1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/dnode.h>
34 #include <sys/zio.h>
35 #include <sys/range_tree.h>
36 
37 /*
38  * Range trees are tree-based data structures that can be used to
39  * track free space or generally any space allocation information.
40  * A range tree keeps track of individual segments and automatically
41  * provides facilities such as adjacent extent merging and extent
42  * splitting in response to range add/remove requests.
43  *
44  * A range tree starts out completely empty, with no segments in it.
45  * Adding an allocation via range_tree_add to the range tree can either:
46  * 1) create a new extent
47  * 2) extend an adjacent extent
48  * 3) merge two adjacent extents
49  * Conversely, removing an allocation via range_tree_remove can:
50  * 1) completely remove an extent
51  * 2) shorten an extent (if the allocation was near one of its ends)
52  * 3) split an extent into two extents, in effect punching a hole
53  *
54  * A range tree is also capable of 'bridging' gaps when adding
55  * allocations. This is useful for cases when close proximity of
56  * allocations is an important detail that needs to be represented
57  * in the range tree. See range_tree_set_gap(). The default behavior
58  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
59  *
60  * In order to traverse a range tree, use either the range_tree_walk()
61  * or range_tree_vacate() functions.
62  *
63  * To obtain more accurate information on individual segment
64  * operations that the range tree performs "under the hood", you can
65  * specify a set of callbacks by passing a range_tree_ops_t structure
66  * to the range_tree_create function. Any callbacks that are non-NULL
67  * are then called at the appropriate times.
68  *
69  * The range tree code also supports a special variant of range trees
70  * that can bridge small gaps between segments. This kind of tree is used
71  * by the dsl scanning code to group I/Os into mostly sequential chunks to
72  * optimize disk performance. The code here attempts to do this with as
73  * little memory and computational overhead as possible. One limitation of
74  * this implementation is that segments of range trees with gaps can only
75  * support removing complete segments.
76  */
77 
78 static inline void
79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
80 {
81 	ASSERT3U(rt->rt_type, <, RANGE_SEG_NUM_TYPES);
82 	size_t size = 0;
83 	switch (rt->rt_type) {
84 	case RANGE_SEG32:
85 		size = sizeof (range_seg32_t);
86 		break;
87 	case RANGE_SEG64:
88 		size = sizeof (range_seg64_t);
89 		break;
90 	case RANGE_SEG_GAP:
91 		size = sizeof (range_seg_gap_t);
92 		break;
93 	default:
94 		__builtin_unreachable();
95 	}
96 	memcpy(dest, src, size);
97 }
98 
99 void
100 range_tree_stat_verify(range_tree_t *rt)
101 {
102 	range_seg_t *rs;
103 	zfs_btree_index_t where;
104 	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
105 	int i;
106 
107 	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
108 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
109 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
110 		int idx	= highbit64(size) - 1;
111 
112 		hist[idx]++;
113 		ASSERT3U(hist[idx], !=, 0);
114 	}
115 
116 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
117 		if (hist[i] != rt->rt_histogram[i]) {
118 			zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
119 			    i, hist, (u_longlong_t)hist[i],
120 			    (u_longlong_t)rt->rt_histogram[i]);
121 		}
122 		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
123 	}
124 }
125 
126 static void
127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
128 {
129 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
130 	int idx = highbit64(size) - 1;
131 
132 	ASSERT(size != 0);
133 	ASSERT3U(idx, <,
134 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
135 
136 	rt->rt_histogram[idx]++;
137 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
138 }
139 
140 static void
141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
142 {
143 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
144 	int idx = highbit64(size) - 1;
145 
146 	ASSERT(size != 0);
147 	ASSERT3U(idx, <,
148 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
149 
150 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
151 	rt->rt_histogram[idx]--;
152 }
153 
154 static int
155 range_tree_seg32_compare(const void *x1, const void *x2)
156 {
157 	const range_seg32_t *r1 = x1;
158 	const range_seg32_t *r2 = x2;
159 
