xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 266f97b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169 
170 uint_t		zio_taskq_batch_pct = 80;	/* 1 thread per cpu in pset */
171 uint_t		zio_taskq_batch_tpq;		/* threads per taskq */
172 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
173 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
174 
175 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
176 
177 /*
178  * Report any spa_load_verify errors found, but do not fail spa_load.
179  * This is used by zdb to analyze non-idle pools.
180  */
181 boolean_t	spa_load_verify_dryrun = B_FALSE;
182 
183 /*
184  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185  * This is used by zdb for spacemaps verification.
186  */
187 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
188 
189 /*
190  * This (illegal) pool name is used when temporarily importing a spa_t in order
191  * to get the vdev stats associated with the imported devices.
192  */
193 #define	TRYIMPORT_NAME	"$import"
194 
195 /*
196  * For debugging purposes: print out vdev tree during pool import.
197  */
198 int		spa_load_print_vdev_tree = B_FALSE;
199 
200 /*
201  * A non-zero value for zfs_max_missing_tvds means that we allow importing
202  * pools with missing top-level vdevs. This is strictly intended for advanced
203  * pool recovery cases since missing data is almost inevitable. Pools with
204  * missing devices can only be imported read-only for safety reasons, and their
205  * fail-mode will be automatically set to "continue".
206  *
207  * With 1 missing vdev we should be able to import the pool and mount all
208  * datasets. User data that was not modified after the missing device has been
209  * added should be recoverable. This means that snapshots created prior to the
210  * addition of that device should be completely intact.
211  *
212  * With 2 missing vdevs, some datasets may fail to mount since there are
213  * dataset statistics that are stored as regular metadata. Some data might be
214  * recoverable if those vdevs were added recently.
215  *
216  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217  * may be missing entirely. Chances of data recovery are very low. Note that
218  * there are also risks of performing an inadvertent rewind as we might be
219  * missing all the vdevs with the latest uberblocks.
220  */
221 unsigned long	zfs_max_missing_tvds = 0;
222 
223 /*
224  * The parameters below are similar to zfs_max_missing_tvds but are only
225  * intended for a preliminary open of the pool with an untrusted config which
226  * might be incomplete or out-dated.
227  *
228  * We are more tolerant for pools opened from a cachefile since we could have
229  * an out-dated cachefile where a device removal was not registered.
230  * We could have set the limit arbitrarily high but in the case where devices
231  * are really missing we would want to return the proper error codes; we chose
232  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233  * and we get a chance to retrieve the trusted config.
234  */
235 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236 
237 /*
238  * In the case where config was assembled by scanning device paths (/dev/dsks
239  * by default) we are less tolerant since all the existing devices should have
240  * been detected and we want spa_load to return the right error codes.
241  */
242 uint64_t	zfs_max_missing_tvds_scan = 0;
243 
244 /*
245  * Debugging aid that pauses spa_sync() towards the end.
246  */
247 boolean_t	zfs_pause_spa_sync = B_FALSE;
248 
249 /*
250  * Variables to indicate the livelist condense zthr func should wait at certain
251  * points for the livelist to be removed - used to test condense/destroy races
252  */
253 int zfs_livelist_condense_zthr_pause = 0;
254 int zfs_livelist_condense_sync_pause = 0;
255 
256 /*
257  * Variables to track whether or not condense cancellation has been
258  * triggered in testing.
259  */
260 int zfs_livelist_condense_sync_cancel = 0;
261 int zfs_livelist_condense_zthr_cancel = 0;
262 
263 /*
264  * Variable to track whether or not extra ALLOC blkptrs were added to a
265  * livelist entry while it was being condensed (caused by the way we track
266  * remapped blkptrs in dbuf_remap_impl)
267  */
268 int zfs_livelist_condense_new_alloc = 0;
269 
270 /*
271  * ==========================================================================
272  * SPA properties routines
273  * ==========================================================================
274  */
275 
276 /*
277  * Add a (source=src, propname=propval) list to an nvlist.
278  */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
281     uint64_t intval, zprop_source_t src)
282 {
283 	const char *propname = zpool_prop_to_name(prop);
284 	nvlist_t *propval;
285 
286 	propval = fnvlist_alloc();
287 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288 
289 	if (strval != NULL)
290 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 	else
292 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293 
294 	fnvlist_add_nvlist(nvl, propname, propval);
295 	nvlist_free(propval);
296 }
297 
298 /*
299  * Get property values from the spa configuration.
300  */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 	vdev_t *rvd = spa->spa_root_vdev;
305 	dsl_pool_t *pool = spa->spa_dsl_pool;
306 	uint64_t size, alloc, cap, version;
307 	const zprop_source_t src = ZPROP_SRC_NONE;
308 	spa_config_dirent_t *dp;
309 	metaslab_class_t *mc = spa_normal_class(spa);
310 
311 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312 
313 	if (rvd != NULL) {
314 		alloc = metaslab_class_get_alloc(mc);
315 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318 
319 		size = metaslab_class_get_space(mc);
320 		size += metaslab_class_get_space(spa_special_class(spa));
321 		size += metaslab_class_get_space(spa_dedup_class(spa));
322 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
323 
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 		    size - alloc, src);
329 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 		    spa->spa_checkpoint_info.sci_dspace, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 		    metaslab_class_fragmentation(mc), src);
334 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 		    metaslab_class_expandable_space(mc), src);
336 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 		    (spa_mode(spa) == SPA_MODE_READ), src);
338 
339 		cap = (size == 0) ? 0 : (alloc * 100 / size);
340 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341 
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 		    ddt_get_pool_dedup_ratio(spa), src);
344 
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 		    rvd->vdev_state, src);
347 
348 		version = spa_version(spa);
349 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 			    version, ZPROP_SRC_DEFAULT);
352 		} else {
353 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 			    version, ZPROP_SRC_LOCAL);
355 		}
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 		    NULL, spa_load_guid(spa), src);
358 	}
359 
360 	if (pool != NULL) {
361 		/*
362 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 		 * when opening pools before this version freedir will be NULL.
364 		 */
365 		if (pool->dp_free_dir != NULL) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 			    src);
369 		} else {
370 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 			    NULL, 0, src);
372 		}
373 
374 		if (pool->dp_leak_dir != NULL) {
375 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 			    src);
378 		} else {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 			    NULL, 0, src);
381 		}
382 	}
383 
384 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385 
386 	if (spa->spa_comment != NULL) {
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 		    0, ZPROP_SRC_LOCAL);
389 	}
390 
391 	if (spa->spa_compatibility != NULL) {
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 	}
395 
396 	if (spa->spa_root != NULL)
397 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 		    0, ZPROP_SRC_LOCAL);
399 
400 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 	} else {
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 	}
407 
408 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 	} else {
412 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 	}
415 
416 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 		if (dp->scd_path == NULL) {
418 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 			    "none", 0, ZPROP_SRC_LOCAL);
420 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 		}
424 	}
425 }
426 
427 /*
428  * Get zpool property values.
429  */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 	objset_t *mos = spa->spa_meta_objset;
434 	zap_cursor_t zc;
435 	zap_attribute_t za;
436 	dsl_pool_t *dp;
437 	int err;
438 
439 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 	if (err)
441 		return (err);
442 
443 	dp = spa_get_dsl(spa);
444 	dsl_pool_config_enter(dp, FTAG);
445 	mutex_enter(&spa->spa_props_lock);
446 
447 	/*
448 	 * Get properties from the spa config.
449 	 */
450 	spa_prop_get_config(spa, nvp);
451 
452 	/* If no pool property object, no more prop to get. */
453 	if (mos == NULL || spa->spa_pool_props_object == 0)
454 		goto out;
455 
456 	/*
457 	 * Get properties from the MOS pool property object.
458 	 */
459 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 	    zap_cursor_advance(&zc)) {
462 		uint64_t intval = 0;
463 		char *strval = NULL;
464 		zprop_source_t src = ZPROP_SRC_DEFAULT;
465 		zpool_prop_t prop;
466 
467 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 			continue;
469 
470 		switch (za.za_integer_length) {
471 		case 8:
472 			/* integer property */
473 			if (za.za_first_integer !=
474 			    zpool_prop_default_numeric(prop))
475 				src = ZPROP_SRC_LOCAL;
476 
477 			if (prop == ZPOOL_PROP_BOOTFS) {
478 				dsl_dataset_t *ds = NULL;
479 
480 				err = dsl_dataset_hold_obj(dp,
481 				    za.za_first_integer, FTAG, &ds);
482 				if (err != 0)
483 					break;
484 
485 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 				    KM_SLEEP);
487 				dsl_dataset_name(ds, strval);
488 				dsl_dataset_rele(ds, FTAG);
489 			} else {
490 				strval = NULL;
491 				intval = za.za_first_integer;
492 			}
493 
494 			spa_prop_add_list(*nvp, prop, strval, intval, src);
495 
496 			if (strval != NULL)
497 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498 
499 			break;
500 
501 		case 1:
502 			/* string property */
503 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 			err = zap_lookup(mos, spa->spa_pool_props_object,
505 			    za.za_name, 1, za.za_num_integers, strval);
506 			if (err) {
507 				kmem_free(strval, za.za_num_integers);
508 				break;
509 			}
510 			spa_prop_add_list(*nvp, prop, strval, 0, src);
511 			kmem_free(strval, za.za_num_integers);
512 			break;
513 
514 		default:
515 			break;
516 		}
517 	}
518 	zap_cursor_fini(&zc);
519 out:
520 	mutex_exit(&spa->spa_props_lock);
521 	dsl_pool_config_exit(dp, FTAG);
522 	if (err && err != ENOENT) {
523 		nvlist_free(*nvp);
524 		*nvp = NULL;
525 		return (err);
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * Validate the given pool properties nvlist and modify the list
533  * for the property values to be set.
534  */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 	nvpair_t *elem;
539 	int error = 0, reset_bootfs = 0;
540 	uint64_t objnum = 0;
541 	boolean_t has_feature = B_FALSE;
542 
543 	elem = NULL;
544 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 		uint64_t intval;
546 		char *strval, *slash, *check, *fname;
547 		const char *propname = nvpair_name(elem);
548 		zpool_prop_t prop = zpool_name_to_prop(propname);
549 
550 		switch (prop) {
551 		case ZPOOL_PROP_INVAL:
552 			if (!zpool_prop_feature(propname)) {
553 				error = SET_ERROR(EINVAL);
554 				break;
555 			}
556 
557 			/*
558 			 * Sanitize the input.
559 			 */
560 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			if (nvpair_value_uint64(elem, &intval) != 0) {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			if (intval != 0) {
571 				error = SET_ERROR(EINVAL);
572 				break;
573 			}
574 
575 			fname = strchr(propname, '@') + 1;
576 			if (zfeature_lookup_name(fname, NULL) != 0) {
577 				error = SET_ERROR(EINVAL);
578 				break;
579 			}
580 
581 			has_feature = B_TRUE;
582 			break;
583 
584 		case ZPOOL_PROP_VERSION:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error &&
587 			    (intval < spa_version(spa) ||
588 			    intval > SPA_VERSION_BEFORE_FEATURES ||
589 			    has_feature))
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_DELEGATION:
594 		case ZPOOL_PROP_AUTOREPLACE:
595 		case ZPOOL_PROP_LISTSNAPS:
596 		case ZPOOL_PROP_AUTOEXPAND:
597 		case ZPOOL_PROP_AUTOTRIM:
598 			error = nvpair_value_uint64(elem, &intval);
599 			if (!error && intval > 1)
600 				error = SET_ERROR(EINVAL);
601 			break;
602 
603 		case ZPOOL_PROP_MULTIHOST:
604 			error = nvpair_value_uint64(elem, &intval);
605 			if (!error && intval > 1)
606 				error = SET_ERROR(EINVAL);
607 
608 			if (!error) {
609 				uint32_t hostid = zone_get_hostid(NULL);
610 				if (hostid)
611 					spa->spa_hostid = hostid;
612 				else
613 					error = SET_ERROR(ENOTSUP);
614 			}
615 
616 			break;
617 
618 		case ZPOOL_PROP_BOOTFS:
619 			/*
620 			 * If the pool version is less than SPA_VERSION_BOOTFS,
621 			 * or the pool is still being created (version == 0),
622 			 * the bootfs property cannot be set.
623 			 */
624 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 				error = SET_ERROR(ENOTSUP);
626 				break;
627 			}
628 
629 			/*
630 			 * Make sure the vdev config is bootable
631 			 */
632 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 				error = SET_ERROR(ENOTSUP);
634 				break;
635 			}
636 
637 			reset_bootfs = 1;
638 
639 			error = nvpair_value_string(elem, &strval);
640 
641 			if (!error) {
642 				objset_t *os;
643 
644 				if (strval == NULL || strval[0] == '\0') {
645 					objnum = zpool_prop_default_numeric(
646 					    ZPOOL_PROP_BOOTFS);
647 					break;
648 				}
649 
650 				error = dmu_objset_hold(strval, FTAG, &os);
651 				if (error != 0)
652 					break;
653 
654 				/* Must be ZPL. */
655 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 					error = SET_ERROR(ENOTSUP);
657 				} else {
658 					objnum = dmu_objset_id(os);
659 				}
660 				dmu_objset_rele(os, FTAG);
661 			}
662 			break;
663 
664 		case ZPOOL_PROP_FAILUREMODE:
665 			error = nvpair_value_uint64(elem, &intval);
666 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 				error = SET_ERROR(EINVAL);
668 
669 			/*
670 			 * This is a special case which only occurs when
671 			 * the pool has completely failed. This allows
672 			 * the user to change the in-core failmode property
673 			 * without syncing it out to disk (I/Os might
674 			 * currently be blocked). We do this by returning
675 			 * EIO to the caller (spa_prop_set) to trick it
676 			 * into thinking we encountered a property validation
677 			 * error.
678 			 */
679 			if (!error && spa_suspended(spa)) {
680 				spa->spa_failmode = intval;
681 				error = SET_ERROR(EIO);
682 			}
683 			break;
684 
685 		case ZPOOL_PROP_CACHEFILE:
686 			if ((error = nvpair_value_string(elem, &strval)) != 0)
687 				break;
688 
689 			if (strval[0] == '\0')
690 				break;
691 
692 			if (strcmp(strval, "none") == 0)
693 				break;
694 
695 			if (strval[0] != '/') {
696 				error = SET_ERROR(EINVAL);
697 				break;
698 			}
699 
700 			slash = strrchr(strval, '/');
701 			ASSERT(slash != NULL);
702 
703 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 			    strcmp(slash, "/..") == 0)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 
708 		case ZPOOL_PROP_COMMENT:
709 			if ((error = nvpair_value_string(elem, &strval)) != 0)
710 				break;
711 			for (check = strval; *check != '\0'; check++) {
712 				if (!isprint(*check)) {
713 					error = SET_ERROR(EINVAL);
714 					break;
715 				}
716 			}
717 			if (strlen(strval) > ZPROP_MAX_COMMENT)
718 				error = SET_ERROR(E2BIG);
719 			break;
720 
721 		default:
722 			break;
723 		}
724 
725 		if (error)
726 			break;
727 	}
728 
729 	(void) nvlist_remove_all(props,
730 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731 
732 	if (!error && reset_bootfs) {
733 		error = nvlist_remove(props,
734 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735 
736 		if (!error) {
737 			error = nvlist_add_uint64(props,
738 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 		}
740 	}
741 
742 	return (error);
743 }
744 
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 	char *cachefile;
749 	spa_config_dirent_t *dp;
750 
751 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 	    &cachefile) != 0)
753 		return;
754 
755 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 	    KM_SLEEP);
757 
758 	if (cachefile[0] == '\0')
759 		dp->scd_path = spa_strdup(spa_config_path);
760 	else if (strcmp(cachefile, "none") == 0)
761 		dp->scd_path = NULL;
762 	else
763 		dp->scd_path = spa_strdup(cachefile);
764 
765 	list_insert_head(&spa->spa_config_list, dp);
766 	if (need_sync)
767 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769 
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 	int error;
774 	nvpair_t *elem = NULL;
775 	boolean_t need_sync = B_FALSE;
776 
777 	if ((error = spa_prop_validate(spa, nvp)) != 0)
778 		return (error);
779 
780 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782 
783 		if (prop == ZPOOL_PROP_CACHEFILE ||
784 		    prop == ZPOOL_PROP_ALTROOT ||
785 		    prop == ZPOOL_PROP_READONLY)
786 			continue;
787 
788 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 			uint64_t ver;
790 
791 			if (prop == ZPOOL_PROP_VERSION) {
792 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 			} else {
794 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 				ver = SPA_VERSION_FEATURES;
796 				need_sync = B_TRUE;
797 			}
798 
799 			/* Save time if the version is already set. */
800 			if (ver == spa_version(spa))
801 				continue;
802 
803 			/*
804 			 * In addition to the pool directory object, we might
805 			 * create the pool properties object, the features for
806 			 * read object, the features for write object, or the
807 			 * feature descriptions object.
808 			 */
809 			error = dsl_sync_task(spa->spa_name, NULL,
810 			    spa_sync_version, &ver,
811 			    6, ZFS_SPACE_CHECK_RESERVED);
812 			if (error)
813 				return (error);
814 			continue;
815 		}
816 
817 		need_sync = B_TRUE;
818 		break;
819 	}
820 
821 	if (need_sync) {
822 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * If the bootfs property value is dsobj, clear it.
831  */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 		VERIFY(zap_remove(spa->spa_meta_objset,
837 		    spa->spa_pool_props_object,
838 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 		spa->spa_bootfs = 0;
840 	}
841 }
842 
843 /*ARGSUSED*/
844 static int
845 spa_change_guid_check(void *arg, dmu_tx_t *tx)
846 {
847 	uint64_t *newguid __maybe_unused = arg;
848 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
849 	vdev_t *rvd = spa->spa_root_vdev;
850 	uint64_t vdev_state;
851 
852 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
853 		int error = (spa_has_checkpoint(spa)) ?
854 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
855 		return (SET_ERROR(error));
856 	}
857 
858 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859 	vdev_state = rvd->vdev_state;
860 	spa_config_exit(spa, SCL_STATE, FTAG);
861 
862 	if (vdev_state != VDEV_STATE_HEALTHY)
863 		return (SET_ERROR(ENXIO));
864 
865 	ASSERT3U(spa_guid(spa), !=, *newguid);
866 
867 	return (0);
868 }
869 
870 static void
871 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
872 {
873 	uint64_t *newguid = arg;
874 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
875 	uint64_t oldguid;
876 	vdev_t *rvd = spa->spa_root_vdev;
877 
878 	oldguid = spa_guid(spa);
879 
880 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
881 	rvd->vdev_guid = *newguid;
882 	rvd->vdev_guid_sum += (*newguid - oldguid);
883 	vdev_config_dirty(rvd);
884 	spa_config_exit(spa, SCL_STATE, FTAG);
885 
886 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
887 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
888 }
889 
890 /*
891  * Change the GUID for the pool.  This is done so that we can later
892  * re-import a pool built from a clone of our own vdevs.  We will modify
893  * the root vdev's guid, our own pool guid, and then mark all of our
894  * vdevs dirty.  Note that we must make sure that all our vdevs are
895  * online when we do this, or else any vdevs that weren't present
896  * would be orphaned from our pool.  We are also going to issue a
897  * sysevent to update any watchers.
898  */
899 int
900 spa_change_guid(spa_t *spa)
901 {
902 	int error;
903 	uint64_t guid;
904 
905 	mutex_enter(&spa->spa_vdev_top_lock);
906 	mutex_enter(&spa_namespace_lock);
907 	guid = spa_generate_guid(NULL);
908 
909 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
910 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
911 
912 	if (error == 0) {
913 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
914 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
915 	}
916 
917 	mutex_exit(&spa_namespace_lock);
918 	mutex_exit(&spa->spa_vdev_top_lock);
919 
920 	return (error);
921 }
922 
923 /*
924  * ==========================================================================
925  * SPA state manipulation (open/create/destroy/import/export)
926  * ==========================================================================
927  */
928 
929 static int
930 spa_error_entry_compare(const void *a, const void *b)
931 {
932 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
933 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
934 	int ret;
935 
936 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
937 	    sizeof (zbookmark_phys_t));
938 
939 	return (TREE_ISIGN(ret));
940 }
941 
942 /*
943  * Utility function which retrieves copies of the current logs and
944  * re-initializes them in the process.
945  */
946 void
947 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
948 {
949 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
950 
951 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
952 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
953 
954 	avl_create(&spa->spa_errlist_scrub,
955 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
956 	    offsetof(spa_error_entry_t, se_avl));
957 	avl_create(&spa->spa_errlist_last,
958 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
959 	    offsetof(spa_error_entry_t, se_avl));
960 }
961 
962 static void
963 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
964 {
965 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
966 	enum zti_modes mode = ztip->zti_mode;
967 	uint_t value = ztip->zti_value;
968 	uint_t count = ztip->zti_count;
969 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970 	uint_t cpus, flags = TASKQ_DYNAMIC;
971 	boolean_t batch = B_FALSE;
972 
973 	switch (mode) {
974 	case ZTI_MODE_FIXED:
975 		ASSERT3U(value, >, 0);
976 		break;
977 
978 	case ZTI_MODE_BATCH:
979 		batch = B_TRUE;
980 		flags |= TASKQ_THREADS_CPU_PCT;
981 		value = MIN(zio_taskq_batch_pct, 100);
982 		break;
983 
984 	case ZTI_MODE_SCALE:
985 		flags |= TASKQ_THREADS_CPU_PCT;
986 		/*
987 		 * We want more taskqs to reduce lock contention, but we want
988 		 * less for better request ordering and CPU utilization.
989 		 */
990 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
991 		if (zio_taskq_batch_tpq > 0) {
992 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
993 			    zio_taskq_batch_tpq);
994 		} else {
995 			/*
996 			 * Prefer 6 threads per taskq, but no more taskqs
997 			 * than threads in them on large systems. For 80%:
998 			 *
999 			 *                 taskq   taskq   total
1000 			 * cpus    taskqs  percent threads threads
1001 			 * ------- ------- ------- ------- -------
1002 			 * 1       1       80%     1       1
1003 			 * 2       1       80%     1       1
1004 			 * 4       1       80%     3       3
1005 			 * 8       2       40%     3       6
1006 			 * 16      3       27%     4       12
1007 			 * 32      5       16%     5       25
1008 			 * 64      7       11%     7       49
1009 			 * 128     10      8%      10      100
1010 			 * 256     14      6%      15      210
1011 			 */
1012 			count = 1 + cpus / 6;
1013 			while (count * count > cpus)
1014 				count--;
1015 		}
1016 		/* Limit each taskq within 100% to not trigger assertion. */
1017 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1018 		value = (zio_taskq_batch_pct + count / 2) / count;
1019 		break;
1020 
1021 	case ZTI_MODE_NULL:
1022 		tqs->stqs_count = 0;
1023 		tqs->stqs_taskq = NULL;
1024 		return;
1025 
1026 	default:
1027 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1028 		    "spa_activate()",
1029 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1030 		break;
1031 	}
1032 
1033 	ASSERT3U(count, >, 0);
1034 	tqs->stqs_count = count;
1035 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1036 
1037 	for (uint_t i = 0; i < count; i++) {
1038 		taskq_t *tq;
1039 		char name[32];
1040 
1041 		if (count > 1)
1042 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1043 			    zio_type_name[t], zio_taskq_types[q], i);
1044 		else
1045 			(void) snprintf(name, sizeof (name), "%s_%s",
1046 			    zio_type_name[t], zio_taskq_types[q]);
1047 
1048 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1049 			if (batch)
1050 				flags |= TASKQ_DC_BATCH;
1051 
1052 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1053 			    spa->spa_proc, zio_taskq_basedc, flags);
1054 		} else {
1055 			pri_t pri = maxclsyspri;
1056 			/*
1057 			 * The write issue taskq can be extremely CPU
1058 			 * intensive.  Run it at slightly less important
1059 			 * priority than the other taskqs.
