_tx_hold_spill(tx, object);
1383 	} else {
1384 		dnode_t *dn;
1385 
1386 		DB_DNODE_ENTER(db);
1387 		dn = DB_DNODE(db);
1388 		if (dn->dn_have_spill) {
1389 			ASSERT(tx->tx_txg == 0);
1390 			dmu_tx_hold_spill(tx, object);
1391 		}
1392 		DB_DNODE_EXIT(db);
1393 	}
1394 }
1395 
1396 void
1397 dmu_tx_init(void)
1398 {
1399 	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1400 	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1401 	    KSTAT_FLAG_VIRTUAL);
1402 
1403 	if (dmu_tx_ksp != NULL) {
1404 		dmu_tx_ksp->ks_data = &dmu_tx_stats;
1405 		kstat_install(dmu_tx_ksp);
1406 	}
1407 }
1408 
1409 void
1410 dmu_tx_fini(void)
1411 {
1412 	if (dmu_tx_ksp != NULL) {
1413 		kstat_delete(dmu_tx_ksp);
1414 		dmu_tx_ksp = NULL;
1415 	}
1416 }
1417 
1418 #if defined(_KERNEL)
1419 EXPORT_SYMBOL(dmu_tx_create);
1420 EXPORT_SYMBOL(dmu_tx_hold_write);
1421 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1422 EXPORT_SYMBOL(dmu_tx_hold_free);
1423 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1424 EXPORT_SYMBOL(dmu_tx_hold_zap);
1425 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1426 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1427 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1428 EXPORT_SYMBOL(dmu_tx_abort);
1429 EXPORT_SYMBOL(dmu_tx_assign);
1430 EXPORT_SYMBOL(dmu_tx_wait);
1431 EXPORT_SYMBOL(dmu_tx_commit);
1432 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1433 EXPORT_SYMBOL(dmu_tx_get_txg);
1434 EXPORT_SYMBOL(dmu_tx_callback_register);
1435 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1436 EXPORT_SYMBOL(dmu_tx_hold_spill);
1437 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1438 EXPORT_SYMBOL(dmu_tx_hold_sa);
1439 #endif
1440