160 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
161 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
162 
163 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
164 }
165 
166 static int
167 range_tree_seg64_compare(const void *x1, const void *x2)
168 {
169 	const range_seg64_t *r1 = x1;
170 	const range_seg64_t *r2 = x2;
171 
172 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
173 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
174 
175 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
176 }
177 
178 static int
179 range_tree_seg_gap_compare(const void *x1, const void *x2)
180 {
181 	const range_seg_gap_t *r1 = x1;
182 	const range_seg_gap_t *r2 = x2;
183 
184 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
185 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
186 
187 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
188 }
189 
190 range_tree_t *
191 range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type,
192     void *arg, uint64_t start, uint64_t shift, uint64_t gap)
193 {
194 	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
195 
196 	ASSERT3U(shift, <, 64);
197 	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
198 	size_t size;
199 	int (*compare) (const void *, const void *);
200 	switch (type) {
201 	case RANGE_SEG32:
202 		size = sizeof (range_seg32_t);
203 		compare = range_tree_seg32_compare;
204 		break;
205 	case RANGE_SEG64:
206 		size = sizeof (range_seg64_t);
207 		compare = range_tree_seg64_compare;
208 		break;
209 	case RANGE_SEG_GAP:
210 		size = sizeof (range_seg_gap_t);
211 		compare = range_tree_seg_gap_compare;
212 		break;
213 	default:
214 		panic("Invalid range seg type %d", type);
215 	}
216 	zfs_btree_create(&rt->rt_root, compare, size);
217 
218 	rt->rt_ops = ops;
219 	rt->rt_gap = gap;
220 	rt->rt_arg = arg;
221 	rt->rt_type = type;
222 	rt->rt_start = start;
223 	rt->rt_shift = shift;
224 
225 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
226 		rt->rt_ops->rtop_create(rt, rt->rt_arg);
227 
228 	return (rt);
229 }
230 
231 range_tree_t *
232 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type,
233     void *arg, uint64_t start, uint64_t shift)
234 {
235 	return (range_tree_create_gap(ops, type, arg, start, shift, 0));
236 }
237 
238 void
239 range_tree_destroy(range_tree_t *rt)
240 {
241 	VERIFY0(rt->rt_space);
242 
243 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
244 		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
245 
246 	zfs_btree_destroy(&rt->rt_root);
247 	kmem_free(rt, sizeof (*rt));
248 }
249 
250 void
251 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
252 {
253 	if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
254 		zfs_panic_recover("zfs: attempting to decrease fill to or "
255 		    "below 0; probable double remove in segment [%llx:%llx]",
256 		    (longlong_t)rs_get_start(rs, rt),
257 		    (longlong_t)rs_get_end(rs, rt));
258 	}
259 	if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
260 	    rs_get_start(rs, rt)) {
261 		zfs_panic_recover("zfs: attempting to increase fill beyond "
262 		    "max; probable double add in segment [%llx:%llx]",
263 		    (longlong_t)rs_get_start(rs, rt),
264 		    (longlong_t)rs_get_end(rs, rt));
265 	}
266 
267 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
268 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
269 	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
270 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
271 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
272 }
273 
274 static void
275 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
276 {
277 	range_tree_t *rt = arg;
278 	zfs_btree_index_t where;
279 	range_seg_t *rs_before, *rs_after, *rs;
280 	range_seg_max_t tmp, rsearch;
281 	uint64_t end = start + size, gap = rt->rt_gap;
282 	uint64_t bridge_size = 0;
283 	boolean_t merge_before, merge_after;
284 
285 	ASSERT3U(size, !=, 0);
286 	ASSERT3U(fill, <=, size);
287 	ASSERT3U(start + size, >, start);
288 
289 	rs_set_start(&rsearch, rt, start);
290 	rs_set_end(&rsearch, rt, end);
291 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
292 
293 	/*
294 	 * If this is a gap-supporting range tree, it is possible that we
295 	 * are inserting into an existing segment. In this case simply
296 	 * bump the fill count and call the remove / add callbacks. If the
297 	 * new range will extend an existing segment, we remove the
298 	 * existing one, apply the new extent to it and re-insert it using
299 	 * the normal code paths.