1060 			 *
1061 			 * Under Linux and FreeBSD this means incrementing
1062 			 * the priority value as opposed to platforms like
1063 			 * illumos where it should be decremented.
1064 			 *
1065 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1066 			 * are equal then a difference between them is
1067 			 * insignificant.
1068 			 */
1069 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1070 #if defined(__linux__)
1071 				pri++;
1072 #elif defined(__FreeBSD__)
1073 				pri += 4;
1074 #else
1075 #error "unknown OS"
1076 #endif
1077 			}
1078 			tq = taskq_create_proc(name, value, pri, 50,
1079 			    INT_MAX, spa->spa_proc, flags);
1080 		}
1081 
1082 		tqs->stqs_taskq[i] = tq;
1083 	}
1084 }
1085 
1086 static void
1087 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1088 {
1089 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1090 
1091 	if (tqs->stqs_taskq == NULL) {
1092 		ASSERT3U(tqs->stqs_count, ==, 0);
1093 		return;
1094 	}
1095 
1096 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1097 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1098 		taskq_destroy(tqs->stqs_taskq[i]);
1099 	}
1100 
1101 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1102 	tqs->stqs_taskq = NULL;
1103 }
1104 
1105 /*
1106  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1107  * Note that a type may have multiple discrete taskqs to avoid lock contention
1108  * on the taskq itself. In that case we choose which taskq at random by using
1109  * the low bits of gethrtime().
1110  */
1111 void
1112 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1113     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1114 {
1115 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1116 	taskq_t *tq;
1117 
1118 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1119 	ASSERT3U(tqs->stqs_count, !=, 0);
1120 
1121 	if (tqs->stqs_count == 1) {
1122 		tq = tqs->stqs_taskq[0];
1123 	} else {
1124 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1125 	}
1126 
1127 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1128 }
1129 
1130 /*
1131  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1132  */
1133 void
1134 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1135     task_func_t *func, void *arg, uint_t flags)
1136 {
1137 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1138 	taskq_t *tq;
1139 	taskqid_t id;
1140 
1141 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1142 	ASSERT3U(tqs->stqs_count, !=, 0);
1143 
1144 	if (tqs->stqs_count == 1) {
1145 		tq = tqs->stqs_taskq[0];
1146 	} else {
1147 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1148 	}
1149 
1150 	id = taskq_dispatch(tq, func, arg, flags);
1151 	if (id)
1152 		taskq_wait_id(tq, id);
1153 }
1154 
1155 static void
1156 spa_create_zio_taskqs(spa_t *spa)
1157 {
1158 	for (int t = 0; t < ZIO_TYPES; t++) {
1159 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1160 			spa_taskqs_init(spa, t, q);
1161 		}
1162 	}
1163 }
1164 
1165 /*
1166  * Disabled until spa_thread() can be adapted for Linux.
1167  */
1168 #undef HAVE_SPA_THREAD
1169 
1170 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1171 static void
1172 spa_thread(void *arg)
1173 {
1174 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1175 	callb_cpr_t cprinfo;
1176 
1177 	spa_t *spa = arg;
1178 	user_t *pu = PTOU(curproc);
1179 
1180 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1181 	    spa->spa_name);
1182 
1183 	ASSERT(curproc != &p0);
1184 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1185 	    "zpool-%s", spa->spa_name);
1186 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1187 
1188 	/* bind this thread to the requested psrset */
1189 	if (zio_taskq_psrset_bind != PS_NONE) {
1190 		pool_lock();
1191 		mutex_enter(&cpu_lock);
1192 		mutex_enter(&pidlock);
1193 		mutex_enter(&curproc->p_lock);
1194 
1195 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1196 		    0, NULL, NULL) == 0)  {
1197 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1198 		} else {
1199 			cmn_err(CE_WARN,
1200 			    "Couldn't bind process for zfs pool \"%s\" to "
1201 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1202 		}
1203 
1204 		mutex_exit(&curproc->p_lock);
1205 		mutex_exit(&pidlock);
1206 		mutex_exit(&cpu_lock);
1207 		pool_unlock();
1208 	}
1209 
1210 	if (zio_taskq_sysdc) {
1211 		sysdc_thread_enter(curthread, 100, 0);
1212 	}
1213 
1214 	spa->spa_proc = curproc;
1215 	spa->spa_did = curthread->t_did;
1216 
1217 	spa_create_zio_taskqs(spa);
1218 
1219 	mutex_enter(&spa->spa_proc_lock);
1220 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1221 
1222 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1223 	cv_broadcast(&spa->spa_proc_cv);
1224 
1225 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1226 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1227 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1228 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1229 
1230 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1231 	spa->spa_proc_state = SPA_PROC_GONE;
1232 	spa->spa_proc = &p0;
1233 	cv_broadcast(&spa->spa_proc_cv);
1234 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1235 
1236 	mutex_enter(&curproc->p_lock);
1237 	lwp_exit();
1238 }
1239 #endif
1240 
1241 /*
1242  * Activate an uninitialized pool.
1243  */
1244 static void
1245 spa_activate(spa_t *spa, spa_mode_t mode)
1246 {
1247 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1248 
1249 	spa->spa_state = POOL_STATE_ACTIVE;
1250 	spa->spa_mode = mode;
1251 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1252 
1253 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1254 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1255 	spa->spa_embedded_log_class =
1256 	    metaslab_class_create(spa, zfs_metaslab_ops);
1257 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1258 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1259 
1260 	/* Try to create a covering process */
1261 	mutex_enter(&spa->spa_proc_lock);
1262 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1263 	ASSERT(spa->spa_proc == &p0);
1264 	spa->spa_did = 0;
1265 
1266 #ifdef HAVE_SPA_THREAD
1267 	/* Only create a process if we're going to be around a while. */
1268 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1269 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1270 		    NULL, 0) == 0) {
1271 			spa->spa_proc_state = SPA_PROC_CREATED;
1272 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1273 				cv_wait(&spa->spa_proc_cv,
1274 				    &spa->spa_proc_lock);
1275 			}
1276 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1277 			ASSERT(spa->spa_proc != &p0);
1278 			ASSERT(spa->spa_did != 0);
1279 		} else {
1280 #ifdef _KERNEL
1281 			cmn_err(CE_WARN,
1282 			    "Couldn't create process for zfs pool \"%s\"\n",
1283 			    spa->spa_name);
1284 #endif
1285 		}
1286 	}
1287 #endif /* HAVE_SPA_THREAD */
1288 	mutex_exit(&spa->spa_proc_lock);
1289 
1290 	/* If we didn't create a process, we need to create our taskqs. */
1291 	if (spa->spa_proc == &p0) {
1292 		spa_create_zio_taskqs(spa);
1293 	}
1294 
1295 	for (size_t i = 0; i < TXG_SIZE; i++) {
1296 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1297 		    ZIO_FLAG_CANFAIL);
1298 	}
1299 
1300 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1301 	    offsetof(vdev_t, vdev_config_dirty_node));
1302 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1303 	    offsetof(objset_t, os_evicting_node));
1304 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1305 	    offsetof(vdev_t, vdev_state_dirty_node));
1306 
1307 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1308 	    offsetof(struct vdev, vdev_txg_node));
1309 
1310 	avl_create(&spa->spa_errlist_scrub,
1311 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1312 	    offsetof(spa_error_entry_t, se_avl));
1313 	avl_create(&spa->spa_errlist_last,
1314 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1315 	    offsetof(spa_error_entry_t, se_avl));
1316 
1317 	spa_keystore_init(&spa->spa_keystore);
1318 
1319 	/*
1320 	 * This taskq is used to perform zvol-minor-related tasks
1321 	 * asynchronously. This has several advantages, including easy
1322 	 * resolution of various deadlocks.
1323 	 *
1324 	 * The taskq must be single threaded to ensure tasks are always
1325 	 * processed in the order in which they were dispatched.
1326 	 *
1327 	 * A taskq per pool allows one to keep the pools independent.
1328 	 * This way if one pool is suspended, it will not impact another.
1329 	 *
1330 	 * The preferred location to dispatch a zvol minor task is a sync
1331 	 * task. In this context, there is easy access to the spa_t and minimal
1332 	 * error handling is required because the sync task must succeed.
1333 	 */
1334 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1335 	    1, INT_MAX, 0);
1336 
1337 	/*
1338 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1339 	 * pool traverse code from monopolizing the global (and limited)
1340 	 * system_taskq by inappropriately scheduling long running tasks on it.
1341 	 */
1342 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1343 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1344 
1345 	/*
1346 	 * The taskq to upgrade datasets in this pool. Currently used by
1347 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1348 	 */
1349 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1350 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1351 }
1352 
1353 /*
1354  * Opposite of spa_activate().
1355  */
1356 static void
1357 spa_deactivate(spa_t *spa)
1358 {
1359 	ASSERT(spa->spa_sync_on == B_FALSE);
1360 	ASSERT(spa->spa_dsl_pool == NULL);
1361 	ASSERT(spa->spa_root_vdev == NULL);
1362 	ASSERT(spa->spa_async_zio_root == NULL);
1363 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1364 
1365 	spa_evicting_os_wait(spa);
1366 
1367 	if (spa->spa_zvol_taskq) {
1368 		taskq_destroy(spa->spa_zvol_taskq);
1369 		spa->spa_zvol_taskq = NULL;
1370 	}
1371 
1372 	if (spa->spa_prefetch_taskq) {
1373 		taskq_destroy(spa->spa_prefetch_taskq);
1374 		spa->spa_prefetch_taskq = NULL;
1375 	}
1376 
1377 	if (spa->spa_upgrade_taskq) {
1378 		taskq_destroy(spa->spa_upgrade_taskq);
1379 		spa->spa_upgrade_taskq = NULL;
1380 	}
1381 
1382 	txg_list_destroy(&spa->spa_vdev_txg_list);
1383 
1384 	list_destroy(&spa->spa_config_dirty_list);
1385 	list_destroy(&spa->spa_evicting_os_list);
1386 	list_destroy(&spa->spa_state_dirty_list);
1387 
1388 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1389 
1390 	for (int t = 0; t < ZIO_TYPES; t++) {
1391 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1392 			spa_taskqs_fini(spa, t, q);
1393 		}
1394 	}
1395 
1396 	for (size_t i = 0; i < TXG_SIZE; i++) {
1397 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1398 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1399 		spa->spa_txg_zio[i] = NULL;
1400 	}
1401 
1402 	metaslab_class_destroy(spa->spa_normal_class);
1403 	spa->spa_normal_class = NULL;
1404 
1405 	metaslab_class_destroy(spa->spa_log_class);
1406 	spa->spa_log_class = NULL;
1407 
1408 	metaslab_class_destroy(spa->spa_embedded_log_class);
1409 	spa->spa_embedded_log_class = NULL;
1410 
1411 	metaslab_class_destroy(spa->spa_special_class);
1412 	spa->spa_special_class = NULL;
1413 
1414 	metaslab_class_destroy(spa->spa_dedup_class);
1415 	spa->spa_dedup_class = NULL;
1416 
1417 	/*
1418 	 * If this was part of an import or the open otherwise failed, we may
1419 	 * still have errors left in the queues.  Empty them just in case.
1420 	 */
1421 	spa_errlog_drain(spa);
1422 	avl_destroy(&spa->spa_errlist_scrub);
1423 	avl_destroy(&spa->spa_errlist_last);
1424 
1425 	spa_keystore_fini(&spa->spa_keystore);
1426 
1427 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1428 
1429 	mutex_enter(&spa->spa_proc_lock);
1430 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1431 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1432 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1433 		cv_broadcast(&spa->spa_proc_cv);
1434 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1435 			ASSERT(spa->spa_proc != &p0);
1436 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1437 		}
1438 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1439 		spa->spa_proc_state = SPA_PROC_NONE;
1440 	}
1441 	ASSERT(spa->spa_proc == &p0);
1442 	mutex_exit(&spa->spa_proc_lock);
1443 
1444 	/*
1445 	 * We want to make sure spa_thread() has actually exited the ZFS
1446 	 * module, so that the module can't be unloaded out from underneath
1447 	 * it.
1448 	 */
1449 	if (spa->spa_did != 0) {
1450 		thread_join(spa->spa_did);
1451 		spa->spa_did = 0;
1452 	}
1453 }
1454 
1455 /*
1456  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1457  * will create all the necessary vdevs in the appropriate layout, with each vdev
1458  * in the CLOSED state.  This will prep the pool before open/creation/import.
1459  * All vdev validation is done by the vdev_alloc() routine.
1460  */
1461 int
1462 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1463     uint_t id, int atype)
1464 {
1465 	nvlist_t **child;
1466 	uint_t children;
1467 	int error;
1468 
1469 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1470 		return (error);
1471 
1472 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1473 		return (0);
1474 
1475 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1476 	    &child, &children);
1477 
1478 	if (error == ENOENT)
1479 		return (0);
1480 
1481 	if (error) {
1482 		vdev_free(*vdp);
1483 		*vdp = NULL;
1484 		return (SET_ERROR(EINVAL));
1485 	}
1486 
1487 	for (int c = 0; c < children; c++) {
1488 		vdev_t *vd;
1489 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1490 		    atype)) != 0) {
1491 			vdev_free(*vdp);
1492 			*vdp = NULL;
1493 			return (error);
1494 		}
1495 	}
1496 
1497 	ASSERT(*vdp != NULL);
1498 
1499 	return (0);
1500 }
1501 
1502 static boolean_t
1503 spa_should_flush_logs_on_unload(spa_t *spa)
1504 {
1505 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1506 		return (B_FALSE);
1507 
1508 	if (!spa_writeable(spa))
1509 		return (B_FALSE);
1510 
1511 	if (!spa->spa_sync_on)
1512 		return (B_FALSE);
1513 
1514 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1515 		return (B_FALSE);
1516 
1517 	if (zfs_keep_log_spacemaps_at_export)
1518 		return (B_FALSE);
1519 
1520 	return (B_TRUE);
1521 }
1522 
1523 /*
1524  * Opens a transaction that will set the flag that will instruct
1525  * spa_sync to attempt to flush all the metaslabs for that txg.
1526  */
1527 static void
1528 spa_unload_log_sm_flush_all(spa_t *spa)
1529 {
1530 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1531 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1532 
1533 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1534 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1535 
1536 	dmu_tx_commit(tx);
1537 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1538 }
1539 
1540 static void
1541 spa_unload_log_sm_metadata(spa_t *spa)
1542 {
1543 	void *cookie = NULL;
1544 	spa_log_sm_t *sls;
1545 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1546 	    &cookie)) != NULL) {
1547 		VERIFY0(sls->sls_mscount);
1548 		kmem_free(sls, sizeof (spa_log_sm_t));
1549 	}
1550 
1551 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1552 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1553 		VERIFY0(e->lse_mscount);
1554 		list_remove(&spa->spa_log_summary, e);
1555 		kmem_free(e, sizeof (log_summary_entry_t));
1556 	}
1557 
1558 	spa->spa_unflushed_stats.sus_nblocks = 0;
1559 	spa->spa_unflushed_stats.sus_memused = 0;
1560 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1561 }
1562 
1563 static void
1564 spa_destroy_aux_threads(spa_t *spa)
1565 {
1566 	if (spa->spa_condense_zthr != NULL) {
1567 		zthr_destroy(spa->spa_condense_zthr);
1568 		spa->spa_condense_zthr = NULL;
1569 	}
1570 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1571 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1572 		spa->spa_checkpoint_discard_zthr = NULL;
1573 	}
1574 	if (spa->spa_livelist_delete_zthr != NULL) {
1575 		zthr_destroy(spa->spa_livelist_delete_zthr);
1576 		spa->spa_livelist_delete_zthr = NULL;
1577 	}
1578 	if (spa->spa_livelist_condense_zthr != NULL) {
1579 		zthr_destroy(spa->spa_livelist_condense_zthr);
1580 		spa->spa_livelist_condense_zthr = NULL;
1581 	}
1582 }
1583 
1584 /*
1585  * Opposite of spa_load().
1586  */
1587 static void
1588 spa_unload(spa_t *spa)
1589 {
1590 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1591 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1592 
1593 	spa_import_progress_remove(spa_guid(spa));
1594 	spa_load_note(spa, "UNLOADING");
1595 
1596 	spa_wake_waiters(spa);
1597 
1598 	/*
1599 	 * If the log space map feature is enabled and the pool is getting
1600 	 * exported (but not destroyed), we want to spend some time flushing
1601 	 * as many metaslabs as we can in an attempt to destroy log space
1602 	 * maps and save import time.
1603 	 */
1604 	if (spa_should_flush_logs_on_unload(spa))
1605 		spa_unload_log_sm_flush_all(spa);
1606 
1607 	/*
1608 	 * Stop async tasks.
1609 	 */
1610 	spa_async_suspend(spa);
1611 
1612 	if (spa->spa_root_vdev) {
1613 		vdev_t *root_vdev = spa->spa_root_vdev;
1614 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1615 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1616 		vdev_autotrim_stop_all(spa);
1617 		vdev_rebuild_stop_all(spa);
1618 	}
1619 
1620 	/*
1621 	 * Stop syncing.
1622 	 */
1623 	if (spa->spa_sync_on) {
1624 		txg_sync_stop(spa->spa_dsl_pool);
1625 		spa->spa_sync_on = B_FALSE;
1626 	}
1627 
1628 	/*
1629 	 * This ensures that there is no async metaslab prefetching
1630 	 * while we attempt to unload the spa.
1631 	 */
1632 	if (spa->spa_root_vdev != NULL) {
1633 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1634 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1635 			if (vc->vdev_mg != NULL)
1636 				taskq_wait(vc->vdev_mg->mg_taskq);
1637 		}
1638 	}
1639 
1640 	if (spa->spa_mmp.mmp_thread)
1641 		mmp_thread_stop(spa);
1642 
1643 	/*
1644 	 * Wait for any outstanding async I/O to complete.
1645 	 */
1646 	if (spa->spa_async_zio_root != NULL) {
1647 		for (int i = 0; i < max_ncpus; i++)
1648 			(void) zio_wait(spa->spa_async_zio_root[i]);
1649 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1650 		spa->spa_async_zio_root = NULL;
1651 	}
1652 
1653 	if (spa->spa_vdev_removal != NULL) {
1654 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1655 		spa->spa_vdev_removal = NULL;
1656 	}
1657 
1658 	spa_destroy_aux_threads(spa);
1659 
1660 	spa_condense_fini(spa);
1661 
1662 	bpobj_close(&spa->spa_deferred_bpobj);
1663 
1664 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1665 
1666 	/*
1667 	 * Close all vdevs.
1668 	 */
1669 	if (spa->spa_root_vdev)
1670 		vdev_free(spa->spa_root_vdev);
1671 	ASSERT(spa->spa_root_vdev == NULL);
1672 
1673 	/*
1674 	 * Close the dsl pool.
1675 	 */
1676 	if (spa->spa_dsl_pool) {
1677 		dsl_pool_close(spa->spa_dsl_pool);
1678 		spa->spa_dsl_pool = NULL;
1679 		spa->spa_meta_objset = NULL;
1680 	}
1681 
1682 	ddt_unload(spa);
1683 	spa_unload_log_sm_metadata(spa);
1684 
1685 	/*
1686 	 * Drop and purge level 2 cache
1687 	 */
1688 	spa_l2cache_drop(spa);
1689 
1690 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1691 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1692 	if (spa->spa_spares.sav_vdevs) {
1693 		kmem_free(spa->spa_spares.sav_vdevs,
1694 		    spa->spa_spares.sav_count * sizeof (void *));
1695 		spa->spa_spares.sav_vdevs = NULL;
1696 	}
1697 	if (spa->spa_spares.sav_config) {
1698 		nvlist_free(spa->spa_spares.sav_config);
1699 		spa->spa_spares.sav_config = NULL;
1700 	}
1701 	spa->spa_spares.sav_count = 0;
1702 
1703 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1704 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1705 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1706 	}
1707 	if (spa->spa_l2cache.sav_vdevs) {
1708 		kmem_free(spa->spa_l2cache.sav_vdevs,
1709 		    spa->spa_l2cache.sav_count * sizeof (void *));
1710 		spa->spa_l2cache.sav_vdevs = NULL;
1711 	}
1712 	if (spa->spa_l2cache.sav_config) {
1713 		nvlist_free(spa->spa_l2cache.sav_config);
1714 		spa->spa_l2cache.sav_config = NULL;
1715 	}
1716 	spa->spa_l2cache.sav_count = 0;
1717 
1718 	spa->spa_async_suspended = 0;
1719 
1720 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1721 
1722 	if (spa->spa_comment != NULL) {
1723 		spa_strfree(spa->spa_comment);
1724 		spa->spa_comment = NULL;
1725 	}
1726 	if (spa->spa_compatibility != NULL) {
1727 		spa_strfree(spa->spa_compatibility);
1728 		spa->spa_compatibility = NULL;
1729 	}
1730 
1731 	spa_config_exit(spa, SCL_ALL, spa);
1732 }
1733 
1734 /*
1735  * Load (or re-load) the current list of vdevs describing the active spares for
1736  * this pool.  When this is called, we have some form of basic information in
1737  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1738  * then re-generate a more complete list including status information.
1739  */
1740 void
1741 spa_load_spares(spa_t *spa)
1742 {
1743 	nvlist_t **spares;
1744 	uint_t nspares;
1745 	int i;
1746 	vdev_t *vd, *tvd;
1747 
1748 #ifndef _KERNEL
1749 	/*
1750 	 * zdb opens both the current state of the pool and the
1751 	 * checkpointed state (if present), with a different spa_t.
1752 	 *
1753 	 * As spare vdevs are shared among open pools, we skip loading
1754 	 * them when we load the checkpointed state of the pool.
1755 	 */
1756 	if (!spa_writeable(spa))
1757 		return;
1758 #endif
1759 
1760 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1761 
1762 	/*
1763 	 * First, close and free any existing spare vdevs.
