1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
53 
54 /*
55  * ZFS Write Throttle
56  * ------------------
57  *
58  * ZFS must limit the rate of incoming writes to the rate at which it is able
59  * to sync data modifications to the backend storage. Throttling by too much
60  * creates an artificial limit; throttling by too little can only be sustained
61  * for short periods and would lead to highly lumpy performance. On a per-pool
62  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64  * of dirty data decreases. When the amount of dirty data exceeds a
65  * predetermined threshold further modifications are blocked until the amount
66  * of dirty data decreases (as data is synced out).
67  *
68  * The limit on dirty data is tunable, and should be adjusted according to
69  * both the IO capacity and available memory of the system. The larger the
70  * window, the more ZFS is able to aggregate and amortize metadata (and data)
71  * changes. However, memory is a limited resource, and allowing for more dirty
72  * data comes at the cost of keeping other useful data in memory (for example
73  * ZFS data cached by the ARC).
74  *
75  * Implementation
76  *
77  * As buffers are modified dsl_pool_willuse_space() increments both the per-
78  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79  * dirty space used; dsl_pool_dirty_space() decrements those values as data
80  * is synced out from dsl_pool_sync(). While only the poolwide value is
81  * relevant, the per-txg value is useful for debugging. The tunable
82  * zfs_dirty_data_max determines the dirty space limit. Once that value is
83  * exceeded, new writes are halted until space frees up.
84  *
85  * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86  * ensure that there is a txg syncing (see the comment in txg.c for a full
87  * description of transaction group stages).
88  *
89  * The IO scheduler uses both the dirty space limit and current amount of
90  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92  *
93  * The delay is also calculated based on the amount of dirty data.  See the
94  * comment above dmu_tx_delay() for details.
95  */
96 
97 /*
98  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99  * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
100  * parameter.
101  */
102 unsigned long zfs_dirty_data_max = 0;
103 unsigned long zfs_dirty_data_max_max = 0;
104 int zfs_dirty_data_max_percent = 10;
105 int zfs_dirty_data_max_max_percent = 25;
106 
107 /*
108  * The upper limit of TX_WRITE log data.  Write operations are throttled
109  * when approaching the limit until log data is cleared out after txg sync.
110  * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
111  */
112 unsigned long zfs_wrlog_data_max = 0;
113 
114 /*
115  * If there's at least this much dirty data (as a percentage of
116  * zfs_dirty_data_max), push out a txg.  This should be less than
117  * zfs_vdev_async_write_active_min_dirty_percent.
118  */
119 static int zfs_dirty_data_sync_percent = 20;
120 
121 /*
122  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
123  * and delay each transaction.
124  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
125  */
126 int zfs_delay_min_dirty_percent = 60;
127 
128 /*
129  * This controls how quickly the delay approaches infinity.
130  * Larger values cause it to delay more for a given amount of dirty data.
131  * Therefore larger values will cause there to be less dirty data for a
132  * given throughput.
133  *
134  * For the smoothest delay, this value should be about 1 billion divided
135  * by the maximum number of operations per second.  This will smoothly
136  * handle between 10x and 1/10th this number.
137  *
138  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
139  * multiply in dmu_tx_delay().
140  */
141 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
142 
143 /*
144  * This determines the number of threads used by the dp_sync_taskq.
145  */
146 static int zfs_sync_taskq_batch_pct = 75;
147 
148 /*
149  * These tunables determine the behavior of how zil_itxg_clean() is
150  * called via zil_clean() in the context of spa_sync(). When an itxg
151  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
152  * If the dispatch fails, the call to zil_itxg_clean() will occur
153  * synchronously in the context of spa_sync(), which can negatively
154  * impact the performance of spa_sync() (e.g. in the case of the itxg
155  * list having a large number of itxs that needs to be cleaned).
156  *
157  * Thus, these tunables can be used to manipulate the behavior of the
158  * taskq used by zil_clean(); they determine the number of taskq entries
159  * that are pre-populated when the taskq is first created (via the
160  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
161  * taskq entries that are cached after an on-demand allocation (via the
162  * "zfs_zil_clean_taskq_maxalloc").
163  *
164  * The idea being, we want to try reasonably hard to ensure there will
165  * already be a taskq entry pre-allocated by the time that it is needed
166  * by zil_clean(). This way, we can avoid the possibility of an
167  * on-demand allocation of a new taskq entry from failing, which would
168  * result in zil_itxg_clean() being called synchronously from zil_clean()
169  * (which can adversely affect performance of spa_sync()).