300 	 */
301 	if (rs != NULL) {
302 		if (gap == 0) {
303 			zfs_panic_recover("zfs: adding existent segment to "
304 			    "range tree (offset=%llx size=%llx)",
305 			    (longlong_t)start, (longlong_t)size);
306 			return;
307 		}
308 		uint64_t rstart = rs_get_start(rs, rt);
309 		uint64_t rend = rs_get_end(rs, rt);
310 		if (rstart <= start && rend >= end) {
311 			range_tree_adjust_fill(rt, rs, fill);
312 			return;
313 		}
314 
315 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
316 			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
317 
318 		range_tree_stat_decr(rt, rs);
319 		rt->rt_space -= rend - rstart;
320 
321 		fill += rs_get_fill(rs, rt);
322 		start = MIN(start, rstart);
323 		end = MAX(end, rend);
324 		size = end - start;
325 
326 		zfs_btree_remove(&rt->rt_root, rs);
327 		range_tree_add_impl(rt, start, size, fill);
328 		return;
329 	}
330 
331 	ASSERT3P(rs, ==, NULL);
332 
333 	/*
334 	 * Determine whether or not we will have to merge with our neighbors.
335 	 * If gap != 0, we might need to merge with our neighbors even if we
336 	 * aren't directly touching.
337 	 */
338 	zfs_btree_index_t where_before, where_after;
339 	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
340 	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
341 
342 	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
343 	    start - gap);
344 	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
345 	    gap);
346 
347 	if (merge_before && gap != 0)
348 		bridge_size += start - rs_get_end(rs_before, rt);
349 	if (merge_after && gap != 0)
350 		bridge_size += rs_get_start(rs_after, rt) - end;
351 
352 	if (merge_before && merge_after) {
353 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
354 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
355 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
356 		}
357 
358 		range_tree_stat_decr(rt, rs_before);
359 		range_tree_stat_decr(rt, rs_after);
360 
361 		rs_copy(rs_after, &tmp, rt);
362 		uint64_t before_start = rs_get_start_raw(rs_before, rt);
363 		uint64_t before_fill = rs_get_fill(rs_before, rt);
364 		uint64_t after_fill = rs_get_fill(rs_after, rt);
365 		zfs_btree_remove_idx(&rt->rt_root, &where_before);
366 
367 		/*
368 		 * We have to re-find the node because our old reference is
369 		 * invalid as soon as we do any mutating btree operations.
370 		 */
371 		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
372 		ASSERT3P(rs_after, !=, NULL);
373 		rs_set_start_raw(rs_after, rt, before_start);
374 		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
375 		rs = rs_after;
376 	} else if (merge_before) {
377 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
378 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
379 
380 		range_tree_stat_decr(rt, rs_before);
381 
382 		uint64_t before_fill = rs_get_fill(rs_before, rt);
383 		rs_set_end(rs_before, rt, end);
384 		rs_set_fill(rs_before, rt, before_fill + fill);
385 		rs = rs_before;
386 	} else if (merge_after) {
387 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
388 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
389 
390 		range_tree_stat_decr(rt, rs_after);
391 
392 		uint64_t after_fill = rs_get_fill(rs_after, rt);
393 		rs_set_start(rs_after, rt, start);
394 		rs_set_fill(rs_after, rt, after_fill + fill);
395 		rs = rs_after;
396 	} else {
397 		rs = &tmp;
398 
399 		rs_set_start(rs, rt, start);
400 		rs_set_end(rs, rt, end);
401 		rs_set_fill(rs, rt, fill);
402 		zfs_btree_add_idx(&rt->rt_root, rs, &where);
403 	}
404 
405 	if (gap != 0) {
406 		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
407 		    rs_get_start(rs, rt));
408 	} else {
409 		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
410 		    rs_get_start(rs, rt));
411 	}
412 
413 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
414 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
415 
416 	range_tree_stat_incr(rt, rs);
417 	rt->rt_space += size + bridge_size;
418 }
419 
420 void
421 range_tree_add(void *arg, uint64_t start, uint64_t size)
422 {
423 	range_tree_add_impl(arg, start, size, size);
424 }
425 
426 static void
427 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
428     boolean_t do_fill)
429 {
430 	zfs_btree_index_t where;
431 	range_seg_t *rs;
432 	range_seg_max_t rsearch, rs_tmp;
433 	uint64_t end = start + size;
434 	boolean_t left_over, right_over;
435 
436 	VERIFY3U(size, !=, 0);
437 	VERIFY3U(size, <=, rt->rt_space);
438 	if (rt->rt_type == RANGE_SEG64)
439 		ASSERT3U(start + size, >, start);
440 
441 	rs_set_start(&rsearch, rt, start);
442 	rs_set_end(&rsearch, rt, end);
443 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
444 
445 	/* Make sure we completely overlap with someone */
446 	if (rs == NULL) {
447 		zfs_panic_recover("zfs: removing nonexistent segment from "
448 		    "range tree (offset=%llx size=%llx)",
449 		    (longlong_t)start, (longlong_t)size);
450 		return;
451 	}
452 
453 	/*
454 	 * Range trees with gap support must only remove complete segments
455 	 * from the tree. This allows us to maintain accurate fill accounting
456 	 * and to ensure that bridged sections are not leaked. If we need to
457 	 * remove less than the full segment, we can only adjust the fill count.
