1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/dnode.h>
34 #include <sys/zio.h>
35 #include <sys/range_tree.h>
36 
37 /*
38  * Range trees are tree-based data structures that can be used to
39  * track free space or generally any space allocation information.
40  * A range tree keeps track of individual segments and automatically
41  * provides facilities such as adjacent extent merging and extent
42  * splitting in response to range add/remove requests.
43  *
44  * A range tree starts out completely empty, with no segments in it.
45  * Adding an allocation via range_tree_add to the range tree can either:
46  * 1) create a new extent
47  * 2) extend an adjacent extent
48  * 3) merge two adjacent extents
49  * Conversely, removing an allocation via range_tree_remove can:
50  * 1) completely remove an extent
51  * 2) shorten an extent (if the allocation was near one of its ends)
52  * 3) split an extent into two extents, in effect punching a hole
53  *
54  * A range tree is also capable of 'bridging' gaps when adding
55  * allocations. This is useful for cases when close proximity of
56  * allocations is an important detail that needs to be represented
57  * in the range tree. See range_tree_set_gap(). The default behavior
58  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
59  *
60  * In order to traverse a range tree, use either the range_tree_walk()
61  * or range_tree_vacate() functions.
62  *
63  * To obtain more accurate information on individual segment
64  * operations that the range tree performs "under the hood", you can
65  * specify a set of callbacks by passing a range_tree_ops_t structure
66  * to the range_tree_create function. Any callbacks that are non-NULL
67  * are then called at the appropriate times.
68  *
69  * The range tree code also supports a special variant of range trees
70  * that can bridge small gaps between segments. This kind of tree is used
71  * by the dsl scanning code to group I/Os into mostly sequential chunks to
72  * optimize disk performance. The code here attempts to do this with as
73  * little memory and computational overhead as possible. One limitation of
74  * this implementation is that segments of range trees with gaps can only
75  * support removing complete segments.
76  */
77 
78 static inline void
79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
80 {
81 	ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
82 	size_t size = 0;
83 	switch (rt->rt_type) {
84 	case RANGE_SEG32:
85 		size = sizeof (range_seg32_t);
86 		break;
87 	case RANGE_SEG64:
88 		size = sizeof (range_seg64_t);
89 		break;
90 	case RANGE_SEG_GAP:
91 		size = sizeof (range_seg_gap_t);
92 		break;
93 	default:
94 		VERIFY(0);
95 	}
96 	bcopy(src, dest, size);
97 }
98 
99 void
100 range_tree_stat_verify(range_tree_t *rt)
101 {
102 	range_seg_t *rs;
103 	zfs_btree_index_t where;
104 	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
105 	int i;
106 
107 	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
108 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
109 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
110 		int idx	= highbit64(size) - 1;
111 
112 		hist[idx]++;
113 		ASSERT3U(hist[idx], !=, 0);
114 	}
115 
116 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
117 		if (hist[i] != rt->rt_histogram[i]) {
118 			zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
119 			    i, hist, hist[i], rt->rt_histogram[i]);
120 		}
121 		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
122 	}
123 }
124 
125 static void
126 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
127 {
128 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
129 	int idx = highbit64(size) - 1;
130 
131 	ASSERT(size != 0);
132 	ASSERT3U(idx, <,
133 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
134 
135 	rt->rt_histogram[idx]++;
136 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
137 }
138 
139 static void
140 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
141 {
142 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
143 	int idx = highbit64(size) - 1;
144 
145 	ASSERT(size != 0);
146 	ASSERT3U(idx, <,
147 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
148 
149 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
150 	rt->rt_histogram[idx]--;
151 }
152 
153 static int
154 range_tree_seg32_compare(const void *x1, const void *x2)
155 {
156 	const range_seg32_t *r1 = x1;
157 	const range_seg32_t *r2 = x2;
158 
159 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
160 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
161 
162 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
163 }
164 
165 static int
166 range_tree_seg64_compare(const void *x1, const void *x2)
167 {
168 	const range_seg64_t *r1 = x1;
169 	const range_seg64_t *r2 = x2;
170 
171 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
172 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
173 
174 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
175 }
176 
177 static int
178 range_tree_seg_gap_compare(const void *x1, const void *x2)
