xref: /freebsd/sys/contrib/openzfs/module/zfs/dnode.c (revision c03c5b1c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
42 
43 dnode_stats_t dnode_stats = {
44 	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
45 	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
46 	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
47 	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
48 	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
49 	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
50 	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
51 	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
52 	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
53 	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
54 	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
55 	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
56 	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
57 	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
58 	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
59 	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
60 	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
61 	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
62 	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
63 	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
64 	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
65 	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
66 	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
67 	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
68 	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
69 	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
70 	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
71 	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
72 };
73 
74 static kstat_t *dnode_ksp;
75 static kmem_cache_t *dnode_cache;
76 
77 static dnode_phys_t dnode_phys_zero __maybe_unused;
78 
79 int zfs_default_bs = SPA_MINBLOCKSHIFT;
80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
81 
82 #ifdef	_KERNEL
83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
84 #endif /* _KERNEL */
85 
86 static int
87 dbuf_compare(const void *x1, const void *x2)
88 {
89 	const dmu_buf_impl_t *d1 = x1;
90 	const dmu_buf_impl_t *d2 = x2;
91 
92 	int cmp = TREE_CMP(d1->db_level, d2->db_level);
93 	if (likely(cmp))
94 		return (cmp);
95 
96 	cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
97 	if (likely(cmp))
98 		return (cmp);
99 
100 	if (d1->db_state == DB_SEARCH) {
101 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
102 		return (-1);
103 	} else if (d2->db_state == DB_SEARCH) {
104 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
105 		return (1);
106 	}
107 
108 	return (TREE_PCMP(d1, d2));
109 }
110 
111 static int
112 dnode_cons(void *arg, void *unused, int kmflag)
113 {
114 	(void) unused, (void) kmflag;
115 	dnode_t *dn = arg;
116 
117 	rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
118 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
119 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
120 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
121 	cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
122 
123 	/*
124 	 * Every dbuf has a reference, and dropping a tracked reference is
125 	 * O(number of references), so don't track dn_holds.
126 	 */
127 	zfs_refcount_create_untracked(&dn->dn_holds);
128 	zfs_refcount_create(&dn->dn_tx_holds);
129 	list_link_init(&dn->dn_link);
130 
131 	bzero(&dn->dn_next_type[0], sizeof (dn->dn_next_type));
132 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
133 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
134 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
135 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
136 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
137 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
138 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
139 	bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
140 
141 	for (int i = 0; i < TXG_SIZE; i++) {
142 		multilist_link_init(&dn->dn_dirty_link[i]);
143 		dn->dn_free_ranges[i] = NULL;
144 		list_create(&dn->dn_dirty_records[i],
145 		    sizeof (dbuf_dirty_record_t),
146 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
147 	}
148 
149 	dn->dn_allocated_txg = 0;
150 	dn->dn_free_txg = 0;
151 	dn->dn_assigned_txg = 0;
152 	dn->dn_dirty_txg = 0;
153 	dn->dn_dirtyctx = 0;
154 	dn->dn_dirtyctx_firstset = NULL;
155 	dn->dn_bonus = NULL;
156 	dn->dn_have_spill = B_FALSE;
157 	dn->dn_zio = NULL;
158 	dn->dn_oldused = 0;
159 	dn->dn_oldflags = 0;
160 	dn->dn_olduid = 0;
161 	dn->dn_oldgid = 0;
162 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
163 	dn->dn_newuid = 0;
164 	dn->dn_newgid = 0;
165 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
166 	dn->dn_id_flags = 0;
167 
168 	dn->dn_dbufs_count = 0;
169 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
170 	    offsetof(dmu_buf_impl_t, db_link));
171 
172 	dn->dn_moved = 0;
173 	return (0);
174 }
175 
176 static void
177 dnode_dest(void *arg, void *unused)
178 {
179 	(void) unused;
180 	dnode_t *dn = arg;
181 
182 	rw_destroy(&dn->dn_struct_rwlock);
183 	mutex_destroy(&dn->dn_mtx);
184 	mutex_destroy(&dn->dn_dbufs_mtx);
185 	cv_destroy(&dn->dn_notxholds);
186 	cv_destroy(&dn->dn_nodnholds);
187 	zfs_refcount_destroy(&dn->dn_holds);
188 	zfs_refcount_destroy(&dn->dn_tx_holds);
189 	ASSERT(!list_link_active(&dn->dn_link));
190 
191 	for (int i = 0; i < TXG_SIZE; i++) {
192 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
193 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
194 		list_destroy(&dn->dn_dirty_records[i]);
195 		ASSERT0(dn->dn_next_nblkptr[i]);
196 		ASSERT0(dn->dn_next_nlevels[i]);
197 		ASSERT0(dn->dn_next_indblkshift[i]);
198 		ASSERT0(dn->dn_next_bonustype[i]);
199 		ASSERT0(dn->dn_rm_spillblk[i]);
200 		ASSERT0(dn->dn_next_bonuslen[i]);
201 		ASSERT0(dn->dn_next_blksz[i]);
202 		ASSERT0(dn->dn_next_maxblkid[i]);
203 	}
204 
205 	ASSERT0(dn->dn_allocated_txg);
206 	ASSERT0(dn->dn_free_txg);
207 	ASSERT0(dn->dn_assigned_txg);
208 	ASSERT0(dn->dn_dirty_txg);
209 	ASSERT0(dn->dn_dirtyctx);
210 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
211 	ASSERT3P(dn->dn_bonus, ==, NULL);
212 	ASSERT(!dn->dn_have_spill);
213 	ASSERT3P(dn->dn_zio, ==, NULL);
214 	ASSERT0(dn->dn_oldused);
215 	ASSERT0(dn->dn_oldflags);
216 	ASSERT0(dn->dn_olduid);
217 	ASSERT0(dn->dn_oldgid);
218 	ASSERT0(dn->dn_oldprojid);
219 	ASSERT0(dn->dn_newuid);
220 	ASSERT0(dn->dn_newgid);
221 	ASSERT0(dn->dn_newprojid);
222 	ASSERT0(dn->dn_id_flags);
223 
224 	ASSERT0(dn->dn_dbufs_count);
225 	avl_destroy(&dn->dn_dbufs);
226 }
227 
228 void
229 dnode_init(void)
230 {
231 	ASSERT(dnode_cache == NULL);
232 	dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
233 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
234 	kmem_cache_set_move(dnode_cache, dnode_move);
235 
236 	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
237 	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
238 	    KSTAT_FLAG_VIRTUAL);
239 	if (dnode_ksp != NULL) {
240 		dnode_ksp->ks_data = &dnode_stats;
241 		kstat_install(dnode_ksp);
242 	}
243 }
244 
245 void
246 dnode_fini(void)
247 {
248 	if (dnode_ksp != NULL) {
249 		kstat_delete(dnode_ksp);
250 		dnode_ksp = NULL;
251 	}
252 
253 	kmem_cache_destroy(dnode_cache);
254 	dnode_cache = NULL;
255 }
256 
257 
258 #ifdef ZFS_DEBUG
259 void
260 dnode_verify(dnode_t *dn)
261 {
262 	int drop_struct_lock = FALSE;
263 
264 	ASSERT(dn->dn_phys);
265 	ASSERT(dn->dn_objset);
266 	ASSERT(dn->dn_handle->dnh_dnode == dn);
267 
268 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
269 
270 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
271 		return;
272 
273 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
274 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
275 		drop_struct_lock = TRUE;
276 	}
277 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
278 		int i;
279 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
280 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
281 		if (dn->dn_datablkshift) {
282 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
283 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
284 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
285 		}
286 		ASSERT3U(dn->dn_nlevels, <=, 30);
287 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
288 		ASSERT3U(dn->dn_nblkptr, >=, 1);
289 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
290 		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
291 		ASSERT3U(dn->dn_datablksz, ==,
292 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
293 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
294 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
295 		    dn->dn_bonuslen, <=, max_bonuslen);
296 		for (i = 0; i < TXG_SIZE; i++) {
297 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
298 		}
299 	}
300 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
301 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
302 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
303 	if (dn->dn_dbuf != NULL) {
304 		ASSERT3P(dn->dn_phys, ==,
305 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
306 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
307 	}
308 	if (drop_struct_lock)
309 		rw_exit(&dn->dn_struct_rwlock);
310 }
311 #endif
312 
313 void
314 dnode_byteswap(dnode_phys_t *dnp)
315 {
316 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
317 	int i;
318 
319 	if (dnp->dn_type == DMU_OT_NONE) {
320 		bzero(dnp, sizeof (dnode_phys_t));
321 		return;
322 	}
323 
324 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
325 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
326 	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
327 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
328 	dnp->dn_used = BSWAP_64(dnp->dn_used);
329 
330 	/*
331 	 * dn_nblkptr is only one byte, so it's OK to read it in either
332 	 * byte order.  We can't read dn_bouslen.
333 	 */
334 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
335 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
336 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
337 		buf64[i] = BSWAP_64(buf64[i]);
338 
339 	/*
340 	 * OK to check dn_bonuslen for zero, because it won't matter if
341 	 * we have the wrong byte order.  This is necessary because the
342 	 * dnode dnode is smaller than a regular dnode.
343 	 */
344 	if (dnp->dn_bonuslen != 0) {
345 		/*
346 		 * Note that the bonus length calculated here may be
347 		 * longer than the actual bonus buffer.  This is because
348 		 * we always put the bonus buffer after the last block
349 		 * pointer (instead of packing it against the end of the
350 		 * dnode buffer).
