1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/arc_impl.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_zfetch.h>
35 #include <sys/dmu.h>
36 #include <sys/dbuf.h>
37 #include <sys/kstat.h>
38 #include <sys/wmsum.h>
39 
40 /*
41  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
42  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
43  * prescient prefetch never issues i/os that end up not being needed,
44  * so it can't hurt performance.
45  */
46 
47 static int zfs_prefetch_disable = B_FALSE;
48 
49 /* max # of streams per zfetch */
50 static unsigned int	zfetch_max_streams = 8;
51 /* min time before stream reclaim */
52 static unsigned int	zfetch_min_sec_reap = 1;
53 /* max time before stream delete */
54 static unsigned int	zfetch_max_sec_reap = 2;
55 /* min bytes to prefetch per stream (default 4MB) */
56 static unsigned int	zfetch_min_distance = 4 * 1024 * 1024;
57 /* max bytes to prefetch per stream (default 64MB) */
58 unsigned int	zfetch_max_distance = 64 * 1024 * 1024;
59 /* max bytes to prefetch indirects for per stream (default 64MB) */
60 unsigned int	zfetch_max_idistance = 64 * 1024 * 1024;
61 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
62 uint64_t	zfetch_array_rd_sz = 1024 * 1024;
63 
64 typedef struct zfetch_stats {
65 	kstat_named_t zfetchstat_hits;
66 	kstat_named_t zfetchstat_misses;
67 	kstat_named_t zfetchstat_max_streams;
68 	kstat_named_t zfetchstat_io_issued;
69 	kstat_named_t zfetchstat_io_active;
70 } zfetch_stats_t;
71 
72 static zfetch_stats_t zfetch_stats = {
73 	{ "hits",			KSTAT_DATA_UINT64 },
74 	{ "misses",			KSTAT_DATA_UINT64 },
75 	{ "max_streams",		KSTAT_DATA_UINT64 },
76 	{ "io_issued",			KSTAT_DATA_UINT64 },
77 	{ "io_active",			KSTAT_DATA_UINT64 },
78 };
79 
80 struct {
81 	wmsum_t zfetchstat_hits;
82 	wmsum_t zfetchstat_misses;
83 	wmsum_t zfetchstat_max_streams;
84 	wmsum_t zfetchstat_io_issued;
85 	aggsum_t zfetchstat_io_active;
86 } zfetch_sums;
87 
88 #define	ZFETCHSTAT_BUMP(stat)					\
89 	wmsum_add(&zfetch_sums.stat, 1)
90 #define	ZFETCHSTAT_ADD(stat, val)				\
91 	wmsum_add(&zfetch_sums.stat, val)
92 
93 
94 static kstat_t		*zfetch_ksp;
95 
96 static int
97 zfetch_kstats_update(kstat_t *ksp, int rw)
98 {
99 	zfetch_stats_t *zs = ksp->ks_data;
100 
101 	if (rw == KSTAT_WRITE)
102 		return (EACCES);
103 	zs->zfetchstat_hits.value.ui64 =
104 	    wmsum_value(&zfetch_sums.zfetchstat_hits);
105 	zs->zfetchstat_misses.value.ui64 =
106 	    wmsum_value(&zfetch_sums.zfetchstat_misses);
107 	zs->zfetchstat_max_streams.value.ui64 =
108 	    wmsum_value(&zfetch_sums.zfetchstat_max_streams);
109 	zs->zfetchstat_io_issued.value.ui64 =
110 	    wmsum_value(&zfetch_sums.zfetchstat_io_issued);
111 	zs->zfetchstat_io_active.value.ui64 =
112 	    aggsum_value(&zfetch_sums.zfetchstat_io_active);
113 	return (0);
114 }
115 
116 void
117 zfetch_init(void)
118 {
119 	wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
120 	wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
121 	wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
122 	wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
123 	aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
124 
125 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
126 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
127 	    KSTAT_FLAG_VIRTUAL);
128 
129 	if (zfetch_ksp != NULL) {
130 		zfetch_ksp->ks_data = &zfetch_stats;
131 		zfetch_ksp->ks_update = zfetch_kstats_update;
132 		kstat_install(zfetch_ksp);
133 	}
134 }
135 
136 void
137 zfetch_fini(void)
138 {
139 	if (zfetch_ksp != NULL) {
140 		kstat_delete(zfetch_ksp);
141 		zfetch_ksp = NULL;
142 	}
143 
144 	wmsum_fini(&zfetch_sums.zfetchstat_hits);
145 	wmsum_fini(&zfetch_sums.zfetchstat_misses);
146 	wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
147 	wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
148 	ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
149 	aggsum_fini(&zfetch_sums.zfetchstat_io_active);
150 }
151 
152 /*
153  * This takes a pointer to a zfetch structure and a dnode.  It performs the
154  * necessary setup for the zfetch structure, grokking data from the
155  * associated dnode.