170  *
171  * Additionally, the number of threads used by the taskq can be
172  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
173  */
174 static int zfs_zil_clean_taskq_nthr_pct = 100;
175 static int zfs_zil_clean_taskq_minalloc = 1024;
176 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
177 
178 int
179 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
180 {
181 	uint64_t obj;
182 	int err;
183 
184 	err = zap_lookup(dp->dp_meta_objset,
185 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
186 	    name, sizeof (obj), 1, &obj);
187 	if (err)
188 		return (err);
189 
190 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
191 }
192 
193 static dsl_pool_t *
194 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
195 {
196 	dsl_pool_t *dp;
197 	blkptr_t *bp = spa_get_rootblkptr(spa);
198 
199 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
200 	dp->dp_spa = spa;
201 	dp->dp_meta_rootbp = *bp;
202 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
203 	txg_init(dp, txg);
204 	mmp_init(spa);
205 
206 	txg_list_create(&dp->dp_dirty_datasets, spa,
207 	    offsetof(dsl_dataset_t, ds_dirty_link));
208 	txg_list_create(&dp->dp_dirty_zilogs, spa,
209 	    offsetof(zilog_t, zl_dirty_link));
210 	txg_list_create(&dp->dp_dirty_dirs, spa,
211 	    offsetof(dsl_dir_t, dd_dirty_link));
212 	txg_list_create(&dp->dp_sync_tasks, spa,
213 	    offsetof(dsl_sync_task_t, dst_node));
214 	txg_list_create(&dp->dp_early_sync_tasks, spa,
215 	    offsetof(dsl_sync_task_t, dst_node));
216 
217 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
218 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
219 	    TASKQ_THREADS_CPU_PCT);
220 
221 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
222 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
223 	    zfs_zil_clean_taskq_minalloc,
224 	    zfs_zil_clean_taskq_maxalloc,
225 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
226 
227 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
228 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
229 
230 	aggsum_init(&dp->dp_wrlog_total, 0);
231 	for (int i = 0; i < TXG_SIZE; i++) {
232 		aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
233 	}
234 
235 	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
236 	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
237 	    TASKQ_THREADS_CPU_PCT);
238 	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
239 	    100, defclsyspri, boot_ncpus, INT_MAX,
240 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
241 
242 	return (dp);
243 }
244 
245 int
246 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
247 {
248 	int err;
249 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
250 
251 	/*
252 	 * Initialize the caller's dsl_pool_t structure before we actually open
253 	 * the meta objset.  This is done because a self-healing write zio may
254 	 * be issued as part of dmu_objset_open_impl() and the spa needs its
255 	 * dsl_pool_t initialized in order to handle the write.
256 	 */
257 	*dpp = dp;
258 
259 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
260 	    &dp->dp_meta_objset);
261 	if (err != 0) {
262 		dsl_pool_close(dp);
263 		*dpp = NULL;
264 	}
265 
266 	return (err);
267 }
268 
269 int
270 dsl_pool_open(dsl_pool_t *dp)
271 {
272 	int err;
273 	dsl_dir_t *dd;
274 	dsl_dataset_t *ds;
275 	uint64_t obj;
276 
277 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
278 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
279 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
280 	    &dp->dp_root_dir_obj);
281 	if (err)
282 		goto out;
283 
284 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
285 	    NULL, dp, &dp->dp_root_dir);
286 	if (err)
287 		goto out;
288 
289 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
290 	if (err)
291 		goto out;
292 
293 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
294 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
295 		if (err)
296 			goto out;
297 		err = dsl_dataset_hold_obj(dp,
298 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
299 		if (err == 0) {
300 			err = dsl_dataset_hold_obj(dp,
301 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
302 			    &dp->dp_origin_snap);
303 			dsl_dataset_rele(ds, FTAG);
304 		}
305 		dsl_dir_rele(dd, dp);
306 		if (err)
307 			goto out;
308 	}
309 
310 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
311 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
312 		    &dp->dp_free_dir);
313 		if (err)
314 			goto out;
315 
316 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
317 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
318 		if (err)
319 			goto out;
320 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
321 		    dp->dp_meta_objset, obj));
322 	}
323 
324 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
325 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
326 		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
327 		if (err == 0) {
328 			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
329 			    dp->dp_meta_objset, obj));
330 		} else if (err == ENOENT) {
331 			/*
332 			 * We might not have created the remap bpobj yet.
333 			 */
334 			err = 0;
335 		} else {
336 			goto out;
337 		}
338 	}
339 
340 	/*
341 	 * Note: errors ignored, because the these special dirs, used for
342 	 * space accounting, are only created on demand.
343 	 */
344 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
345 	    &dp->dp_leak_dir);
346 
347 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
348 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
350 		    &dp->dp_bptree_obj);
351 		if (err != 0)
352 			goto out;
353 	}
354 
355 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
356 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
357 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
358 		    &dp->dp_empty_bpobj);
359 		if (err != 0)
360 			goto out;
361 	}
362 
363 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
364 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
365 	    &dp->dp_tmp_userrefs_obj);
366 	if (err == ENOENT)
367 		err = 0;
368 	if (err)
369 		goto out;
370 
371 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
372 
373 out:
374 	rrw_exit(&dp->dp_config_rwlock, FTAG);
375 	return (err);
376 }
377 
378 void
379 dsl_pool_close(dsl_pool_t *dp)
380 {
381 	/*
382 	 * Drop our references from dsl_pool_open().
383 	 *
384 	 * Since we held the origin_snap from "syncing" context (which
385 	 * includes pool-opening context), it actually only got a "ref"
386 	 * and not a hold, so just drop that here.