179 {
180 	const range_seg_gap_t *r1 = x1;
181 	const range_seg_gap_t *r2 = x2;
182 
183 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
184 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
185 
186 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
187 }
188 
189 range_tree_t *
190 range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg,
191     uint64_t start, uint64_t shift,
192     int (*zfs_btree_compare) (const void *, const void *),
193     uint64_t gap)
194 {
195 	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
196 
197 	ASSERT3U(shift, <, 64);
198 	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
199 	size_t size;
200 	int (*compare) (const void *, const void *);
201 	switch (type) {
202 	case RANGE_SEG32:
203 		size = sizeof (range_seg32_t);
204 		compare = range_tree_seg32_compare;
205 		break;
206 	case RANGE_SEG64:
207 		size = sizeof (range_seg64_t);
208 		compare = range_tree_seg64_compare;
209 		break;
210 	case RANGE_SEG_GAP:
211 		size = sizeof (range_seg_gap_t);
212 		compare = range_tree_seg_gap_compare;
213 		break;
214 	default:
215 		panic("Invalid range seg type %d", type);
216 	}
217 	zfs_btree_create(&rt->rt_root, compare, size);
218 
219 	rt->rt_ops = ops;
220 	rt->rt_gap = gap;
221 	rt->rt_arg = arg;
222 	rt->rt_type = type;
223 	rt->rt_start = start;
224 	rt->rt_shift = shift;
225 	rt->rt_btree_compare = zfs_btree_compare;
226 
227 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
228 		rt->rt_ops->rtop_create(rt, rt->rt_arg);
229 
230 	return (rt);
231 }
232 
233 range_tree_t *
234 range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
235     void *arg, uint64_t start, uint64_t shift)
236 {
237 	return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
238 }
239 
240 void
241 range_tree_destroy(range_tree_t *rt)
242 {
243 	VERIFY0(rt->rt_space);
244 
245 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
246 		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
247 
248 	zfs_btree_destroy(&rt->rt_root);
249 	kmem_free(rt, sizeof (*rt));
250 }
251 
252 void
253 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
254 {
255 	if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
256 		zfs_panic_recover("zfs: attempting to decrease fill to or "
257 		    "below 0; probable double remove in segment [%llx:%llx]",
258 		    (longlong_t)rs_get_start(rs, rt),
259 		    (longlong_t)rs_get_end(rs, rt));
260 	}
261 	if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
262 	    rs_get_start(rs, rt)) {
263 		zfs_panic_recover("zfs: attempting to increase fill beyond "
264 		    "max; probable double add in segment [%llx:%llx]",
265 		    (longlong_t)rs_get_start(rs, rt),
266 		    (longlong_t)rs_get_end(rs, rt));
267 	}
268 
269 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
270 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
271 	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
272 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
273 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
274 }
275 
276 static void
277 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
278 {
279 	range_tree_t *rt = arg;
280 	zfs_btree_index_t where;
281 	range_seg_t *rs_before, *rs_after, *rs;
282 	range_seg_max_t tmp, rsearch;
283 	uint64_t end = start + size, gap = rt->rt_gap;
284 	uint64_t bridge_size = 0;
285 	boolean_t merge_before, merge_after;
286 
287 	ASSERT3U(size, !=, 0);
288 	ASSERT3U(fill, <=, size);
289 	ASSERT3U(start + size, >, start);
290 
291 	rs_set_start(&rsearch, rt, start);
292 	rs_set_end(&rsearch, rt, end);
293 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
294 
295 	/*
296 	 * If this is a gap-supporting range tree, it is possible that we
297 	 * are inserting into an existing segment. In this case simply
298 	 * bump the fill count and call the remove / add callbacks. If the
299 	 * new range will extend an existing segment, we remove the
300 	 * existing one, apply the new extent to it and re-insert it using
301 	 * the normal code paths.
302 	 */
303 	if (rs != NULL) {
304 		if (gap == 0) {
305 			zfs_panic_recover("zfs: adding existent segment to "
306 			    "range tree (offset=%llx size=%llx)",
307 			    (longlong_t)start, (longlong_t)size);
308 			return;
309 		}
310 		uint64_t rstart = rs_get_start(rs, rt);
311 		uint64_t rend = rs_get_end(rs, rt);
312 		if (rstart <= start && rend >= end) {
313 			range_tree_adjust_fill(rt, rs, fill);
314 			return;
315 		}
316 
317 		zfs_btree_remove(&rt->rt_root, rs);
318 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
319 			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
320 
321 		range_tree_stat_decr(rt, rs);
322 		rt->rt_space -= rend - rstart;
323 
324 		fill += rs_get_fill(rs, rt);
325 		start = MIN(start, rstart);
326 		end = MAX(end, rend);
327 		size = end - start;
328 
329 		range_tree_add_impl(rt, start, size, fill);
330 		return;
331 	}
332 
333 	ASSERT3P(rs, ==, NULL);
334 
335 	/*
336 	 * Determine whether or not we will have to merge with our neighbors.