351 		 */
352 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
353 		int slots = dnp->dn_extra_slots + 1;
354 		size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
355 		dmu_object_byteswap_t byteswap;
356 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
357 		byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
358 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
359 	}
360 
361 	/* Swap SPILL block if we have one */
362 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
363 		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
364 }
365 
366 void
367 dnode_buf_byteswap(void *vbuf, size_t size)
368 {
369 	int i = 0;
370 
371 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
372 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
373 
374 	while (i < size) {
375 		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
376 		dnode_byteswap(dnp);
377 
378 		i += DNODE_MIN_SIZE;
379 		if (dnp->dn_type != DMU_OT_NONE)
380 			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
381 	}
382 }
383 
384 void
385 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
386 {
387 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
388 
389 	dnode_setdirty(dn, tx);
390 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
391 	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
392 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
393 
394 	if (newsize < dn->dn_bonuslen) {
395 		/* clear any data after the end of the new size */
396 		size_t diff = dn->dn_bonuslen - newsize;
397 		char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
398 		bzero(data_end, diff);
399 	}
400 
401 	dn->dn_bonuslen = newsize;
402 	if (newsize == 0)
403 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
404 	else
405 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
406 	rw_exit(&dn->dn_struct_rwlock);
407 }
408 
409 void
410 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
411 {
412 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
413 	dnode_setdirty(dn, tx);
414 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
415 	dn->dn_bonustype = newtype;
416 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
417 	rw_exit(&dn->dn_struct_rwlock);
418 }
419 
420 void
421 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
422 {
423 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
424 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
425 	dnode_setdirty(dn, tx);
426 	dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
427 	dn->dn_have_spill = B_FALSE;
428 }
429 
430 static void
431 dnode_setdblksz(dnode_t *dn, int size)
432 {
433 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
434 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
435 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
436 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
437 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
438 	dn->dn_datablksz = size;
439 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
440 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
441 }
442 
443 static dnode_t *
444 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
445     uint64_t object, dnode_handle_t *dnh)
446 {
447 	dnode_t *dn;
448 
449 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
450 	dn->dn_moved = 0;
451 
452 	/*
453 	 * Defer setting dn_objset until the dnode is ready to be a candidate
454 	 * for the dnode_move() callback.
455 	 */
456 	dn->dn_object = object;
457 	dn->dn_dbuf = db;
458 	dn->dn_handle = dnh;
459 	dn->dn_phys = dnp;
460 
461 	if (dnp->dn_datablkszsec) {
462 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
463 	} else {
464 		dn->dn_datablksz = 0;
465 		dn->dn_datablkszsec = 0;
466 		dn->dn_datablkshift = 0;
467 	}
468 	dn->dn_indblkshift = dnp->dn_indblkshift;
469 	dn->dn_nlevels = dnp->dn_nlevels;
470 	dn->dn_type = dnp->dn_type;
471 	dn->dn_nblkptr = dnp->dn_nblkptr;
472 	dn->dn_checksum = dnp->dn_checksum;
473 	dn->dn_compress = dnp->dn_compress;
474 	dn->dn_bonustype = dnp->dn_bonustype;
475 	dn->dn_bonuslen = dnp->dn_bonuslen;
476 	dn->dn_num_slots = dnp->dn_extra_slots + 1;
477 	dn->dn_maxblkid = dnp->dn_maxblkid;
478 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
479 	dn->dn_id_flags = 0;
480 
481 	dmu_zfetch_init(&dn->dn_zfetch, dn);
482 
483 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
484 	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
485 	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
486 
487 	mutex_enter(&os->os_lock);
488 
489 	/*
490 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
491 	 * signifies that the special dnodes have no references from
492 	 * their children (the entries in os_dnodes).  This allows
493 	 * dnode_destroy() to easily determine if the last child has
494 	 * been removed and then complete eviction of the objset.
495 	 */
496 	if (!DMU_OBJECT_IS_SPECIAL(object))
497 		list_insert_head(&os->os_dnodes, dn);
498 	membar_producer();
499 
500 	/*
501 	 * Everything else must be valid before assigning dn_objset
502 	 * makes the dnode eligible for dnode_move().
503 	 */
504 	dn->dn_objset = os;
505 
506 	dnh->dnh_dnode = dn;
507 	mutex_exit(&os->os_lock);
508 
509 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
510 
511 	return (dn);
512 }
513 
514 /*
515  * Caller must be holding the dnode handle, which is released upon return.
516  */
517 static void
518 dnode_destroy(dnode_t *dn)
519 {
520 	objset_t *os = dn->dn_objset;
521 	boolean_t complete_os_eviction = B_FALSE;
522 
523 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
524 
525 	mutex_enter(&os->os_lock);
526 	POINTER_INVALIDATE(&dn->dn_objset);
527 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
528 		list_remove(&os->os_dnodes, dn);
529 		complete_os_eviction =
530 		    list_is_empty(&os->os_dnodes) &&
531 		    list_link_active(&os->os_evicting_node);
532 	}
533 	mutex_exit(&os->os_lock);
534 
535 	/* the dnode can no longer move, so we can release the handle */
536 	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
537 		zrl_remove(&dn->dn_handle->dnh_zrlock);
538 
539 	dn->dn_allocated_txg = 0;
540 	dn->dn_free_txg = 0;
541 	dn->dn_assigned_txg = 0;
542 	dn->dn_dirty_txg = 0;
543 
544 	dn->dn_dirtyctx = 0;
545 	dn->dn_dirtyctx_firstset = NULL;
546 	if (dn->dn_bonus != NULL) {
547 		mutex_enter(&dn->dn_bonus->db_mtx);
548 		dbuf_destroy(dn->dn_bonus);
549 		dn->dn_bonus = NULL;
550 	}
551 	dn->dn_zio = NULL;
552 
553 	dn->dn_have_spill = B_FALSE;
554 	dn->dn_oldused = 0;
555 	dn->dn_oldflags = 0;
556 	dn->dn_olduid = 0;
557 	dn->dn_oldgid = 0;
558 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
559 	dn->dn_newuid = 0;
560 	dn->dn_newgid = 0;
561 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
562 	dn->dn_id_flags = 0;
563 
564 	dmu_zfetch_fini(&dn->dn_zfetch);
565 	kmem_cache_free(dnode_cache, dn);
566 	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
567 
568 	if (complete_os_eviction)
569 		dmu_objset_evict_done(os);
570 }
571 
572 void
573 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
574     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
575 {
576 	int i;
577 
578 	ASSERT3U(dn_slots, >, 0);
579 	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
580 	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
581 	ASSERT3U(blocksize, <=,
582 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
583 	if (blocksize == 0)
584 		blocksize = 1 << zfs_default_bs;
585 	else
586 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
587 
588 	if (ibs == 0)
589 		ibs = zfs_default_ibs;
590 
591 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
592 
593 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
594 	    dn->dn_objset, (u_longlong_t)dn->dn_object,
595 	    (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots);
596 	DNODE_STAT_BUMP(dnode_allocate);
597 
598 	ASSERT(dn->dn_type == DMU_OT_NONE);
599 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
600 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
601 	ASSERT(ot != DMU_OT_NONE);
602 	ASSERT(DMU_OT_IS_VALID(ot));
603 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
604 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
605 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
606 	ASSERT(DMU_OT_IS_VALID(bonustype));
607 	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
608 	ASSERT(dn->dn_type == DMU_OT_NONE);
609 	ASSERT0(dn->dn_maxblkid);
610 	ASSERT0(dn->dn_allocated_txg);
611 	ASSERT0(dn->dn_assigned_txg);
612 	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
613 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
614 	ASSERT(avl_is_empty(&dn->dn_dbufs));
615 
616 	for (i = 0; i < TXG_SIZE; i++) {
617 		ASSERT0(dn->dn_next_nblkptr[i]);
618 		ASSERT0(dn->dn_next_nlevels[i]);
619 		ASSERT0(dn->dn_next_indblkshift[i]);
620 		ASSERT0(dn->dn_next_bonuslen[i]);
621 		ASSERT0(dn->dn_next_bonustype[i]);
622 		ASSERT0(dn->dn_rm_spillblk[i]);
623 		ASSERT0(dn->dn_next_blksz[i]);
624 		ASSERT0(dn->dn_next_maxblkid[i]);
625 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
626 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
627 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
628 	}
629 
630 	dn->dn_type = ot;
631 	dnode_setdblksz(dn, blocksize);
632 	dn->dn_indblkshift = ibs;
633 	dn->dn_nlevels = 1;
634 	dn->dn_num_slots = dn_slots;
635 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
636 		dn->dn_nblkptr = 1;
637 	else {
638 		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
639 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
640 		    SPA_BLKPTRSHIFT));
641 	}
642 
643 	dn->dn_bonustype = bonustype;
644 	dn->dn_bonuslen = bonuslen;
645 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
646 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
647 	dn->dn_dirtyctx = 0;
648 
649 	dn->dn_free_txg = 0;
650 	dn->dn_dirtyctx_firstset = NULL;
651 	dn->dn_dirty_txg = 0;
652 
653 	dn->dn_allocated_txg = tx->tx_txg;
654 	dn->dn_id_flags = 0;
655 
656 	dnode_setdirty(dn, tx);
657 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
658 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
659 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
660 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
661 }
662 
663 void
664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
665     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
666     boolean_t keep_spill, dmu_tx_t *tx)
667 {
668 	int nblkptr;
669 
670 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
671 	ASSERT3U(blocksize, <=,
672 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
673 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
674 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
675 	ASSERT(tx->tx_txg != 0);
676 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
677 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
678 	    (bonustype == DMU_OT_SA && bonuslen == 0));
679 	ASSERT(DMU_OT_IS_VALID(bonustype));
680 	ASSERT3U(bonuslen, <=,
681 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
682 	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
683 
684 	dnode_free_interior_slots(dn);
685 	DNODE_STAT_BUMP(dnode_reallocate);