387 	 */
388 	if (dp->dp_origin_snap != NULL)
389 		dsl_dataset_rele(dp->dp_origin_snap, dp);
390 	if (dp->dp_mos_dir != NULL)
391 		dsl_dir_rele(dp->dp_mos_dir, dp);
392 	if (dp->dp_free_dir != NULL)
393 		dsl_dir_rele(dp->dp_free_dir, dp);
394 	if (dp->dp_leak_dir != NULL)
395 		dsl_dir_rele(dp->dp_leak_dir, dp);
396 	if (dp->dp_root_dir != NULL)
397 		dsl_dir_rele(dp->dp_root_dir, dp);
398 
399 	bpobj_close(&dp->dp_free_bpobj);
400 	bpobj_close(&dp->dp_obsolete_bpobj);
401 
402 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
403 	if (dp->dp_meta_objset != NULL)
404 		dmu_objset_evict(dp->dp_meta_objset);
405 
406 	txg_list_destroy(&dp->dp_dirty_datasets);
407 	txg_list_destroy(&dp->dp_dirty_zilogs);
408 	txg_list_destroy(&dp->dp_sync_tasks);
409 	txg_list_destroy(&dp->dp_early_sync_tasks);
410 	txg_list_destroy(&dp->dp_dirty_dirs);
411 
412 	taskq_destroy(dp->dp_zil_clean_taskq);
413 	taskq_destroy(dp->dp_sync_taskq);
414 
415 	/*
416 	 * We can't set retry to TRUE since we're explicitly specifying
417 	 * a spa to flush. This is good enough; any missed buffers for
418 	 * this spa won't cause trouble, and they'll eventually fall
419 	 * out of the ARC just like any other unused buffer.
420 	 */
421 	arc_flush(dp->dp_spa, FALSE);
422 
423 	mmp_fini(dp->dp_spa);
424 	txg_fini(dp);
425 	dsl_scan_fini(dp);
426 	dmu_buf_user_evict_wait();
427 
428 	rrw_destroy(&dp->dp_config_rwlock);
429 	mutex_destroy(&dp->dp_lock);
430 	cv_destroy(&dp->dp_spaceavail_cv);
431 
432 	ASSERT0(aggsum_value(&dp->dp_wrlog_total));
433 	aggsum_fini(&dp->dp_wrlog_total);
434 	for (int i = 0; i < TXG_SIZE; i++) {
435 		ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
436 		aggsum_fini(&dp->dp_wrlog_pertxg[i]);
437 	}
438 
439 	taskq_destroy(dp->dp_unlinked_drain_taskq);
440 	taskq_destroy(dp->dp_zrele_taskq);
441 	if (dp->dp_blkstats != NULL) {
442 		mutex_destroy(&dp->dp_blkstats->zab_lock);
443 		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
444 	}
445 	kmem_free(dp, sizeof (dsl_pool_t));
446 }
447 
448 void
449 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
450 {
451 	uint64_t obj;
452 	/*
453 	 * Currently, we only create the obsolete_bpobj where there are
454 	 * indirect vdevs with referenced mappings.
455 	 */
456 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
457 	/* create and open the obsolete_bpobj */
458 	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
459 	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
460 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
461 	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
462 	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
463 }
464 
465 void
466 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
467 {
468 	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
469 	VERIFY0(zap_remove(dp->dp_meta_objset,
470 	    DMU_POOL_DIRECTORY_OBJECT,
471 	    DMU_POOL_OBSOLETE_BPOBJ, tx));
472 	bpobj_free(dp->dp_meta_objset,
473 	    dp->dp_obsolete_bpobj.bpo_object, tx);
474 	bpobj_close(&dp->dp_obsolete_bpobj);
475 }
476 
477 dsl_pool_t *
478 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
479     dsl_crypto_params_t *dcp, uint64_t txg)
480 {
481 	int err;
482 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
483 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
484 #ifdef _KERNEL
485 	objset_t *os;
486 #else
487 	objset_t *os __attribute__((unused));
488 #endif
489 	dsl_dataset_t *ds;
490 	uint64_t obj;
491 
492 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
493 
494 	/* create and open the MOS (meta-objset) */
495 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
496 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
497 	spa->spa_meta_objset = dp->dp_meta_objset;
498 
499 	/* create the pool directory */
500 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
501 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
502 	ASSERT0(err);
503 
504 	/* Initialize scan structures */
505 	VERIFY0(dsl_scan_init(dp, txg));
506 
507 	/* create and open the root dir */
508 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
509 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
510 	    NULL, dp, &dp->dp_root_dir));
511 
512 	/* create and open the meta-objset dir */
513 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
514 	VERIFY0(dsl_pool_open_special_dir(dp,
515 	    MOS_DIR_NAME, &dp->dp_mos_dir));
516 
517 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
518 		/* create and open the free dir */
519 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
520 		    FREE_DIR_NAME, tx);
521 		VERIFY0(dsl_pool_open_special_dir(dp,
522 		    FREE_DIR_NAME, &dp->dp_free_dir));
523 
524 		/* create and open the free_bplist */
525 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
526 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
528 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
529 		    dp->dp_meta_objset, obj));
530 	}
531 
532 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
533 		dsl_pool_create_origin(dp, tx);
534 
535 	/*
536 	 * Some features may be needed when creating the root dataset, so we
537 	 * create the feature objects here.
538 	 */
539 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
540 		spa_feature_create_zap_objects(spa, tx);
541 
542 	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
543 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
544 		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
545 
546 	/* create the root dataset */
547 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
548 
549 	/* create the root objset */
550 	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
551 	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
552 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
553 	os = dmu_objset_create_impl(dp->dp_spa, ds,
554 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
555 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
556 #ifdef _KERNEL
557 	zfs_create_fs(os, kcred, zplprops, tx);
558 #endif
559 	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
560 
561 	dmu_tx_commit(tx);
562 
563 	rrw_exit(&dp->dp_config_rwlock, FTAG);
564 
565 	return (dp);
566 }
567 
568 /*
569  * Account for the meta-objset space in its placeholder dsl_dir.