1764 	 */
1765 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1766 		vd = spa->spa_spares.sav_vdevs[i];
1767 
1768 		/* Undo the call to spa_activate() below */
1769 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1770 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1771 			spa_spare_remove(tvd);
1772 		vdev_close(vd);
1773 		vdev_free(vd);
1774 	}
1775 
1776 	if (spa->spa_spares.sav_vdevs)
1777 		kmem_free(spa->spa_spares.sav_vdevs,
1778 		    spa->spa_spares.sav_count * sizeof (void *));
1779 
1780 	if (spa->spa_spares.sav_config == NULL)
1781 		nspares = 0;
1782 	else
1783 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1784 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1785 
1786 	spa->spa_spares.sav_count = (int)nspares;
1787 	spa->spa_spares.sav_vdevs = NULL;
1788 
1789 	if (nspares == 0)
1790 		return;
1791 
1792 	/*
1793 	 * Construct the array of vdevs, opening them to get status in the
1794 	 * process.   For each spare, there is potentially two different vdev_t
1795 	 * structures associated with it: one in the list of spares (used only
1796 	 * for basic validation purposes) and one in the active vdev
1797 	 * configuration (if it's spared in).  During this phase we open and
1798 	 * validate each vdev on the spare list.  If the vdev also exists in the
1799 	 * active configuration, then we also mark this vdev as an active spare.
1800 	 */
1801 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1802 	    KM_SLEEP);
1803 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1804 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1805 		    VDEV_ALLOC_SPARE) == 0);
1806 		ASSERT(vd != NULL);
1807 
1808 		spa->spa_spares.sav_vdevs[i] = vd;
1809 
1810 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1811 		    B_FALSE)) != NULL) {
1812 			if (!tvd->vdev_isspare)
1813 				spa_spare_add(tvd);
1814 
1815 			/*
1816 			 * We only mark the spare active if we were successfully
1817 			 * able to load the vdev.  Otherwise, importing a pool
1818 			 * with a bad active spare would result in strange
1819 			 * behavior, because multiple pool would think the spare
1820 			 * is actively in use.
1821 			 *
1822 			 * There is a vulnerability here to an equally bizarre
1823 			 * circumstance, where a dead active spare is later
1824 			 * brought back to life (onlined or otherwise).  Given
1825 			 * the rarity of this scenario, and the extra complexity
1826 			 * it adds, we ignore the possibility.
1827 			 */
1828 			if (!vdev_is_dead(tvd))
1829 				spa_spare_activate(tvd);
1830 		}
1831 
1832 		vd->vdev_top = vd;
1833 		vd->vdev_aux = &spa->spa_spares;
1834 
1835 		if (vdev_open(vd) != 0)
1836 			continue;
1837 
1838 		if (vdev_validate_aux(vd) == 0)
1839 			spa_spare_add(vd);
1840 	}
1841 
1842 	/*
1843 	 * Recompute the stashed list of spares, with status information
1844 	 * this time.
1845 	 */
1846 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1847 
1848 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1849 	    KM_SLEEP);
1850 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1851 		spares[i] = vdev_config_generate(spa,
1852 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1853 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1854 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count);
1855 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1856 		nvlist_free(spares[i]);
1857 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1858 }
1859 
1860 /*
1861  * Load (or re-load) the current list of vdevs describing the active l2cache for
1862  * this pool.  When this is called, we have some form of basic information in
1863  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1864  * then re-generate a more complete list including status information.
1865  * Devices which are already active have their details maintained, and are
1866  * not re-opened.
1867  */
1868 void
1869 spa_load_l2cache(spa_t *spa)
1870 {
1871 	nvlist_t **l2cache = NULL;
1872 	uint_t nl2cache;
1873 	int i, j, oldnvdevs;
1874 	uint64_t guid;
1875 	vdev_t *vd, **oldvdevs, **newvdevs;
1876 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1877 
1878 #ifndef _KERNEL
1879 	/*
1880 	 * zdb opens both the current state of the pool and the
1881 	 * checkpointed state (if present), with a different spa_t.
1882 	 *
1883 	 * As L2 caches are part of the ARC which is shared among open
1884 	 * pools, we skip loading them when we load the checkpointed
1885 	 * state of the pool.
1886 	 */
1887 	if (!spa_writeable(spa))
1888 		return;
1889 #endif
1890 
1891 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1892 
1893 	oldvdevs = sav->sav_vdevs;
1894 	oldnvdevs = sav->sav_count;
1895 	sav->sav_vdevs = NULL;
1896 	sav->sav_count = 0;
1897 
1898 	if (sav->sav_config == NULL) {
1899 		nl2cache = 0;
1900 		newvdevs = NULL;
1901 		goto out;
1902 	}
1903 
1904 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1905 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1906 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1907 
1908 	/*
1909 	 * Process new nvlist of vdevs.
1910 	 */
1911 	for (i = 0; i < nl2cache; i++) {
1912 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1913 
1914 		newvdevs[i] = NULL;
1915 		for (j = 0; j < oldnvdevs; j++) {
1916 			vd = oldvdevs[j];
1917 			if (vd != NULL && guid == vd->vdev_guid) {
1918 				/*
1919 				 * Retain previous vdev for add/remove ops.
1920 				 */
1921 				newvdevs[i] = vd;
1922 				oldvdevs[j] = NULL;
1923 				break;
1924 			}
1925 		}
1926 
1927 		if (newvdevs[i] == NULL) {
1928 			/*
1929 			 * Create new vdev
1930 			 */
1931 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1932 			    VDEV_ALLOC_L2CACHE) == 0);
1933 			ASSERT(vd != NULL);
1934 			newvdevs[i] = vd;
1935 
1936 			/*
1937 			 * Commit this vdev as an l2cache device,
1938 			 * even if it fails to open.
1939 			 */
1940 			spa_l2cache_add(vd);
1941 
1942 			vd->vdev_top = vd;
1943 			vd->vdev_aux = sav;
1944 
1945 			spa_l2cache_activate(vd);
1946 
1947 			if (vdev_open(vd) != 0)
1948 				continue;
1949 
1950 			(void) vdev_validate_aux(vd);
1951 
1952 			if (!vdev_is_dead(vd))
1953 				l2arc_add_vdev(spa, vd);
1954 
1955 			/*
1956 			 * Upon cache device addition to a pool or pool
1957 			 * creation with a cache device or if the header
1958 			 * of the device is invalid we issue an async
1959 			 * TRIM command for the whole device which will
1960 			 * execute if l2arc_trim_ahead > 0.
1961 			 */
1962 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1963 		}
1964 	}
1965 
1966 	sav->sav_vdevs = newvdevs;
1967 	sav->sav_count = (int)nl2cache;
1968 
1969 	/*
1970 	 * Recompute the stashed list of l2cache devices, with status
1971 	 * information this time.
1972 	 */
1973 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
1974 
1975 	if (sav->sav_count > 0)
1976 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1977 		    KM_SLEEP);
1978 	for (i = 0; i < sav->sav_count; i++)
1979 		l2cache[i] = vdev_config_generate(spa,
1980 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1981 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, l2cache,
1982 	    sav->sav_count);
1983 
1984 out:
1985 	/*
1986 	 * Purge vdevs that were dropped
1987 	 */
1988 	for (i = 0; i < oldnvdevs; i++) {
1989 		uint64_t pool;
1990 
1991 		vd = oldvdevs[i];
1992 		if (vd != NULL) {
1993 			ASSERT(vd->vdev_isl2cache);
1994 
1995 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1996 			    pool != 0ULL && l2arc_vdev_present(vd))
1997 				l2arc_remove_vdev(vd);
1998 			vdev_clear_stats(vd);
1999 			vdev_free(vd);
2000 		}
2001 	}
2002 
2003 	if (oldvdevs)
2004 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2005 
2006 	for (i = 0; i < sav->sav_count; i++)
2007 		nvlist_free(l2cache[i]);
2008 	if (sav->sav_count)
2009 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2010 }
2011 
2012 static int
2013 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2014 {
2015 	dmu_buf_t *db;
2016 	char *packed = NULL;
2017 	size_t nvsize = 0;
2018 	int error;
2019 	*value = NULL;
2020 
2021 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2022 	if (error)
2023 		return (error);
2024 
2025 	nvsize = *(uint64_t *)db->db_data;
2026 	dmu_buf_rele(db, FTAG);
2027 
2028 	packed = vmem_alloc(nvsize, KM_SLEEP);
2029 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2030 	    DMU_READ_PREFETCH);
2031 	if (error == 0)
2032 		error = nvlist_unpack(packed, nvsize, value, 0);
2033 	vmem_free(packed, nvsize);
2034 
2035 	return (error);
2036 }
2037 
2038 /*
2039  * Concrete top-level vdevs that are not missing and are not logs. At every
2040  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2041  */
2042 static uint64_t
2043 spa_healthy_core_tvds(spa_t *spa)
2044 {
2045 	vdev_t *rvd = spa->spa_root_vdev;
2046 	uint64_t tvds = 0;
2047 
2048 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2049 		vdev_t *vd = rvd->vdev_child[i];
2050 		if (vd->vdev_islog)
2051 			continue;
2052 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2053 			tvds++;
2054 	}
2055 
2056 	return (tvds);
2057 }
2058 
2059 /*
2060  * Checks to see if the given vdev could not be opened, in which case we post a
2061  * sysevent to notify the autoreplace code that the device has been removed.
2062  */
2063 static void
2064 spa_check_removed(vdev_t *vd)
2065 {
2066 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2067 		spa_check_removed(vd->vdev_child[c]);
2068 
2069 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2070 	    vdev_is_concrete(vd)) {
2071 		zfs_post_autoreplace(vd->vdev_spa, vd);
2072 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2073 	}
2074 }
2075 
2076 static int
2077 spa_check_for_missing_logs(spa_t *spa)
2078 {
2079 	vdev_t *rvd = spa->spa_root_vdev;
2080 
2081 	/*
2082 	 * If we're doing a normal import, then build up any additional
2083 	 * diagnostic information about missing log devices.
2084 	 * We'll pass this up to the user for further processing.
2085 	 */
2086 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2087 		nvlist_t **child, *nv;
2088 		uint64_t idx = 0;
2089 
2090 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2091 		    KM_SLEEP);
2092 		nv = fnvlist_alloc();
2093 
2094 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2095 			vdev_t *tvd = rvd->vdev_child[c];
2096 
2097 			/*
2098 			 * We consider a device as missing only if it failed
2099 			 * to open (i.e. offline or faulted is not considered
2100 			 * as missing).
2101 			 */
2102 			if (tvd->vdev_islog &&
2103 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2104 				child[idx++] = vdev_config_generate(spa, tvd,
2105 				    B_FALSE, VDEV_CONFIG_MISSING);
2106 			}
2107 		}
2108 
2109 		if (idx > 0) {
2110 			fnvlist_add_nvlist_array(nv,
2111 			    ZPOOL_CONFIG_CHILDREN, child, idx);
2112 			fnvlist_add_nvlist(spa->spa_load_info,
2113 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2114 
2115 			for (uint64_t i = 0; i < idx; i++)
2116 				nvlist_free(child[i]);
2117 		}
2118 		nvlist_free(nv);
2119 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2120 
2121 		if (idx > 0) {
2122 			spa_load_failed(spa, "some log devices are missing");
2123 			vdev_dbgmsg_print_tree(rvd, 2);
2124 			return (SET_ERROR(ENXIO));
2125 		}
2126 	} else {
2127 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2128 			vdev_t *tvd = rvd->vdev_child[c];
2129 
2130 			if (tvd->vdev_islog &&
2131 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2132 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2133 				spa_load_note(spa, "some log devices are "
2134 				    "missing, ZIL is dropped.");
2135 				vdev_dbgmsg_print_tree(rvd, 2);
2136 				break;
2137 			}
2138 		}
2139 	}
2140 
2141 	return (0);
2142 }
2143 
2144 /*
2145  * Check for missing log devices
2146  */
2147 static boolean_t
2148 spa_check_logs(spa_t *spa)
2149 {
2150 	boolean_t rv = B_FALSE;
2151 	dsl_pool_t *dp = spa_get_dsl(spa);
2152 
2153 	switch (spa->spa_log_state) {
2154 	default:
2155 		break;
2156 	case SPA_LOG_MISSING:
2157 		/* need to recheck in case slog has been restored */
2158 	case SPA_LOG_UNKNOWN:
2159 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2160 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2161 		if (rv)
2162 			spa_set_log_state(spa, SPA_LOG_MISSING);
2163 		break;
2164 	}
2165 	return (rv);
2166 }
2167 
2168 /*
2169  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2170  */
2171 static boolean_t
2172 spa_passivate_log(spa_t *spa)
2173 {
2174 	vdev_t *rvd = spa->spa_root_vdev;
2175 	boolean_t slog_found = B_FALSE;
2176 
2177 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2178 
2179 	for (int c = 0; c < rvd->vdev_children; c++) {
2180 		vdev_t *tvd = rvd->vdev_child[c];
2181 
2182 		if (tvd->vdev_islog) {
2183 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2184 			metaslab_group_passivate(tvd->vdev_mg);
2185 			slog_found = B_TRUE;
2186 		}
2187 	}
2188 
2189 	return (slog_found);
2190 }
2191 
2192 /*
2193  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2194  */
2195 static void
2196 spa_activate_log(spa_t *spa)
2197 {
2198 	vdev_t *rvd = spa->spa_root_vdev;
2199 
2200 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2201 
2202 	for (int c = 0; c < rvd->vdev_children; c++) {
2203 		vdev_t *tvd = rvd->vdev_child[c];
2204 
2205 		if (tvd->vdev_islog) {
2206 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2207 			metaslab_group_activate(tvd->vdev_mg);
2208 		}
2209 	}
2210 }
2211 
2212 int
2213 spa_reset_logs(spa_t *spa)
2214 {
2215 	int error;
2216 
2217 	error = dmu_objset_find(spa_name(spa), zil_reset,
2218 	    NULL, DS_FIND_CHILDREN);
2219 	if (error == 0) {
2220 		/*
2221 		 * We successfully offlined the log device, sync out the
2222 		 * current txg so that the "stubby" block can be removed
2223 		 * by zil_sync().
2224 		 */
2225 		txg_wait_synced(spa->spa_dsl_pool, 0);
2226 	}
2227 	return (error);
2228 }
2229 
2230 static void
2231 spa_aux_check_removed(spa_aux_vdev_t *sav)
2232 {
2233 	for (int i = 0; i < sav->sav_count; i++)
2234 		spa_check_removed(sav->sav_vdevs[i]);
2235 }
2236 
2237 void
2238 spa_claim_notify(zio_t *zio)
2239 {
2240 	spa_t *spa = zio->io_spa;
2241 
2242 	if (zio->io_error)
2243 		return;
2244 
2245 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2246 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2247 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2248 	mutex_exit(&spa->spa_props_lock);
2249 }
2250 
2251 typedef struct spa_load_error {
2252 	uint64_t	sle_meta_count;
2253 	uint64_t	sle_data_count;
2254 } spa_load_error_t;
2255 
2256 static void
2257 spa_load_verify_done(zio_t *zio)
2258 {
2259 	blkptr_t *bp = zio->io_bp;
2260 	spa_load_error_t *sle = zio->io_private;
2261 	dmu_object_type_t type = BP_GET_TYPE(bp);
2262 	int error = zio->io_error;
2263 	spa_t *spa = zio->io_spa;
2264 
2265 	abd_free(zio->io_abd);
2266 	if (error) {
2267 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2268 		    type != DMU_OT_INTENT_LOG)
2269 			atomic_inc_64(&sle->sle_meta_count);
2270 		else
2271 			atomic_inc_64(&sle->sle_data_count);
2272 	}
2273 
2274 	mutex_enter(&spa->spa_scrub_lock);
2275 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2276 	cv_broadcast(&spa->spa_scrub_io_cv);
2277 	mutex_exit(&spa->spa_scrub_lock);
2278 }
2279 
2280 /*
2281  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2282  * By default, we set it to 1/16th of the arc.
2283  */
2284 int spa_load_verify_shift = 4;
2285 int spa_load_verify_metadata = B_TRUE;
2286 int spa_load_verify_data = B_TRUE;
2287 
2288 /*ARGSUSED*/
2289 static int
2290 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2291     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2292 {
2293 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2294 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2295 		return (0);
2296 	/*
2297 	 * Note: normally this routine will not be called if
2298 	 * spa_load_verify_metadata is not set.  However, it may be useful
2299 	 * to manually set the flag after the traversal has begun.
2300 	 */
2301 	if (!spa_load_verify_metadata)
2302 		return (0);
2303 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2304 		return (0);
2305 
2306 	uint64_t maxinflight_bytes =
2307 	    arc_target_bytes() >> spa_load_verify_shift;
2308 	zio_t *rio = arg;
2309 	size_t size = BP_GET_PSIZE(bp);
2310 
2311 	mutex_enter(&spa->spa_scrub_lock);
2312 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2313 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2314 	spa->spa_load_verify_bytes += size;
2315 	mutex_exit(&spa->spa_scrub_lock);
2316 
2317 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2318 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2319 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2320 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2321 	return (0);
2322 }
2323 
2324 /* ARGSUSED */
2325 static int
2326 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2327 {
2328 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2329 		return (SET_ERROR(ENAMETOOLONG));
2330 
2331 	return (0);
2332 }
2333 
2334 static int
2335 spa_load_verify(spa_t *spa)
2336 {
2337 	zio_t *rio;
2338 	spa_load_error_t sle = { 0 };
2339 	zpool_load_policy_t policy;
2340 	boolean_t verify_ok = B_FALSE;
2341 	int error = 0;
2342 
2343 	zpool_get_load_policy(spa->spa_config, &policy);
2344 
2345 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2346 		return (0);
2347 
2348 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2349 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2350 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2351 	    DS_FIND_CHILDREN);
2352 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2353 	if (error != 0)
2354 		return (error);
2355 
2356 	rio = zio_root(spa, NULL, &sle,
2357 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2358 
2359 	if (spa_load_verify_metadata) {
2360 		if (spa->spa_extreme_rewind) {
2361 			spa_load_note(spa, "performing a complete scan of the "
2362 			    "pool since extreme rewind is on. This may take "
2363 			    "a very long time.\n  (spa_load_verify_data=%u, "
2364 			    "spa_load_verify_metadata=%u)",
2365 			    spa_load_verify_data, spa_load_verify_metadata);
2366 		}
2367 
2368 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2369 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2370 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2371 	}
2372 
2373 	(void) zio_wait(rio);
2374 	ASSERT0(spa->spa_load_verify_bytes);
2375 
2376 	spa->spa_load_meta_errors = sle.sle_meta_count;
2377 	spa->spa_load_data_errors = sle.sle_data_count;
2378 
2379 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2380 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2381 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2382 		    (u_longlong_t)sle.sle_data_count);
2383 	}
2384 
2385 	if (spa_load_verify_dryrun ||
2386 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2387 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2388 		int64_t loss = 0;
2389 
2390 		verify_ok = B_TRUE;
2391 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2392 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2393 
2394 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2395 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2396 		    spa->spa_load_txg_ts);
2397 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2398 		    loss);
2399 		fnvlist_add_uint64(spa->spa_load_info,
2400 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2401 	} else {
2402 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2403 	}
2404 
2405 	if (spa_load_verify_dryrun)
2406 		return (0);
2407 
2408 	if (error) {
2409 		if (error != ENXIO && error != EIO)
2410 			error = SET_ERROR(EIO);
2411 		return (error);
2412 	}
2413 
2414 	return (verify_ok ? 0 : EIO);
2415 }
2416 
2417 /*
2418  * Find a value in the pool props object.
2419  */
2420 static void
2421 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2422 {
2423 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2424 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2425 }
2426 
2427 /*
2428  * Find a value in the pool directory object.
2429  */
2430 static int
2431 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2432 {
2433 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2434 	    name, sizeof (uint64_t), 1, val);
2435 
2436 	if (error != 0 && (error != ENOENT || log_enoent)) {
2437 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2438 		    "[error=%d]", name, error);
2439 	}
2440 
2441 	return (error);
2442 }
2443 
2444 static int
2445 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2446 {
2447 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2448 	return (SET_ERROR(err));
2449 }
2450 
2451 boolean_t
2452 spa_livelist_delete_check(spa_t *spa)
2453 {
2454 	return (spa->spa_livelists_to_delete != 0);
2455 }
2456 
2457 /* ARGSUSED */
2458 static boolean_t
2459 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2460 {
2461 	spa_t *spa = arg;
2462 	return (spa_livelist_delete_check(spa));
2463 }
2464 
2465 static int
2466 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2467 {
2468 	spa_t *spa = arg;
2469 	zio_free(spa, tx->tx_txg, bp);
2470 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2471 	    -bp_get_dsize_sync(spa, bp),
2472 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2473 	return (0);
2474 }
2475 
2476 static int
2477 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2478 {
2479 	int err;
2480 	zap_cursor_t zc;
2481 	zap_attribute_t za;
2482 	zap_cursor_init(&zc, os, zap_obj);
2483 	err = zap_cursor_retrieve(&zc, &za);
2484 	zap_cursor_fini(&zc);
2485 	if (err == 0)
2486 		*llp = za.za_first_integer;
2487 	return (err);
2488 }
2489 
2490 /*
2491  * Components of livelist deletion that must be performed in syncing
2492  * context: freeing block pointers and updating the pool-wide data
2493  * structures to indicate how much work is left to do
2494  */
2495 typedef struct sublist_delete_arg {
2496 	spa_t *spa;
2497 	dsl_deadlist_t *ll;
2498 	uint64_t key;
2499 	bplist_t *to_free;
2500 } sublist_delete_arg_t;
2501 
2502 static void
2503 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2504 {
2505 	sublist_delete_arg_t *sda = arg;
2506 	spa_t *spa = sda->spa;
2507 	dsl_deadlist_t *ll = sda->ll;
2508 	uint64_t key = sda->key;
2509 	bplist_t *to_free = sda->to_free;
2510 
2511 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2512 	dsl_deadlist_remove_entry(ll, key, tx);
2513 }
2514 
2515 typedef struct livelist_delete_arg {
2516 	spa_t *spa;
2517 	uint64_t ll_obj;
2518 	uint64_t zap_obj;
2519 } livelist_delete_arg_t;
2520 
2521 static void
2522 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2523 {
2524 	livelist_delete_arg_t *lda = arg;
2525 	spa_t *spa = lda->spa;
2526 	uint64_t ll_obj = lda->ll_obj;
2527 	uint64_t zap_obj = lda->zap_obj;
2528 	objset_t *mos = spa->spa_meta_objset;
2529 	uint64_t count;
2530 
2531 	/* free the livelist and decrement the feature count */
2532 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2533 	dsl_deadlist_free(mos, ll_obj, tx);
2534 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2535 	VERIFY0(zap_count(mos, zap_obj, &count));
2536 	if (count == 0) {
2537 		/* no more livelists to delete */
2538 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2539 		    DMU_POOL_DELETED_CLONES, tx));
2540 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2541 		spa->spa_livelists_to_delete = 0;
2542 		spa_notify_waiters(spa);
2543 	}
2544 }
2545 
2546 /*
2547  * Load in the value for the livelist to be removed and open it. Then,
2548  * load its first sublist and determine which block pointers should actually
2549  * be freed. Then, call a synctask which performs the actual frees and updates
2550  * the pool-wide livelist data.