686 
687 	/* clean up any unreferenced dbufs */
688 	dnode_evict_dbufs(dn);
689 
690 	dn->dn_id_flags = 0;
691 
692 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
693 	dnode_setdirty(dn, tx);
694 	if (dn->dn_datablksz != blocksize) {
695 		/* change blocksize */
696 		ASSERT0(dn->dn_maxblkid);
697 		ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
698 		    dnode_block_freed(dn, 0));
699 
700 		dnode_setdblksz(dn, blocksize);
701 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
702 	}
703 	if (dn->dn_bonuslen != bonuslen)
704 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
705 
706 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
707 		nblkptr = 1;
708 	else
709 		nblkptr = MIN(DN_MAX_NBLKPTR,
710 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
711 		    SPA_BLKPTRSHIFT));
712 	if (dn->dn_bonustype != bonustype)
713 		dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
714 	if (dn->dn_nblkptr != nblkptr)
715 		dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
716 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
717 		dbuf_rm_spill(dn, tx);
718 		dnode_rm_spill(dn, tx);
719 	}
720 
721 	rw_exit(&dn->dn_struct_rwlock);
722 
723 	/* change type */
724 	dn->dn_type = ot;
725 
726 	/* change bonus size and type */
727 	mutex_enter(&dn->dn_mtx);
728 	dn->dn_bonustype = bonustype;
729 	dn->dn_bonuslen = bonuslen;
730 	dn->dn_num_slots = dn_slots;
731 	dn->dn_nblkptr = nblkptr;
732 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
733 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
734 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
735 
736 	/* fix up the bonus db_size */
737 	if (dn->dn_bonus) {
738 		dn->dn_bonus->db.db_size =
739 		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
740 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
741 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
742 	}
743 
744 	dn->dn_allocated_txg = tx->tx_txg;
745 	mutex_exit(&dn->dn_mtx);
746 }
747 
748 #ifdef	_KERNEL
749 static void
750 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
751 {
752 	int i;
753 
754 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
755 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
756 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
757 
758 	/* Copy fields. */
759 	ndn->dn_objset = odn->dn_objset;
760 	ndn->dn_object = odn->dn_object;
761 	ndn->dn_dbuf = odn->dn_dbuf;
762 	ndn->dn_handle = odn->dn_handle;
763 	ndn->dn_phys = odn->dn_phys;
764 	ndn->dn_type = odn->dn_type;
765 	ndn->dn_bonuslen = odn->dn_bonuslen;
766 	ndn->dn_bonustype = odn->dn_bonustype;
767 	ndn->dn_nblkptr = odn->dn_nblkptr;
768 	ndn->dn_checksum = odn->dn_checksum;
769 	ndn->dn_compress = odn->dn_compress;
770 	ndn->dn_nlevels = odn->dn_nlevels;
771 	ndn->dn_indblkshift = odn->dn_indblkshift;
772 	ndn->dn_datablkshift = odn->dn_datablkshift;
773 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
774 	ndn->dn_datablksz = odn->dn_datablksz;
775 	ndn->dn_maxblkid = odn->dn_maxblkid;
776 	ndn->dn_num_slots = odn->dn_num_slots;
777 	bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
778 	    sizeof (odn->dn_next_type));
779 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
780 	    sizeof (odn->dn_next_nblkptr));
781 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
782 	    sizeof (odn->dn_next_nlevels));
783 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
784 	    sizeof (odn->dn_next_indblkshift));
785 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
786 	    sizeof (odn->dn_next_bonustype));
787 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
788 	    sizeof (odn->dn_rm_spillblk));
789 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
790 	    sizeof (odn->dn_next_bonuslen));
791 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
792 	    sizeof (odn->dn_next_blksz));
793 	bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
794 	    sizeof (odn->dn_next_maxblkid));
795 	for (i = 0; i < TXG_SIZE; i++) {
796 		list_move_tail(&ndn->dn_dirty_records[i],
797 		    &odn->dn_dirty_records[i]);
798 	}
799 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
800 	    sizeof (odn->dn_free_ranges));
801 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
802 	ndn->dn_free_txg = odn->dn_free_txg;
803 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
804 	ndn->dn_dirty_txg = odn->dn_dirty_txg;
805 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
806 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
807 	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
808 	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
809 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
810 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
811 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
812 	ndn->dn_bonus = odn->dn_bonus;
813 	ndn->dn_have_spill = odn->dn_have_spill;
814 	ndn->dn_zio = odn->dn_zio;
815 	ndn->dn_oldused = odn->dn_oldused;
816 	ndn->dn_oldflags = odn->dn_oldflags;
817 	ndn->dn_olduid = odn->dn_olduid;
818 	ndn->dn_oldgid = odn->dn_oldgid;
819 	ndn->dn_oldprojid = odn->dn_oldprojid;
820 	ndn->dn_newuid = odn->dn_newuid;
821 	ndn->dn_newgid = odn->dn_newgid;
822 	ndn->dn_newprojid = odn->dn_newprojid;
823 	ndn->dn_id_flags = odn->dn_id_flags;
824 	dmu_zfetch_init(&ndn->dn_zfetch, ndn);
825 
826 	/*
827 	 * Update back pointers. Updating the handle fixes the back pointer of
828 	 * every descendant dbuf as well as the bonus dbuf.
829 	 */
830 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
831 	ndn->dn_handle->dnh_dnode = ndn;
832 
833 	/*
834 	 * Invalidate the original dnode by clearing all of its back pointers.
835 	 */
836 	odn->dn_dbuf = NULL;
837 	odn->dn_handle = NULL;
838 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
839 	    offsetof(dmu_buf_impl_t, db_link));
840 	odn->dn_dbufs_count = 0;
841 	odn->dn_bonus = NULL;
842 	dmu_zfetch_fini(&odn->dn_zfetch);
843 
844 	/*
845 	 * Set the low bit of the objset pointer to ensure that dnode_move()
846 	 * recognizes the dnode as invalid in any subsequent callback.
847 	 */
848 	POINTER_INVALIDATE(&odn->dn_objset);
849 
850 	/*
851 	 * Satisfy the destructor.
852 	 */
853 	for (i = 0; i < TXG_SIZE; i++) {
854 		list_create(&odn->dn_dirty_records[i],
855 		    sizeof (dbuf_dirty_record_t),
856 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
857 		odn->dn_free_ranges[i] = NULL;
858 		odn->dn_next_nlevels[i] = 0;
859 		odn->dn_next_indblkshift[i] = 0;
860 		odn->dn_next_bonustype[i] = 0;
861 		odn->dn_rm_spillblk[i] = 0;
862 		odn->dn_next_bonuslen[i] = 0;
863 		odn->dn_next_blksz[i] = 0;
864 	}
865 	odn->dn_allocated_txg = 0;
866 	odn->dn_free_txg = 0;
867 	odn->dn_assigned_txg = 0;
868 	odn->dn_dirty_txg = 0;
869 	odn->dn_dirtyctx = 0;
870 	odn->dn_dirtyctx_firstset = NULL;
871 	odn->dn_have_spill = B_FALSE;
872 	odn->dn_zio = NULL;
873 	odn->dn_oldused = 0;
874 	odn->dn_oldflags = 0;
875 	odn->dn_olduid = 0;
876 	odn->dn_oldgid = 0;
877 	odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
878 	odn->dn_newuid = 0;
879 	odn->dn_newgid = 0;
880 	odn->dn_newprojid = ZFS_DEFAULT_PROJID;
881 	odn->dn_id_flags = 0;
882 
883 	/*
884 	 * Mark the dnode.
885 	 */
886 	ndn->dn_moved = 1;
887 	odn->dn_moved = (uint8_t)-1;
888 }
889 
890 static kmem_cbrc_t
891 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
892 {
893 	dnode_t *odn = buf, *ndn = newbuf;
894 	objset_t *os;
895 	int64_t refcount;
896 	uint32_t dbufs;
897 
898 	/*
899 	 * The dnode is on the objset's list of known dnodes if the objset
900 	 * pointer is valid. We set the low bit of the objset pointer when
901 	 * freeing the dnode to invalidate it, and the memory patterns written
902 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
903 	 * A newly created dnode sets the objset pointer last of all to indicate
904 	 * that the dnode is known and in a valid state to be moved by this
905 	 * function.
906 	 */
907 	os = odn->dn_objset;
908 	if (!POINTER_IS_VALID(os)) {
909 		DNODE_STAT_BUMP(dnode_move_invalid);
910 		return (KMEM_CBRC_DONT_KNOW);
911 	}
912 
913 	/*
914 	 * Ensure that the objset does not go away during the move.
915 	 */
916 	rw_enter(&os_lock, RW_WRITER);
917 	if (os != odn->dn_objset) {
918 		rw_exit(&os_lock);
919 		DNODE_STAT_BUMP(dnode_move_recheck1);
920 		return (KMEM_CBRC_DONT_KNOW);
921 	}
922 
923 	/*
924 	 * If the dnode is still valid, then so is the objset. We know that no
925 	 * valid objset can be freed while we hold os_lock, so we can safely
926 	 * ensure that the objset remains in use.
927 	 */
928 	mutex_enter(&os->os_lock);
929 
930 	/*
931 	 * Recheck the objset pointer in case the dnode was removed just before
932 	 * acquiring the lock.
933 	 */
934 	if (os != odn->dn_objset) {
935 		mutex_exit(&os->os_lock);
936 		rw_exit(&os_lock);
937 		DNODE_STAT_BUMP(dnode_move_recheck2);
938 		return (KMEM_CBRC_DONT_KNOW);
939 	}
940 
941 	/*
942 	 * At this point we know that as long as we hold os->os_lock, the dnode
943 	 * cannot be freed and fields within the dnode can be safely accessed.
944 	 * The objset listing this dnode cannot go away as long as this dnode is
945 	 * on its list.
946 	 */
947 	rw_exit(&os_lock);
948 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
949 		mutex_exit(&os->os_lock);
950 		DNODE_STAT_BUMP(dnode_move_special);
951 		return (KMEM_CBRC_NO);
952 	}
953 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
954 
955 	/*
956 	 * Lock the dnode handle to prevent the dnode from obtaining any new
957 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
958 	 * from accessing the dnode, so that we can discount their holds. The
959 	 * handle is safe to access because we know that while the dnode cannot
960 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
961 	 * safely move any dnode referenced only by dbufs.
962 	 */
963 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
964 		mutex_exit(&os->os_lock);
965 		DNODE_STAT_BUMP(dnode_move_handle);
966 		return (KMEM_CBRC_LATER);
967 	}
968 
969 	/*
970 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
971 	 * We need to guarantee that there is a hold for every dbuf in order to
972 	 * determine whether the dnode is actively referenced. Falsely matching
973 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
974 	 * that a thread already having an active dnode hold is about to add a
975 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
976 	 * progress.
977 	 */
978 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
979 		zrl_exit(&odn->dn_handle->dnh_zrlock);
980 		mutex_exit(&os->os_lock);
981 		DNODE_STAT_BUMP(dnode_move_rwlock);
982 		return (KMEM_CBRC_LATER);
983 	}
984 
985 	/*
986 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
987 	 * case, the dbuf count is decremented under the handle lock before the
988 	 * dbuf's hold is released. This order ensures that if we count the hold
989 	 * after the dbuf is removed but before its hold is released, we will
990 	 * treat the unmatched hold as active and exit safely. If we count the
991 	 * hold before the dbuf is removed, the hold is discounted, and the
992 	 * removal is blocked until the move completes.