337 	 * If gap != 0, we might need to merge with our neighbors even if we
338 	 * aren't directly touching.
339 	 */
340 	zfs_btree_index_t where_before, where_after;
341 	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
342 	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
343 
344 	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
345 	    start - gap);
346 	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
347 	    gap);
348 
349 	if (merge_before && gap != 0)
350 		bridge_size += start - rs_get_end(rs_before, rt);
351 	if (merge_after && gap != 0)
352 		bridge_size += rs_get_start(rs_after, rt) - end;
353 
354 	if (merge_before && merge_after) {
355 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
356 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
357 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
358 		}
359 
360 		range_tree_stat_decr(rt, rs_before);
361 		range_tree_stat_decr(rt, rs_after);
362 
363 		rs_copy(rs_after, &tmp, rt);
364 		uint64_t before_start = rs_get_start_raw(rs_before, rt);
365 		uint64_t before_fill = rs_get_fill(rs_before, rt);
366 		uint64_t after_fill = rs_get_fill(rs_after, rt);
367 		zfs_btree_remove_idx(&rt->rt_root, &where_before);
368 
369 		/*
370 		 * We have to re-find the node because our old reference is
371 		 * invalid as soon as we do any mutating btree operations.
372 		 */
373 		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
374 		rs_set_start_raw(rs_after, rt, before_start);
375 		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
376 		rs = rs_after;
377 	} else if (merge_before) {
378 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
379 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
380 
381 		range_tree_stat_decr(rt, rs_before);
382 
383 		uint64_t before_fill = rs_get_fill(rs_before, rt);
384 		rs_set_end(rs_before, rt, end);
385 		rs_set_fill(rs_before, rt, before_fill + fill);
386 		rs = rs_before;
387 	} else if (merge_after) {
388 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
389 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
390 
391 		range_tree_stat_decr(rt, rs_after);
392 
393 		uint64_t after_fill = rs_get_fill(rs_after, rt);
394 		rs_set_start(rs_after, rt, start);
395 		rs_set_fill(rs_after, rt, after_fill + fill);
396 		rs = rs_after;
397 	} else {
398 		rs = &tmp;
399 
400 		rs_set_start(rs, rt, start);
401 		rs_set_end(rs, rt, end);
402 		rs_set_fill(rs, rt, fill);
403 		zfs_btree_add_idx(&rt->rt_root, rs, &where);
404 	}
405 
406 	if (gap != 0) {
407 		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
408 		    rs_get_start(rs, rt));
409 	} else {
410 		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
411 		    rs_get_start(rs, rt));
412 	}
413 
414 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
415 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
416 
417 	range_tree_stat_incr(rt, rs);
418 	rt->rt_space += size + bridge_size;
419 }
420 
421 void
422 range_tree_add(void *arg, uint64_t start, uint64_t size)
423 {
424 	range_tree_add_impl(arg, start, size, size);
425 }
426 
427 static void
428 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
429     boolean_t do_fill)
430 {
431 	zfs_btree_index_t where;
432 	range_seg_t *rs;
433 	range_seg_max_t rsearch, rs_tmp;
434 	uint64_t end = start + size;
435 	boolean_t left_over, right_over;
436 
437 	VERIFY3U(size, !=, 0);
438 	VERIFY3U(size, <=, rt->rt_space);
439 	if (rt->rt_type == RANGE_SEG64)
440 		ASSERT3U(start + size, >, start);
441 
442 	rs_set_start(&rsearch, rt, start);
443 	rs_set_end(&rsearch, rt, end);
444 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
445 
446 	/* Make sure we completely overlap with someone */
447 	if (rs == NULL) {
448 		zfs_panic_recover("zfs: removing nonexistent segment from "
449 		    "range tree (offset=%llx size=%llx)",
450 		    (longlong_t)start, (longlong_t)size);
451 		return;
452 	}
453 
454 	/*
455 	 * Range trees with gap support must only remove complete segments
456 	 * from the tree. This allows us to maintain accurate fill accounting
457 	 * and to ensure that bridged sections are not leaked. If we need to
458 	 * remove less than the full segment, we can only adjust the fill count.