570  */
571 void
572 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
573     int64_t used, int64_t comp, int64_t uncomp)
574 {
575 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
576 	mutex_enter(&dp->dp_lock);
577 	dp->dp_mos_used_delta += used;
578 	dp->dp_mos_compressed_delta += comp;
579 	dp->dp_mos_uncompressed_delta += uncomp;
580 	mutex_exit(&dp->dp_lock);
581 }
582 
583 static void
584 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
585 {
586 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
587 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
588 	VERIFY0(zio_wait(zio));
589 	dmu_objset_sync_done(dp->dp_meta_objset, tx);
590 	taskq_wait(dp->dp_sync_taskq);
591 	multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
592 
593 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
594 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
595 }
596 
597 static void
598 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
599 {
600 	ASSERT(MUTEX_HELD(&dp->dp_lock));
601 
602 	if (delta < 0)
603 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
604 
605 	dp->dp_dirty_total += delta;
606 
607 	/*
608 	 * Note: we signal even when increasing dp_dirty_total.
609 	 * This ensures forward progress -- each thread wakes the next waiter.
610 	 */
611 	if (dp->dp_dirty_total < zfs_dirty_data_max)
612 		cv_signal(&dp->dp_spaceavail_cv);
613 }
614 
615 void
616 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
617 {
618 	ASSERT3S(size, >=, 0);
619 
620 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
621 	aggsum_add(&dp->dp_wrlog_total, size);
622 
623 	/* Choose a value slightly bigger than min dirty sync bytes */
624 	uint64_t sync_min =
625 	    zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
626 	if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
627 		txg_kick(dp, txg);
628 }
629 
630 boolean_t
631 dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
632 {
633 	uint64_t delay_min_bytes =
634 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
635 
636 	return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
637 }
638 
639 static void
640 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
641 {
642 	int64_t delta;
643 	delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
644 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
645 	aggsum_add(&dp->dp_wrlog_total, delta);
646 	/* Compact per-CPU sums after the big change. */
647 	(void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
648 	(void) aggsum_value(&dp->dp_wrlog_total);
649 }
650 
651 #ifdef ZFS_DEBUG
652 static boolean_t
653 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
654 {
655 	spa_t *spa = dp->dp_spa;
656 	vdev_t *rvd = spa->spa_root_vdev;
657 
658 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
659 		vdev_t *vd = rvd->vdev_child[c];
660 		txg_list_t *tl = &vd->vdev_ms_list;
661 		metaslab_t *ms;
662 
663 		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
664 		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
665 			VERIFY(range_tree_is_empty(ms->ms_freeing));
666 			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
667 		}
668 	}
669 
670 	return (B_TRUE);
671 }
672 #else
673 #define	dsl_early_sync_task_verify(dp, txg) \
674 	((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
675 #endif
676 
677 void
678 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
679 {
680 	zio_t *zio;
681 	dmu_tx_t *tx;
682 	dsl_dir_t *dd;
683 	dsl_dataset_t *ds;
684 	objset_t *mos = dp->dp_meta_objset;
685 	list_t synced_datasets;
686 
687 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
688 	    offsetof(dsl_dataset_t, ds_synced_link));
689 
690 	tx = dmu_tx_create_assigned(dp, txg);
691 
692 	/*
693 	 * Run all early sync tasks before writing out any dirty blocks.
694 	 * For more info on early sync tasks see block comment in
695 	 * dsl_early_sync_task().
696 	 */
697 	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
698 		dsl_sync_task_t *dst;
699 
700 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
701 		while ((dst =
702 		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
703 			ASSERT(dsl_early_sync_task_verify(dp, txg));
704 			dsl_sync_task_sync(dst, tx);
705 		}
706 		ASSERT(dsl_early_sync_task_verify(dp, txg));
707 	}
708 
709 	/*
710 	 * Write out all dirty blocks of dirty datasets.
711 	 */
712 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
713 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
714 		/*
715 		 * We must not sync any non-MOS datasets twice, because
716 		 * we may have taken a snapshot of them.  However, we
717 		 * may sync newly-created datasets on pass 2.
718 		 */
719 		ASSERT(!list_link_active(&ds->ds_synced_link));
720 		list_insert_tail(&synced_datasets, ds);
721 		dsl_dataset_sync(ds, zio, tx);
722 	}
723 	VERIFY0(zio_wait(zio));
724 
725 	/*
726 	 * Update the long range free counter after
727 	 * we're done syncing user data
728 	 */
729 	mutex_enter(&dp->dp_lock);
730 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
731 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
732 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
733 	mutex_exit(&dp->dp_lock);
734 
735 	/*
736 	 * After the data blocks have been written (ensured by the zio_wait()
737 	 * above), update the user/group/project space accounting.  This happens
738 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
739 	 * continuing.
740 	 */
741 	for (ds = list_head(&synced_datasets); ds != NULL;
742 	    ds = list_next(&synced_datasets, ds)) {
743 		dmu_objset_sync_done(ds->ds_objset, tx);
744 	}
745 	taskq_wait(dp->dp_sync_taskq);
746 
747 	/*
748 	 * Sync the datasets again to push out the changes due to
749 	 * userspace updates.  This must be done before we process the
750 	 * sync tasks, so that any snapshots will have the correct
751 	 * user accounting information (and we won't get confused
752 	 * about which blocks are part of the snapshot).