458 	 */
459 	if (rt->rt_gap != 0) {
460 		if (do_fill) {
461 			if (rs_get_fill(rs, rt) == size) {
462 				start = rs_get_start(rs, rt);
463 				end = rs_get_end(rs, rt);
464 				size = end - start;
465 			} else {
466 				range_tree_adjust_fill(rt, rs, -size);
467 				return;
468 			}
469 		} else if (rs_get_start(rs, rt) != start ||
470 		    rs_get_end(rs, rt) != end) {
471 			zfs_panic_recover("zfs: freeing partial segment of "
472 			    "gap tree (offset=%llx size=%llx) of "
473 			    "(offset=%llx size=%llx)",
474 			    (longlong_t)start, (longlong_t)size,
475 			    (longlong_t)rs_get_start(rs, rt),
476 			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
477 			    rt));
478 			return;
479 		}
480 	}
481 
482 	VERIFY3U(rs_get_start(rs, rt), <=, start);
483 	VERIFY3U(rs_get_end(rs, rt), >=, end);
484 
485 	left_over = (rs_get_start(rs, rt) != start);
486 	right_over = (rs_get_end(rs, rt) != end);
487 
488 	range_tree_stat_decr(rt, rs);
489 
490 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
491 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
492 
493 	if (left_over && right_over) {
494 		range_seg_max_t newseg;
495 		rs_set_start(&newseg, rt, end);
496 		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
497 		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
498 		range_tree_stat_incr(rt, &newseg);
499 
500 		// This modifies the buffer already inside the range tree
501 		rs_set_end(rs, rt, start);
502 
503 		rs_copy(rs, &rs_tmp, rt);
504 		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
505 			zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
506 		else
507 			zfs_btree_add(&rt->rt_root, &newseg);
508 
509 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
510 			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
511 	} else if (left_over) {
512 		// This modifies the buffer already inside the range tree
513 		rs_set_end(rs, rt, start);
514 		rs_copy(rs, &rs_tmp, rt);
515 	} else if (right_over) {
516 		// This modifies the buffer already inside the range tree
517 		rs_set_start(rs, rt, end);
518 		rs_copy(rs, &rs_tmp, rt);
519 	} else {
520 		zfs_btree_remove_idx(&rt->rt_root, &where);
521 		rs = NULL;
522 	}
523 
524 	if (rs != NULL) {
525 		/*
526 		 * The fill of the leftover segment will always be equal to
527 		 * the size, since we do not support removing partial segments
528 		 * of range trees with gaps.