459 	 */
460 	if (rt->rt_gap != 0) {
461 		if (do_fill) {
462 			if (rs_get_fill(rs, rt) == size) {
463 				start = rs_get_start(rs, rt);
464 				end = rs_get_end(rs, rt);
465 				size = end - start;
466 			} else {
467 				range_tree_adjust_fill(rt, rs, -size);
468 				return;
469 			}
470 		} else if (rs_get_start(rs, rt) != start ||
471 		    rs_get_end(rs, rt) != end) {
472 			zfs_panic_recover("zfs: freeing partial segment of "
473 			    "gap tree (offset=%llx size=%llx) of "
474 			    "(offset=%llx size=%llx)",
475 			    (longlong_t)start, (longlong_t)size,
476 			    (longlong_t)rs_get_start(rs, rt),
477 			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
478 			    rt));
479 			return;
480 		}
481 	}
482 
483 	VERIFY3U(rs_get_start(rs, rt), <=, start);
484 	VERIFY3U(rs_get_end(rs, rt), >=, end);
485 
486 	left_over = (rs_get_start(rs, rt) != start);
487 	right_over = (rs_get_end(rs, rt) != end);
488 
489 	range_tree_stat_decr(rt, rs);
490 
491 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
492 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
493 
494 	if (left_over && right_over) {
495 		range_seg_max_t newseg;
496 		rs_set_start(&newseg, rt, end);
497 		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
498 		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
499 		range_tree_stat_incr(rt, &newseg);
500 
501 		// This modifies the buffer already inside the range tree
502 		rs_set_end(rs, rt, start);
503 
504 		rs_copy(rs, &rs_tmp, rt);
505 		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
506 			zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
507 		else
508 			zfs_btree_add(&rt->rt_root, &newseg);
509 
510 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
511 			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
512 	} else if (left_over) {
513 		// This modifies the buffer already inside the range tree
514 		rs_set_end(rs, rt, start);
515 		rs_copy(rs, &rs_tmp, rt);
516 	} else if (right_over) {
517 		// This modifies the buffer already inside the range tree
518 		rs_set_start(rs, rt, end);
519 		rs_copy(rs, &rs_tmp, rt);
520 	} else {
521 		zfs_btree_remove_idx(&rt->rt_root, &where);
522 		rs = NULL;
523 	}
524 
525 	if (rs != NULL) {
526 		/*
527 		 * The fill of the leftover segment will always be equal to
528 		 * the size, since we do not support removing partial segments
529 		 * of range trees with gaps.
530 		 */
531 		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
532 		    rs_get_start_raw(rs, rt));
533 		range_tree_stat_incr(rt, &rs_tmp);
534 
535 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
536 			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
537 	}
538 
539 	rt->rt_space -= size;
540 }
541 
542 void
543 range_tree_remove(void *arg, uint64_t start, uint64_t size)
544 {
545 	range_tree_remove_impl(arg, start, size, B_FALSE);
546 }
547 
548 void
549 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
550 {
551 	range_tree_remove_impl(rt, start, size, B_TRUE);
552 }
553 
554 void
555 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
556     uint64_t newstart, uint64_t newsize)
557 {
558 	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
559 
560 	range_tree_stat_decr(rt, rs);
561 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
562 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
563 
564 	rs_set_start(rs, rt, newstart);
565 	rs_set_end(rs, rt, newstart + newsize);
566 
567 	range_tree_stat_incr(rt, rs);
568 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
569 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
570 
571 	rt->rt_space += delta;
572 }
573 
574 static range_seg_t *
575 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
576 {
577 	range_seg_max_t rsearch;
578 	uint64_t end = start + size;
579 
580 	VERIFY(size != 0);
581 
582 	rs_set_start(&rsearch, rt, start);
583 	rs_set_end(&rsearch, rt, end);
584 	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
585 }
586 
587 range_seg_t *
588 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
589 {
590 	if (rt->rt_type == RANGE_SEG64)
591 		ASSERT3U(start + size, >, start);
592 
593 	range_seg_t *rs = range_tree_find_impl(rt, start, size);
594 	if (rs != NULL && rs_get_start(rs, rt) <= start &&
595 	    rs_get_end(rs, rt) >= start + size) {
596 		return (rs);
597 	}
598 	return (NULL);
599 }
600 
601 void
602 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
603 {
604 	range_seg_t *rs = range_tree_find(rt, off, size);
605 	if (rs != NULL)
606 		panic("segment already in tree; rs=%p", (void *)rs);
607 }
608 
609 boolean_t
610 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
611 {
612 	return (range_tree_find(rt, start, size) != NULL);
613 }
614 
615 /*
616  * Returns the first subset of the given range which overlaps with the range
617  * tree. Returns true if there is a segment in the range, and false if there
618  * isn't.