753 	 */
754 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
755 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
756 		objset_t *os = ds->ds_objset;
757 
758 		ASSERT(list_link_active(&ds->ds_synced_link));
759 		dmu_buf_rele(ds->ds_dbuf, ds);
760 		dsl_dataset_sync(ds, zio, tx);
761 
762 		/*
763 		 * Release any key mappings created by calls to
764 		 * dsl_dataset_dirty() from the userquota accounting
765 		 * code paths.
766 		 */
767 		if (os->os_encrypted && !os->os_raw_receive &&
768 		    !os->os_next_write_raw[txg & TXG_MASK]) {
769 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
770 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
771 		}
772 	}
773 	VERIFY0(zio_wait(zio));
774 
775 	/*
776 	 * Now that the datasets have been completely synced, we can
777 	 * clean up our in-memory structures accumulated while syncing:
778 	 *
779 	 *  - move dead blocks from the pending deadlist and livelists
780 	 *    to the on-disk versions
781 	 *  - release hold from dsl_dataset_dirty()
782 	 *  - release key mapping hold from dsl_dataset_dirty()
783 	 */
784 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
785 		objset_t *os = ds->ds_objset;
786 
787 		if (os->os_encrypted && !os->os_raw_receive &&
788 		    !os->os_next_write_raw[txg & TXG_MASK]) {
789 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
790 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
791 		}
792 
793 		dsl_dataset_sync_done(ds, tx);
794 	}
795 
796 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
797 		dsl_dir_sync(dd, tx);
798 	}
799 
800 	/*
801 	 * The MOS's space is accounted for in the pool/$MOS
802 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
803 	 * it, so we remember the deltas and apply them here.
804 	 */
805 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
806 	    dp->dp_mos_uncompressed_delta != 0) {
807 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
808 		    dp->dp_mos_used_delta,
809 		    dp->dp_mos_compressed_delta,
810 		    dp->dp_mos_uncompressed_delta, tx);
811 		dp->dp_mos_used_delta = 0;
812 		dp->dp_mos_compressed_delta = 0;
813 		dp->dp_mos_uncompressed_delta = 0;
814 	}
815 
816 	if (dmu_objset_is_dirty(mos, txg)) {
817 		dsl_pool_sync_mos(dp, tx);
818 	}
819 
820 	/*
821 	 * We have written all of the accounted dirty data, so our
822 	 * dp_space_towrite should now be zero. However, some seldom-used
823 	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
824 	 * the accounting of any dirtied space now.
825 	 *
826 	 * Note that, besides any dirty data from datasets, the amount of
827 	 * dirty data in the MOS is also accounted by the pool. Therefore,
828 	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
829 	 * attempt to update the accounting for the same dirty data twice.
830 	 * (i.e. at this point we only update the accounting for the space
831 	 * that we know that we "leaked").
832 	 */
833 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
834 
835 	/*
836 	 * If we modify a dataset in the same txg that we want to destroy it,
837 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
838 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
839 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
840 	 * and clearing the hold on it) before we process the sync_tasks.
841 	 * The MOS data dirtied by the sync_tasks will be synced on the next
842 	 * pass.
843 	 */
844 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
845 		dsl_sync_task_t *dst;
846 		/*
847 		 * No more sync tasks should have been added while we
848 		 * were syncing.
849 		 */
850 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
851 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
852 			dsl_sync_task_sync(dst, tx);
853 	}
854 
855 	dmu_tx_commit(tx);
856 
857 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
858 }
859 
860 void
861 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
862 {
863 	zilog_t *zilog;
864 
865 	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
866 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
867 		/*
868 		 * We don't remove the zilog from the dp_dirty_zilogs
869 		 * list until after we've cleaned it. This ensures that
870 		 * callers of zilog_is_dirty() receive an accurate
871 		 * answer when they are racing with the spa sync thread.
872 		 */
873 		zil_clean(zilog, txg);
874 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
875 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
876 		dmu_buf_rele(ds->ds_dbuf, zilog);
877 	}
878 
879 	dsl_pool_wrlog_clear(dp, txg);
880 
881 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
882 }
883 
884 /*
885  * TRUE if the current thread is the tx_sync_thread or if we
886  * are being called from SPA context during pool initialization.
887  */
888 int
889 dsl_pool_sync_context(dsl_pool_t *dp)
890 {
891 	return (curthread == dp->dp_tx.tx_sync_thread ||
892 	    spa_is_initializing(dp->dp_spa) ||
893 	    taskq_member(dp->dp_sync_taskq, curthread));
894 }
895 
896 /*
897  * This function returns the amount of allocatable space in the pool
898  * minus whatever space is currently reserved by ZFS for specific
899  * purposes. Specifically:
900  *
901  * 1] Any reserved SLOP space
902  * 2] Any space used by the checkpoint
903  * 3] Any space used for deferred frees
904  *
905  * The latter 2 are especially important because they are needed to
906  * rectify the SPA's and DMU's different understanding of how much space
907  * is used. Now the DMU is aware of that extra space tracked by the SPA
908  * without having to maintain a separate special dir (e.g similar to
909  * $MOS, $FREEING, and $LEAKED).