156  */
157 void
158 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
159 {
160 	if (zf == NULL)
161 		return;
162 	zf->zf_dnode = dno;
163 	zf->zf_numstreams = 0;
164 
165 	list_create(&zf->zf_stream, sizeof (zstream_t),
166 	    offsetof(zstream_t, zs_node));
167 
168 	mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
169 }
170 
171 static void
172 dmu_zfetch_stream_fini(zstream_t *zs)
173 {
174 	ASSERT(!list_link_active(&zs->zs_node));
175 	zfs_refcount_destroy(&zs->zs_callers);
176 	zfs_refcount_destroy(&zs->zs_refs);
177 	kmem_free(zs, sizeof (*zs));
178 }
179 
180 static void
181 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
182 {
183 	ASSERT(MUTEX_HELD(&zf->zf_lock));
184 	list_remove(&zf->zf_stream, zs);
185 	zf->zf_numstreams--;
186 	membar_producer();
187 	if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
188 		dmu_zfetch_stream_fini(zs);
189 }
190 
191 /*
192  * Clean-up state associated with a zfetch structure (e.g. destroy the
193  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
194  */
195 void
196 dmu_zfetch_fini(zfetch_t *zf)
197 {
198 	zstream_t *zs;
199 
200 	mutex_enter(&zf->zf_lock);
201 	while ((zs = list_head(&zf->zf_stream)) != NULL)
202 		dmu_zfetch_stream_remove(zf, zs);
203 	mutex_exit(&zf->zf_lock);
204 	list_destroy(&zf->zf_stream);
205 	mutex_destroy(&zf->zf_lock);
206 
207 	zf->zf_dnode = NULL;
208 }
209 
210 /*
211  * If there aren't too many active streams already, create one more.
212  * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
213  * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
214  * The "blkid" argument is the next block that we expect this stream to access.
215  */
216 static void
217 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
218 {
219 	zstream_t *zs, *zs_next, *zs_old = NULL;
220 	hrtime_t now = gethrtime(), t;
221 
222 	ASSERT(MUTEX_HELD(&zf->zf_lock));
223 
224 	/*
225 	 * Delete too old streams, reusing the first found one.
226 	 */
227 	t = now - SEC2NSEC(zfetch_max_sec_reap);
228 	for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
229 		zs_next = list_next(&zf->zf_stream, zs);
230 		/*
231 		 * Skip if still active.  1 -- zf_stream reference.
232 		 */
233 		if (zfs_refcount_count(&zs->zs_refs) != 1)
234 			continue;
235 		if (zs->zs_atime > t)
236 			continue;
237 		if (zs_old)
238 			dmu_zfetch_stream_remove(zf, zs);
239 		else
240 			zs_old = zs;
241 	}
242 	if (zs_old) {
243 		zs = zs_old;
244 		goto reuse;
245 	}
246 
247 	/*
248 	 * The maximum number of streams is normally zfetch_max_streams,
249 	 * but for small files we lower it such that it's at least possible
250 	 * for all the streams to be non-overlapping.