2551  */
2552 /* ARGSUSED */
2553 static void
2554 spa_livelist_delete_cb(void *arg, zthr_t *z)
2555 {
2556 	spa_t *spa = arg;
2557 	uint64_t ll_obj = 0, count;
2558 	objset_t *mos = spa->spa_meta_objset;
2559 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2560 	/*
2561 	 * Determine the next livelist to delete. This function should only
2562 	 * be called if there is at least one deleted clone.
2563 	 */
2564 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2565 	VERIFY0(zap_count(mos, ll_obj, &count));
2566 	if (count > 0) {
2567 		dsl_deadlist_t *ll;
2568 		dsl_deadlist_entry_t *dle;
2569 		bplist_t to_free;
2570 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2571 		dsl_deadlist_open(ll, mos, ll_obj);
2572 		dle = dsl_deadlist_first(ll);
2573 		ASSERT3P(dle, !=, NULL);
2574 		bplist_create(&to_free);
2575 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2576 		    z, NULL);
2577 		if (err == 0) {
2578 			sublist_delete_arg_t sync_arg = {
2579 			    .spa = spa,
2580 			    .ll = ll,
2581 			    .key = dle->dle_mintxg,
2582 			    .to_free = &to_free
2583 			};
2584 			zfs_dbgmsg("deleting sublist (id %llu) from"
2585 			    " livelist %llu, %lld remaining",
2586 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2587 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2588 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2589 			    sublist_delete_sync, &sync_arg, 0,
2590 			    ZFS_SPACE_CHECK_DESTROY));
2591 		} else {
2592 			VERIFY3U(err, ==, EINTR);
2593 		}
2594 		bplist_clear(&to_free);
2595 		bplist_destroy(&to_free);
2596 		dsl_deadlist_close(ll);
2597 		kmem_free(ll, sizeof (dsl_deadlist_t));
2598 	} else {
2599 		livelist_delete_arg_t sync_arg = {
2600 		    .spa = spa,
2601 		    .ll_obj = ll_obj,
2602 		    .zap_obj = zap_obj
2603 		};
2604 		zfs_dbgmsg("deletion of livelist %llu completed",
2605 		    (u_longlong_t)ll_obj);
2606 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2607 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2608 	}
2609 }
2610 
2611 static void
2612 spa_start_livelist_destroy_thread(spa_t *spa)
2613 {
2614 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2615 	spa->spa_livelist_delete_zthr =
2616 	    zthr_create("z_livelist_destroy",
2617 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2618 	    minclsyspri);
2619 }
2620 
2621 typedef struct livelist_new_arg {
2622 	bplist_t *allocs;
2623 	bplist_t *frees;
2624 } livelist_new_arg_t;
2625 
2626 static int
2627 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2628     dmu_tx_t *tx)
2629 {
2630 	ASSERT(tx == NULL);
2631 	livelist_new_arg_t *lna = arg;
2632 	if (bp_freed) {
2633 		bplist_append(lna->frees, bp);
2634 	} else {
2635 		bplist_append(lna->allocs, bp);
2636 		zfs_livelist_condense_new_alloc++;
2637 	}
2638 	return (0);
2639 }
2640 
2641 typedef struct livelist_condense_arg {
2642 	spa_t *spa;
2643 	bplist_t to_keep;
2644 	uint64_t first_size;
2645 	uint64_t next_size;
2646 } livelist_condense_arg_t;
2647 
2648 static void
2649 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2650 {
2651 	livelist_condense_arg_t *lca = arg;
2652 	spa_t *spa = lca->spa;
2653 	bplist_t new_frees;
2654 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2655 
2656 	/* Have we been cancelled? */
2657 	if (spa->spa_to_condense.cancelled) {
2658 		zfs_livelist_condense_sync_cancel++;
2659 		goto out;
2660 	}
2661 
2662 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2663 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2664 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2665 
2666 	/*
2667 	 * It's possible that the livelist was changed while the zthr was
2668 	 * running. Therefore, we need to check for new blkptrs in the two
2669 	 * entries being condensed and continue to track them in the livelist.
2670 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2671 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2672 	 * we need to sort them into two different bplists.
2673 	 */
2674 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2675 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2676 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2677 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2678 
2679 	bplist_create(&new_frees);
2680 	livelist_new_arg_t new_bps = {
2681 	    .allocs = &lca->to_keep,
2682 	    .frees = &new_frees,
2683 	};
2684 
2685 	if (cur_first_size > lca->first_size) {
2686 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2687 		    livelist_track_new_cb, &new_bps, lca->first_size));
2688 	}
2689 	if (cur_next_size > lca->next_size) {
2690 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2691 		    livelist_track_new_cb, &new_bps, lca->next_size));
2692 	}
2693 
2694 	dsl_deadlist_clear_entry(first, ll, tx);
2695 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2696 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2697 
2698 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2699 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2700 	bplist_destroy(&new_frees);
2701 
2702 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2703 	dsl_dataset_name(ds, dsname);
2704 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2705 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2706 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2707 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2708 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2709 	    (u_longlong_t)cur_next_size,
2710 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2711 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2712 out:
2713 	dmu_buf_rele(ds->ds_dbuf, spa);
2714 	spa->spa_to_condense.ds = NULL;
2715 	bplist_clear(&lca->to_keep);
2716 	bplist_destroy(&lca->to_keep);
2717 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2718 	spa->spa_to_condense.syncing = B_FALSE;
2719 }
2720 
2721 static void
2722 spa_livelist_condense_cb(void *arg, zthr_t *t)
2723 {
2724 	while (zfs_livelist_condense_zthr_pause &&
2725 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2726 		delay(1);
2727 
2728 	spa_t *spa = arg;
2729 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2730 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2731 	uint64_t first_size, next_size;
2732 
2733 	livelist_condense_arg_t *lca =
2734 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2735 	bplist_create(&lca->to_keep);
2736 
2737 	/*
2738 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2739 	 * so we have minimal work in syncing context to condense.
2740 	 *
2741 	 * We save bpobj sizes (first_size and next_size) to use later in
2742 	 * syncing context to determine if entries were added to these sublists
2743 	 * while in open context. This is possible because the clone is still
2744 	 * active and open for normal writes and we want to make sure the new,
2745 	 * unprocessed blockpointers are inserted into the livelist normally.
2746 	 *
2747 	 * Note that dsl_process_sub_livelist() both stores the size number of
2748 	 * blockpointers and iterates over them while the bpobj's lock held, so
2749 	 * the sizes returned to us are consistent which what was actually
2750 	 * processed.
2751 	 */
2752 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2753 	    &first_size);
2754 	if (err == 0)
2755 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2756 		    t, &next_size);
2757 
2758 	if (err == 0) {
2759 		while (zfs_livelist_condense_sync_pause &&
2760 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2761 			delay(1);
2762 
2763 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2764 		dmu_tx_mark_netfree(tx);
2765 		dmu_tx_hold_space(tx, 1);
2766 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2767 		if (err == 0) {
2768 			/*
2769 			 * Prevent the condense zthr restarting before
2770 			 * the synctask completes.
2771 			 */
2772 			spa->spa_to_condense.syncing = B_TRUE;
2773 			lca->spa = spa;
2774 			lca->first_size = first_size;
2775 			lca->next_size = next_size;
2776 			dsl_sync_task_nowait(spa_get_dsl(spa),
2777 			    spa_livelist_condense_sync, lca, tx);
2778 			dmu_tx_commit(tx);
2779 			return;
2780 		}
2781 	}
2782 	/*
2783 	 * Condensing can not continue: either it was externally stopped or
2784 	 * we were unable to assign to a tx because the pool has run out of
2785 	 * space. In the second case, we'll just end up trying to condense
2786 	 * again in a later txg.
2787 	 */
2788 	ASSERT(err != 0);
2789 	bplist_clear(&lca->to_keep);
2790 	bplist_destroy(&lca->to_keep);
2791 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2792 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2793 	spa->spa_to_condense.ds = NULL;
2794 	if (err == EINTR)
2795 		zfs_livelist_condense_zthr_cancel++;
2796 }
2797 
2798 /* ARGSUSED */
2799 /*
2800  * Check that there is something to condense but that a condense is not
2801  * already in progress and that condensing has not been cancelled.
2802  */
2803 static boolean_t
2804 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2805 {
2806 	spa_t *spa = arg;
2807 	if ((spa->spa_to_condense.ds != NULL) &&
2808 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2809 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2810 		return (B_TRUE);
2811 	}
2812 	return (B_FALSE);
2813 }
2814 
2815 static void
2816 spa_start_livelist_condensing_thread(spa_t *spa)
2817 {
2818 	spa->spa_to_condense.ds = NULL;
2819 	spa->spa_to_condense.first = NULL;
2820 	spa->spa_to_condense.next = NULL;
2821 	spa->spa_to_condense.syncing = B_FALSE;
2822 	spa->spa_to_condense.cancelled = B_FALSE;
2823 
2824 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2825 	spa->spa_livelist_condense_zthr =
2826 	    zthr_create("z_livelist_condense",
2827 	    spa_livelist_condense_cb_check,
2828 	    spa_livelist_condense_cb, spa, minclsyspri);
2829 }
2830 
2831 static void
2832 spa_spawn_aux_threads(spa_t *spa)
2833 {
2834 	ASSERT(spa_writeable(spa));
2835 
2836 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2837 
2838 	spa_start_indirect_condensing_thread(spa);
2839 	spa_start_livelist_destroy_thread(spa);
2840 	spa_start_livelist_condensing_thread(spa);
2841 
2842 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2843 	spa->spa_checkpoint_discard_zthr =
2844 	    zthr_create("z_checkpoint_discard",
2845 	    spa_checkpoint_discard_thread_check,
2846 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2847 }
2848 
2849 /*
2850  * Fix up config after a partly-completed split.  This is done with the
2851  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2852  * pool have that entry in their config, but only the splitting one contains
2853  * a list of all the guids of the vdevs that are being split off.
2854  *
2855  * This function determines what to do with that list: either rejoin
2856  * all the disks to the pool, or complete the splitting process.  To attempt
2857  * the rejoin, each disk that is offlined is marked online again, and
2858  * we do a reopen() call.  If the vdev label for every disk that was
2859  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2860  * then we call vdev_split() on each disk, and complete the split.
2861  *
2862  * Otherwise we leave the config alone, with all the vdevs in place in
2863  * the original pool.
2864  */
2865 static void
2866 spa_try_repair(spa_t *spa, nvlist_t *config)
2867 {
2868 	uint_t extracted;
2869 	uint64_t *glist;
2870 	uint_t i, gcount;
2871 	nvlist_t *nvl;
2872 	vdev_t **vd;
2873 	boolean_t attempt_reopen;
2874 
2875 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2876 		return;
2877 
2878 	/* check that the config is complete */
2879 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2880 	    &glist, &gcount) != 0)
2881 		return;
2882 
2883 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2884 
2885 	/* attempt to online all the vdevs & validate */
2886 	attempt_reopen = B_TRUE;
2887 	for (i = 0; i < gcount; i++) {
2888 		if (glist[i] == 0)	/* vdev is hole */
2889 			continue;
2890 
2891 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2892 		if (vd[i] == NULL) {
2893 			/*
2894 			 * Don't bother attempting to reopen the disks;
2895 			 * just do the split.
2896 			 */
2897 			attempt_reopen = B_FALSE;
2898 		} else {
2899 			/* attempt to re-online it */
2900 			vd[i]->vdev_offline = B_FALSE;
2901 		}
2902 	}
2903 
2904 	if (attempt_reopen) {
2905 		vdev_reopen(spa->spa_root_vdev);
2906 
2907 		/* check each device to see what state it's in */
2908 		for (extracted = 0, i = 0; i < gcount; i++) {
2909 			if (vd[i] != NULL &&
2910 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2911 				break;
2912 			++extracted;
2913 		}
2914 	}
2915 
2916 	/*
2917 	 * If every disk has been moved to the new pool, or if we never
2918 	 * even attempted to look at them, then we split them off for
2919 	 * good.
2920 	 */
2921 	if (!attempt_reopen || gcount == extracted) {
2922 		for (i = 0; i < gcount; i++)
2923 			if (vd[i] != NULL)
2924 				vdev_split(vd[i]);
2925 		vdev_reopen(spa->spa_root_vdev);
2926 	}
2927 
2928 	kmem_free(vd, gcount * sizeof (vdev_t *));
2929 }
2930 
2931 static int
2932 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2933 {
2934 	char *ereport = FM_EREPORT_ZFS_POOL;
2935 	int error;
2936 
2937 	spa->spa_load_state = state;
2938 	(void) spa_import_progress_set_state(spa_guid(spa),
2939 	    spa_load_state(spa));
2940 
2941 	gethrestime(&spa->spa_loaded_ts);
2942 	error = spa_load_impl(spa, type, &ereport);
2943 
2944 	/*
2945 	 * Don't count references from objsets that are already closed
2946 	 * and are making their way through the eviction process.
2947 	 */
2948 	spa_evicting_os_wait(spa);
2949 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2950 	if (error) {
2951 		if (error != EEXIST) {
2952 			spa->spa_loaded_ts.tv_sec = 0;
2953 			spa->spa_loaded_ts.tv_nsec = 0;
2954 		}
2955 		if (error != EBADF) {
2956 			(void) zfs_ereport_post(ereport, spa,
2957 			    NULL, NULL, NULL, 0);
2958 		}
2959 	}
2960 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2961 	spa->spa_ena = 0;
2962 
2963 	(void) spa_import_progress_set_state(spa_guid(spa),
2964 	    spa_load_state(spa));
2965 
2966 	return (error);
2967 }
2968 
2969 #ifdef ZFS_DEBUG
2970 /*
2971  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2972  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2973  * spa's per-vdev ZAP list.
2974  */
2975 static uint64_t
2976 vdev_count_verify_zaps(vdev_t *vd)
2977 {
2978 	spa_t *spa = vd->vdev_spa;
2979 	uint64_t total = 0;
2980 
2981 	if (vd->vdev_top_zap != 0) {
2982 		total++;
2983 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2984 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2985 	}
2986 	if (vd->vdev_leaf_zap != 0) {
2987 		total++;
2988 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2989 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2990 	}
2991 
2992 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2993 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2994 	}
2995 
2996 	return (total);
2997 }
2998 #endif
2999 
3000 /*
3001  * Determine whether the activity check is required.
3002  */
3003 static boolean_t
3004 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3005     nvlist_t *config)
3006 {
3007 	uint64_t state = 0;
3008 	uint64_t hostid = 0;
3009 	uint64_t tryconfig_txg = 0;
3010 	uint64_t tryconfig_timestamp = 0;
3011 	uint16_t tryconfig_mmp_seq = 0;
3012 	nvlist_t *nvinfo;
3013 
3014 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3015 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3016 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3017 		    &tryconfig_txg);
3018 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3019 		    &tryconfig_timestamp);
3020 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3021 		    &tryconfig_mmp_seq);
3022 	}
3023 
3024 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3025 
3026 	/*
3027 	 * Disable the MMP activity check - This is used by zdb which
3028 	 * is intended to be used on potentially active pools.
3029 	 */
3030 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3031 		return (B_FALSE);
3032 
3033 	/*
3034 	 * Skip the activity check when the MMP feature is disabled.
3035 	 */
3036 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3037 		return (B_FALSE);
3038 
3039 	/*
3040 	 * If the tryconfig_ values are nonzero, they are the results of an
3041 	 * earlier tryimport.  If they all match the uberblock we just found,
3042 	 * then the pool has not changed and we return false so we do not test
3043 	 * a second time.
3044 	 */
3045 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3046 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3047 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3048 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3049 		return (B_FALSE);
3050 
3051 	/*
3052 	 * Allow the activity check to be skipped when importing the pool
3053 	 * on the same host which last imported it.  Since the hostid from
3054 	 * configuration may be stale use the one read from the label.
3055 	 */
3056 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3057 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3058 
3059 	if (hostid == spa_get_hostid(spa))
3060 		return (B_FALSE);
3061 
3062 	/*
3063 	 * Skip the activity test when the pool was cleanly exported.
3064 	 */
3065 	if (state != POOL_STATE_ACTIVE)
3066 		return (B_FALSE);
3067 
3068 	return (B_TRUE);
3069 }
3070 
3071 /*
3072  * Nanoseconds the activity check must watch for changes on-disk.
3073  */
3074 static uint64_t
3075 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3076 {
3077 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3078 	uint64_t multihost_interval = MSEC2NSEC(
3079 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3080 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3081 	    multihost_interval);
3082 
3083 	/*
3084 	 * Local tunables determine a minimum duration except for the case
3085 	 * where we know when the remote host will suspend the pool if MMP
3086 	 * writes do not land.
3087 	 *
3088 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3089 	 * these cases and times.
3090 	 */
3091 
3092 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3093 
3094 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3095 	    MMP_FAIL_INT(ub) > 0) {
3096 
3097 		/* MMP on remote host will suspend pool after failed writes */
3098 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3099 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3100 
3101 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3102 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3103 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3104 		    (u_longlong_t)MMP_FAIL_INT(ub),
3105 		    (u_longlong_t)MMP_INTERVAL(ub),
3106 		    (u_longlong_t)import_intervals);
3107 
3108 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3109 	    MMP_FAIL_INT(ub) == 0) {
3110 
3111 		/* MMP on remote host will never suspend pool */
3112 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3113 		    ub->ub_mmp_delay) * import_intervals);
3114 
3115 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3116 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3117 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3118 		    (u_longlong_t)MMP_INTERVAL(ub),
3119 		    (u_longlong_t)ub->ub_mmp_delay,
3120 		    (u_longlong_t)import_intervals);
3121 
3122 	} else if (MMP_VALID(ub)) {
3123 		/*
3124 		 * zfs-0.7 compatibility case
3125 		 */
3126 
3127 		import_delay = MAX(import_delay, (multihost_interval +
3128 		    ub->ub_mmp_delay) * import_intervals);
3129 
3130 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3131 		    "import_intervals=%llu leaves=%u",
3132 		    (u_longlong_t)import_delay,
3133 		    (u_longlong_t)ub->ub_mmp_delay,
3134 		    (u_longlong_t)import_intervals,
3135 		    vdev_count_leaves(spa));
3136 	} else {
3137 		/* Using local tunings is the only reasonable option */
3138 		zfs_dbgmsg("pool last imported on non-MMP aware "
3139 		    "host using import_delay=%llu multihost_interval=%llu "
3140 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3141 		    (u_longlong_t)multihost_interval,
3142 		    (u_longlong_t)import_intervals);
3143 	}
3144 
3145 	return (import_delay);
3146 }
3147 
3148 /*
3149  * Perform the import activity check.  If the user canceled the import or
3150  * we detected activity then fail.
3151  */
3152 static int
3153 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3154 {
3155 	uint64_t txg = ub->ub_txg;
3156 	uint64_t timestamp = ub->ub_timestamp;
3157 	uint64_t mmp_config = ub->ub_mmp_config;
3158 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3159 	uint64_t import_delay;
3160 	hrtime_t import_expire;
3161 	nvlist_t *mmp_label = NULL;
3162 	vdev_t *rvd = spa->spa_root_vdev;
3163 	kcondvar_t cv;
3164 	kmutex_t mtx;
3165 	int error = 0;
3166 
3167 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3168 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3169 	mutex_enter(&mtx);
3170 
3171 	/*
3172 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3173 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3174 	 * the pool is known to be active on another host.
3175 	 *
3176 	 * Otherwise, the pool might be in use on another host.  Check for
3177 	 * changes in the uberblocks on disk if necessary.
3178 	 */
3179 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3180 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3181 		    ZPOOL_CONFIG_LOAD_INFO);
3182 
3183 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3184 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3185 			vdev_uberblock_load(rvd, ub, &mmp_label);
3186 			error = SET_ERROR(EREMOTEIO);
3187 			goto out;
3188 		}
3189 	}
3190 
3191 	import_delay = spa_activity_check_duration(spa, ub);
3192 
3193 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3194 	import_delay += import_delay * random_in_range(250) / 1000;
3195 
3196 	import_expire = gethrtime() + import_delay;
3197 
3198 	while (gethrtime() < import_expire) {
3199 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3200 		    NSEC2SEC(import_expire - gethrtime()));
3201 
3202 		vdev_uberblock_load(rvd, ub, &mmp_label);
3203 
3204 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3205 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3206 			zfs_dbgmsg("multihost activity detected "
3207 			    "txg %llu ub_txg  %llu "
3208 			    "timestamp %llu ub_timestamp  %llu "
3209 			    "mmp_config %#llx ub_mmp_config %#llx",
3210 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3211 			    (u_longlong_t)timestamp,
3212 			    (u_longlong_t)ub->ub_timestamp,
3213 			    (u_longlong_t)mmp_config,
3214 			    (u_longlong_t)ub->ub_mmp_config);
3215 
3216 			error = SET_ERROR(EREMOTEIO);
3217 			break;
3218 		}
3219 
3220 		if (mmp_label) {
3221 			nvlist_free(mmp_label);
3222 			mmp_label = NULL;
3223 		}
3224 
3225 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3226 		if (error != -1) {
3227 			error = SET_ERROR(EINTR);
3228 			break;
3229 		}
3230 		error = 0;
3231 	}
3232 
3233 out:
3234 	mutex_exit(&mtx);
3235 	mutex_destroy(&mtx);
3236 	cv_destroy(&cv);
3237 
3238 	/*
3239 	 * If the pool is determined to be active store the status in the
3240 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3241 	 * available from configuration read from disk store them as well.
3242 	 * This allows 'zpool import' to generate a more useful message.