993 	 */
994 	refcount = zfs_refcount_count(&odn->dn_holds);
995 	ASSERT(refcount >= 0);
996 	dbufs = DN_DBUFS_COUNT(odn);
997 
998 	/* We can't have more dbufs than dnode holds. */
999 	ASSERT3U(dbufs, <=, refcount);
1000 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1001 	    uint32_t, dbufs);
1002 
1003 	if (refcount > dbufs) {
1004 		rw_exit(&odn->dn_struct_rwlock);
1005 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1006 		mutex_exit(&os->os_lock);
1007 		DNODE_STAT_BUMP(dnode_move_active);
1008 		return (KMEM_CBRC_LATER);
1009 	}
1010 
1011 	rw_exit(&odn->dn_struct_rwlock);
1012 
1013 	/*
1014 	 * At this point we know that anyone with a hold on the dnode is not
1015 	 * actively referencing it. The dnode is known and in a valid state to
1016 	 * move. We're holding the locks needed to execute the critical section.
1017 	 */
1018 	dnode_move_impl(odn, ndn);
1019 
1020 	list_link_replace(&odn->dn_link, &ndn->dn_link);
1021 	/* If the dnode was safe to move, the refcount cannot have changed. */
1022 	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1023 	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1024 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1025 	mutex_exit(&os->os_lock);
1026 
1027 	return (KMEM_CBRC_YES);
1028 }
1029 #endif	/* _KERNEL */
1030 
1031 static void
1032 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1033 {
1034 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1035 
1036 	for (int i = idx; i < idx + slots; i++) {
1037 		dnode_handle_t *dnh = &children->dnc_children[i];
1038 		zrl_add(&dnh->dnh_zrlock);
1039 	}
1040 }
1041 
1042 static void
1043 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1044 {
1045 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1046 
1047 	for (int i = idx; i < idx + slots; i++) {
1048 		dnode_handle_t *dnh = &children->dnc_children[i];
1049 
1050 		if (zrl_is_locked(&dnh->dnh_zrlock))
1051 			zrl_exit(&dnh->dnh_zrlock);
1052 		else
1053 			zrl_remove(&dnh->dnh_zrlock);
1054 	}
1055 }
1056 
1057 static int
1058 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1059 {
1060 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1061 
1062 	for (int i = idx; i < idx + slots; i++) {
1063 		dnode_handle_t *dnh = &children->dnc_children[i];
1064 
1065 		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1066 			for (int j = idx; j < i; j++) {
1067 				dnh = &children->dnc_children[j];
1068 				zrl_exit(&dnh->dnh_zrlock);
1069 			}
1070 
1071 			return (0);
1072 		}
1073 	}
1074 
1075 	return (1);
1076 }
1077 
1078 static void
1079 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1080 {
1081 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1082 
1083 	for (int i = idx; i < idx + slots; i++) {
1084 		dnode_handle_t *dnh = &children->dnc_children[i];
1085 		dnh->dnh_dnode = ptr;
1086 	}
1087 }
1088 
1089 static boolean_t
1090 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1091 {
1092 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1093 
1094 	/*
1095 	 * If all dnode slots are either already free or
1096 	 * evictable return B_TRUE.
1097 	 */
1098 	for (int i = idx; i < idx + slots; i++) {
1099 		dnode_handle_t *dnh = &children->dnc_children[i];
1100 		dnode_t *dn = dnh->dnh_dnode;
1101 
1102 		if (dn == DN_SLOT_FREE) {
1103 			continue;
1104 		} else if (DN_SLOT_IS_PTR(dn)) {
1105 			mutex_enter(&dn->dn_mtx);
1106 			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1107 			    zfs_refcount_is_zero(&dn->dn_holds) &&
1108 			    !DNODE_IS_DIRTY(dn));
1109 			mutex_exit(&dn->dn_mtx);
1110 
1111 			if (!can_free)
1112 				return (B_FALSE);
1113 			else
1114 				continue;
1115 		} else {
1116 			return (B_FALSE);
1117 		}
1118 	}
1119 
1120 	return (B_TRUE);
1121 }
1122 
1123 static void
1124 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1125 {
1126 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1127 
1128 	for (int i = idx; i < idx + slots; i++) {
1129 		dnode_handle_t *dnh = &children->dnc_children[i];
1130 
1131 		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1132 
1133 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1134 			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1135 			dnode_destroy(dnh->dnh_dnode);
1136 			dnh->dnh_dnode = DN_SLOT_FREE;
1137 		}
1138 	}
1139 }
1140 
1141 void
1142 dnode_free_interior_slots(dnode_t *dn)
1143 {
1144 	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1145 	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1146 	int idx = (dn->dn_object & (epb - 1)) + 1;
1147 	int slots = dn->dn_num_slots - 1;
1148 
1149 	if (slots == 0)
1150 		return;
1151 
1152 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1153 
1154 	while (!dnode_slots_tryenter(children, idx, slots)) {
1155 		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1156 		cond_resched();
1157 	}
1158 
1159 	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1160 	dnode_slots_rele(children, idx, slots);
1161 }
1162 
1163 void
1164 dnode_special_close(dnode_handle_t *dnh)
1165 {
1166 	dnode_t *dn = dnh->dnh_dnode;
1167 
1168 	/*
1169 	 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1170 	 * zfs_refcount_remove()
1171 	 */
1172 	mutex_enter(&dn->dn_mtx);
1173 	if (zfs_refcount_count(&dn->dn_holds) > 0)
1174 		cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1175 	mutex_exit(&dn->dn_mtx);
1176 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1177 
1178 	ASSERT(dn->dn_dbuf == NULL ||
1179 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1180 	zrl_add(&dnh->dnh_zrlock);
1181 	dnode_destroy(dn); /* implicit zrl_remove() */
1182 	zrl_destroy(&dnh->dnh_zrlock);
1183 	dnh->dnh_dnode = NULL;
1184 }
1185 
1186 void
1187 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1188     dnode_handle_t *dnh)
1189 {
1190 	dnode_t *dn;
1191 
1192 	zrl_init(&dnh->dnh_zrlock);
1193 	VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
1194 
1195 	dn = dnode_create(os, dnp, NULL, object, dnh);
1196 	DNODE_VERIFY(dn);
1197 
1198 	zrl_exit(&dnh->dnh_zrlock);
1199 }
1200 
1201 static void
1202 dnode_buf_evict_async(void *dbu)
1203 {
1204 	dnode_children_t *dnc = dbu;
1205 
1206 	DNODE_STAT_BUMP(dnode_buf_evict);
1207 
1208 	for (int i = 0; i < dnc->dnc_count; i++) {
1209 		dnode_handle_t *dnh = &dnc->dnc_children[i];
1210 		dnode_t *dn;
1211 
1212 		/*
1213 		 * The dnode handle lock guards against the dnode moving to
1214 		 * another valid address, so there is no need here to guard
1215 		 * against changes to or from NULL.
1216 		 */
1217 		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1218 			zrl_destroy(&dnh->dnh_zrlock);
1219 			dnh->dnh_dnode = DN_SLOT_UNINIT;
1220 			continue;
1221 		}
1222 
1223 		zrl_add(&dnh->dnh_zrlock);
1224 		dn = dnh->dnh_dnode;
1225 		/*
1226 		 * If there are holds on this dnode, then there should
1227 		 * be holds on the dnode's containing dbuf as well; thus
1228 		 * it wouldn't be eligible for eviction and this function
1229 		 * would not have been called.
1230 		 */
1231 		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1232 		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1233 
1234 		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1235 		zrl_destroy(&dnh->dnh_zrlock);
1236 		dnh->dnh_dnode = DN_SLOT_UNINIT;
1237 	}
1238 	kmem_free(dnc, sizeof (dnode_children_t) +
1239 	    dnc->dnc_count * sizeof (dnode_handle_t));
1240 }
1241 
1242 /*
1243  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1244  * to ensure the hole at the specified object offset is large enough to
1245  * hold the dnode being created. The slots parameter is also used to ensure
1246  * a dnode does not span multiple dnode blocks. In both of these cases, if
1247  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1248  * are only possible when using DNODE_MUST_BE_FREE.
1249  *
1250  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1251  * dnode_hold_impl() will check if the requested dnode is already consumed
1252  * as an extra dnode slot by an large dnode, in which case it returns
1253  * ENOENT.
1254  *
1255  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1256  * return whether the hold would succeed or not. tag and dnp should set to
1257  * NULL in this case.
1258  *
1259  * errors:
1260  * EINVAL - Invalid object number or flags.
1261  * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1262  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1263  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1264  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1265  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1266  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1267  * EIO    - I/O error when reading the meta dnode dbuf.
1268  *
1269  * succeeds even for free dnodes.
1270  */
1271 int
1272 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1273     void *tag, dnode_t **dnp)
1274 {
1275 	int epb, idx, err;
1276 	int drop_struct_lock = FALSE;
1277 	int type;
1278 	uint64_t blk;
1279 	dnode_t *mdn, *dn;
1280 	dmu_buf_impl_t *db;
1281 	dnode_children_t *dnc;
1282 	dnode_phys_t *dn_block;
1283 	dnode_handle_t *dnh;
1284 
1285 	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1286 	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1287 	IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1288 
1289 	/*
1290 	 * If you are holding the spa config lock as writer, you shouldn't
1291 	 * be asking the DMU to do *anything* unless it's the root pool
1292 	 * which may require us to read from the root filesystem while
1293 	 * holding some (not all) of the locks as writer.
1294 	 */
1295 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1296 	    (spa_is_root(os->os_spa) &&
1297 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1298 
1299 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1300 
1301 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1302 	    object == DMU_PROJECTUSED_OBJECT) {
1303 		if (object == DMU_USERUSED_OBJECT)
1304 			dn = DMU_USERUSED_DNODE(os);
1305 		else if (object == DMU_GROUPUSED_OBJECT)
1306 			dn = DMU_GROUPUSED_DNODE(os);
1307 		else
1308 			dn = DMU_PROJECTUSED_DNODE(os);
1309 		if (dn == NULL)
1310 			return (SET_ERROR(ENOENT));
1311 		type = dn->dn_type;
1312 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1313 			return (SET_ERROR(ENOENT));
1314 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1315 			return (SET_ERROR(EEXIST));
1316 		DNODE_VERIFY(dn);
1317 		/* Don't actually hold if dry run, just return 0 */
1318 		if (!(flag & DNODE_DRY_RUN)) {
1319 			(void) zfs_refcount_add(&dn->dn_holds, tag);
1320 			*dnp = dn;
1321 		}
1322 		return (0);
1323 	}
1324 
1325 	if (object == 0 || object >= DN_MAX_OBJECT)
1326 		return (SET_ERROR(EINVAL));
1327 
1328 	mdn = DMU_META_DNODE(os);
1329 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1330 
1331 	DNODE_VERIFY(mdn);
1332 
1333 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1334 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1335 		drop_struct_lock = TRUE;
1336 	}
1337 
1338 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1339 	db = dbuf_hold(mdn, blk, FTAG);
1340 	if (drop_struct_lock)
1341 		rw_exit(&mdn->dn_struct_rwlock);
1342 	if (db == NULL) {
1343 		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1344 		return (SET_ERROR(EIO));
1345 	}
1346 
1347 	/*
1348 	 * We do not need to decrypt to read the dnode so it doesn't matter
1349 	 * if we get the encrypted or decrypted version.