251 	 */
252 	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
253 	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
254 	    zfetch_max_distance));
255 	if (zf->zf_numstreams >= max_streams) {
256 		t = now - SEC2NSEC(zfetch_min_sec_reap);
257 		for (zs = list_head(&zf->zf_stream); zs != NULL;
258 		    zs = list_next(&zf->zf_stream, zs)) {
259 			if (zfs_refcount_count(&zs->zs_refs) != 1)
260 				continue;
261 			if (zs->zs_atime > t)
262 				continue;
263 			if (zs_old == NULL || zs->zs_atime < zs_old->zs_atime)
264 				zs_old = zs;
265 		}
266 		if (zs_old) {
267 			zs = zs_old;
268 			goto reuse;
269 		}
270 		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
271 		return;
272 	}
273 
274 	zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
275 	zs->zs_fetch = zf;
276 	zfs_refcount_create(&zs->zs_callers);
277 	zfs_refcount_create(&zs->zs_refs);
278 	/* One reference for zf_stream. */
279 	zfs_refcount_add(&zs->zs_refs, NULL);
280 	zf->zf_numstreams++;
281 	list_insert_head(&zf->zf_stream, zs);
282 
283 reuse:
284 	zs->zs_blkid = blkid;
285 	zs->zs_pf_dist = 0;
286 	zs->zs_pf_start = blkid;
287 	zs->zs_pf_end = blkid;
288 	zs->zs_ipf_dist = 0;
289 	zs->zs_ipf_start = blkid;
290 	zs->zs_ipf_end = blkid;
291 	/* Allow immediate stream reuse until first hit. */
292 	zs->zs_atime = now - SEC2NSEC(zfetch_min_sec_reap);
293 	zs->zs_missed = B_FALSE;
294 	zs->zs_more = B_FALSE;
295 }
296 
297 static void
298 dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
299 {
300 	zstream_t *zs = arg;
301 
302 	if (io_issued && level == 0 && blkid < zs->zs_blkid)
303 		zs->zs_more = B_TRUE;
304 	if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
305 		dmu_zfetch_stream_fini(zs);
306 	aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
307 }
308 
309 /*
310  * This is the predictive prefetch entry point.  dmu_zfetch_prepare()
311  * associates dnode access specified with blkid and nblks arguments with
312  * prefetch stream, predicts further accesses based on that stats and returns
313  * the stream pointer on success.  That pointer must later be passed to
314  * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
315  * release it.  dmu_zfetch() is a wrapper for simple cases when window between
316  * prediction and prefetch initiation is not needed.
317  * fetch_data argument specifies whether actual data blocks should be fetched:
318  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
319  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
320  */
321 zstream_t *
322 dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
323     boolean_t fetch_data, boolean_t have_lock)
324 {
325 	zstream_t *zs;
326 	spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
327 
328 	if (zfs_prefetch_disable)
329 		return (NULL);
330 	/*
331 	 * If we haven't yet loaded the indirect vdevs' mappings, we
332 	 * can only read from blocks that we carefully ensure are on
333 	 * concrete vdevs (or previously-loaded indirect vdevs).  So we
334 	 * can't allow the predictive prefetcher to attempt reads of other
335 	 * blocks (e.g. of the MOS's dnode object).
336 	 */
337 	if (!spa_indirect_vdevs_loaded(spa))
338 		return (NULL);
339 
340 	/*
341 	 * As a fast path for small (single-block) files, ignore access
342 	 * to the first block.
343 	 */
344 	if (!have_lock && blkid == 0)
345 		return (NULL);
346 
347 	if (!have_lock)
348 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
349 
350 	/*
351 	 * A fast path for small files for which no prefetch will
352 	 * happen.
353 	 */
354 	uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
355 	if (maxblkid < 2) {
356 		if (!have_lock)
357 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
358 		return (NULL);
359 	}
360 	mutex_enter(&zf->zf_lock);
361 
362 	/*
363 	 * Find matching prefetch stream.  Depending on whether the accesses
364 	 * are block-aligned, first block of the new access may either follow
365 	 * the last block of the previous access, or be equal to it.