619  */
620 boolean_t
621 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
622     uint64_t *ostart, uint64_t *osize)
623 {
624 	if (rt->rt_type == RANGE_SEG64)
625 		ASSERT3U(start + size, >, start);
626 
627 	range_seg_max_t rsearch;
628 	rs_set_start(&rsearch, rt, start);
629 	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
630 
631 	zfs_btree_index_t where;
632 	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
633 	if (rs != NULL) {
634 		*ostart = start;
635 		*osize = MIN(size, rs_get_end(rs, rt) - start);
636 		return (B_TRUE);
637 	}
638 
639 	rs = zfs_btree_next(&rt->rt_root, &where, &where);
640 	if (rs == NULL || rs_get_start(rs, rt) > start + size)
641 		return (B_FALSE);
642 
643 	*ostart = rs_get_start(rs, rt);
644 	*osize = MIN(start + size, rs_get_end(rs, rt)) -
645 	    rs_get_start(rs, rt);
646 	return (B_TRUE);
647 }
648 
649 /*
650  * Ensure that this range is not in the tree, regardless of whether
651  * it is currently in the tree.
652  */
653 void
654 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
655 {
656 	range_seg_t *rs;
657 
658 	if (size == 0)
659 		return;
660 
661 	if (rt->rt_type == RANGE_SEG64)
662 		ASSERT3U(start + size, >, start);
663 
664 	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
665 		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
666 		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
667 		range_tree_remove(rt, free_start, free_end - free_start);
668 	}
669 }
670 
671 void
672 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
673 {
674 	range_tree_t *rt;
675 
676 	ASSERT0(range_tree_space(*rtdst));
677 	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
678 
679 	rt = *rtsrc;
680 	*rtsrc = *rtdst;
681 	*rtdst = rt;
682 }
683 
684 void
685 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
686 {
687 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
688 		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
689 
690 	if (func != NULL) {
691 		range_seg_t *rs;
692 		zfs_btree_index_t *cookie = NULL;
693 
694 		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
695 		    NULL) {
696 			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
697 			    rs_get_start(rs, rt));
698 		}
699 	} else {
700 		zfs_btree_clear(&rt->rt_root);
701 	}
702 
703 	bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
704 	rt->rt_space = 0;
705 }
706 
707 void
708 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
709 {
710 	zfs_btree_index_t where;
711 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
712 	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
713 		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
714 		    rs_get_start(rs, rt));
715 	}
716 }
717 
718 range_seg_t *
719 range_tree_first(range_tree_t *rt)
720 {
721 	return (zfs_btree_first(&rt->rt_root, NULL));
722 }
723 
724 uint64_t
725 range_tree_space(range_tree_t *rt)
726 {
727 	return (rt->rt_space);
728 }
729 
730 uint64_t
731 range_tree_numsegs(range_tree_t *rt)
732 {
733 	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
734 }
735 
736 boolean_t
737 range_tree_is_empty(range_tree_t *rt)
738 {
739 	ASSERT(rt != NULL);
740 	return (range_tree_space(rt) == 0);
741 }
742 
743 /* ARGSUSED */
744 void
745 rt_btree_create(range_tree_t *rt, void *arg)
746 {
747 	zfs_btree_t *size_tree = arg;
748 
749 	size_t size;
750 	switch (rt->rt_type) {
751 	case RANGE_SEG32:
752 		size = sizeof (range_seg32_t);
753 		break;
754 	case RANGE_SEG64:
755 		size = sizeof (range_seg64_t);
756 		break;
757 	case RANGE_SEG_GAP:
758 		size = sizeof (range_seg_gap_t);
759 		break;
760 	default:
761 		panic("Invalid range seg type %d", rt->rt_type);
762 	}
763 	zfs_btree_create(size_tree, rt->rt_btree_compare, size);
764 }
765 
766 /* ARGSUSED */
767 void
768 rt_btree_destroy(range_tree_t *rt, void *arg)
769 {
770 	zfs_btree_t *size_tree = arg;
771 	ASSERT0(zfs_btree_numnodes(size_tree));
772 
773 	zfs_btree_destroy(size_tree);
774 }
775 
776 /* ARGSUSED */
777 void
778 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
779 {
780 	zfs_btree_t *size_tree = arg;
781 