1350 	 */
1351 	err = dbuf_read(db, NULL, DB_RF_CANFAIL |
1352 	    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
1353 	if (err) {
1354 		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1355 		dbuf_rele(db, FTAG);
1356 		return (err);
1357 	}
1358 
1359 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1360 	epb = db->db.db_size >> DNODE_SHIFT;
1361 
1362 	idx = object & (epb - 1);
1363 	dn_block = (dnode_phys_t *)db->db.db_data;
1364 
1365 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1366 	dnc = dmu_buf_get_user(&db->db);
1367 	dnh = NULL;
1368 	if (dnc == NULL) {
1369 		dnode_children_t *winner;
1370 		int skip = 0;
1371 
1372 		dnc = kmem_zalloc(sizeof (dnode_children_t) +
1373 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1374 		dnc->dnc_count = epb;
1375 		dnh = &dnc->dnc_children[0];
1376 
1377 		/* Initialize dnode slot status from dnode_phys_t */
1378 		for (int i = 0; i < epb; i++) {
1379 			zrl_init(&dnh[i].dnh_zrlock);
1380 
1381 			if (skip) {
1382 				skip--;
1383 				continue;
1384 			}
1385 
1386 			if (dn_block[i].dn_type != DMU_OT_NONE) {
1387 				int interior = dn_block[i].dn_extra_slots;
1388 
1389 				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1390 				dnode_set_slots(dnc, i + 1, interior,
1391 				    DN_SLOT_INTERIOR);
1392 				skip = interior;
1393 			} else {
1394 				dnh[i].dnh_dnode = DN_SLOT_FREE;
1395 				skip = 0;
1396 			}
1397 		}
1398 
1399 		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1400 		    dnode_buf_evict_async, NULL);
1401 		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1402 		if (winner != NULL) {
1403 
1404 			for (int i = 0; i < epb; i++)
1405 				zrl_destroy(&dnh[i].dnh_zrlock);
1406 
1407 			kmem_free(dnc, sizeof (dnode_children_t) +
1408 			    epb * sizeof (dnode_handle_t));
1409 			dnc = winner;
1410 		}
1411 	}
1412 
1413 	ASSERT(dnc->dnc_count == epb);
1414 
1415 	if (flag & DNODE_MUST_BE_ALLOCATED) {
1416 		slots = 1;
1417 
1418 		dnode_slots_hold(dnc, idx, slots);
1419 		dnh = &dnc->dnc_children[idx];
1420 
1421 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1422 			dn = dnh->dnh_dnode;
1423 		} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1424 			DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1425 			dnode_slots_rele(dnc, idx, slots);
1426 			dbuf_rele(db, FTAG);
1427 			return (SET_ERROR(EEXIST));
1428 		} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1429 			DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1430 			dnode_slots_rele(dnc, idx, slots);
1431 			dbuf_rele(db, FTAG);
1432 			return (SET_ERROR(ENOENT));
1433 		} else {
1434 			dnode_slots_rele(dnc, idx, slots);
1435 			while (!dnode_slots_tryenter(dnc, idx, slots)) {
1436 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1437 				cond_resched();
1438 			}
1439 
1440 			/*
1441 			 * Someone else won the race and called dnode_create()
1442 			 * after we checked DN_SLOT_IS_PTR() above but before
1443 			 * we acquired the lock.
1444 			 */
1445 			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1446 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1447 				dn = dnh->dnh_dnode;
1448 			} else {
1449 				dn = dnode_create(os, dn_block + idx, db,
1450 				    object, dnh);
1451 			}
1452 		}
1453 
1454 		mutex_enter(&dn->dn_mtx);
1455 		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1456 			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1457 			mutex_exit(&dn->dn_mtx);
1458 			dnode_slots_rele(dnc, idx, slots);
1459 			dbuf_rele(db, FTAG);
1460 			return (SET_ERROR(ENOENT));
1461 		}
1462 
1463 		/* Don't actually hold if dry run, just return 0 */
1464 		if (flag & DNODE_DRY_RUN) {
1465 			mutex_exit(&dn->dn_mtx);
1466 			dnode_slots_rele(dnc, idx, slots);
1467 			dbuf_rele(db, FTAG);
1468 			return (0);
1469 		}
1470 
1471 		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1472 	} else if (flag & DNODE_MUST_BE_FREE) {
1473 
1474 		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1475 			DNODE_STAT_BUMP(dnode_hold_free_overflow);
1476 			dbuf_rele(db, FTAG);
1477 			return (SET_ERROR(ENOSPC));
1478 		}
1479 
1480 		dnode_slots_hold(dnc, idx, slots);
1481 
1482 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1483 			DNODE_STAT_BUMP(dnode_hold_free_misses);
1484 			dnode_slots_rele(dnc, idx, slots);
1485 			dbuf_rele(db, FTAG);
1486 			return (SET_ERROR(ENOSPC));
1487 		}
1488 
1489 		dnode_slots_rele(dnc, idx, slots);
1490 		while (!dnode_slots_tryenter(dnc, idx, slots)) {
1491 			DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1492 			cond_resched();
1493 		}
1494 
1495 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1496 			DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1497 			dnode_slots_rele(dnc, idx, slots);
1498 			dbuf_rele(db, FTAG);
1499 			return (SET_ERROR(ENOSPC));
1500 		}
1501 
1502 		/*
1503 		 * Allocated but otherwise free dnodes which would
1504 		 * be in the interior of a multi-slot dnodes need
1505 		 * to be freed.  Single slot dnodes can be safely
1506 		 * re-purposed as a performance optimization.
1507 		 */
1508 		if (slots > 1)
1509 			dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1510 
1511 		dnh = &dnc->dnc_children[idx];
1512 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1513 			dn = dnh->dnh_dnode;
1514 		} else {
1515 			dn = dnode_create(os, dn_block + idx, db,
1516 			    object, dnh);
1517 		}
1518 
1519 		mutex_enter(&dn->dn_mtx);
1520 		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1521 			DNODE_STAT_BUMP(dnode_hold_free_refcount);
1522 			mutex_exit(&dn->dn_mtx);
1523 			dnode_slots_rele(dnc, idx, slots);
1524 			dbuf_rele(db, FTAG);
1525 			return (SET_ERROR(EEXIST));
1526 		}
1527 
1528 		/* Don't actually hold if dry run, just return 0 */
1529 		if (flag & DNODE_DRY_RUN) {
1530 			mutex_exit(&dn->dn_mtx);
1531 			dnode_slots_rele(dnc, idx, slots);
1532 			dbuf_rele(db, FTAG);
1533 			return (0);
1534 		}
1535 
1536 		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1537 		DNODE_STAT_BUMP(dnode_hold_free_hits);
1538 	} else {
1539 		dbuf_rele(db, FTAG);
1540 		return (SET_ERROR(EINVAL));
1541 	}
1542 
1543 	ASSERT0(dn->dn_free_txg);
1544 
1545 	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1546 		dbuf_add_ref(db, dnh);
1547 
1548 	mutex_exit(&dn->dn_mtx);
1549 
1550 	/* Now we can rely on the hold to prevent the dnode from moving. */
1551 	dnode_slots_rele(dnc, idx, slots);
1552 
1553 	DNODE_VERIFY(dn);
1554 	ASSERT3P(dnp, !=, NULL);
1555 	ASSERT3P(dn->dn_dbuf, ==, db);
1556 	ASSERT3U(dn->dn_object, ==, object);
1557 	dbuf_rele(db, FTAG);
1558 
1559 	*dnp = dn;
1560 	return (0);
1561 }
1562 
1563 /*
1564  * Return held dnode if the object is allocated, NULL if not.
1565  */
1566 int
1567 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1568 {
1569 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1570 	    dnp));
1571 }
1572 
1573 /*
1574  * Can only add a reference if there is already at least one
1575  * reference on the dnode.  Returns FALSE if unable to add a
1576  * new reference.
1577  */
1578 boolean_t
1579 dnode_add_ref(dnode_t *dn, void *tag)
1580 {
1581 	mutex_enter(&dn->dn_mtx);
1582 	if (zfs_refcount_is_zero(&dn->dn_holds)) {
1583 		mutex_exit(&dn->dn_mtx);
1584 		return (FALSE);
1585 	}
1586 	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1587 	mutex_exit(&dn->dn_mtx);
1588 	return (TRUE);
1589 }
1590 
1591 void
1592 dnode_rele(dnode_t *dn, void *tag)
1593 {
1594 	mutex_enter(&dn->dn_mtx);
1595 	dnode_rele_and_unlock(dn, tag, B_FALSE);
1596 }
1597 
1598 void
1599 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1600 {
1601 	uint64_t refs;
1602 	/* Get while the hold prevents the dnode from moving. */
1603 	dmu_buf_impl_t *db = dn->dn_dbuf;
1604 	dnode_handle_t *dnh = dn->dn_handle;
1605 
1606 	refs = zfs_refcount_remove(&dn->dn_holds, tag);
1607 	if (refs == 0)
1608 		cv_broadcast(&dn->dn_nodnholds);
1609 	mutex_exit(&dn->dn_mtx);
1610 	/* dnode could get destroyed at this point, so don't use it anymore */
1611 
1612 	/*
1613 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1614 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1615 	 * prevent the dnode from moving, since releasing the last hold could
1616 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1617 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1618 	 * other direct or indirect hold on the dnode must first drop the dnode
1619 	 * handle.
1620 	 */
1621 #ifdef ZFS_DEBUG
1622 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1623 #endif
1624 
1625 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1626 	if (refs == 0 && db != NULL) {
1627 		/*
1628 		 * Another thread could add a hold to the dnode handle in
1629 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1630 		 * hold on the parent dbuf prevents the handle from being
1631 		 * destroyed, the hold on the handle is OK. We can't yet assert
1632 		 * that the handle has zero references, but that will be
1633 		 * asserted anyway when the handle gets destroyed.