366 	 */
367 	for (zs = list_head(&zf->zf_stream); zs != NULL;
368 	    zs = list_next(&zf->zf_stream, zs)) {
369 		if (blkid == zs->zs_blkid) {
370 			break;
371 		} else if (blkid + 1 == zs->zs_blkid) {
372 			blkid++;
373 			nblks--;
374 			break;
375 		}
376 	}
377 
378 	/*
379 	 * If the file is ending, remove the matching stream if found.
380 	 * If not found then it is too late to create a new one now.
381 	 */
382 	uint64_t end_of_access_blkid = blkid + nblks;
383 	if (end_of_access_blkid >= maxblkid) {
384 		if (zs != NULL)
385 			dmu_zfetch_stream_remove(zf, zs);
386 		mutex_exit(&zf->zf_lock);
387 		if (!have_lock)
388 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
389 		return (NULL);
390 	}
391 
392 	/* Exit if we already prefetched this block before. */
393 	if (nblks == 0) {
394 		mutex_exit(&zf->zf_lock);
395 		if (!have_lock)
396 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
397 		return (NULL);
398 	}
399 
400 	if (zs == NULL) {
401 		/*
402 		 * This access is not part of any existing stream.  Create
403 		 * a new stream for it.
404 		 */
405 		dmu_zfetch_stream_create(zf, end_of_access_blkid);
406 		mutex_exit(&zf->zf_lock);
407 		if (!have_lock)
408 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
409 		ZFETCHSTAT_BUMP(zfetchstat_misses);
410 		return (NULL);
411 	}
412 
413 	/*
414 	 * This access was to a block that we issued a prefetch for on
415 	 * behalf of this stream.  Calculate further prefetch distances.
416 	 *
417 	 * Start prefetch from the demand access size (nblks).  Double the
418 	 * distance every access up to zfetch_min_distance.  After that only
419 	 * if needed increase the distance by 1/8 up to zfetch_max_distance.
420 	 *
421 	 * Don't double the distance beyond single block if we have more
422 	 * than ~6% of ARC held by active prefetches.  It should help with
423 	 * getting out of RAM on some badly mispredicted read patterns.
424 	 */
425 	unsigned int dbs = zf->zf_dnode->dn_datablkshift;
426 	unsigned int nbytes = nblks << dbs;
427 	unsigned int pf_nblks;
428 	if (fetch_data) {
429 		if (unlikely(zs->zs_pf_dist < nbytes))
430 			zs->zs_pf_dist = nbytes;
431 		else if (zs->zs_pf_dist < zfetch_min_distance &&
432 		    (zs->zs_pf_dist < (1 << dbs) ||
433 		    aggsum_compare(&zfetch_sums.zfetchstat_io_active,
434 		    arc_c_max >> (4 + dbs)) < 0))
435 			zs->zs_pf_dist *= 2;
436 		else if (zs->zs_more)
437 			zs->zs_pf_dist += zs->zs_pf_dist / 8;
438 		zs->zs_more = B_FALSE;
439 		if (zs->zs_pf_dist > zfetch_max_distance)
440 			zs->zs_pf_dist = zfetch_max_distance;
441 		pf_nblks = zs->zs_pf_dist >> dbs;
442 	} else {
443 		pf_nblks = 0;
444 	}
445 	if (zs->zs_pf_start < end_of_access_blkid)
446 		zs->zs_pf_start = end_of_access_blkid;
447 	if (zs->zs_pf_end < end_of_access_blkid + pf_nblks)
448 		zs->zs_pf_end = end_of_access_blkid + pf_nblks;
449 
450 	/*
451 	 * Do the same for indirects, starting where we will stop reading
452 	 * data blocks (and the indirects that point to them).