782 	zfs_btree_add(size_tree, rs);
783 }
784 
785 /* ARGSUSED */
786 void
787 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
788 {
789 	zfs_btree_t *size_tree = arg;
790 
791 	zfs_btree_remove(size_tree, rs);
792 }
793 
794 /* ARGSUSED */
795 void
796 rt_btree_vacate(range_tree_t *rt, void *arg)
797 {
798 	zfs_btree_t *size_tree = arg;
799 	zfs_btree_clear(size_tree);
800 	zfs_btree_destroy(size_tree);
801 
802 	rt_btree_create(rt, arg);
803 }
804 
805 range_tree_ops_t rt_btree_ops = {
806 	.rtop_create = rt_btree_create,
807 	.rtop_destroy = rt_btree_destroy,
808 	.rtop_add = rt_btree_add,
809 	.rtop_remove = rt_btree_remove,
810 	.rtop_vacate = rt_btree_vacate
811 };
812 
813 /*
814  * Remove any overlapping ranges between the given segment [start, end)
815  * from removefrom. Add non-overlapping leftovers to addto.
816  */
817 void
818 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
819     range_tree_t *removefrom, range_tree_t *addto)
820 {
821 	zfs_btree_index_t where;
822 	range_seg_max_t starting_rs;
823 	rs_set_start(&starting_rs, removefrom, start);
824 	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
825 	    removefrom) + 1);
826 
827 	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
828 	    &starting_rs, &where);
829 
830 	if (curr == NULL)
831 		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
832 
833 	range_seg_t *next;
834 	for (; curr != NULL; curr = next) {
835 		if (start == end)
836 			return;
837 		VERIFY3U(start, <, end);
838 
839 		/* there is no overlap */
840 		if (end <= rs_get_start(curr, removefrom)) {
841 			range_tree_add(addto, start, end - start);
842 			return;
843 		}
844 
845 		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
846 		    start);
847 		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
848 		    end);
849 		uint64_t overlap_size = overlap_end - overlap_start;
850 		ASSERT3S(overlap_size, >, 0);
851 		range_seg_max_t rs;
852 		rs_copy(curr, &rs, removefrom);
853 
854 		range_tree_remove(removefrom, overlap_start, overlap_size);
855 
856 		if (start < overlap_start)
857 			range_tree_add(addto, start, overlap_start - start);
858 
859 		start = overlap_end;
860 		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
861 		/*
862 		 * If we find something here, we only removed part of the
863 		 * curr segment. Either there's some left at the end
864 		 * because we've reached the end of the range we're removing,
865 		 * or there's some left at the start because we started
866 		 * partway through the range.  Either way, we continue with
867 		 * the loop. If it's the former, we'll return at the start of
868 		 * the loop, and if it's the latter we'll see if there is more
869 		 * area to process.
870 		 */
871 		if (next != NULL) {
872 			ASSERT(start == end || start == rs_get_end(&rs,
873 			    removefrom));
874 		}
875 
876 		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
877 	}
878 	VERIFY3P(curr, ==, NULL);
879 
880 	if (start != end) {
881 		VERIFY3U(start, <, end);
882 		range_tree_add(addto, start, end - start);
883 	} else {
884 		VERIFY3U(start, ==, end);
885 	}
886 }
887 
888 /*
889  * For each entry in rt, if it exists in removefrom, remove it
890  * from removefrom. Otherwise, add it to addto.
891  */
892 void
893 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
894     range_tree_t *addto)
895 {
896 	zfs_btree_index_t where;
897 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
898 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
899 		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
900 		    rs_get_end(rs, rt), removefrom, addto);
901 	}
902 }
903 
904 uint64_t
905 range_tree_min(range_tree_t *rt)
906 {
907 	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
908 	return (rs != NULL ? rs_get_start(rs, rt) : 0);
909 }
910 
911 uint64_t
912 range_tree_max(range_tree_t *rt)
913 {
914 	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
915 	return (rs != NULL ? rs_get_end(rs, rt) : 0);
916 }
917 
918 uint64_t
919 range_tree_span(range_tree_t *rt)
920 {
921 	return (range_tree_max(rt) - range_tree_min(rt));
922 }
923