1634 		 */
1635 		mutex_enter(&db->db_mtx);
1636 		dbuf_rele_and_unlock(db, dnh, evicting);
1637 	}
1638 }
1639 
1640 /*
1641  * Test whether we can create a dnode at the specified location.
1642  */
1643 int
1644 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1645 {
1646 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1647 	    slots, NULL, NULL));
1648 }
1649 
1650 /*
1651  * Checks if the dnode contains any uncommitted dirty records.
1652  */
1653 boolean_t
1654 dnode_is_dirty(dnode_t *dn)
1655 {
1656 	mutex_enter(&dn->dn_mtx);
1657 
1658 	for (int i = 0; i < TXG_SIZE; i++) {
1659 		if (multilist_link_active(&dn->dn_dirty_link[i])) {
1660 			mutex_exit(&dn->dn_mtx);
1661 			return (B_TRUE);
1662 		}
1663 	}
1664 
1665 	mutex_exit(&dn->dn_mtx);
1666 
1667 	return (B_FALSE);
1668 }
1669 
1670 void
1671 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1672 {
1673 	objset_t *os = dn->dn_objset;
1674 	uint64_t txg = tx->tx_txg;
1675 
1676 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1677 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1678 		return;
1679 	}
1680 
1681 	DNODE_VERIFY(dn);
1682 
1683 #ifdef ZFS_DEBUG
1684 	mutex_enter(&dn->dn_mtx);
1685 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1686 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1687 	mutex_exit(&dn->dn_mtx);
1688 #endif
1689 
1690 	/*
1691 	 * Determine old uid/gid when necessary
1692 	 */
1693 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1694 
1695 	multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK];
1696 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1697 
1698 	/*
1699 	 * If we are already marked dirty, we're done.
1700 	 */
1701 	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1702 		multilist_sublist_unlock(mls);
1703 		return;
1704 	}
1705 
1706 	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1707 	    !avl_is_empty(&dn->dn_dbufs));
1708 	ASSERT(dn->dn_datablksz != 0);
1709 	ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1710 	ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1711 	ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1712 
1713 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1714 	    (u_longlong_t)dn->dn_object, (u_longlong_t)txg);
1715 
1716 	multilist_sublist_insert_head(mls, dn);
1717 
1718 	multilist_sublist_unlock(mls);
1719 
1720 	/*
1721 	 * The dnode maintains a hold on its containing dbuf as
1722 	 * long as there are holds on it.  Each instantiated child
1723 	 * dbuf maintains a hold on the dnode.  When the last child
1724 	 * drops its hold, the dnode will drop its hold on the
1725 	 * containing dbuf. We add a "dirty hold" here so that the
1726 	 * dnode will hang around after we finish processing its
1727 	 * children.
1728 	 */
1729 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1730 
1731 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1732 
1733 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1734 }
1735 
1736 void
1737 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1738 {
1739 	mutex_enter(&dn->dn_mtx);
1740 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1741 		mutex_exit(&dn->dn_mtx);
1742 		return;
1743 	}
1744 	dn->dn_free_txg = tx->tx_txg;
1745 	mutex_exit(&dn->dn_mtx);
1746 
1747 	dnode_setdirty(dn, tx);
1748 }
1749 
1750 /*
1751  * Try to change the block size for the indicated dnode.  This can only
1752  * succeed if there are no blocks allocated or dirty beyond first block
1753  */
1754 int
1755 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1756 {
1757 	dmu_buf_impl_t *db;
1758 	int err;
1759 
1760 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1761 	if (size == 0)
1762 		size = SPA_MINBLOCKSIZE;
1763 	else
1764 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1765 
1766 	if (ibs == dn->dn_indblkshift)
1767 		ibs = 0;
1768 
1769 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1770 		return (0);
1771 
1772 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1773 
1774 	/* Check for any allocated blocks beyond the first */
1775 	if (dn->dn_maxblkid != 0)
1776 		goto fail;
1777 
1778 	mutex_enter(&dn->dn_dbufs_mtx);
1779 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1780 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1781 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1782 		    db->db_blkid != DMU_SPILL_BLKID) {
1783 			mutex_exit(&dn->dn_dbufs_mtx);
1784 			goto fail;
1785 		}
1786 	}
1787 	mutex_exit(&dn->dn_dbufs_mtx);
1788 
1789 	if (ibs && dn->dn_nlevels != 1)
1790 		goto fail;
1791 
1792 	/* resize the old block */
1793 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1794 	if (err == 0) {
1795 		dbuf_new_size(db, size, tx);
1796 	} else if (err != ENOENT) {
1797 		goto fail;
1798 	}
1799 
1800 	dnode_setdblksz(dn, size);
1801 	dnode_setdirty(dn, tx);
1802 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1803 	if (ibs) {
1804 		dn->dn_indblkshift = ibs;
1805 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1806 	}
1807 	/* release after we have fixed the blocksize in the dnode */
1808 	if (db)
1809 		dbuf_rele(db, FTAG);
1810 
1811 	rw_exit(&dn->dn_struct_rwlock);
1812 	return (0);
1813 
1814 fail:
1815 	rw_exit(&dn->dn_struct_rwlock);
1816 	return (SET_ERROR(ENOTSUP));
1817 }
1818 
1819 static void
1820 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1821 {
1822 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1823 	int old_nlevels = dn->dn_nlevels;
1824 	dmu_buf_impl_t *db;
1825 	list_t *list;
1826 	dbuf_dirty_record_t *new, *dr, *dr_next;
1827 
1828 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1829 
1830 	ASSERT3U(new_nlevels, >, dn->dn_nlevels);
1831 	dn->dn_nlevels = new_nlevels;
1832 
1833 	ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1834 	dn->dn_next_nlevels[txgoff] = new_nlevels;
1835 
1836 	/* dirty the left indirects */
1837 	db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1838 	ASSERT(db != NULL);
1839 	new = dbuf_dirty(db, tx);
1840 	dbuf_rele(db, FTAG);
1841 
1842 	/* transfer the dirty records to the new indirect */
1843 	mutex_enter(&dn->dn_mtx);
1844 	mutex_enter(&new->dt.di.dr_mtx);
1845 	list = &dn->dn_dirty_records[txgoff];
1846 	for (dr = list_head(list); dr; dr = dr_next) {
1847 		dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1848 
1849 		IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1);
1850 		if (dr->dr_dbuf == NULL ||
1851 		    (dr->dr_dbuf->db_level == old_nlevels - 1 &&
1852 		    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1853 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) {
1854 			list_remove(&dn->dn_dirty_records[txgoff], dr);
1855 			list_insert_tail(&new->dt.di.dr_children, dr);
1856 			dr->dr_parent = new;
1857 		}
1858 	}
1859 	mutex_exit(&new->dt.di.dr_mtx);
1860 	mutex_exit(&dn->dn_mtx);
1861 }
1862 
1863 int
1864 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1865 {
1866 	int ret = 0;
1867 
1868 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1869 
1870 	if (dn->dn_nlevels == nlevels) {
1871 		ret = 0;
1872 		goto out;
1873 	} else if (nlevels < dn->dn_nlevels) {
1874 		ret = SET_ERROR(EINVAL);
1875 		goto out;
1876 	}
1877 
1878 	dnode_set_nlevels_impl(dn, nlevels, tx);
1879 
1880 out:
1881 	rw_exit(&dn->dn_struct_rwlock);
1882 	return (ret);
1883 }
1884 
1885 /* read-holding callers must not rely on the lock being continuously held */
1886 void
1887 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1888     boolean_t force)
1889 {
1890 	int epbs, new_nlevels;
1891 	uint64_t sz;
1892 
1893 	ASSERT(blkid != DMU_BONUS_BLKID);
1894 
1895 	ASSERT(have_read ?
1896 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1897 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1898 
1899 	/*
1900 	 * if we have a read-lock, check to see if we need to do any work
1901 	 * before upgrading to a write-lock.
1902 	 */
1903 	if (have_read) {
1904 		if (blkid <= dn->dn_maxblkid)
1905 			return;
1906 
1907 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1908 			rw_exit(&dn->dn_struct_rwlock);
1909 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1910 		}
1911 	}
1912 
1913 	/*
1914 	 * Raw sends (indicated by the force flag) require that we take the
1915 	 * given blkid even if the value is lower than the current value.
1916 	 */
1917 	if (!force && blkid <= dn->dn_maxblkid)
1918 		goto out;
1919 
1920 	/*
1921 	 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1922 	 * to indicate that this field is set. This allows us to set the
1923 	 * maxblkid to 0 on an existing object in dnode_sync().
1924 	 */
1925 	dn->dn_maxblkid = blkid;
1926 	dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1927 	    blkid | DMU_NEXT_MAXBLKID_SET;
1928 
1929 	/*
1930 	 * Compute the number of levels necessary to support the new maxblkid.
1931 	 * Raw sends will ensure nlevels is set correctly for us.
1932 	 */
1933 	new_nlevels = 1;
1934 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1935 	for (sz = dn->dn_nblkptr;
1936 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1937 		new_nlevels++;
1938 
1939 	ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1940 
1941 	if (!force) {
1942 		if (new_nlevels > dn->dn_nlevels)
1943 			dnode_set_nlevels_impl(dn, new_nlevels, tx);
1944 	} else {
1945 		ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1946 	}
1947 
1948 out:
1949 	if (have_read)
1950 		rw_downgrade(&dn->dn_struct_rwlock);
1951 }
1952 
1953 static void
1954 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1955 {
1956 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1957 	if (db != NULL) {
1958 		dmu_buf_will_dirty(&db->db, tx);
1959 		dbuf_rele(db, FTAG);
1960 	}
1961 }
1962 
1963 /*
1964  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1965  * and end_blkid.
1966  */
1967 static void
1968 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1969     dmu_tx_t *tx)
1970 {
1971 	dmu_buf_impl_t *db_search;
1972 	dmu_buf_impl_t *db;
1973 	avl_index_t where;
1974 
1975 	db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1976 
1977 	mutex_enter(&dn->dn_dbufs_mtx);
1978 
1979 	db_search->db_level = 1;
1980 	db_search->db_blkid = start_blkid + 1;
1981 	db_search->db_state = DB_SEARCH;
1982 	for (;;) {
1983 
1984 		db = avl_find(&dn->dn_dbufs, db_search, &where);
1985 		if (db == NULL)
1986 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1987 
1988 		if (db == NULL || db->db_level != 1 ||
1989 		    db->db_blkid >= end_blkid) {
1990 			break;
1991 		}
1992 
1993 		/*
1994 		 * Setup the next blkid we want to search for.