453 	 */
454 	if (unlikely(zs->zs_ipf_dist < nbytes))
455 		zs->zs_ipf_dist = nbytes;
456 	else
457 		zs->zs_ipf_dist *= 2;
458 	if (zs->zs_ipf_dist > zfetch_max_idistance)
459 		zs->zs_ipf_dist = zfetch_max_idistance;
460 	pf_nblks = zs->zs_ipf_dist >> dbs;
461 	if (zs->zs_ipf_start < zs->zs_pf_end)
462 		zs->zs_ipf_start = zs->zs_pf_end;
463 	if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
464 		zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
465 
466 	zs->zs_blkid = end_of_access_blkid;
467 	/* Protect the stream from reclamation. */
468 	zs->zs_atime = gethrtime();
469 	zfs_refcount_add(&zs->zs_refs, NULL);
470 	/* Count concurrent callers. */
471 	zfs_refcount_add(&zs->zs_callers, NULL);
472 	mutex_exit(&zf->zf_lock);
473 
474 	if (!have_lock)
475 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
476 
477 	ZFETCHSTAT_BUMP(zfetchstat_hits);
478 	return (zs);
479 }
480 
481 void
482 dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
483 {
484 	zfetch_t *zf = zs->zs_fetch;
485 	int64_t pf_start, pf_end, ipf_start, ipf_end;
486 	int epbs, issued;
487 
488 	if (missed)
489 		zs->zs_missed = missed;
490 
491 	/*
492 	 * Postpone the prefetch if there are more concurrent callers.
493 	 * It happens when multiple requests are waiting for the same
494 	 * indirect block.  The last one will run the prefetch for all.
495 	 */
496 	if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
497 		/* Drop reference taken in dmu_zfetch_prepare(). */
498 		if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
499 			dmu_zfetch_stream_fini(zs);
500 		return;
501 	}
502 
503 	mutex_enter(&zf->zf_lock);
504 	if (zs->zs_missed) {
505 		pf_start = zs->zs_pf_start;
506 		pf_end = zs->zs_pf_start = zs->zs_pf_end;
507 	} else {
508 		pf_start = pf_end = 0;
509 	}
510 	ipf_start = zs->zs_ipf_start;
511 	ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
512 	mutex_exit(&zf->zf_lock);
513 	ASSERT3S(pf_start, <=, pf_end);
514 	ASSERT3S(ipf_start, <=, ipf_end);
515 
516 	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
517 	ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
518 	ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
519 	ASSERT3S(ipf_start, <=, ipf_end);
520 	issued = pf_end - pf_start + ipf_end - ipf_start;
521 	if (issued > 1) {
522 		/* More references on top of taken in dmu_zfetch_prepare(). */
523 		for (int i = 0; i < issued - 1; i++)
524 			zfs_refcount_add(&zs->zs_refs, NULL);
525 	} else if (issued == 0) {
526 		/* Some other thread has done our work, so drop the ref. */
527 		if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
528 			dmu_zfetch_stream_fini(zs);
529 		return;
530 	}
531 	aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
532 
533 	if (!have_lock)
534 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
535 
536 	issued = 0;
537 	for (int64_t blk = pf_start; blk < pf_end; blk++) {
538 		issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
539 		    ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
540 	}
541 	for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
542 		issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
543 		    ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
544 	}
545 
546 	if (!have_lock)
547 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
548 
549 	if (issued)
550 		ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
551 }
552 
553 void
554 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
555     boolean_t missed, boolean_t have_lock)
556 {
557 	zstream_t *zs;
558 
559 	zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
560 	if (zs)
561 		dmu_zfetch_run(zs, missed, have_lock);
562 }
563 
564 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
565 	"Disable all ZFS prefetching");
566 
567 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
568 	"Max number of streams per zfetch");
569 
570 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
571 	"Min time before stream reclaim");
572 
573 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
574 	"Max time before stream delete");
575 
576 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
577 	"Min bytes to prefetch per stream");
578 
579 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
580 	"Max bytes to prefetch per stream");
581 
582 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
583 	"Max bytes to prefetch indirects for per stream");
584 
585 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, U64, ZMOD_RW,
586 	"Number of bytes in a array_read");
587