3243 	 *
3244 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3245 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3246 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3247 	 */
3248 	if (error == EREMOTEIO) {
3249 		char *hostname = "<unknown>";
3250 		uint64_t hostid = 0;
3251 
3252 		if (mmp_label) {
3253 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3254 				hostname = fnvlist_lookup_string(mmp_label,
3255 				    ZPOOL_CONFIG_HOSTNAME);
3256 				fnvlist_add_string(spa->spa_load_info,
3257 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3258 			}
3259 
3260 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3261 				hostid = fnvlist_lookup_uint64(mmp_label,
3262 				    ZPOOL_CONFIG_HOSTID);
3263 				fnvlist_add_uint64(spa->spa_load_info,
3264 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3265 			}
3266 		}
3267 
3268 		fnvlist_add_uint64(spa->spa_load_info,
3269 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3270 		fnvlist_add_uint64(spa->spa_load_info,
3271 		    ZPOOL_CONFIG_MMP_TXG, 0);
3272 
3273 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3274 	}
3275 
3276 	if (mmp_label)
3277 		nvlist_free(mmp_label);
3278 
3279 	return (error);
3280 }
3281 
3282 static int
3283 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3284 {
3285 	uint64_t hostid;
3286 	char *hostname;
3287 	uint64_t myhostid = 0;
3288 
3289 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3290 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3291 		hostname = fnvlist_lookup_string(mos_config,
3292 		    ZPOOL_CONFIG_HOSTNAME);
3293 
3294 		myhostid = zone_get_hostid(NULL);
3295 
3296 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3297 			cmn_err(CE_WARN, "pool '%s' could not be "
3298 			    "loaded as it was last accessed by "
3299 			    "another system (host: %s hostid: 0x%llx). "
3300 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3301 			    "ZFS-8000-EY",
3302 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3303 			spa_load_failed(spa, "hostid verification failed: pool "
3304 			    "last accessed by host: %s (hostid: 0x%llx)",
3305 			    hostname, (u_longlong_t)hostid);
3306 			return (SET_ERROR(EBADF));
3307 		}
3308 	}
3309 
3310 	return (0);
3311 }
3312 
3313 static int
3314 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3315 {
3316 	int error = 0;
3317 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3318 	int parse;
3319 	vdev_t *rvd;
3320 	uint64_t pool_guid;
3321 	char *comment;
3322 	char *compatibility;
3323 
3324 	/*
3325 	 * Versioning wasn't explicitly added to the label until later, so if
3326 	 * it's not present treat it as the initial version.
3327 	 */
3328 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3329 	    &spa->spa_ubsync.ub_version) != 0)
3330 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3331 
3332 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3333 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3334 		    ZPOOL_CONFIG_POOL_GUID);
3335 		return (SET_ERROR(EINVAL));
3336 	}
3337 
3338 	/*
3339 	 * If we are doing an import, ensure that the pool is not already
3340 	 * imported by checking if its pool guid already exists in the
3341 	 * spa namespace.
3342 	 *
3343 	 * The only case that we allow an already imported pool to be
3344 	 * imported again, is when the pool is checkpointed and we want to
3345 	 * look at its checkpointed state from userland tools like zdb.
3346 	 */
3347 #ifdef _KERNEL
3348 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3349 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3350 	    spa_guid_exists(pool_guid, 0)) {
3351 #else
3352 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3353 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3354 	    spa_guid_exists(pool_guid, 0) &&
3355 	    !spa_importing_readonly_checkpoint(spa)) {
3356 #endif
3357 		spa_load_failed(spa, "a pool with guid %llu is already open",
3358 		    (u_longlong_t)pool_guid);
3359 		return (SET_ERROR(EEXIST));
3360 	}
3361 
3362 	spa->spa_config_guid = pool_guid;
3363 
3364 	nvlist_free(spa->spa_load_info);
3365 	spa->spa_load_info = fnvlist_alloc();
3366 
3367 	ASSERT(spa->spa_comment == NULL);
3368 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3369 		spa->spa_comment = spa_strdup(comment);
3370 
3371 	ASSERT(spa->spa_compatibility == NULL);
3372 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3373 	    &compatibility) == 0)
3374 		spa->spa_compatibility = spa_strdup(compatibility);
3375 
3376 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3377 	    &spa->spa_config_txg);
3378 
3379 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3380 		spa->spa_config_splitting = fnvlist_dup(nvl);
3381 
3382 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3383 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3384 		    ZPOOL_CONFIG_VDEV_TREE);
3385 		return (SET_ERROR(EINVAL));
3386 	}
3387 
3388 	/*
3389 	 * Create "The Godfather" zio to hold all async IOs
3390 	 */
3391 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3392 	    KM_SLEEP);
3393 	for (int i = 0; i < max_ncpus; i++) {
3394 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3395 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3396 		    ZIO_FLAG_GODFATHER);
3397 	}
3398 
3399 	/*
3400 	 * Parse the configuration into a vdev tree.  We explicitly set the
3401 	 * value that will be returned by spa_version() since parsing the
3402 	 * configuration requires knowing the version number.
3403 	 */
3404 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3405 	parse = (type == SPA_IMPORT_EXISTING ?
3406 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3407 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3408 	spa_config_exit(spa, SCL_ALL, FTAG);
3409 
3410 	if (error != 0) {
3411 		spa_load_failed(spa, "unable to parse config [error=%d]",
3412 		    error);
3413 		return (error);
3414 	}
3415 
3416 	ASSERT(spa->spa_root_vdev == rvd);
3417 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3418 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3419 
3420 	if (type != SPA_IMPORT_ASSEMBLE) {
3421 		ASSERT(spa_guid(spa) == pool_guid);
3422 	}
3423 
3424 	return (0);
3425 }
3426 
3427 /*
3428  * Recursively open all vdevs in the vdev tree. This function is called twice:
3429  * first with the untrusted config, then with the trusted config.
3430  */
3431 static int
3432 spa_ld_open_vdevs(spa_t *spa)
3433 {
3434 	int error = 0;
3435 
3436 	/*
3437 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3438 	 * missing/unopenable for the root vdev to be still considered openable.
3439 	 */
3440 	if (spa->spa_trust_config) {
3441 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3442 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3443 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3444 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3445 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3446 	} else {
3447 		spa->spa_missing_tvds_allowed = 0;
3448 	}
3449 
3450 	spa->spa_missing_tvds_allowed =
3451 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3452 
3453 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3454 	error = vdev_open(spa->spa_root_vdev);
3455 	spa_config_exit(spa, SCL_ALL, FTAG);
3456 
3457 	if (spa->spa_missing_tvds != 0) {
3458 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3459 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3460 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3461 			/*
3462 			 * Although theoretically we could allow users to open
3463 			 * incomplete pools in RW mode, we'd need to add a lot
3464 			 * of extra logic (e.g. adjust pool space to account
3465 			 * for missing vdevs).
3466 			 * This limitation also prevents users from accidentally
3467 			 * opening the pool in RW mode during data recovery and
3468 			 * damaging it further.
3469 			 */
3470 			spa_load_note(spa, "pools with missing top-level "
3471 			    "vdevs can only be opened in read-only mode.");
3472 			error = SET_ERROR(ENXIO);
3473 		} else {
3474 			spa_load_note(spa, "current settings allow for maximum "
3475 			    "%lld missing top-level vdevs at this stage.",
3476 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3477 		}
3478 	}
3479 	if (error != 0) {
3480 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3481 		    error);
3482 	}
3483 	if (spa->spa_missing_tvds != 0 || error != 0)
3484 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3485 
3486 	return (error);
3487 }
3488 
3489 /*
3490  * We need to validate the vdev labels against the configuration that
3491  * we have in hand. This function is called twice: first with an untrusted
3492  * config, then with a trusted config. The validation is more strict when the
3493  * config is trusted.
3494  */
3495 static int
3496 spa_ld_validate_vdevs(spa_t *spa)
3497 {
3498 	int error = 0;
3499 	vdev_t *rvd = spa->spa_root_vdev;
3500 
3501 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3502 	error = vdev_validate(rvd);
3503 	spa_config_exit(spa, SCL_ALL, FTAG);
3504 
3505 	if (error != 0) {
3506 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3507 		return (error);
3508 	}
3509 
3510 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3511 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3512 		    "some vdevs");
3513 		vdev_dbgmsg_print_tree(rvd, 2);
3514 		return (SET_ERROR(ENXIO));
3515 	}
3516 
3517 	return (0);
3518 }
3519 
3520 static void
3521 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3522 {
3523 	spa->spa_state = POOL_STATE_ACTIVE;
3524 	spa->spa_ubsync = spa->spa_uberblock;
3525 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3526 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3527 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3528 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3529 	spa->spa_claim_max_txg = spa->spa_first_txg;
3530 	spa->spa_prev_software_version = ub->ub_software_version;
3531 }
3532 
3533 static int
3534 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3535 {
3536 	vdev_t *rvd = spa->spa_root_vdev;
3537 	nvlist_t *label;
3538 	uberblock_t *ub = &spa->spa_uberblock;
3539 	boolean_t activity_check = B_FALSE;
3540 
3541 	/*
3542 	 * If we are opening the checkpointed state of the pool by
3543 	 * rewinding to it, at this point we will have written the
3544 	 * checkpointed uberblock to the vdev labels, so searching
3545 	 * the labels will find the right uberblock.  However, if
3546 	 * we are opening the checkpointed state read-only, we have
3547 	 * not modified the labels. Therefore, we must ignore the
3548 	 * labels and continue using the spa_uberblock that was set
3549 	 * by spa_ld_checkpoint_rewind.
3550 	 *
3551 	 * Note that it would be fine to ignore the labels when
3552 	 * rewinding (opening writeable) as well. However, if we
3553 	 * crash just after writing the labels, we will end up
3554 	 * searching the labels. Doing so in the common case means
3555 	 * that this code path gets exercised normally, rather than
3556 	 * just in the edge case.
3557 	 */
3558 	if (ub->ub_checkpoint_txg != 0 &&
3559 	    spa_importing_readonly_checkpoint(spa)) {
3560 		spa_ld_select_uberblock_done(spa, ub);
3561 		return (0);
3562 	}
3563 
3564 	/*
3565 	 * Find the best uberblock.
3566 	 */
3567 	vdev_uberblock_load(rvd, ub, &label);
3568 
3569 	/*
3570 	 * If we weren't able to find a single valid uberblock, return failure.
3571 	 */
3572 	if (ub->ub_txg == 0) {
3573 		nvlist_free(label);
3574 		spa_load_failed(spa, "no valid uberblock found");
3575 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3576 	}
3577 
3578 	if (spa->spa_load_max_txg != UINT64_MAX) {
3579 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3580 		    (u_longlong_t)spa->spa_load_max_txg);
3581 	}
3582 	spa_load_note(spa, "using uberblock with txg=%llu",
3583 	    (u_longlong_t)ub->ub_txg);
3584 
3585 
3586 	/*
3587 	 * For pools which have the multihost property on determine if the
3588 	 * pool is truly inactive and can be safely imported.  Prevent
3589 	 * hosts which don't have a hostid set from importing the pool.
3590 	 */
3591 	activity_check = spa_activity_check_required(spa, ub, label,
3592 	    spa->spa_config);
3593 	if (activity_check) {
3594 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3595 		    spa_get_hostid(spa) == 0) {
3596 			nvlist_free(label);
3597 			fnvlist_add_uint64(spa->spa_load_info,
3598 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3599 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3600 		}
3601 
3602 		int error = spa_activity_check(spa, ub, spa->spa_config);
3603 		if (error) {
3604 			nvlist_free(label);
3605 			return (error);
3606 		}
3607 
3608 		fnvlist_add_uint64(spa->spa_load_info,
3609 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3610 		fnvlist_add_uint64(spa->spa_load_info,
3611 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3612 		fnvlist_add_uint16(spa->spa_load_info,
3613 		    ZPOOL_CONFIG_MMP_SEQ,
3614 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3615 	}
3616 
3617 	/*
3618 	 * If the pool has an unsupported version we can't open it.
3619 	 */
3620 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3621 		nvlist_free(label);
3622 		spa_load_failed(spa, "version %llu is not supported",
3623 		    (u_longlong_t)ub->ub_version);
3624 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3625 	}
3626 
3627 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3628 		nvlist_t *features;
3629 
3630 		/*
3631 		 * If we weren't able to find what's necessary for reading the
3632 		 * MOS in the label, return failure.
3633 		 */
3634 		if (label == NULL) {
3635 			spa_load_failed(spa, "label config unavailable");
3636 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3637 			    ENXIO));
3638 		}
3639 
3640 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3641 		    &features) != 0) {
3642 			nvlist_free(label);
3643 			spa_load_failed(spa, "invalid label: '%s' missing",
3644 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3645 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3646 			    ENXIO));
3647 		}
3648 
3649 		/*
3650 		 * Update our in-core representation with the definitive values
3651 		 * from the label.
3652 		 */
3653 		nvlist_free(spa->spa_label_features);
3654 		spa->spa_label_features = fnvlist_dup(features);
3655 	}
3656 
3657 	nvlist_free(label);
3658 
3659 	/*
3660 	 * Look through entries in the label nvlist's features_for_read. If
3661 	 * there is a feature listed there which we don't understand then we
3662 	 * cannot open a pool.
3663 	 */
3664 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3665 		nvlist_t *unsup_feat;
3666 
3667 		unsup_feat = fnvlist_alloc();
3668 
3669 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3670 		    NULL); nvp != NULL;
3671 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3672 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3673 				fnvlist_add_string(unsup_feat,
3674 				    nvpair_name(nvp), "");
3675 			}
3676 		}
3677 
3678 		if (!nvlist_empty(unsup_feat)) {
3679 			fnvlist_add_nvlist(spa->spa_load_info,
3680 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3681 			nvlist_free(unsup_feat);
3682 			spa_load_failed(spa, "some features are unsupported");
3683 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3684 			    ENOTSUP));
3685 		}
3686 
3687 		nvlist_free(unsup_feat);
3688 	}
3689 
3690 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3691 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3692 		spa_try_repair(spa, spa->spa_config);
3693 		spa_config_exit(spa, SCL_ALL, FTAG);
3694 		nvlist_free(spa->spa_config_splitting);
3695 		spa->spa_config_splitting = NULL;
3696 	}
3697 
3698 	/*
3699 	 * Initialize internal SPA structures.
3700 	 */
3701 	spa_ld_select_uberblock_done(spa, ub);
3702 
3703 	return (0);
3704 }
3705 
3706 static int
3707 spa_ld_open_rootbp(spa_t *spa)
3708 {
3709 	int error = 0;
3710 	vdev_t *rvd = spa->spa_root_vdev;
3711 
3712 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3713 	if (error != 0) {
3714 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3715 		    "[error=%d]", error);
3716 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3717 	}
3718 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3719 
3720 	return (0);
3721 }
3722 
3723 static int
3724 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3725     boolean_t reloading)
3726 {
3727 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3728 	nvlist_t *nv, *mos_config, *policy;
3729 	int error = 0, copy_error;
3730 	uint64_t healthy_tvds, healthy_tvds_mos;
3731 	uint64_t mos_config_txg;
3732 
3733 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3734 	    != 0)
3735 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3736 
3737 	/*
3738 	 * If we're assembling a pool from a split, the config provided is
3739 	 * already trusted so there is nothing to do.
3740 	 */
3741 	if (type == SPA_IMPORT_ASSEMBLE)
3742 		return (0);
3743 
3744 	healthy_tvds = spa_healthy_core_tvds(spa);
3745 
3746 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3747 	    != 0) {
3748 		spa_load_failed(spa, "unable to retrieve MOS config");
3749 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3750 	}
3751 
3752 	/*
3753 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3754 	 * the verification here.
3755 	 */
3756 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3757 		error = spa_verify_host(spa, mos_config);
3758 		if (error != 0) {
3759 			nvlist_free(mos_config);
3760 			return (error);
3761 		}
3762 	}
3763 
3764 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3765 
3766 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3767 
3768 	/*
3769 	 * Build a new vdev tree from the trusted config
3770 	 */
3771 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3772 	if (error != 0) {
3773 		nvlist_free(mos_config);
3774 		spa_config_exit(spa, SCL_ALL, FTAG);
3775 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3776 		    error);
3777 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3778 	}
3779 
3780 	/*
3781 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3782 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3783 	 * paths. We update the trusted MOS config with this information.
3784 	 * We first try to copy the paths with vdev_copy_path_strict, which
3785 	 * succeeds only when both configs have exactly the same vdev tree.
3786 	 * If that fails, we fall back to a more flexible method that has a
3787 	 * best effort policy.
3788 	 */
3789 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3790 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3791 		spa_load_note(spa, "provided vdev tree:");
3792 		vdev_dbgmsg_print_tree(rvd, 2);
3793 		spa_load_note(spa, "MOS vdev tree:");
3794 		vdev_dbgmsg_print_tree(mrvd, 2);
3795 	}
3796 	if (copy_error != 0) {
3797 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3798 		    "back to vdev_copy_path_relaxed");
3799 		vdev_copy_path_relaxed(rvd, mrvd);
3800 	}
3801 
3802 	vdev_close(rvd);
3803 	vdev_free(rvd);
3804 	spa->spa_root_vdev = mrvd;
3805 	rvd = mrvd;
3806 	spa_config_exit(spa, SCL_ALL, FTAG);
3807 
3808 	/*
3809 	 * We will use spa_config if we decide to reload the spa or if spa_load
3810 	 * fails and we rewind. We must thus regenerate the config using the
3811 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3812 	 * pass settings on how to load the pool and is not stored in the MOS.
3813 	 * We copy it over to our new, trusted config.
3814 	 */
3815 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3816 	    ZPOOL_CONFIG_POOL_TXG);
3817 	nvlist_free(mos_config);
3818 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3819 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3820 	    &policy) == 0)
3821 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3822 	spa_config_set(spa, mos_config);
3823 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3824 
3825 	/*
3826 	 * Now that we got the config from the MOS, we should be more strict
3827 	 * in checking blkptrs and can make assumptions about the consistency
3828 	 * of the vdev tree. spa_trust_config must be set to true before opening
3829 	 * vdevs in order for them to be writeable.
3830 	 */
3831 	spa->spa_trust_config = B_TRUE;
3832 
3833 	/*
3834 	 * Open and validate the new vdev tree
3835 	 */
3836 	error = spa_ld_open_vdevs(spa);
3837 	if (error != 0)
3838 		return (error);
3839 
3840 	error = spa_ld_validate_vdevs(spa);
3841 	if (error != 0)
3842 		return (error);
3843 
3844 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3845 		spa_load_note(spa, "final vdev tree:");
3846 		vdev_dbgmsg_print_tree(rvd, 2);
3847 	}
3848 
3849 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3850 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3851 		/*
3852 		 * Sanity check to make sure that we are indeed loading the
3853 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3854 		 * in the config provided and they happened to be the only ones
3855 		 * to have the latest uberblock, we could involuntarily perform
3856 		 * an extreme rewind.
3857 		 */
3858 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3859 		if (healthy_tvds_mos - healthy_tvds >=
3860 		    SPA_SYNC_MIN_VDEVS) {
3861 			spa_load_note(spa, "config provided misses too many "
3862 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3863 			    (u_longlong_t)healthy_tvds,
3864 			    (u_longlong_t)healthy_tvds_mos);
3865 			spa_load_note(spa, "vdev tree:");
3866 			vdev_dbgmsg_print_tree(rvd, 2);
3867 			if (reloading) {
3868 				spa_load_failed(spa, "config was already "
3869 				    "provided from MOS. Aborting.");
3870 				return (spa_vdev_err(rvd,
3871 				    VDEV_AUX_CORRUPT_DATA, EIO));
3872 			}
3873 			spa_load_note(spa, "spa must be reloaded using MOS "
3874 			    "config");
3875 			return (SET_ERROR(EAGAIN));
3876 		}
3877 	}
3878 
3879 	error = spa_check_for_missing_logs(spa);
3880 	if (error != 0)
3881 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3882 
3883 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3884 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3885 		    "guid sum (%llu != %llu)",
3886 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3887 		    (u_longlong_t)rvd->vdev_guid_sum);
3888 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3889 		    ENXIO));
3890 	}
3891 
3892 	return (0);
3893 }
3894 
3895 static int
3896 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3897 {
3898 	int error = 0;
3899 	vdev_t *rvd = spa->spa_root_vdev;
3900 
3901 	/*
3902 	 * Everything that we read before spa_remove_init() must be stored
3903 	 * on concreted vdevs.  Therefore we do this as early as possible.
3904 	 */
3905 	error = spa_remove_init(spa);
3906 	if (error != 0) {
3907 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3908 		    error);
3909 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3910 	}
3911 
3912 	/*
3913 	 * Retrieve information needed to condense indirect vdev mappings.
3914 	 */
3915 	error = spa_condense_init(spa);
3916 	if (error != 0) {
3917 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3918 		    error);
3919 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3920 	}
3921 
3922 	return (0);
3923 }
3924 
3925 static int
3926 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3927 {
3928 	int error = 0;
3929 	vdev_t *rvd = spa->spa_root_vdev;
3930 
3931 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3932 		boolean_t missing_feat_read = B_FALSE;
3933 		nvlist_t *unsup_feat, *enabled_feat;
3934 
3935 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3936 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3937 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3938 		}
3939 
3940 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3941 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3942 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3943 		}
3944 
3945 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3946 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3947 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3948 		}
3949 
3950 		enabled_feat = fnvlist_alloc();
3951 		unsup_feat = fnvlist_alloc();
3952 
3953 		if (!spa_features_check(spa, B_FALSE,
3954 		    unsup_feat, enabled_feat))
3955 			missing_feat_read = B_TRUE;
3956 
3957 		if (spa_writeable(spa) ||
3958 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3959 			if (!spa_features_check(spa, B_TRUE,
3960 			    unsup_feat, enabled_feat)) {
3961 				*missing_feat_writep = B_TRUE;
3962 			}
3963 		}
3964 
3965 		fnvlist_add_nvlist(spa->spa_load_info,
3966 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3967 
3968 		if (!nvlist_empty(unsup_feat)) {
3969 			fnvlist_add_nvlist(spa->spa_load_info,
3970 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3971 		}
3972 
3973 		fnvlist_free(enabled_feat);
3974 		fnvlist_free(unsup_feat);
3975 
3976 		if (!missing_feat_read) {
3977 			fnvlist_add_boolean(spa->spa_load_info,
3978 			    ZPOOL_CONFIG_CAN_RDONLY);
3979 		}
3980 
3981 		/*
3982 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3983 		 * twofold: to determine whether the pool is available for
3984 		 * import in read-write mode and (if it is not) whether the
3985 		 * pool is available for import in read-only mode. If the pool
3986 		 * is available for import in read-write mode, it is displayed
3987 		 * as available in userland; if it is not available for import
3988 		 * in read-only mode, it is displayed as unavailable in
3989 		 * userland. If the pool is available for import in read-only
3990 		 * mode but not read-write mode, it is displayed as unavailable
3991 		 * in userland with a special note that the pool is actually
3992 		 * available for open in read-only mode.
3993 		 *
3994 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3995 		 * missing a feature for write, we must first determine whether
3996 		 * the pool can be opened read-only before returning to
3997 		 * userland in order to know whether to display the
3998 		 * abovementioned note.
3999 		 */
4000 		if (missing_feat_read || (*missing_feat_writep &&
4001 		    spa_writeable(spa))) {
4002 			spa_load_failed(spa, "pool uses unsupported features");
4003 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4004 			    ENOTSUP));
4005 		}
4006 
4007 		/*
4008 		 * Load refcounts for ZFS features from disk into an in-memory
4009 		 * cache during SPA initialization.