910  *
911  * Note: By deferred frees here, we mean the frees that were deferred
912  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
913  * segments placed in ms_defer trees during metaslab_sync_done().
914  */
915 uint64_t
916 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
917 {
918 	spa_t *spa = dp->dp_spa;
919 	uint64_t space, resv, adjustedsize;
920 	uint64_t spa_deferred_frees =
921 	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
922 
923 	space = spa_get_dspace(spa)
924 	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
925 	resv = spa_get_slop_space(spa);
926 
927 	switch (slop_policy) {
928 	case ZFS_SPACE_CHECK_NORMAL:
929 		break;
930 	case ZFS_SPACE_CHECK_RESERVED:
931 		resv >>= 1;
932 		break;
933 	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
934 		resv >>= 2;
935 		break;
936 	case ZFS_SPACE_CHECK_NONE:
937 		resv = 0;
938 		break;
939 	default:
940 		panic("invalid slop policy value: %d", slop_policy);
941 		break;
942 	}
943 	adjustedsize = (space >= resv) ? (space - resv) : 0;
944 
945 	return (adjustedsize);
946 }
947 
948 uint64_t
949 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
950 {
951 	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
952 	uint64_t deferred =
953 	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
954 	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
955 	return (quota);
956 }
957 
958 uint64_t
959 dsl_pool_deferred_space(dsl_pool_t *dp)
960 {
961 	return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
962 }
963 
964 boolean_t
965 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
966 {
967 	uint64_t delay_min_bytes =
968 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
969 
970 	mutex_enter(&dp->dp_lock);
971 	uint64_t dirty = dp->dp_dirty_total;
972 	mutex_exit(&dp->dp_lock);
973 
974 	return (dirty > delay_min_bytes);
975 }
976 
977 static boolean_t
978 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
979 {
980 	ASSERT(MUTEX_HELD(&dp->dp_lock));
981 
982 	uint64_t dirty_min_bytes =
983 	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
984 	uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
985 
986 	return (dirty > dirty_min_bytes);
987 }
988 
989 void
990 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
991 {
992 	if (space > 0) {
993 		mutex_enter(&dp->dp_lock);
994 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
995 		dsl_pool_dirty_delta(dp, space);
996 		boolean_t needsync = !dmu_tx_is_syncing(tx) &&
997 		    dsl_pool_need_dirty_sync(dp, tx->tx_txg);
998 		mutex_exit(&dp->dp_lock);
999 
1000 		if (needsync)
1001 			txg_kick(dp, tx->tx_txg);
1002 	}
1003 }
1004 
1005 void
1006 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
1007 {
1008 	ASSERT3S(space, >=, 0);
1009 	if (space == 0)
1010 		return;
1011 
1012 	mutex_enter(&dp->dp_lock);
1013 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1014 		/* XXX writing something we didn't dirty? */
1015 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1016 	}
1017 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1018 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1019 	ASSERT3U(dp->dp_dirty_total, >=, space);
1020 	dsl_pool_dirty_delta(dp, -space);
1021 	mutex_exit(&dp->dp_lock);
1022 }
1023 
1024 static int
1025 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1026 {
1027 	dmu_tx_t *tx = arg;
1028 	dsl_dataset_t *ds, *prev = NULL;
1029 	int err;
1030 
1031 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1032 	if (err)
1033 		return (err);
1034 
1035 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1036 		err = dsl_dataset_hold_obj(dp,
1037 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1038 		if (err) {
1039 			dsl_dataset_rele(ds, FTAG);
1040 			return (err);
1041 		}
1042 
1043 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1044 			break;
1045 		dsl_dataset_rele(ds, FTAG);
1046 		ds = prev;
1047 		prev = NULL;
1048 	}
1049 
1050 	if (prev == NULL) {
1051 		prev = dp->dp_origin_snap;
1052 
1053 		/*
1054 		 * The $ORIGIN can't have any data, or the accounting
1055 		 * will be wrong.
1056 		 */
1057 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1058 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
1059 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
1060 
1061 		/* The origin doesn't get attached to itself */
1062 		if (ds->ds_object == prev->ds_object) {
1063 			dsl_dataset_rele(ds, FTAG);
1064 			return (0);
1065 		}
1066 
1067 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
1068 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1069 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
1070 		    dsl_dataset_phys(prev)->ds_creation_txg;
1071 
1072 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1073 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1074 
1075 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1076 		dsl_dataset_phys(prev)->ds_num_children++;
1077 
1078 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1079 			ASSERT(ds->ds_prev == NULL);
1080 			VERIFY0(dsl_dataset_hold_obj(dp,
1081 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1082 			    ds, &ds->ds_prev));
1083 		}
1084 	}
1085 
1086 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1087 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1088 
1089 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1090 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1091 		dsl_dataset_phys(prev)->ds_next_clones_obj =
1092 		    zap_create(dp->dp_meta_objset,
1093 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1094 	}
1095 	VERIFY0(zap_add_int(dp->dp_meta_objset,
1096 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1097 
1098 	dsl_dataset_rele(ds, FTAG);
1099 	if (prev != dp->dp_origin_snap)
1100 		dsl_dataset_rele(prev, FTAG);
1101 	return (0);
1102 }
1103 
1104 void
1105 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1106 {
1107 	ASSERT(dmu_tx_is_syncing(tx));
1108 	ASSERT(dp->dp_origin_snap != NULL);
1109 
1110 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1111 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1112 }
1113 
1114 static int
1115 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1116 {
1117 	dmu_tx_t *tx = arg;
1118 	objset_t *mos = dp->dp_meta_objset;
1119 
1120 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1121 		dsl_dataset_t *origin;
1122 
1123 		VERIFY0(dsl_dataset_hold_obj(dp,
1124 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1125 
1126 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1127 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1128 			dsl_dir_phys(origin->ds_dir)->dd_clones =
1129 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1130 			    0, tx);
1131 		}
1132 
1133 		VERIFY0(zap_add_int(dp->dp_meta_objset,
1134 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1135 		    ds->ds_object, tx));
1136 
1137 		dsl_dataset_rele(origin, FTAG);
1138 	}
1139 	return (0);
1140 }
1141 
1142 void
1143 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1144 {
1145 	uint64_t obj;
1146 
1147 	ASSERT(dmu_tx_is_syncing(tx));
1148 
1149 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1150 	VERIFY0(dsl_pool_open_special_dir(dp,
1151 	    FREE_DIR_NAME, &dp->dp_free_dir));
1152 
1153 	/*
1154 	 * We can't use bpobj_alloc(), because spa_version() still
1155 	 * returns the old version, and we need a new-version bpobj with
1156 	 * subobj support.  So call dmu_object_alloc() directly.