529 		 */
530 		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
531 		    rs_get_start_raw(rs, rt));
532 		range_tree_stat_incr(rt, &rs_tmp);
533 
534 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
535 			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
536 	}
537 
538 	rt->rt_space -= size;
539 }
540 
541 void
542 range_tree_remove(void *arg, uint64_t start, uint64_t size)
543 {
544 	range_tree_remove_impl(arg, start, size, B_FALSE);
545 }
546 
547 void
548 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
549 {
550 	range_tree_remove_impl(rt, start, size, B_TRUE);
551 }
552 
553 void
554 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
555     uint64_t newstart, uint64_t newsize)
556 {
557 	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
558 
559 	range_tree_stat_decr(rt, rs);
560 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
561 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
562 
563 	rs_set_start(rs, rt, newstart);
564 	rs_set_end(rs, rt, newstart + newsize);
565 
566 	range_tree_stat_incr(rt, rs);
567 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
568 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
569 
570 	rt->rt_space += delta;
571 }
572 
573 static range_seg_t *
574 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
575 {
576 	range_seg_max_t rsearch;
577 	uint64_t end = start + size;
578 
579 	VERIFY(size != 0);
580 
581 	rs_set_start(&rsearch, rt, start);
582 	rs_set_end(&rsearch, rt, end);
583 	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
584 }
585 
586 range_seg_t *
587 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
588 {
589 	if (rt->rt_type == RANGE_SEG64)
590 		ASSERT3U(start + size, >, start);
591 
592 	range_seg_t *rs = range_tree_find_impl(rt, start, size);
593 	if (rs != NULL && rs_get_start(rs, rt) <= start &&
594 	    rs_get_end(rs, rt) >= start + size) {
595 		return (rs);
596 	}
597 	return (NULL);
598 }
599 
600 void
601 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
602 {
603 	range_seg_t *rs = range_tree_find(rt, off, size);
604 	if (rs != NULL)
605 		panic("segment already in tree; rs=%p", (void *)rs);
606 }
607 
608 boolean_t
609 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
610 {
611 	return (range_tree_find(rt, start, size) != NULL);
612 }
613 
614 /*
615  * Returns the first subset of the given range which overlaps with the range
616  * tree. Returns true if there is a segment in the range, and false if there
617  * isn't.
618  */
619 boolean_t
620 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
621     uint64_t *ostart, uint64_t *osize)
622 {
623 	if (rt->rt_type == RANGE_SEG64)
624 		ASSERT3U(start + size, >, start);
625 
626 	range_seg_max_t rsearch;
627 	rs_set_start(&rsearch, rt, start);
628 	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
629 
630 	zfs_btree_index_t where;
631 	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
632 	if (rs != NULL) {
633 		*ostart = start;
634 		*osize = MIN(size, rs_get_end(rs, rt) - start);
635 		return (B_TRUE);
636 	}
637 
638 	rs = zfs_btree_next(&rt->rt_root, &where, &where);
639 	if (rs == NULL || rs_get_start(rs, rt) > start + size)
640 		return (B_FALSE);
641 
642 	*ostart = rs_get_start(rs, rt);
643 	*osize = MIN(start + size, rs_get_end(rs, rt)) -
644 	    rs_get_start(rs, rt);
645 	return (B_TRUE);
646 }
647 
648 /*
649  * Ensure that this range is not in the tree, regardless of whether
650  * it is currently in the tree.
651  */
652 void
653 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
654 {
655 	range_seg_t *rs;
656 
657 	if (size == 0)
658 		return;
659 
660 	if (rt->rt_type == RANGE_SEG64)
661 		ASSERT3U(start + size, >, start);
662 
663 	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
664 		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
665 		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
666 		range_tree_remove(rt, free_start, free_end - free_start);
667 	}
668 }
669 
670 void
671 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
672 {
673 	range_tree_t *rt;
674 
675 	ASSERT0(range_tree_space(*rtdst));
676 	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
677 
678 	rt = *rtsrc;
679 	*rtsrc = *rtdst;
680 	*rtdst = rt;
681 }
682 
683 void
684 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
685 {
686 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
687 		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
688 
689 	if (func != NULL) {
690 		range_seg_t *rs;
691 		zfs_btree_index_t *cookie = NULL;
692 
693 		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
694 		    NULL) {
695 			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
696 			    rs_get_start(rs, rt));
697 		}
698 	} else {
699 		zfs_btree_clear(&rt->rt_root);
700 	}
701 
702 	memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram));
703 	rt->rt_space = 0;
704 }
705 
706 void
707 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
708 {
709 	zfs_btree_index_t where;
710 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
711 	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
712 		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
713 		    rs_get_start(rs, rt));
714 	}
715 }
716 
717 range_seg_t *
718 range_tree_first(range_tree_t *rt)
719 {
720 	return (zfs_btree_first(&rt->rt_root, NULL));
721 }
722 
723 uint64_t
724 range_tree_space(range_tree_t *rt)
725 {
726 	return (rt->rt_space);
727 }
728 
729 uint64_t
730 range_tree_numsegs(range_tree_t *rt)
731 {
732 	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
733 }
734 
735 boolean_t
736 range_tree_is_empty(range_tree_t *rt)
737 {
738 	ASSERT(rt != NULL);
739 	return (range_tree_space(rt) == 0);
740 }
741 
742 /*
743  * Remove any overlapping ranges between the given segment [start, end)
744  * from removefrom. Add non-overlapping leftovers to addto.