4010 		 */
4011 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4012 			uint64_t refcount;
4013 
4014 			error = feature_get_refcount_from_disk(spa,
4015 			    &spa_feature_table[i], &refcount);
4016 			if (error == 0) {
4017 				spa->spa_feat_refcount_cache[i] = refcount;
4018 			} else if (error == ENOTSUP) {
4019 				spa->spa_feat_refcount_cache[i] =
4020 				    SPA_FEATURE_DISABLED;
4021 			} else {
4022 				spa_load_failed(spa, "error getting refcount "
4023 				    "for feature %s [error=%d]",
4024 				    spa_feature_table[i].fi_guid, error);
4025 				return (spa_vdev_err(rvd,
4026 				    VDEV_AUX_CORRUPT_DATA, EIO));
4027 			}
4028 		}
4029 	}
4030 
4031 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4032 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4033 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4034 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4035 	}
4036 
4037 	/*
4038 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4039 	 * is now a dependency. If this pool has encryption enabled without
4040 	 * bookmark_v2, trigger an errata message.
4041 	 */
4042 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4043 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4044 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4045 	}
4046 
4047 	return (0);
4048 }
4049 
4050 static int
4051 spa_ld_load_special_directories(spa_t *spa)
4052 {
4053 	int error = 0;
4054 	vdev_t *rvd = spa->spa_root_vdev;
4055 
4056 	spa->spa_is_initializing = B_TRUE;
4057 	error = dsl_pool_open(spa->spa_dsl_pool);
4058 	spa->spa_is_initializing = B_FALSE;
4059 	if (error != 0) {
4060 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4061 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4062 	}
4063 
4064 	return (0);
4065 }
4066 
4067 static int
4068 spa_ld_get_props(spa_t *spa)
4069 {
4070 	int error = 0;
4071 	uint64_t obj;
4072 	vdev_t *rvd = spa->spa_root_vdev;
4073 
4074 	/* Grab the checksum salt from the MOS. */
4075 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4076 	    DMU_POOL_CHECKSUM_SALT, 1,
4077 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4078 	    spa->spa_cksum_salt.zcs_bytes);
4079 	if (error == ENOENT) {
4080 		/* Generate a new salt for subsequent use */
4081 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4082 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4083 	} else if (error != 0) {
4084 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4085 		    "MOS [error=%d]", error);
4086 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4087 	}
4088 
4089 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4090 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4091 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4092 	if (error != 0) {
4093 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4094 		    "[error=%d]", error);
4095 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4096 	}
4097 
4098 	/*
4099 	 * Load the bit that tells us to use the new accounting function
4100 	 * (raid-z deflation).  If we have an older pool, this will not
4101 	 * be present.
4102 	 */
4103 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4104 	if (error != 0 && error != ENOENT)
4105 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4106 
4107 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4108 	    &spa->spa_creation_version, B_FALSE);
4109 	if (error != 0 && error != ENOENT)
4110 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4111 
4112 	/*
4113 	 * Load the persistent error log.  If we have an older pool, this will
4114 	 * not be present.
4115 	 */
4116 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4117 	    B_FALSE);
4118 	if (error != 0 && error != ENOENT)
4119 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4120 
4121 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4122 	    &spa->spa_errlog_scrub, B_FALSE);
4123 	if (error != 0 && error != ENOENT)
4124 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4125 
4126 	/*
4127 	 * Load the livelist deletion field. If a livelist is queued for
4128 	 * deletion, indicate that in the spa
4129 	 */
4130 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4131 	    &spa->spa_livelists_to_delete, B_FALSE);
4132 	if (error != 0 && error != ENOENT)
4133 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4134 
4135 	/*
4136 	 * Load the history object.  If we have an older pool, this
4137 	 * will not be present.
4138 	 */
4139 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4140 	if (error != 0 && error != ENOENT)
4141 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4142 
4143 	/*
4144 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4145 	 * be present; in this case, defer its creation to a later time to
4146 	 * avoid dirtying the MOS this early / out of sync context. See
4147 	 * spa_sync_config_object.
4148 	 */
4149 
4150 	/* The sentinel is only available in the MOS config. */
4151 	nvlist_t *mos_config;
4152 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4153 		spa_load_failed(spa, "unable to retrieve MOS config");
4154 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4155 	}
4156 
4157 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4158 	    &spa->spa_all_vdev_zaps, B_FALSE);
4159 
4160 	if (error == ENOENT) {
4161 		VERIFY(!nvlist_exists(mos_config,
4162 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4163 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4164 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4165 	} else if (error != 0) {
4166 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4167 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4168 		/*
4169 		 * An older version of ZFS overwrote the sentinel value, so
4170 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4171 		 * destruction to later; see spa_sync_config_object.
4172 		 */
4173 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4174 		/*
4175 		 * We're assuming that no vdevs have had their ZAPs created
4176 		 * before this. Better be sure of it.
4177 		 */
4178 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4179 	}
4180 	nvlist_free(mos_config);
4181 
4182 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4183 
4184 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4185 	    B_FALSE);
4186 	if (error && error != ENOENT)
4187 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4188 
4189 	if (error == 0) {
4190 		uint64_t autoreplace = 0;
4191 
4192 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4193 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4194 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4195 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4196 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4197 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4198 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4199 		spa->spa_autoreplace = (autoreplace != 0);
4200 	}
4201 
4202 	/*
4203 	 * If we are importing a pool with missing top-level vdevs,
4204 	 * we enforce that the pool doesn't panic or get suspended on
4205 	 * error since the likelihood of missing data is extremely high.
4206 	 */
4207 	if (spa->spa_missing_tvds > 0 &&
4208 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4209 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4210 		spa_load_note(spa, "forcing failmode to 'continue' "
4211 		    "as some top level vdevs are missing");
4212 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4213 	}
4214 
4215 	return (0);
4216 }
4217 
4218 static int
4219 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4220 {
4221 	int error = 0;
4222 	vdev_t *rvd = spa->spa_root_vdev;
4223 
4224 	/*
4225 	 * If we're assembling the pool from the split-off vdevs of
4226 	 * an existing pool, we don't want to attach the spares & cache
4227 	 * devices.
4228 	 */
4229 
4230 	/*
4231 	 * Load any hot spares for this pool.
4232 	 */
4233 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4234 	    B_FALSE);
4235 	if (error != 0 && error != ENOENT)
4236 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4237 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4238 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4239 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4240 		    &spa->spa_spares.sav_config) != 0) {
4241 			spa_load_failed(spa, "error loading spares nvlist");
4242 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4243 		}
4244 
4245 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4246 		spa_load_spares(spa);
4247 		spa_config_exit(spa, SCL_ALL, FTAG);
4248 	} else if (error == 0) {
4249 		spa->spa_spares.sav_sync = B_TRUE;
4250 	}
4251 
4252 	/*
4253 	 * Load any level 2 ARC devices for this pool.
4254 	 */
4255 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4256 	    &spa->spa_l2cache.sav_object, B_FALSE);
4257 	if (error != 0 && error != ENOENT)
4258 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4259 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4260 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4261 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4262 		    &spa->spa_l2cache.sav_config) != 0) {
4263 			spa_load_failed(spa, "error loading l2cache nvlist");
4264 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4265 		}
4266 
4267 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4268 		spa_load_l2cache(spa);
4269 		spa_config_exit(spa, SCL_ALL, FTAG);
4270 	} else if (error == 0) {
4271 		spa->spa_l2cache.sav_sync = B_TRUE;
4272 	}
4273 
4274 	return (0);
4275 }
4276 
4277 static int
4278 spa_ld_load_vdev_metadata(spa_t *spa)
4279 {
4280 	int error = 0;
4281 	vdev_t *rvd = spa->spa_root_vdev;
4282 
4283 	/*
4284 	 * If the 'multihost' property is set, then never allow a pool to
4285 	 * be imported when the system hostid is zero.  The exception to
4286 	 * this rule is zdb which is always allowed to access pools.
4287 	 */
4288 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4289 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4290 		fnvlist_add_uint64(spa->spa_load_info,
4291 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4292 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4293 	}
4294 
4295 	/*
4296 	 * If the 'autoreplace' property is set, then post a resource notifying
4297 	 * the ZFS DE that it should not issue any faults for unopenable
4298 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4299 	 * unopenable vdevs so that the normal autoreplace handler can take
4300 	 * over.
4301 	 */
4302 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4303 		spa_check_removed(spa->spa_root_vdev);
4304 		/*
4305 		 * For the import case, this is done in spa_import(), because
4306 		 * at this point we're using the spare definitions from
4307 		 * the MOS config, not necessarily from the userland config.
4308 		 */
4309 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4310 			spa_aux_check_removed(&spa->spa_spares);
4311 			spa_aux_check_removed(&spa->spa_l2cache);
4312 		}
4313 	}
4314 
4315 	/*
4316 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4317 	 */
4318 	error = vdev_load(rvd);
4319 	if (error != 0) {
4320 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4321 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4322 	}
4323 
4324 	error = spa_ld_log_spacemaps(spa);
4325 	if (error != 0) {
4326 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4327 		    error);
4328 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4329 	}
4330 
4331 	/*
4332 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4333 	 */
4334 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4335 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4336 	spa_config_exit(spa, SCL_ALL, FTAG);
4337 
4338 	return (0);
4339 }
4340 
4341 static int
4342 spa_ld_load_dedup_tables(spa_t *spa)
4343 {
4344 	int error = 0;
4345 	vdev_t *rvd = spa->spa_root_vdev;
4346 
4347 	error = ddt_load(spa);
4348 	if (error != 0) {
4349 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4350 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4351 	}
4352 
4353 	return (0);
4354 }
4355 
4356 static int
4357 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4358 {
4359 	vdev_t *rvd = spa->spa_root_vdev;
4360 
4361 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4362 		boolean_t missing = spa_check_logs(spa);
4363 		if (missing) {
4364 			if (spa->spa_missing_tvds != 0) {
4365 				spa_load_note(spa, "spa_check_logs failed "
4366 				    "so dropping the logs");
4367 			} else {
4368 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4369 				spa_load_failed(spa, "spa_check_logs failed");
4370 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4371 				    ENXIO));
4372 			}
4373 		}
4374 	}
4375 
4376 	return (0);
4377 }
4378 
4379 static int
4380 spa_ld_verify_pool_data(spa_t *spa)
4381 {
4382 	int error = 0;
4383 	vdev_t *rvd = spa->spa_root_vdev;
4384 
4385 	/*
4386 	 * We've successfully opened the pool, verify that we're ready
4387 	 * to start pushing transactions.
4388 	 */
4389 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4390 		error = spa_load_verify(spa);
4391 		if (error != 0) {
4392 			spa_load_failed(spa, "spa_load_verify failed "
4393 			    "[error=%d]", error);
4394 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4395 			    error));
4396 		}
4397 	}
4398 
4399 	return (0);
4400 }
4401 
4402 static void
4403 spa_ld_claim_log_blocks(spa_t *spa)
4404 {
4405 	dmu_tx_t *tx;
4406 	dsl_pool_t *dp = spa_get_dsl(spa);
4407 
4408 	/*
4409 	 * Claim log blocks that haven't been committed yet.
4410 	 * This must all happen in a single txg.
4411 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4412 	 * invoked from zil_claim_log_block()'s i/o done callback.
4413 	 * Price of rollback is that we abandon the log.
4414 	 */
4415 	spa->spa_claiming = B_TRUE;
4416 
4417 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4418 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4419 	    zil_claim, tx, DS_FIND_CHILDREN);
4420 	dmu_tx_commit(tx);
4421 
4422 	spa->spa_claiming = B_FALSE;
4423 
4424 	spa_set_log_state(spa, SPA_LOG_GOOD);
4425 }
4426 
4427 static void
4428 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4429     boolean_t update_config_cache)
4430 {
4431 	vdev_t *rvd = spa->spa_root_vdev;
4432 	int need_update = B_FALSE;
4433 
4434 	/*
4435 	 * If the config cache is stale, or we have uninitialized
4436 	 * metaslabs (see spa_vdev_add()), then update the config.
4437 	 *
4438 	 * If this is a verbatim import, trust the current
4439 	 * in-core spa_config and update the disk labels.
4440 	 */
4441 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4442 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4443 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4444 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4445 		need_update = B_TRUE;
4446 
4447 	for (int c = 0; c < rvd->vdev_children; c++)
4448 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4449 			need_update = B_TRUE;
4450 
4451 	/*
4452 	 * Update the config cache asynchronously in case we're the
4453 	 * root pool, in which case the config cache isn't writable yet.
4454 	 */
4455 	if (need_update)
4456 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4457 }
4458 
4459 static void
4460 spa_ld_prepare_for_reload(spa_t *spa)
4461 {
4462 	spa_mode_t mode = spa->spa_mode;
4463 	int async_suspended = spa->spa_async_suspended;
4464 
4465 	spa_unload(spa);
4466 	spa_deactivate(spa);
4467 	spa_activate(spa, mode);
4468 
4469 	/*
4470 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4471 	 * spa_unload(). We want to restore it back to the original value before
4472 	 * returning as we might be calling spa_async_resume() later.
4473 	 */
4474 	spa->spa_async_suspended = async_suspended;
4475 }
4476 
4477 static int
4478 spa_ld_read_checkpoint_txg(spa_t *spa)
4479 {
4480 	uberblock_t checkpoint;
4481 	int error = 0;
4482 
4483 	ASSERT0(spa->spa_checkpoint_txg);
4484 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4485 
4486 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4487 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4488 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4489 
4490 	if (error == ENOENT)
4491 		return (0);
4492 
4493 	if (error != 0)
4494 		return (error);
4495 
4496 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4497 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4498 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4499 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4500 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4501 
4502 	return (0);
4503 }
4504 
4505 static int
4506 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4507 {
4508 	int error = 0;
4509 
4510 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4511 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4512 
4513 	/*
4514 	 * Never trust the config that is provided unless we are assembling
4515 	 * a pool following a split.
4516 	 * This means don't trust blkptrs and the vdev tree in general. This
4517 	 * also effectively puts the spa in read-only mode since
4518 	 * spa_writeable() checks for spa_trust_config to be true.
4519 	 * We will later load a trusted config from the MOS.
4520 	 */
4521 	if (type != SPA_IMPORT_ASSEMBLE)
4522 		spa->spa_trust_config = B_FALSE;
4523 
4524 	/*
4525 	 * Parse the config provided to create a vdev tree.
4526 	 */
4527 	error = spa_ld_parse_config(spa, type);
4528 	if (error != 0)
4529 		return (error);
4530 
4531 	spa_import_progress_add(spa);
4532 
4533 	/*
4534 	 * Now that we have the vdev tree, try to open each vdev. This involves
4535 	 * opening the underlying physical device, retrieving its geometry and
4536 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4537 	 * based on the success of those operations. After this we'll be ready
4538 	 * to read from the vdevs.
4539 	 */
4540 	error = spa_ld_open_vdevs(spa);
4541 	if (error != 0)
4542 		return (error);
4543 
4544 	/*
4545 	 * Read the label of each vdev and make sure that the GUIDs stored
4546 	 * there match the GUIDs in the config provided.
4547 	 * If we're assembling a new pool that's been split off from an
4548 	 * existing pool, the labels haven't yet been updated so we skip
4549 	 * validation for now.
4550 	 */
4551 	if (type != SPA_IMPORT_ASSEMBLE) {
4552 		error = spa_ld_validate_vdevs(spa);
4553 		if (error != 0)
4554 			return (error);
4555 	}
4556 
4557 	/*
4558 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4559 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4560 	 * get the list of features required to read blkptrs in the MOS from
4561 	 * the vdev label with the best uberblock and verify that our version
4562 	 * of zfs supports them all.
4563 	 */
4564 	error = spa_ld_select_uberblock(spa, type);
4565 	if (error != 0)
4566 		return (error);
4567 
4568 	/*
4569 	 * Pass that uberblock to the dsl_pool layer which will open the root
4570 	 * blkptr. This blkptr points to the latest version of the MOS and will
4571 	 * allow us to read its contents.
4572 	 */
4573 	error = spa_ld_open_rootbp(spa);
4574 	if (error != 0)
4575 		return (error);
4576 
4577 	return (0);
4578 }
4579 
4580 static int
4581 spa_ld_checkpoint_rewind(spa_t *spa)
4582 {
4583 	uberblock_t checkpoint;
4584 	int error = 0;
4585 
4586 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4587 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4588 
4589 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4590 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4591 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4592 
4593 	if (error != 0) {
4594 		spa_load_failed(spa, "unable to retrieve checkpointed "
4595 		    "uberblock from the MOS config [error=%d]", error);
4596 
4597 		if (error == ENOENT)
4598 			error = ZFS_ERR_NO_CHECKPOINT;
4599 
4600 		return (error);
4601 	}
4602 
4603 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4604 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4605 
4606 	/*
4607 	 * We need to update the txg and timestamp of the checkpointed
4608 	 * uberblock to be higher than the latest one. This ensures that
4609 	 * the checkpointed uberblock is selected if we were to close and
4610 	 * reopen the pool right after we've written it in the vdev labels.
4611 	 * (also see block comment in vdev_uberblock_compare)
4612 	 */
4613 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4614 	checkpoint.ub_timestamp = gethrestime_sec();
4615 
4616 	/*
4617 	 * Set current uberblock to be the checkpointed uberblock.
4618 	 */
4619 	spa->spa_uberblock = checkpoint;
4620 
4621 	/*
4622 	 * If we are doing a normal rewind, then the pool is open for
4623 	 * writing and we sync the "updated" checkpointed uberblock to
4624 	 * disk. Once this is done, we've basically rewound the whole
4625 	 * pool and there is no way back.
4626 	 *
4627 	 * There are cases when we don't want to attempt and sync the
4628 	 * checkpointed uberblock to disk because we are opening a
4629 	 * pool as read-only. Specifically, verifying the checkpointed
4630 	 * state with zdb, and importing the checkpointed state to get
4631 	 * a "preview" of its content.
4632 	 */
4633 	if (spa_writeable(spa)) {
4634 		vdev_t *rvd = spa->spa_root_vdev;
4635 
4636 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4637 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4638 		int svdcount = 0;
4639 		int children = rvd->vdev_children;
4640 		int c0 = random_in_range(children);
4641 
4642 		for (int c = 0; c < children; c++) {
4643 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4644 
4645 			/* Stop when revisiting the first vdev */
4646 			if (c > 0 && svd[0] == vd)
4647 				break;
4648 
4649 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4650 			    !vdev_is_concrete(vd))
4651 				continue;
4652 
4653 			svd[svdcount++] = vd;
4654 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4655 				break;
4656 		}
4657 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4658 		if (error == 0)
4659 			spa->spa_last_synced_guid = rvd->vdev_guid;
4660 		spa_config_exit(spa, SCL_ALL, FTAG);
4661 
4662 		if (error != 0) {
4663 			spa_load_failed(spa, "failed to write checkpointed "
4664 			    "uberblock to the vdev labels [error=%d]", error);
4665 			return (error);
4666 		}
4667 	}
4668 
4669 	return (0);
4670 }
4671 
4672 static int
4673 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4674     boolean_t *update_config_cache)
4675 {
4676 	int error;
4677 
4678 	/*
4679 	 * Parse the config for pool, open and validate vdevs,
4680 	 * select an uberblock, and use that uberblock to open
4681 	 * the MOS.
4682 	 */
4683 	error = spa_ld_mos_init(spa, type);
4684 	if (error != 0)
4685 		return (error);
4686 
4687 	/*
4688 	 * Retrieve the trusted config stored in the MOS and use it to create
4689 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4690 	 */
4691 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4692 	if (error == EAGAIN) {
4693 		if (update_config_cache != NULL)
4694 			*update_config_cache = B_TRUE;
4695 
4696 		/*
4697 		 * Redo the loading process with the trusted config if it is
4698 		 * too different from the untrusted config.
4699 		 */
4700 		spa_ld_prepare_for_reload(spa);
4701 		spa_load_note(spa, "RELOADING");
4702 		error = spa_ld_mos_init(spa, type);
4703 		if (error != 0)
4704 			return (error);
4705 
4706 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4707 		if (error != 0)
4708 			return (error);
4709 
4710 	} else if (error != 0) {
4711 		return (error);
4712 	}
4713 
4714 	return (0);
4715 }
4716 
4717 /*
4718  * Load an existing storage pool, using the config provided. This config
4719  * describes which vdevs are part of the pool and is later validated against
4720  * partial configs present in each vdev's label and an entire copy of the
4721  * config stored in the MOS.
4722  */
4723 static int
4724 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4725 {
4726 	int error = 0;
4727 	boolean_t missing_feat_write = B_FALSE;
4728 	boolean_t checkpoint_rewind =
4729 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4730 	boolean_t update_config_cache = B_FALSE;
4731 
4732 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4733 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4734 
4735 	spa_load_note(spa, "LOADING");
4736 
4737 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4738 	if (error != 0)
4739 		return (error);
4740 
4741 	/*
4742 	 * If we are rewinding to the checkpoint then we need to repeat
4743 	 * everything we've done so far in this function but this time
4744 	 * selecting the checkpointed uberblock and using that to open
4745 	 * the MOS.
4746 	 */
4747 	if (checkpoint_rewind) {
4748 		/*
4749 		 * If we are rewinding to the checkpoint update config cache
4750 		 * anyway.
4751 		 */
4752 		update_config_cache = B_TRUE;
4753 
4754 		/*
4755 		 * Extract the checkpointed uberblock from the current MOS
4756 		 * and use this as the pool's uberblock from now on. If the
4757 		 * pool is imported as writeable we also write the checkpoint
4758 		 * uberblock to the labels, making the rewind permanent.
4759 		 */
4760 		error = spa_ld_checkpoint_rewind(spa);
4761 		if (error != 0)
4762 			return (error);
4763 
4764 		/*
4765 		 * Redo the loading process again with the
4766 		 * checkpointed uberblock.
4767 		 */
4768 		spa_ld_prepare_for_reload(spa);
4769 		spa_load_note(spa, "LOADING checkpointed uberblock");
4770 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4771 		if (error != 0)
4772 			return (error);
4773 	}
4774 
4775 	/*
4776 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4777 	 */
4778 	error = spa_ld_read_checkpoint_txg(spa);
4779 	if (error != 0)
4780 		return (error);
4781 
4782 	/*
4783 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4784 	 * from the pool and their contents were re-mapped to other vdevs. Note
4785 	 * that everything that we read before this step must have been
4786 	 * rewritten on concrete vdevs after the last device removal was
4787 	 * initiated. Otherwise we could be reading from indirect vdevs before
4788 	 * we have loaded their mappings.
4789 	 */
4790 	error = spa_ld_open_indirect_vdev_metadata(spa);
4791 	if (error != 0)
4792 		return (error);
4793 
4794 	/*
4795 	 * Retrieve the full list of active features from the MOS and check if
4796 	 * they are all supported.
4797 	 */
4798 	error = spa_ld_check_features(spa, &missing_feat_write);
4799 	if (error != 0)
4800 		return (error);
4801 
4802 	/*
4803 	 * Load several special directories from the MOS needed by the dsl_pool
4804 	 * layer.
4805 	 */
4806 	error = spa_ld_load_special_directories(spa);
4807 	if (error != 0)
4808 		return (error);
4809 
4810 	/*
4811 	 * Retrieve pool properties from the MOS.