1157 	 */
1158 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1159 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1160 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1161 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1162 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1163 
1164 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1165 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1166 }
1167 
1168 void
1169 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1170 {
1171 	uint64_t dsobj;
1172 	dsl_dataset_t *ds;
1173 
1174 	ASSERT(dmu_tx_is_syncing(tx));
1175 	ASSERT(dp->dp_origin_snap == NULL);
1176 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1177 
1178 	/* create the origin dir, ds, & snap-ds */
1179 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1180 	    NULL, 0, kcred, NULL, tx);
1181 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1182 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1183 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1184 	    dp, &dp->dp_origin_snap));
1185 	dsl_dataset_rele(ds, FTAG);
1186 }
1187 
1188 taskq_t *
1189 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1190 {
1191 	return (dp->dp_zrele_taskq);
1192 }
1193 
1194 taskq_t *
1195 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1196 {
1197 	return (dp->dp_unlinked_drain_taskq);
1198 }
1199 
1200 /*
1201  * Walk through the pool-wide zap object of temporary snapshot user holds
1202  * and release them.
1203  */
1204 void
1205 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1206 {
1207 	zap_attribute_t za;
1208 	zap_cursor_t zc;
1209 	objset_t *mos = dp->dp_meta_objset;
1210 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1211 	nvlist_t *holds;
1212 
1213 	if (zapobj == 0)
1214 		return;
1215 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1216 
1217 	holds = fnvlist_alloc();
1218 
1219 	for (zap_cursor_init(&zc, mos, zapobj);
1220 	    zap_cursor_retrieve(&zc, &za) == 0;
1221 	    zap_cursor_advance(&zc)) {
1222 		char *htag;
1223 		nvlist_t *tags;
1224 
1225 		htag = strchr(za.za_name, '-');
1226 		*htag = '\0';
1227 		++htag;
1228 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1229 			tags = fnvlist_alloc();
1230 			fnvlist_add_boolean(tags, htag);
1231 			fnvlist_add_nvlist(holds, za.za_name, tags);
1232 			fnvlist_free(tags);
1233 		} else {
1234 			fnvlist_add_boolean(tags, htag);
1235 		}
1236 	}
1237 	dsl_dataset_user_release_tmp(dp, holds);
1238 	fnvlist_free(holds);
1239 	zap_cursor_fini(&zc);
1240 }
1241 
1242 /*
1243  * Create the pool-wide zap object for storing temporary snapshot holds.
1244  */
1245 static void
1246 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1247 {
1248 	objset_t *mos = dp->dp_meta_objset;
1249 
1250 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1251 	ASSERT(dmu_tx_is_syncing(tx));
1252 
1253 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1254 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1255 }
1256 
1257 static int
1258 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1259     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1260 {
1261 	objset_t *mos = dp->dp_meta_objset;
1262 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1263 	char *name;
1264 	int error;
1265 
1266 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1267 	ASSERT(dmu_tx_is_syncing(tx));
1268 
1269 	/*
1270 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1271 	 * zap object for temporary holds might not exist yet.
1272 	 */
1273 	if (zapobj == 0) {
1274 		if (holding) {
1275 			dsl_pool_user_hold_create_obj(dp, tx);
1276 			zapobj = dp->dp_tmp_userrefs_obj;
1277 		} else {
1278 			return (SET_ERROR(ENOENT));
1279 		}
1280 	}
1281 
1282 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1283 	if (holding)
1284 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1285 	else
1286 		error = zap_remove(mos, zapobj, name, tx);
1287 	kmem_strfree(name);
1288 
1289 	return (error);
1290 }
1291 
1292 /*
1293  * Add a temporary hold for the given dataset object and tag.
1294  */
1295 int
1296 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1297     uint64_t now, dmu_tx_t *tx)
1298 {
1299 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1300 }
1301 
1302 /*
1303  * Release a temporary hold for the given dataset object and tag.