745  */
746 void
747 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
748     range_tree_t *removefrom, range_tree_t *addto)
749 {
750 	zfs_btree_index_t where;
751 	range_seg_max_t starting_rs;
752 	rs_set_start(&starting_rs, removefrom, start);
753 	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
754 	    removefrom) + 1);
755 
756 	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
757 	    &starting_rs, &where);
758 
759 	if (curr == NULL)
760 		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
761 
762 	range_seg_t *next;
763 	for (; curr != NULL; curr = next) {
764 		if (start == end)
765 			return;
766 		VERIFY3U(start, <, end);
767 
768 		/* there is no overlap */
769 		if (end <= rs_get_start(curr, removefrom)) {
770 			range_tree_add(addto, start, end - start);
771 			return;
772 		}
773 
774 		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
775 		    start);
776 		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
777 		    end);
778 		uint64_t overlap_size = overlap_end - overlap_start;
779 		ASSERT3S(overlap_size, >, 0);
780 		range_seg_max_t rs;
781 		rs_copy(curr, &rs, removefrom);
782 
783 		range_tree_remove(removefrom, overlap_start, overlap_size);
784 
785 		if (start < overlap_start)
786 			range_tree_add(addto, start, overlap_start - start);
787 
788 		start = overlap_end;
789 		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
790 		/*
791 		 * If we find something here, we only removed part of the
792 		 * curr segment. Either there's some left at the end
793 		 * because we've reached the end of the range we're removing,
794 		 * or there's some left at the start because we started
795 		 * partway through the range.  Either way, we continue with
796 		 * the loop. If it's the former, we'll return at the start of
797 		 * the loop, and if it's the latter we'll see if there is more
798 		 * area to process.
799 		 */
800 		if (next != NULL) {
801 			ASSERT(start == end || start == rs_get_end(&rs,
802 			    removefrom));
803 		}
804 
805 		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
806 	}
807 	VERIFY3P(curr, ==, NULL);
808 
809 	if (start != end) {
810 		VERIFY3U(start, <, end);
811 		range_tree_add(addto, start, end - start);
812 	} else {
813 		VERIFY3U(start, ==, end);
814 	}
815 }
816 
817 /*
818  * For each entry in rt, if it exists in removefrom, remove it
819  * from removefrom. Otherwise, add it to addto.
820  */
821 void
822 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
823     range_tree_t *addto)
824 {
825 	zfs_btree_index_t where;
826 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
827 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
828 		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
829 		    rs_get_end(rs, rt), removefrom, addto);
830 	}
831 }
832 
833 uint64_t
834 range_tree_min(range_tree_t *rt)
835 {
836 	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
837 	return (rs != NULL ? rs_get_start(rs, rt) : 0);
838 }
839 
840 uint64_t
841 range_tree_max(range_tree_t *rt)
842 {
843 	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
844 	return (rs != NULL ? rs_get_end(rs, rt) : 0);
845 }
846 
847 uint64_t
848 range_tree_span(range_tree_t *rt)
849 {
850 	return (range_tree_max(rt) - range_tree_min(rt));
851 }
852