4812 	 */
4813 	error = spa_ld_get_props(spa);
4814 	if (error != 0)
4815 		return (error);
4816 
4817 	/*
4818 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4819 	 * and open them.
4820 	 */
4821 	error = spa_ld_open_aux_vdevs(spa, type);
4822 	if (error != 0)
4823 		return (error);
4824 
4825 	/*
4826 	 * Load the metadata for all vdevs. Also check if unopenable devices
4827 	 * should be autoreplaced.
4828 	 */
4829 	error = spa_ld_load_vdev_metadata(spa);
4830 	if (error != 0)
4831 		return (error);
4832 
4833 	error = spa_ld_load_dedup_tables(spa);
4834 	if (error != 0)
4835 		return (error);
4836 
4837 	/*
4838 	 * Verify the logs now to make sure we don't have any unexpected errors
4839 	 * when we claim log blocks later.
4840 	 */
4841 	error = spa_ld_verify_logs(spa, type, ereport);
4842 	if (error != 0)
4843 		return (error);
4844 
4845 	if (missing_feat_write) {
4846 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4847 
4848 		/*
4849 		 * At this point, we know that we can open the pool in
4850 		 * read-only mode but not read-write mode. We now have enough
4851 		 * information and can return to userland.
4852 		 */
4853 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4854 		    ENOTSUP));
4855 	}
4856 
4857 	/*
4858 	 * Traverse the last txgs to make sure the pool was left off in a safe
4859 	 * state. When performing an extreme rewind, we verify the whole pool,
4860 	 * which can take a very long time.
4861 	 */
4862 	error = spa_ld_verify_pool_data(spa);
4863 	if (error != 0)
4864 		return (error);
4865 
4866 	/*
4867 	 * Calculate the deflated space for the pool. This must be done before
4868 	 * we write anything to the pool because we'd need to update the space
4869 	 * accounting using the deflated sizes.
4870 	 */
4871 	spa_update_dspace(spa);
4872 
4873 	/*
4874 	 * We have now retrieved all the information we needed to open the
4875 	 * pool. If we are importing the pool in read-write mode, a few
4876 	 * additional steps must be performed to finish the import.
4877 	 */
4878 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4879 	    spa->spa_load_max_txg == UINT64_MAX)) {
4880 		uint64_t config_cache_txg = spa->spa_config_txg;
4881 
4882 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4883 
4884 		/*
4885 		 * In case of a checkpoint rewind, log the original txg
4886 		 * of the checkpointed uberblock.
4887 		 */
4888 		if (checkpoint_rewind) {
4889 			spa_history_log_internal(spa, "checkpoint rewind",
4890 			    NULL, "rewound state to txg=%llu",
4891 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4892 		}
4893 
4894 		/*
4895 		 * Traverse the ZIL and claim all blocks.
4896 		 */
4897 		spa_ld_claim_log_blocks(spa);
4898 
4899 		/*
4900 		 * Kick-off the syncing thread.
4901 		 */
4902 		spa->spa_sync_on = B_TRUE;
4903 		txg_sync_start(spa->spa_dsl_pool);
4904 		mmp_thread_start(spa);
4905 
4906 		/*
4907 		 * Wait for all claims to sync.  We sync up to the highest
4908 		 * claimed log block birth time so that claimed log blocks
4909 		 * don't appear to be from the future.  spa_claim_max_txg
4910 		 * will have been set for us by ZIL traversal operations
4911 		 * performed above.
4912 		 */
4913 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4914 
4915 		/*
4916 		 * Check if we need to request an update of the config. On the
4917 		 * next sync, we would update the config stored in vdev labels
4918 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4919 		 */
4920 		spa_ld_check_for_config_update(spa, config_cache_txg,
4921 		    update_config_cache);
4922 
4923 		/*
4924 		 * Check if a rebuild was in progress and if so resume it.
4925 		 * Then check all DTLs to see if anything needs resilvering.
4926 		 * The resilver will be deferred if a rebuild was started.
4927 		 */
4928 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4929 			vdev_rebuild_restart(spa);
4930 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4931 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4932 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4933 		}
4934 
4935 		/*
4936 		 * Log the fact that we booted up (so that we can detect if
4937 		 * we rebooted in the middle of an operation).
4938 		 */
4939 		spa_history_log_version(spa, "open", NULL);
4940 
4941 		spa_restart_removal(spa);
4942 		spa_spawn_aux_threads(spa);
4943 
4944 		/*
4945 		 * Delete any inconsistent datasets.
4946 		 *
4947 		 * Note:
4948 		 * Since we may be issuing deletes for clones here,
4949 		 * we make sure to do so after we've spawned all the
4950 		 * auxiliary threads above (from which the livelist
4951 		 * deletion zthr is part of).
4952 		 */
4953 		(void) dmu_objset_find(spa_name(spa),
4954 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4955 
4956 		/*
4957 		 * Clean up any stale temporary dataset userrefs.
4958 		 */
4959 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4960 
4961 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4962 		vdev_initialize_restart(spa->spa_root_vdev);
4963 		vdev_trim_restart(spa->spa_root_vdev);
4964 		vdev_autotrim_restart(spa);
4965 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4966 	}
4967 
4968 	spa_import_progress_remove(spa_guid(spa));
4969 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4970 
4971 	spa_load_note(spa, "LOADED");
4972 
4973 	return (0);
4974 }
4975 
4976 static int
4977 spa_load_retry(spa_t *spa, spa_load_state_t state)
4978 {
4979 	spa_mode_t mode = spa->spa_mode;
4980 
4981 	spa_unload(spa);
4982 	spa_deactivate(spa);
4983 
4984 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4985 
4986 	spa_activate(spa, mode);
4987 	spa_async_suspend(spa);
4988 
4989 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4990 	    (u_longlong_t)spa->spa_load_max_txg);
4991 
4992 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4993 }
4994 
4995 /*
4996  * If spa_load() fails this function will try loading prior txg's. If
4997  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4998  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4999  * function will not rewind the pool and will return the same error as
5000  * spa_load().
5001  */
5002 static int
5003 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5004     int rewind_flags)
5005 {
5006 	nvlist_t *loadinfo = NULL;
5007 	nvlist_t *config = NULL;
5008 	int load_error, rewind_error;
5009 	uint64_t safe_rewind_txg;
5010 	uint64_t min_txg;
5011 
5012 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5013 		spa->spa_load_max_txg = spa->spa_load_txg;
5014 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5015 	} else {
5016 		spa->spa_load_max_txg = max_request;
5017 		if (max_request != UINT64_MAX)
5018 			spa->spa_extreme_rewind = B_TRUE;
5019 	}
5020 
5021 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5022 	if (load_error == 0)
5023 		return (0);
5024 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5025 		/*
5026 		 * When attempting checkpoint-rewind on a pool with no
5027 		 * checkpoint, we should not attempt to load uberblocks
5028 		 * from previous txgs when spa_load fails.
5029 		 */
5030 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5031 		spa_import_progress_remove(spa_guid(spa));
5032 		return (load_error);
5033 	}
5034 
5035 	if (spa->spa_root_vdev != NULL)
5036 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5037 
5038 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5039 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5040 
5041 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5042 		nvlist_free(config);
5043 		spa_import_progress_remove(spa_guid(spa));
5044 		return (load_error);
5045 	}
5046 
5047 	if (state == SPA_LOAD_RECOVER) {
5048 		/* Price of rolling back is discarding txgs, including log */
5049 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5050 	} else {
5051 		/*
5052 		 * If we aren't rolling back save the load info from our first
5053 		 * import attempt so that we can restore it after attempting
5054 		 * to rewind.
5055 		 */
5056 		loadinfo = spa->spa_load_info;
5057 		spa->spa_load_info = fnvlist_alloc();
5058 	}
5059 
5060 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5061 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5062 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5063 	    TXG_INITIAL : safe_rewind_txg;
5064 
5065 	/*
5066 	 * Continue as long as we're finding errors, we're still within
5067 	 * the acceptable rewind range, and we're still finding uberblocks
5068 	 */
5069 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5070 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5071 		if (spa->spa_load_max_txg < safe_rewind_txg)
5072 			spa->spa_extreme_rewind = B_TRUE;
5073 		rewind_error = spa_load_retry(spa, state);
5074 	}
5075 
5076 	spa->spa_extreme_rewind = B_FALSE;
5077 	spa->spa_load_max_txg = UINT64_MAX;
5078 
5079 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5080 		spa_config_set(spa, config);
5081 	else
5082 		nvlist_free(config);
5083 
5084 	if (state == SPA_LOAD_RECOVER) {
5085 		ASSERT3P(loadinfo, ==, NULL);
5086 		spa_import_progress_remove(spa_guid(spa));
5087 		return (rewind_error);
5088 	} else {
5089 		/* Store the rewind info as part of the initial load info */
5090 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5091 		    spa->spa_load_info);
5092 
5093 		/* Restore the initial load info */
5094 		fnvlist_free(spa->spa_load_info);
5095 		spa->spa_load_info = loadinfo;
5096 
5097 		spa_import_progress_remove(spa_guid(spa));
5098 		return (load_error);
5099 	}
5100 }
5101 
5102 /*
5103  * Pool Open/Import
5104  *
5105  * The import case is identical to an open except that the configuration is sent
5106  * down from userland, instead of grabbed from the configuration cache.  For the
5107  * case of an open, the pool configuration will exist in the
5108  * POOL_STATE_UNINITIALIZED state.
5109  *
5110  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5111  * the same time open the pool, without having to keep around the spa_t in some
5112  * ambiguous state.
5113  */
5114 static int
5115 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5116     nvlist_t **config)
5117 {
5118 	spa_t *spa;
5119 	spa_load_state_t state = SPA_LOAD_OPEN;
5120 	int error;
5121 	int locked = B_FALSE;
5122 	int firstopen = B_FALSE;
5123 
5124 	*spapp = NULL;
5125 
5126 	/*
5127 	 * As disgusting as this is, we need to support recursive calls to this
5128 	 * function because dsl_dir_open() is called during spa_load(), and ends
5129 	 * up calling spa_open() again.  The real fix is to figure out how to
5130 	 * avoid dsl_dir_open() calling this in the first place.
5131 	 */
5132 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5133 		mutex_enter(&spa_namespace_lock);
5134 		locked = B_TRUE;
5135 	}
5136 
5137 	if ((spa = spa_lookup(pool)) == NULL) {
5138 		if (locked)
5139 			mutex_exit(&spa_namespace_lock);
5140 		return (SET_ERROR(ENOENT));
5141 	}
5142 
5143 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5144 		zpool_load_policy_t policy;
5145 
5146 		firstopen = B_TRUE;
5147 
5148 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5149 		    &policy);
5150 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5151 			state = SPA_LOAD_RECOVER;
5152 
5153 		spa_activate(spa, spa_mode_global);
5154 
5155 		if (state != SPA_LOAD_RECOVER)
5156 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5157 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5158 
5159 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5160 		error = spa_load_best(spa, state, policy.zlp_txg,
5161 		    policy.zlp_rewind);
5162 
5163 		if (error == EBADF) {
5164 			/*
5165 			 * If vdev_validate() returns failure (indicated by
5166 			 * EBADF), it indicates that one of the vdevs indicates
5167 			 * that the pool has been exported or destroyed.  If
5168 			 * this is the case, the config cache is out of sync and
5169 			 * we should remove the pool from the namespace.
5170 			 */
5171 			spa_unload(spa);
5172 			spa_deactivate(spa);
5173 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5174 			spa_remove(spa);
5175 			if (locked)
5176 				mutex_exit(&spa_namespace_lock);
5177 			return (SET_ERROR(ENOENT));
5178 		}
5179 
5180 		if (error) {
5181 			/*
5182 			 * We can't open the pool, but we still have useful
5183 			 * information: the state of each vdev after the
5184 			 * attempted vdev_open().  Return this to the user.
5185 			 */
5186 			if (config != NULL && spa->spa_config) {
5187 				*config = fnvlist_dup(spa->spa_config);
5188 				fnvlist_add_nvlist(*config,
5189 				    ZPOOL_CONFIG_LOAD_INFO,
5190 				    spa->spa_load_info);
5191 			}
5192 			spa_unload(spa);
5193 			spa_deactivate(spa);
5194 			spa->spa_last_open_failed = error;
5195 			if (locked)
5196 				mutex_exit(&spa_namespace_lock);
5197 			*spapp = NULL;
5198 			return (error);
5199 		}
5200 	}
5201 
5202 	spa_open_ref(spa, tag);
5203 
5204 	if (config != NULL)
5205 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5206 
5207 	/*
5208 	 * If we've recovered the pool, pass back any information we
5209 	 * gathered while doing the load.
5210 	 */
5211 	if (state == SPA_LOAD_RECOVER) {
5212 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5213 		    spa->spa_load_info);
5214 	}
5215 
5216 	if (locked) {
5217 		spa->spa_last_open_failed = 0;
5218 		spa->spa_last_ubsync_txg = 0;
5219 		spa->spa_load_txg = 0;
5220 		mutex_exit(&spa_namespace_lock);
5221 	}
5222 
5223 	if (firstopen)
5224 		zvol_create_minors_recursive(spa_name(spa));
5225 
5226 	*spapp = spa;
5227 
5228 	return (0);
5229 }
5230 
5231 int
5232 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5233     nvlist_t **config)
5234 {
5235 	return (spa_open_common(name, spapp, tag, policy, config));
5236 }
5237 
5238 int
5239 spa_open(const char *name, spa_t **spapp, void *tag)
5240 {
5241 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5242 }
5243 
5244 /*
5245  * Lookup the given spa_t, incrementing the inject count in the process,
5246  * preventing it from being exported or destroyed.
5247  */
5248 spa_t *
5249 spa_inject_addref(char *name)
5250 {
5251 	spa_t *spa;
5252 
5253 	mutex_enter(&spa_namespace_lock);
5254 	if ((spa = spa_lookup(name)) == NULL) {
5255 		mutex_exit(&spa_namespace_lock);
5256 		return (NULL);
5257 	}
5258 	spa->spa_inject_ref++;
5259 	mutex_exit(&spa_namespace_lock);
5260 
5261 	return (spa);
5262 }
5263 
5264 void
5265 spa_inject_delref(spa_t *spa)
5266 {
5267 	mutex_enter(&spa_namespace_lock);
5268 	spa->spa_inject_ref--;
5269 	mutex_exit(&spa_namespace_lock);
5270 }
5271 
5272 /*
5273  * Add spares device information to the nvlist.
5274  */
5275 static void
5276 spa_add_spares(spa_t *spa, nvlist_t *config)
5277 {
5278 	nvlist_t **spares;
5279 	uint_t i, nspares;
5280 	nvlist_t *nvroot;
5281 	uint64_t guid;
5282 	vdev_stat_t *vs;
5283 	uint_t vsc;
5284 	uint64_t pool;
5285 
5286 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5287 
5288 	if (spa->spa_spares.sav_count == 0)
5289 		return;
5290 
5291 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5292 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5293 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5294 	if (nspares != 0) {
5295 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares,
5296 		    nspares);
5297 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5298 		    &spares, &nspares));
5299 
5300 		/*
5301 		 * Go through and find any spares which have since been
5302 		 * repurposed as an active spare.  If this is the case, update
5303 		 * their status appropriately.
5304 		 */
5305 		for (i = 0; i < nspares; i++) {
5306 			guid = fnvlist_lookup_uint64(spares[i],
5307 			    ZPOOL_CONFIG_GUID);
5308 			if (spa_spare_exists(guid, &pool, NULL) &&
5309 			    pool != 0ULL) {
5310 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5311 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5312 				    &vsc));
5313 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5314 				vs->vs_aux = VDEV_AUX_SPARED;
5315 			}
5316 		}
5317 	}
5318 }
5319 
5320 /*
5321  * Add l2cache device information to the nvlist, including vdev stats.
5322  */
5323 static void
5324 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5325 {
5326 	nvlist_t **l2cache;
5327 	uint_t i, j, nl2cache;
5328 	nvlist_t *nvroot;
5329 	uint64_t guid;
5330 	vdev_t *vd;
5331 	vdev_stat_t *vs;
5332 	uint_t vsc;
5333 
5334 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5335 
5336 	if (spa->spa_l2cache.sav_count == 0)
5337 		return;
5338 
5339 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5340 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5341 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5342 	if (nl2cache != 0) {
5343 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache,
5344 		    nl2cache);
5345 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5346 		    &l2cache, &nl2cache));
5347 
5348 		/*
5349 		 * Update level 2 cache device stats.
5350 		 */
5351 
5352 		for (i = 0; i < nl2cache; i++) {
5353 			guid = fnvlist_lookup_uint64(l2cache[i],
5354 			    ZPOOL_CONFIG_GUID);
5355 
5356 			vd = NULL;
5357 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5358 				if (guid ==
5359 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5360 					vd = spa->spa_l2cache.sav_vdevs[j];
5361 					break;
5362 				}
5363 			}
5364 			ASSERT(vd != NULL);
5365 
5366 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5367 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5368 			vdev_get_stats(vd, vs);
5369 			vdev_config_generate_stats(vd, l2cache[i]);
5370 
5371 		}
5372 	}
5373 }
5374 
5375 static void
5376 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5377 {
5378 	zap_cursor_t zc;
5379 	zap_attribute_t za;
5380 
5381 	if (spa->spa_feat_for_read_obj != 0) {
5382 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5383 		    spa->spa_feat_for_read_obj);
5384 		    zap_cursor_retrieve(&zc, &za) == 0;
5385 		    zap_cursor_advance(&zc)) {
5386 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5387 			    za.za_num_integers == 1);
5388 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5389 			    za.za_first_integer));
5390 		}
5391 		zap_cursor_fini(&zc);
5392 	}
5393 
5394 	if (spa->spa_feat_for_write_obj != 0) {
5395 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5396 		    spa->spa_feat_for_write_obj);
5397 		    zap_cursor_retrieve(&zc, &za) == 0;
5398 		    zap_cursor_advance(&zc)) {
5399 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5400 			    za.za_num_integers == 1);
5401 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5402 			    za.za_first_integer));
5403 		}
5404 		zap_cursor_fini(&zc);
5405 	}
5406 }
5407 
5408 static void
5409 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5410 {
5411 	int i;
5412 
5413 	for (i = 0; i < SPA_FEATURES; i++) {
5414 		zfeature_info_t feature = spa_feature_table[i];
5415 		uint64_t refcount;
5416 
5417 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5418 			continue;
5419 
5420 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5421 	}
5422 }
5423 
5424 /*
5425  * Store a list of pool features and their reference counts in the
5426  * config.
5427  *
5428  * The first time this is called on a spa, allocate a new nvlist, fetch
5429  * the pool features and reference counts from disk, then save the list
5430  * in the spa. In subsequent calls on the same spa use the saved nvlist
5431  * and refresh its values from the cached reference counts.  This
5432  * ensures we don't block here on I/O on a suspended pool so 'zpool
5433  * clear' can resume the pool.
5434  */
5435 static void
5436 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5437 {
5438 	nvlist_t *features;
5439 
5440 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5441 
5442 	mutex_enter(&spa->spa_feat_stats_lock);
5443 	features = spa->spa_feat_stats;
5444 
5445 	if (features != NULL) {
5446 		spa_feature_stats_from_cache(spa, features);
5447 	} else {
5448 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5449 		spa->spa_feat_stats = features;
5450 		spa_feature_stats_from_disk(spa, features);
5451 	}
5452 
5453 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5454 	    features));
5455 
5456 	mutex_exit(&spa->spa_feat_stats_lock);
5457 }
5458 
5459 int
5460 spa_get_stats(const char *name, nvlist_t **config,
5461     char *altroot, size_t buflen)
5462 {
5463 	int error;
5464 	spa_t *spa;
5465 
5466 	*config = NULL;
5467 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5468 
5469 	if (spa != NULL) {
5470 		/*
5471 		 * This still leaves a window of inconsistency where the spares
5472 		 * or l2cache devices could change and the config would be
5473 		 * self-inconsistent.
5474 		 */
5475 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5476 
5477 		if (*config != NULL) {
5478 			uint64_t loadtimes[2];
5479 
5480 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5481 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5482 			fnvlist_add_uint64_array(*config,
5483 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5484 
5485 			fnvlist_add_uint64(*config,
5486 			    ZPOOL_CONFIG_ERRCOUNT,
5487 			    spa_get_errlog_size(spa));
5488 
5489 			if (spa_suspended(spa)) {
5490 				fnvlist_add_uint64(*config,
5491 				    ZPOOL_CONFIG_SUSPENDED,
5492 				    spa->spa_failmode);
5493 				fnvlist_add_uint64(*config,
5494 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5495 				    spa->spa_suspended);
5496 			}
5497 
5498 			spa_add_spares(spa, *config);
5499 			spa_add_l2cache(spa, *config);
5500 			spa_add_feature_stats(spa, *config);
5501 		}
5502 	}
5503 
5504 	/*
5505 	 * We want to get the alternate root even for faulted pools, so we cheat
5506 	 * and call spa_lookup() directly.
5507 	 */
5508 	if (altroot) {
5509 		if (spa == NULL) {
5510 			mutex_enter(&spa_namespace_lock);
5511 			spa = spa_lookup(name);
5512 			if (spa)
5513 				spa_altroot(spa, altroot, buflen);
5514 			else
5515 				altroot[0] = '\0';
5516 			spa = NULL;
5517 			mutex_exit(&spa_namespace_lock);
5518 		} else {
5519 			spa_altroot(spa, altroot, buflen);
5520 		}
5521 	}
5522 
5523 	if (spa != NULL) {
5524 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5525 		spa_close(spa, FTAG);
5526 	}
5527 
5528 	return (error);
5529 }
5530 
5531 /*
5532  * Validate that the auxiliary device array is well formed.  We must have an
5533  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5534  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5535  * specified, as long as they are well-formed.
5536  */
5537 static int
5538 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5539     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5540     vdev_labeltype_t label)
5541 {
5542 	nvlist_t **dev;
5543 	uint_t i, ndev;
5544 	vdev_t *vd;
5545 	int error;
5546 
5547 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5548 
5549 	/*
5550 	 * It's acceptable to have no devs specified.
5551 	 */
5552 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5553 		return (0);
5554 
5555 	if (ndev == 0)
5556 		return (SET_ERROR(EINVAL));
5557 
5558 	/*
5559 	 * Make sure the pool is formatted with a version that supports this
5560 	 * device type.
5561 	 */
5562 	if (spa_version(spa) < version)
5563 		return (SET_ERROR(ENOTSUP));
5564 
5565 	/*
5566 	 * Set the pending device list so we correctly handle device in-use
5567 	 * checking.