1304  */
1305 int
1306 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1307     dmu_tx_t *tx)
1308 {
1309 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1310 	    tx, B_FALSE));
1311 }
1312 
1313 /*
1314  * DSL Pool Configuration Lock
1315  *
1316  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1317  * creation / destruction / rename / property setting).  It must be held for
1318  * read to hold a dataset or dsl_dir.  I.e. you must call
1319  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1320  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1321  * must be held continuously until all datasets and dsl_dirs are released.
1322  *
1323  * The only exception to this rule is that if a "long hold" is placed on
1324  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1325  * is still held.  The long hold will prevent the dataset from being
1326  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1327  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1328  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1329  *
1330  * Legitimate long-holders (including owners) should be long-running, cancelable
1331  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1332  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1333  * "zfs send", and "zfs diff".  There are several other long-holders whose
1334  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1335  *
1336  * The usual formula for long-holding would be:
1337  * dsl_pool_hold()
1338  * dsl_dataset_hold()
1339  * ... perform checks ...
1340  * dsl_dataset_long_hold()
1341  * dsl_pool_rele()
1342  * ... perform long-running task ...
1343  * dsl_dataset_long_rele()
1344  * dsl_dataset_rele()
1345  *
1346  * Note that when the long hold is released, the dataset is still held but
1347  * the pool is not held.  The dataset may change arbitrarily during this time
1348  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1349  * dataset except release it.
1350  *
1351  * Operations generally fall somewhere into the following taxonomy:
1352  *
1353  *                              Read-Only             Modifying
1354  *
1355  *    Dataset Layer / MOS        zfs get             zfs destroy
1356  *
1357  *     Individual Dataset         read()                write()
1358  *
1359  *
1360  * Dataset Layer Operations
1361  *
1362  * Modifying operations should generally use dsl_sync_task().  The synctask
1363  * infrastructure enforces proper locking strategy with respect to the
1364  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1365  *
1366  * Read-only operations will manually hold the pool, then the dataset, obtain
1367  * information from the dataset, then release the pool and dataset.
1368  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1369  * hold/rele.
1370  *
1371  *
1372  * Operations On Individual Datasets
1373  *
1374  * Objects _within_ an objset should only be modified by the current 'owner'
1375  * of the objset to prevent incorrect concurrent modification. Thus, use
1376  * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1377  * and fail with EBUSY if there is already an owner. The owner can then
1378  * implement its own locking strategy, independent of the dataset layer's
1379  * locking infrastructure.
1380  * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1381  *  vnop will not reach into the dataset layer).
1382  *
1383  * Ideally, objects would also only be read by the objset’s owner, so that we
1384  * don’t observe state mid-modification.
1385  * (E.g. the ZPL is creating a new object and linking it into a directory; if
1386  * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1387  * intermediate state.  The ioctl level violates this but in pretty benign
1388  * ways, e.g. reading the zpl props object.)
1389  */
1390 
1391 int
1392 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1393 {
1394 	spa_t *spa;
1395 	int error;
1396 
1397 	error = spa_open(name, &spa, tag);
1398 	if (error == 0) {
1399 		*dp = spa_get_dsl(spa);
1400 		dsl_pool_config_enter(*dp, tag);
1401 	}
1402 	return (error);
1403 }
1404 
1405 void
1406 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1407 {
1408 	dsl_pool_config_exit(dp, tag);
1409 	spa_close(dp->dp_spa, tag);
1410 }
1411 
1412 void
1413 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1414 {
1415 	/*
1416 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1417 	 *
1418 	 * The rrwlock can (with the track_all flag) track all reading threads,
1419 	 * which is very useful for debugging which code path failed to release
1420 	 * the lock, and for verifying that the *current* thread does hold
1421 	 * the lock.
1422 	 *
1423 	 * (Unlike a rwlock, which knows that N threads hold it for
1424 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1425 	 * if any thread holds it for read, even if this thread doesn't).
1426 	 */
1427 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1428 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1429 }
1430 
1431 void
1432 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1433 {
1434 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1435 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1436 }
1437 
1438 void
1439 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1440 {
1441 	rrw_exit(&dp->dp_config_rwlock, tag);
1442 }
1443 
1444 boolean_t
1445 dsl_pool_config_held(dsl_pool_t *dp)
1446 {
1447 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1448 }
1449 
1450 boolean_t
1451 dsl_pool_config_held_writer(dsl_pool_t *dp)
1452 {
1453 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1454 }
1455 
1456 EXPORT_SYMBOL(dsl_pool_config_enter);
1457 EXPORT_SYMBOL(dsl_pool_config_exit);
1458 
1459 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1460 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1461 	"Max percent of RAM allowed to be dirty");
1462 
1463 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1464 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
1465 	"zfs_dirty_data_max upper bound as % of RAM");
1466 
1467 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1468 	"Transaction delay threshold");
1469 
1470 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1471 	"Determines the dirty space limit");
1472 
1473 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, ULONG, ZMOD_RW,
1474 	"The size limit of write-transaction zil log data");
1475 
1476 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1477 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
1478 	"zfs_dirty_data_max upper bound in bytes");
1479 
1480 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1481 	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1482 
1483 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1484 	"How quickly delay approaches infinity");
1485 
1486 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1487 	"Max percent of CPUs that are used to sync dirty data");
1488 
1489 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1490 	"Max percent of CPUs that are used per dp_sync_taskq");
1491 
1492 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1493 	"Number of taskq entries that are pre-populated");
1494 
1495 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1496 	"Max number of taskq entries that are cached");
1497