1995 		 */
1996 		db_search->db_blkid = db->db_blkid + 1;
1997 		ASSERT3U(db->db_blkid, >=, start_blkid);
1998 
1999 		/*
2000 		 * If the dbuf transitions to DB_EVICTING while we're trying
2001 		 * to dirty it, then we will be unable to discover it in
2002 		 * the dbuf hash table. This will result in a call to
2003 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
2004 		 * lock. To avoid a deadlock, we drop the lock before
2005 		 * dirtying the level-1 dbuf.
2006 		 */
2007 		mutex_exit(&dn->dn_dbufs_mtx);
2008 		dnode_dirty_l1(dn, db->db_blkid, tx);
2009 		mutex_enter(&dn->dn_dbufs_mtx);
2010 	}
2011 
2012 #ifdef ZFS_DEBUG
2013 	/*
2014 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
2015 	 */
2016 	db_search->db_level = 1;
2017 	db_search->db_blkid = start_blkid + 1;
2018 	db_search->db_state = DB_SEARCH;
2019 	db = avl_find(&dn->dn_dbufs, db_search, &where);
2020 	if (db == NULL)
2021 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2022 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2023 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
2024 			break;
2025 		if (db->db_state != DB_EVICTING)
2026 			ASSERT(db->db_dirtycnt > 0);
2027 	}
2028 #endif
2029 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2030 	mutex_exit(&dn->dn_dbufs_mtx);
2031 }
2032 
2033 void
2034 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag)
2035 {
2036 	/*
2037 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
2038 	 * initialize the objset.
2039 	 */
2040 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2041 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2042 
2043 		if (ds != NULL) {
2044 			rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2045 		}
2046 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2047 			if (dmu_tx_is_syncing(tx))
2048 				dn->dn_dirtyctx = DN_DIRTY_SYNC;
2049 			else
2050 				dn->dn_dirtyctx = DN_DIRTY_OPEN;
2051 			dn->dn_dirtyctx_firstset = tag;
2052 		}
2053 		if (ds != NULL) {
2054 			rrw_exit(&ds->ds_bp_rwlock, tag);
2055 		}
2056 	}
2057 }
2058 
2059 static void
2060 dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len,
2061     dmu_tx_t *tx)
2062 {
2063 	dmu_buf_impl_t *db;
2064 	int res;
2065 
2066 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2067 	res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE,
2068 	    FTAG, &db);
2069 	rw_exit(&dn->dn_struct_rwlock);
2070 	if (res == 0) {
2071 		db_lock_type_t dblt;
2072 		boolean_t dirty;
2073 
2074 		dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2075 		/* don't dirty if not on disk and not dirty */
2076 		dirty = !list_is_empty(&db->db_dirty_records) ||
2077 		    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2078 		dmu_buf_unlock_parent(db, dblt, FTAG);
2079 		if (dirty) {
2080 			caddr_t data;
2081 
2082 			dmu_buf_will_dirty(&db->db, tx);
2083 			data = db->db.db_data;
2084 			bzero(data + blkoff, len);
2085 		}
2086 		dbuf_rele(db, FTAG);
2087 	}
2088 }
2089 
2090 void
2091 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2092 {
2093 	uint64_t blkoff, blkid, nblks;
2094 	int blksz, blkshift, head, tail;
2095 	int trunc = FALSE;
2096 	int epbs;
2097 
2098 	blksz = dn->dn_datablksz;
2099 	blkshift = dn->dn_datablkshift;
2100 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2101 
2102 	if (len == DMU_OBJECT_END) {
2103 		len = UINT64_MAX - off;
2104 		trunc = TRUE;
2105 	}
2106 
2107 	/*
2108 	 * First, block align the region to free:
2109 	 */
2110 	if (ISP2(blksz)) {
2111 		head = P2NPHASE(off, blksz);
2112 		blkoff = P2PHASE(off, blksz);
2113 		if ((off >> blkshift) > dn->dn_maxblkid)
2114 			return;
2115 	} else {
2116 		ASSERT(dn->dn_maxblkid == 0);
2117 		if (off == 0 && len >= blksz) {
2118 			/*
2119 			 * Freeing the whole block; fast-track this request.
2120 			 */
2121 			blkid = 0;
2122 			nblks = 1;
2123 			if (dn->dn_nlevels > 1) {
2124 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2125 				dnode_dirty_l1(dn, 0, tx);
2126 				rw_exit(&dn->dn_struct_rwlock);
2127 			}
2128 			goto done;
2129 		} else if (off >= blksz) {
2130 			/* Freeing past end-of-data */
2131 			return;
2132 		} else {
2133 			/* Freeing part of the block. */
2134 			head = blksz - off;
2135 			ASSERT3U(head, >, 0);
2136 		}
2137 		blkoff = off;
2138 	}
2139 	/* zero out any partial block data at the start of the range */
2140 	if (head) {
2141 		ASSERT3U(blkoff + head, ==, blksz);
2142 		if (len < head)
2143 			head = len;
2144 		dnode_partial_zero(dn, off, blkoff, head, tx);
2145 		off += head;
2146 		len -= head;
2147 	}
2148 
2149 	/* If the range was less than one block, we're done */
2150 	if (len == 0)
2151 		return;
2152 
2153 	/* If the remaining range is past end of file, we're done */
2154 	if ((off >> blkshift) > dn->dn_maxblkid)
2155 		return;
2156 
2157 	ASSERT(ISP2(blksz));
2158 	if (trunc)
2159 		tail = 0;
2160 	else
2161 		tail = P2PHASE(len, blksz);
2162 
2163 	ASSERT0(P2PHASE(off, blksz));
2164 	/* zero out any partial block data at the end of the range */
2165 	if (tail) {
2166 		if (len < tail)
2167 			tail = len;
2168 		dnode_partial_zero(dn, off + len, 0, tail, tx);
2169 		len -= tail;
2170 	}
2171 
2172 	/* If the range did not include a full block, we are done */
2173 	if (len == 0)
2174 		return;
2175 
2176 	ASSERT(IS_P2ALIGNED(off, blksz));
2177 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2178 	blkid = off >> blkshift;
2179 	nblks = len >> blkshift;
2180 	if (trunc)
2181 		nblks += 1;
2182 
2183 	/*
2184 	 * Dirty all the indirect blocks in this range.  Note that only
2185 	 * the first and last indirect blocks can actually be written
2186 	 * (if they were partially freed) -- they must be dirtied, even if
2187 	 * they do not exist on disk yet.  The interior blocks will
2188 	 * be freed by free_children(), so they will not actually be written.
2189 	 * Even though these interior blocks will not be written, we
2190 	 * dirty them for two reasons:
2191 	 *
2192 	 *  - It ensures that the indirect blocks remain in memory until
2193 	 *    syncing context.  (They have already been prefetched by
2194 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
2195 	 *    them serially here.)
2196 	 *
2197 	 *  - The dirty space accounting will put pressure on the txg sync
2198 	 *    mechanism to begin syncing, and to delay transactions if there
2199 	 *    is a large amount of freeing.  Even though these indirect
2200 	 *    blocks will not be written, we could need to write the same
2201 	 *    amount of space if we copy the freed BPs into deadlists.
2202 	 */
2203 	if (dn->dn_nlevels > 1) {
2204 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2205 		uint64_t first, last;
2206 
2207 		first = blkid >> epbs;
2208 		dnode_dirty_l1(dn, first, tx);
2209 		if (trunc)
2210 			last = dn->dn_maxblkid >> epbs;
2211 		else
2212 			last = (blkid + nblks - 1) >> epbs;
2213 		if (last != first)
2214 			dnode_dirty_l1(dn, last, tx);
2215 
2216 		dnode_dirty_l1range(dn, first, last, tx);
2217 
2218 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2219 		    SPA_BLKPTRSHIFT;
2220 		for (uint64_t i = first + 1; i < last; i++) {
2221 			/*
2222 			 * Set i to the blockid of the next non-hole
2223 			 * level-1 indirect block at or after i.  Note
2224 			 * that dnode_next_offset() operates in terms of
2225 			 * level-0-equivalent bytes.
2226 			 */
2227 			uint64_t ibyte = i << shift;
2228 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2229 			    &ibyte, 2, 1, 0);
2230 			i = ibyte >> shift;
2231 			if (i >= last)
2232 				break;
2233 
2234 			/*
2235 			 * Normally we should not see an error, either
2236 			 * from dnode_next_offset() or dbuf_hold_level()
2237 			 * (except for ESRCH from dnode_next_offset).
2238 			 * If there is an i/o error, then when we read
2239 			 * this block in syncing context, it will use
2240 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2241 			 * to the "failmode" property.  dnode_next_offset()
2242 			 * doesn't have a flag to indicate MUSTSUCCEED.
2243 			 */
2244 			if (err != 0)
2245 				break;
2246 
2247 			dnode_dirty_l1(dn, i, tx);
2248 		}
2249 		rw_exit(&dn->dn_struct_rwlock);
2250 	}
2251 
2252 done:
2253 	/*
2254 	 * Add this range to the dnode range list.
2255 	 * We will finish up this free operation in the syncing phase.
2256 	 */
2257 	mutex_enter(&dn->dn_mtx);
2258 	{
2259 		int txgoff = tx->tx_txg & TXG_MASK;
2260 		if (dn->dn_free_ranges[txgoff] == NULL) {
2261 			dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2262 			    RANGE_SEG64, NULL, 0, 0);
2263 		}
2264 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2265 		range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2266 	}
2267 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2268 	    (u_longlong_t)blkid, (u_longlong_t)nblks,
2269 	    (u_longlong_t)tx->tx_txg);
2270 	mutex_exit(&dn->dn_mtx);
2271 
2272 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2273 	dnode_setdirty(dn, tx);
2274 }
2275 
2276 static boolean_t
2277 dnode_spill_freed(dnode_t *dn)
2278 {
2279 	int i;
2280 
2281 	mutex_enter(&dn->dn_mtx);
2282 	for (i = 0; i < TXG_SIZE; i++) {
2283 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2284 			break;
2285 	}
2286 	mutex_exit(&dn->dn_mtx);
2287 	return (i < TXG_SIZE);
2288 }
2289 
2290 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2291 uint64_t
2292 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2293 {
2294 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2295 	int i;
2296 
2297 	if (blkid == DMU_BONUS_BLKID)
2298 		return (FALSE);
2299 
2300 	/*
2301 	 * If we're in the process of opening the pool, dp will not be
2302 	 * set yet, but there shouldn't be anything dirty.
2303 	 */
2304 	if (dp == NULL)
2305 		return (FALSE);
2306 
2307 	if (dn->dn_free_txg)
2308 		return (TRUE);
2309 
2310 	if (blkid == DMU_SPILL_BLKID)
2311 		return (dnode_spill_freed(dn));
2312 
2313 	mutex_enter(&dn->dn_mtx);
2314 	for (i = 0; i < TXG_SIZE; i++) {
2315 		if (dn->dn_free_ranges[i] != NULL &&
2316 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2317 			break;
2318 	}
2319 	mutex_exit(&dn->dn_mtx);
2320 	return (i < TXG_SIZE);
2321 }
2322 
2323 /* call from syncing context when we actually write/free space for this dnode */
2324 void
2325 dnode_diduse_space(dnode_t *dn, int64_t delta)
2326 {
2327 	uint64_t space;
2328 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2329 	    dn, dn->dn_phys,
2330 	    (u_longlong_t)dn->dn_phys->dn_used,
2331 	    (longlong_t)delta);
2332 
2333 	mutex_enter(&dn->dn_mtx);
2334 	space = DN_USED_BYTES(dn->dn_phys);
2335 	if (delta > 0) {
2336 		ASSERT3U(space + delta, >=, space); /* no overflow */
2337 	} else {
2338 		ASSERT3U(space, >=, -delta); /* no underflow */
2339 	}
2340 	space += delta;
2341 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2342 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2343 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2344 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2345 	} else {
2346 		dn->dn_phys->dn_used = space;
2347 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2348 	}
2349 	mutex_exit(&dn->dn_mtx);
2350 }
2351 
2352 /*
2353  * Scans a block at the indicated "level" looking for a hole or data,
2354  * depending on 'flags'.
2355  *
2356  * If level > 0, then we are scanning an indirect block looking at its
2357  * pointers.  If level == 0, then we are looking at a block of dnodes.
2358  *
2359  * If we don't find what we are looking for in the block, we return ESRCH.
2360  * Otherwise, return with *offset pointing to the beginning (if searching
2361  * forwards) or end (if searching backwards) of the range covered by the
2362  * block pointer we matched on (or dnode).
2363  *
2364  * The basic search algorithm used below by dnode_next_offset() is to
2365  * use this function to search up the block tree (widen the search) until
2366  * we find something (i.e., we don't return ESRCH) and then search back
2367  * down the tree (narrow the search) until we reach our original search
2368  * level.
2369  */
2370 static int
2371 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2372     int lvl, uint64_t blkfill, uint64_t txg)
2373 {
2374 	dmu_buf_impl_t *db = NULL;
2375 	void *data = NULL;
2376 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2377 	uint64_t epb = 1ULL << epbs;
2378 	uint64_t minfill, maxfill;
2379 	boolean_t hole;
2380 	int i, inc, error, span;
2381 
2382 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2383 
2384 	hole = ((flags & DNODE_FIND_HOLE) != 0);
2385 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2386 	ASSERT(txg == 0 || !hole);
2387 
2388 	if (lvl == dn->dn_phys->dn_nlevels) {
2389 		error = 0;
2390 		epb = dn->dn_phys->dn_nblkptr;
2391 		data = dn->dn_phys->dn_blkptr;
2392 	} else {
2393 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2394 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2395 		if (error) {
2396 			if (error != ENOENT)
2397 				return (error);
2398 			if (hole)
2399 				return (0);
2400 			/*
2401 			 * This can only happen when we are searching up
2402 			 * the block tree for data.  We don't really need to
2403 			 * adjust the offset, as we will just end up looking
2404 			 * at the pointer to this block in its parent, and its
2405 			 * going to be unallocated, so we will skip over it.
2406 			 */
2407 			return (SET_ERROR(ESRCH));
2408 		}
2409 		error = dbuf_read(db, NULL,
2410 		    DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
2411 		    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
2412 		if (error) {
2413 			dbuf_rele(db, FTAG);
2414 			return (error);
2415 		}
2416 		data = db->db.db_data;
2417 		rw_enter(&db->db_rwlock, RW_READER);
2418 	}
2419 
2420 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2421 	    db->db_blkptr->blk_birth <= txg ||
2422 	    BP_IS_HOLE(db->db_blkptr))) {
2423 		/*
2424 		 * This can only happen when we are searching up the tree
2425 		 * and these conditions mean that we need to keep climbing.
2426 		 */
2427 		error = SET_ERROR(ESRCH);
2428 	} else if (lvl == 0) {
2429 		dnode_phys_t *dnp = data;
2430 
2431 		ASSERT(dn->dn_type == DMU_OT_DNODE);
2432 		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2433 
2434 		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2435 		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2436 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2437 				break;
2438 		}
2439 
2440 		if (i == blkfill)
2441 			error = SET_ERROR(ESRCH);
2442 
2443 		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2444 		    (i << DNODE_SHIFT);
2445 	} else {
2446 		blkptr_t *bp = data;
2447 		uint64_t start = *offset;
2448 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
2449 		minfill = 0;
2450 		maxfill = blkfill << ((lvl - 1) * epbs);
2451 
2452 		if (hole)
2453 			maxfill--;
2454 		else
2455 			minfill++;
2456 
2457 		if (span >= 8 * sizeof (*offset)) {
2458 			/* This only happens on the highest indirection level */
2459 			ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2460 			*offset = 0;
2461 		} else {
2462 			*offset = *offset >> span;
2463 		}
2464 
2465 		for (i = BF64_GET(*offset, 0, epbs);
2466 		    i >= 0 && i < epb; i += inc) {
2467 			if (BP_GET_FILL(&bp[i]) >= minfill &&
2468 			    BP_GET_FILL(&bp[i]) <= maxfill &&
2469 			    (hole || bp[i].blk_birth > txg))
2470 				break;
2471 			if (inc > 0 || *offset > 0)
2472 				*offset += inc;
2473 		}
2474 
2475 		if (span >= 8 * sizeof (*offset)) {
2476 			*offset = start;
2477 		} else {
2478 			*offset = *offset << span;
2479 		}
2480 
2481 		if (inc < 0) {
2482 			/* traversing backwards; position offset at the end */
2483 			ASSERT3U(*offset, <=, start);
2484 			*offset = MIN(*offset + (1ULL << span) - 1, start);
2485 		} else if (*offset < start) {
2486 			*offset = start;
2487 		}
2488 		if (i < 0 || i >= epb)
2489 			error = SET_ERROR(ESRCH);
2490 	}
2491 
2492 	if (db != NULL) {
2493 		rw_exit(&db->db_rwlock);
2494 		dbuf_rele(db, FTAG);
2495 	}
2496 
2497 	return (error);
2498 }
2499 
2500 /*
2501  * Find the next hole, data, or sparse region at or after *offset.
2502  * The value 'blkfill' tells us how many items we expect to find
2503  * in an L0 data block; this value is 1 for normal objects,
2504  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2505  * DNODES_PER_BLOCK when searching for sparse regions thereof.
2506  *
2507  * Examples:
2508  *
2509  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2510  *	Finds the next/previous hole/data in a file.
2511  *	Used in dmu_offset_next().
2512  *
2513  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2514  *	Finds the next free/allocated dnode an objset's meta-dnode.
2515  *	Only finds objects that have new contents since txg (ie.
2516  *	bonus buffer changes and content removal are ignored).
2517  *	Used in dmu_object_next().
2518  *
2519  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2520  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2521  *	Used in dmu_object_alloc().
2522  */
2523 int
2524 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2525     int minlvl, uint64_t blkfill, uint64_t txg)
2526 {
2527 	uint64_t initial_offset = *offset;
2528 	int lvl, maxlvl;
2529 	int error = 0;
2530 
2531 	if (!(flags & DNODE_FIND_HAVELOCK))
2532 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2533 
2534 	if (dn->dn_phys->dn_nlevels == 0) {
2535 		error = SET_ERROR(ESRCH);
2536 		goto out;
2537 	}
2538 
2539 	if (dn->dn_datablkshift == 0) {
2540 		if (*offset < dn->dn_datablksz) {
2541 			if (flags & DNODE_FIND_HOLE)
2542 				*offset = dn->dn_datablksz;
2543 		} else {
2544 			error = SET_ERROR(ESRCH);
2545 		}
2546 		goto out;
2547 	}
2548 
2549 	maxlvl = dn->dn_phys->dn_nlevels;
2550 
2551 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2552 		error = dnode_next_offset_level(dn,
2553 		    flags, offset, lvl, blkfill, txg);
2554 		if (error != ESRCH)
2555 			break;
2556 	}
2557 
2558 	while (error == 0 && --lvl >= minlvl) {
2559 		error = dnode_next_offset_level(dn,
2560 		    flags, offset, lvl, blkfill, txg);
2561 	}
2562 
2563 	/*
2564 	 * There's always a "virtual hole" at the end of the object, even
2565 	 * if all BP's which physically exist are non-holes.
2566 	 */
2567 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2568 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2569 		error = 0;
2570 	}
2571 
2572 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2573 	    initial_offset < *offset : initial_offset > *offset))
2574 		error = SET_ERROR(ESRCH);
2575 out:
2576 	if (!(flags & DNODE_FIND_HAVELOCK))
2577 		rw_exit(&dn->dn_struct_rwlock);
2578 
2579 	return (error);
2580 }
2581 
2582 #if defined(_KERNEL)
2583 EXPORT_SYMBOL(dnode_hold);
2584 EXPORT_SYMBOL(dnode_rele);
2585 EXPORT_SYMBOL(dnode_set_nlevels);
2586 EXPORT_SYMBOL(dnode_set_blksz);
2587 EXPORT_SYMBOL(dnode_free_range);
2588 EXPORT_SYMBOL(dnode_evict_dbufs);
2589 EXPORT_SYMBOL(dnode_evict_bonus);
2590 #endif
2591