5568 	 */
5569 	sav->sav_pending = dev;
5570 	sav->sav_npending = ndev;
5571 
5572 	for (i = 0; i < ndev; i++) {
5573 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5574 		    mode)) != 0)
5575 			goto out;
5576 
5577 		if (!vd->vdev_ops->vdev_op_leaf) {
5578 			vdev_free(vd);
5579 			error = SET_ERROR(EINVAL);
5580 			goto out;
5581 		}
5582 
5583 		vd->vdev_top = vd;
5584 
5585 		if ((error = vdev_open(vd)) == 0 &&
5586 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5587 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5588 			    vd->vdev_guid);
5589 		}
5590 
5591 		vdev_free(vd);
5592 
5593 		if (error &&
5594 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5595 			goto out;
5596 		else
5597 			error = 0;
5598 	}
5599 
5600 out:
5601 	sav->sav_pending = NULL;
5602 	sav->sav_npending = 0;
5603 	return (error);
5604 }
5605 
5606 static int
5607 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5608 {
5609 	int error;
5610 
5611 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5612 
5613 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5614 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5615 	    VDEV_LABEL_SPARE)) != 0) {
5616 		return (error);
5617 	}
5618 
5619 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5620 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5621 	    VDEV_LABEL_L2CACHE));
5622 }
5623 
5624 static void
5625 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5626     const char *config)
5627 {
5628 	int i;
5629 
5630 	if (sav->sav_config != NULL) {
5631 		nvlist_t **olddevs;
5632 		uint_t oldndevs;
5633 		nvlist_t **newdevs;
5634 
5635 		/*
5636 		 * Generate new dev list by concatenating with the
5637 		 * current dev list.
5638 		 */
5639 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5640 		    &olddevs, &oldndevs));
5641 
5642 		newdevs = kmem_alloc(sizeof (void *) *
5643 		    (ndevs + oldndevs), KM_SLEEP);
5644 		for (i = 0; i < oldndevs; i++)
5645 			newdevs[i] = fnvlist_dup(olddevs[i]);
5646 		for (i = 0; i < ndevs; i++)
5647 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5648 
5649 		fnvlist_remove(sav->sav_config, config);
5650 
5651 		fnvlist_add_nvlist_array(sav->sav_config, config, newdevs,
5652 		    ndevs + oldndevs);
5653 		for (i = 0; i < oldndevs + ndevs; i++)
5654 			nvlist_free(newdevs[i]);
5655 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5656 	} else {
5657 		/*
5658 		 * Generate a new dev list.
5659 		 */
5660 		sav->sav_config = fnvlist_alloc();
5661 		fnvlist_add_nvlist_array(sav->sav_config, config, devs, ndevs);
5662 	}
5663 }
5664 
5665 /*
5666  * Stop and drop level 2 ARC devices
5667  */
5668 void
5669 spa_l2cache_drop(spa_t *spa)
5670 {
5671 	vdev_t *vd;
5672 	int i;
5673 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5674 
5675 	for (i = 0; i < sav->sav_count; i++) {
5676 		uint64_t pool;
5677 
5678 		vd = sav->sav_vdevs[i];
5679 		ASSERT(vd != NULL);
5680 
5681 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5682 		    pool != 0ULL && l2arc_vdev_present(vd))
5683 			l2arc_remove_vdev(vd);
5684 	}
5685 }
5686 
5687 /*
5688  * Verify encryption parameters for spa creation. If we are encrypting, we must
5689  * have the encryption feature flag enabled.
5690  */
5691 static int
5692 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5693     boolean_t has_encryption)
5694 {
5695 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5696 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5697 	    !has_encryption)
5698 		return (SET_ERROR(ENOTSUP));
5699 
5700 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5701 }
5702 
5703 /*
5704  * Pool Creation
5705  */
5706 int
5707 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5708     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5709 {
5710 	spa_t *spa;
5711 	char *altroot = NULL;
5712 	vdev_t *rvd;
5713 	dsl_pool_t *dp;
5714 	dmu_tx_t *tx;
5715 	int error = 0;
5716 	uint64_t txg = TXG_INITIAL;
5717 	nvlist_t **spares, **l2cache;
5718 	uint_t nspares, nl2cache;
5719 	uint64_t version, obj, ndraid = 0;
5720 	boolean_t has_features;
5721 	boolean_t has_encryption;
5722 	boolean_t has_allocclass;
5723 	spa_feature_t feat;
5724 	char *feat_name;
5725 	char *poolname;
5726 	nvlist_t *nvl;
5727 
5728 	if (props == NULL ||
5729 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5730 		poolname = (char *)pool;
5731 
5732 	/*
5733 	 * If this pool already exists, return failure.
5734 	 */
5735 	mutex_enter(&spa_namespace_lock);
5736 	if (spa_lookup(poolname) != NULL) {
5737 		mutex_exit(&spa_namespace_lock);
5738 		return (SET_ERROR(EEXIST));
5739 	}
5740 
5741 	/*
5742 	 * Allocate a new spa_t structure.
5743 	 */
5744 	nvl = fnvlist_alloc();
5745 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5746 	(void) nvlist_lookup_string(props,
5747 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5748 	spa = spa_add(poolname, nvl, altroot);
5749 	fnvlist_free(nvl);
5750 	spa_activate(spa, spa_mode_global);
5751 
5752 	if (props && (error = spa_prop_validate(spa, props))) {
5753 		spa_deactivate(spa);
5754 		spa_remove(spa);
5755 		mutex_exit(&spa_namespace_lock);
5756 		return (error);
5757 	}
5758 
5759 	/*
5760 	 * Temporary pool names should never be written to disk.
5761 	 */
5762 	if (poolname != pool)
5763 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5764 
5765 	has_features = B_FALSE;
5766 	has_encryption = B_FALSE;
5767 	has_allocclass = B_FALSE;
5768 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5769 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5770 		if (zpool_prop_feature(nvpair_name(elem))) {
5771 			has_features = B_TRUE;
5772 
5773 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5774 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5775 			if (feat == SPA_FEATURE_ENCRYPTION)
5776 				has_encryption = B_TRUE;
5777 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5778 				has_allocclass = B_TRUE;
5779 		}
5780 	}
5781 
5782 	/* verify encryption params, if they were provided */
5783 	if (dcp != NULL) {
5784 		error = spa_create_check_encryption_params(dcp, has_encryption);
5785 		if (error != 0) {
5786 			spa_deactivate(spa);
5787 			spa_remove(spa);
5788 			mutex_exit(&spa_namespace_lock);
5789 			return (error);
5790 		}
5791 	}
5792 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5793 		spa_deactivate(spa);
5794 		spa_remove(spa);
5795 		mutex_exit(&spa_namespace_lock);
5796 		return (ENOTSUP);
5797 	}
5798 
5799 	if (has_features || nvlist_lookup_uint64(props,
5800 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5801 		version = SPA_VERSION;
5802 	}
5803 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5804 
5805 	spa->spa_first_txg = txg;
5806 	spa->spa_uberblock.ub_txg = txg - 1;
5807 	spa->spa_uberblock.ub_version = version;
5808 	spa->spa_ubsync = spa->spa_uberblock;
5809 	spa->spa_load_state = SPA_LOAD_CREATE;
5810 	spa->spa_removing_phys.sr_state = DSS_NONE;
5811 	spa->spa_removing_phys.sr_removing_vdev = -1;
5812 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5813 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5814 
5815 	/*
5816 	 * Create "The Godfather" zio to hold all async IOs
5817 	 */
5818 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5819 	    KM_SLEEP);
5820 	for (int i = 0; i < max_ncpus; i++) {
5821 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5822 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5823 		    ZIO_FLAG_GODFATHER);
5824 	}
5825 
5826 	/*
5827 	 * Create the root vdev.
5828 	 */
5829 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5830 
5831 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5832 
5833 	ASSERT(error != 0 || rvd != NULL);
5834 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5835 
5836 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5837 		error = SET_ERROR(EINVAL);
5838 
5839 	if (error == 0 &&
5840 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5841 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5842 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5843 		/*
5844 		 * instantiate the metaslab groups (this will dirty the vdevs)
5845 		 * we can no longer error exit past this point
5846 		 */
5847 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5848 			vdev_t *vd = rvd->vdev_child[c];
5849 
5850 			vdev_metaslab_set_size(vd);
5851 			vdev_expand(vd, txg);
5852 		}
5853 	}
5854 
5855 	spa_config_exit(spa, SCL_ALL, FTAG);
5856 
5857 	if (error != 0) {
5858 		spa_unload(spa);
5859 		spa_deactivate(spa);
5860 		spa_remove(spa);
5861 		mutex_exit(&spa_namespace_lock);
5862 		return (error);
5863 	}
5864 
5865 	/*
5866 	 * Get the list of spares, if specified.
5867 	 */
5868 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5869 	    &spares, &nspares) == 0) {
5870 		spa->spa_spares.sav_config = fnvlist_alloc();
5871 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5872 		    ZPOOL_CONFIG_SPARES, spares, nspares);
5873 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5874 		spa_load_spares(spa);
5875 		spa_config_exit(spa, SCL_ALL, FTAG);
5876 		spa->spa_spares.sav_sync = B_TRUE;
5877 	}
5878 
5879 	/*
5880 	 * Get the list of level 2 cache devices, if specified.
5881 	 */
5882 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5883 	    &l2cache, &nl2cache) == 0) {
5884 		spa->spa_l2cache.sav_config = fnvlist_alloc();
5885 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5886 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache);
5887 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5888 		spa_load_l2cache(spa);
5889 		spa_config_exit(spa, SCL_ALL, FTAG);
5890 		spa->spa_l2cache.sav_sync = B_TRUE;
5891 	}
5892 
5893 	spa->spa_is_initializing = B_TRUE;
5894 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5895 	spa->spa_is_initializing = B_FALSE;
5896 
5897 	/*
5898 	 * Create DDTs (dedup tables).
5899 	 */
5900 	ddt_create(spa);
5901 
5902 	spa_update_dspace(spa);
5903 
5904 	tx = dmu_tx_create_assigned(dp, txg);
5905 
5906 	/*
5907 	 * Create the pool's history object.
5908 	 */
5909 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5910 		spa_history_create_obj(spa, tx);
5911 
5912 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5913 	spa_history_log_version(spa, "create", tx);
5914 
5915 	/*
5916 	 * Create the pool config object.
5917 	 */
5918 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5919 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5920 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5921 
5922 	if (zap_add(spa->spa_meta_objset,
5923 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5924 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5925 		cmn_err(CE_PANIC, "failed to add pool config");
5926 	}
5927 
5928 	if (zap_add(spa->spa_meta_objset,
5929 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5930 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5931 		cmn_err(CE_PANIC, "failed to add pool version");
5932 	}
5933 
5934 	/* Newly created pools with the right version are always deflated. */
5935 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5936 		spa->spa_deflate = TRUE;
5937 		if (zap_add(spa->spa_meta_objset,
5938 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5939 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5940 			cmn_err(CE_PANIC, "failed to add deflate");
5941 		}
5942 	}
5943 
5944 	/*
5945 	 * Create the deferred-free bpobj.  Turn off compression
5946 	 * because sync-to-convergence takes longer if the blocksize
5947 	 * keeps changing.
5948 	 */
5949 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5950 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5951 	    ZIO_COMPRESS_OFF, tx);
5952 	if (zap_add(spa->spa_meta_objset,
5953 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5954 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5955 		cmn_err(CE_PANIC, "failed to add bpobj");
5956 	}
5957 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5958 	    spa->spa_meta_objset, obj));
5959 
5960 	/*
5961 	 * Generate some random noise for salted checksums to operate on.
5962 	 */
5963 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5964 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5965 
5966 	/*
5967 	 * Set pool properties.
5968 	 */
5969 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5970 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5971 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5972 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5973 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5974 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5975 
5976 	if (props != NULL) {
5977 		spa_configfile_set(spa, props, B_FALSE);
5978 		spa_sync_props(props, tx);
5979 	}
5980 
5981 	for (int i = 0; i < ndraid; i++)
5982 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5983 
5984 	dmu_tx_commit(tx);
5985 
5986 	spa->spa_sync_on = B_TRUE;
5987 	txg_sync_start(dp);
5988 	mmp_thread_start(spa);
5989 	txg_wait_synced(dp, txg);
5990 
5991 	spa_spawn_aux_threads(spa);
5992 
5993 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5994 
5995 	/*
5996 	 * Don't count references from objsets that are already closed
5997 	 * and are making their way through the eviction process.
5998 	 */
5999 	spa_evicting_os_wait(spa);
6000 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6001 	spa->spa_load_state = SPA_LOAD_NONE;
6002 
6003 	mutex_exit(&spa_namespace_lock);
6004 
6005 	return (0);
6006 }
6007 
6008 /*
6009  * Import a non-root pool into the system.
6010  */
6011 int
6012 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6013 {
6014 	spa_t *spa;
6015 	char *altroot = NULL;
6016 	spa_load_state_t state = SPA_LOAD_IMPORT;
6017 	zpool_load_policy_t policy;
6018 	spa_mode_t mode = spa_mode_global;
6019 	uint64_t readonly = B_FALSE;
6020 	int error;
6021 	nvlist_t *nvroot;
6022 	nvlist_t **spares, **l2cache;
6023 	uint_t nspares, nl2cache;
6024 
6025 	/*
6026 	 * If a pool with this name exists, return failure.
6027 	 */
6028 	mutex_enter(&spa_namespace_lock);
6029 	if (spa_lookup(pool) != NULL) {
6030 		mutex_exit(&spa_namespace_lock);
6031 		return (SET_ERROR(EEXIST));
6032 	}
6033 
6034 	/*
6035 	 * Create and initialize the spa structure.
6036 	 */
6037 	(void) nvlist_lookup_string(props,
6038 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6039 	(void) nvlist_lookup_uint64(props,
6040 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6041 	if (readonly)
6042 		mode = SPA_MODE_READ;
6043 	spa = spa_add(pool, config, altroot);
6044 	spa->spa_import_flags = flags;
6045 
6046 	/*
6047 	 * Verbatim import - Take a pool and insert it into the namespace
6048 	 * as if it had been loaded at boot.
6049 	 */
6050 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6051 		if (props != NULL)
6052 			spa_configfile_set(spa, props, B_FALSE);
6053 
6054 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6055 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6056 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6057 		mutex_exit(&spa_namespace_lock);
6058 		return (0);
6059 	}
6060 
6061 	spa_activate(spa, mode);
6062 
6063 	/*
6064 	 * Don't start async tasks until we know everything is healthy.
6065 	 */
6066 	spa_async_suspend(spa);
6067 
6068 	zpool_get_load_policy(config, &policy);
6069 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6070 		state = SPA_LOAD_RECOVER;
6071 
6072 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6073 
6074 	if (state != SPA_LOAD_RECOVER) {
6075 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6076 		zfs_dbgmsg("spa_import: importing %s", pool);
6077 	} else {
6078 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6079 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6080 	}
6081 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6082 
6083 	/*
6084 	 * Propagate anything learned while loading the pool and pass it
6085 	 * back to caller (i.e. rewind info, missing devices, etc).
6086 	 */
6087 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6088 
6089 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6090 	/*
6091 	 * Toss any existing sparelist, as it doesn't have any validity
6092 	 * anymore, and conflicts with spa_has_spare().
6093 	 */
6094 	if (spa->spa_spares.sav_config) {
6095 		nvlist_free(spa->spa_spares.sav_config);
6096 		spa->spa_spares.sav_config = NULL;
6097 		spa_load_spares(spa);
6098 	}
6099 	if (spa->spa_l2cache.sav_config) {
6100 		nvlist_free(spa->spa_l2cache.sav_config);
6101 		spa->spa_l2cache.sav_config = NULL;
6102 		spa_load_l2cache(spa);
6103 	}
6104 
6105 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6106 	spa_config_exit(spa, SCL_ALL, FTAG);
6107 
6108 	if (props != NULL)
6109 		spa_configfile_set(spa, props, B_FALSE);
6110 
6111 	if (error != 0 || (props && spa_writeable(spa) &&
6112 	    (error = spa_prop_set(spa, props)))) {
6113 		spa_unload(spa);
6114 		spa_deactivate(spa);
6115 		spa_remove(spa);
6116 		mutex_exit(&spa_namespace_lock);
6117 		return (error);
6118 	}
6119 
6120 	spa_async_resume(spa);
6121 
6122 	/*
6123 	 * Override any spares and level 2 cache devices as specified by
6124 	 * the user, as these may have correct device names/devids, etc.
6125 	 */
6126 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6127 	    &spares, &nspares) == 0) {
6128 		if (spa->spa_spares.sav_config)
6129 			fnvlist_remove(spa->spa_spares.sav_config,
6130 			    ZPOOL_CONFIG_SPARES);
6131 		else
6132 			spa->spa_spares.sav_config = fnvlist_alloc();
6133 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6134 		    ZPOOL_CONFIG_SPARES, spares, nspares);
6135 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6136 		spa_load_spares(spa);
6137 		spa_config_exit(spa, SCL_ALL, FTAG);
6138 		spa->spa_spares.sav_sync = B_TRUE;
6139 	}
6140 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6141 	    &l2cache, &nl2cache) == 0) {
6142 		if (spa->spa_l2cache.sav_config)
6143 			fnvlist_remove(spa->spa_l2cache.sav_config,
6144 			    ZPOOL_CONFIG_L2CACHE);
6145 		else
6146 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6147 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6148 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache);
6149 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6150 		spa_load_l2cache(spa);
6151 		spa_config_exit(spa, SCL_ALL, FTAG);
6152 		spa->spa_l2cache.sav_sync = B_TRUE;
6153 	}
6154 
6155 	/*
6156 	 * Check for any removed devices.
6157 	 */
6158 	if (spa->spa_autoreplace) {
6159 		spa_aux_check_removed(&spa->spa_spares);
6160 		spa_aux_check_removed(&spa->spa_l2cache);
6161 	}
6162 
6163 	if (spa_writeable(spa)) {
6164 		/*
6165 		 * Update the config cache to include the newly-imported pool.
6166 		 */
6167 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6168 	}
6169 
6170 	/*
6171 	 * It's possible that the pool was expanded while it was exported.
6172 	 * We kick off an async task to handle this for us.
6173 	 */
6174 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6175 
6176 	spa_history_log_version(spa, "import", NULL);
6177 
6178 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6179 
6180 	mutex_exit(&spa_namespace_lock);
6181 
6182 	zvol_create_minors_recursive(pool);
6183 
6184 	return (0);
6185 }
6186 
6187 nvlist_t *
6188 spa_tryimport(nvlist_t *tryconfig)
6189 {
6190 	nvlist_t *config = NULL;
6191 	char *poolname, *cachefile;
6192 	spa_t *spa;
6193 	uint64_t state;
6194 	int error;
6195 	zpool_load_policy_t policy;
6196 
6197 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6198 		return (NULL);
6199 
6200 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6201 		return (NULL);
6202 
6203 	/*
6204 	 * Create and initialize the spa structure.
6205 	 */
6206 	mutex_enter(&spa_namespace_lock);
6207 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6208 	spa_activate(spa, SPA_MODE_READ);
6209 
6210 	/*
6211 	 * Rewind pool if a max txg was provided.
6212 	 */
6213 	zpool_get_load_policy(spa->spa_config, &policy);
6214 	if (policy.zlp_txg != UINT64_MAX) {
6215 		spa->spa_load_max_txg = policy.zlp_txg;
6216 		spa->spa_extreme_rewind = B_TRUE;
6217 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6218 		    poolname, (longlong_t)policy.zlp_txg);
6219 	} else {
6220 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6221 	}
6222 
6223 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6224 	    == 0) {
6225 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6226 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6227 	} else {
6228 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6229 	}
6230 
6231 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6232 
6233 	/*
6234 	 * If 'tryconfig' was at least parsable, return the current config.
6235 	 */
6236 	if (spa->spa_root_vdev != NULL) {
6237 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6238 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6239 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6240 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6241 		    spa->spa_uberblock.ub_timestamp);
6242 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6243 		    spa->spa_load_info);
6244 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6245 		    spa->spa_errata);
6246 
6247 		/*
6248 		 * If the bootfs property exists on this pool then we
6249 		 * copy it out so that external consumers can tell which
6250 		 * pools are bootable.
6251 		 */
6252 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6253 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6254 
6255 			/*
6256 			 * We have to play games with the name since the
6257 			 * pool was opened as TRYIMPORT_NAME.
6258 			 */
6259 			if (dsl_dsobj_to_dsname(spa_name(spa),
6260 			    spa->spa_bootfs, tmpname) == 0) {
6261 				char *cp;
6262 				char *dsname;
6263 
6264 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6265 
6266 				cp = strchr(tmpname, '/');
6267 				if (cp == NULL) {
6268 					(void) strlcpy(dsname, tmpname,
6269 					    MAXPATHLEN);
6270 				} else {
6271 					(void) snprintf(dsname, MAXPATHLEN,
6272 					    "%s/%s", poolname, ++cp);
6273 				}
6274 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6275 				    dsname);
6276 				kmem_free(dsname, MAXPATHLEN);
6277 			}
6278 			kmem_free(tmpname, MAXPATHLEN);
6279 		}
6280 
6281 		/*
6282 		 * Add the list of hot spares and level 2 cache devices.
6283 		 */
6284 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6285 		spa_add_spares(spa, config);
6286 		spa_add_l2cache(spa, config);
6287 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6288 	}
6289 
6290 	spa_unload(spa);
6291 	spa_deactivate(spa);
6292 	spa_remove(spa);
6293 	mutex_exit(&spa_namespace_lock);
6294 
6295 	return (config);
6296 }
6297 
6298 /*
6299  * Pool export/destroy
6300  *
6301  * The act of destroying or exporting a pool is very simple.  We make sure there
6302  * is no more pending I/O and any references to the pool are gone.  Then, we
6303  * update the pool state and sync all the labels to disk, removing the
6304  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6305  * we don't sync the labels or remove the configuration cache.
6306  */
6307 static int
6308 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6309     boolean_t force, boolean_t hardforce)
6310 {
6311 	int error;
6312 	spa_t *spa;
6313 
6314 	if (oldconfig)
6315 		*oldconfig = NULL;
6316 
6317 	if (!(spa_mode_global & SPA_MODE_WRITE))
6318 		return (SET_ERROR(EROFS));
6319 
6320 	mutex_enter(&spa_namespace_lock);
6321 	if ((spa = spa_lookup(pool)) == NULL) {
6322 		mutex_exit(&spa_namespace_lock);
6323 		return (SET_ERROR(ENOENT));
6324 	}
6325 
6326 	if (spa->spa_is_exporting) {
6327 		/* the pool is being exported by another thread */
6328 		mutex_exit(&spa_namespace_lock);
6329 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6330 	}
6331 	spa->spa_is_exporting = B_TRUE;
6332 
6333 	/*
6334 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6335 	 * reacquire the namespace lock, and see if we can export.
6336 	 */
6337 	spa_open_ref(spa, FTAG);
6338 	mutex_exit(&spa_namespace_lock);
6339 	spa_async_suspend(spa);
6340 	if (spa->spa_zvol_taskq) {
6341 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6342 		taskq_wait(spa->spa_zvol_taskq);
6343 	}
6344 	mutex_enter(&spa_namespace_lock);
6345 	spa_close(spa, FTAG);
6346 
6347 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6348 		goto export_spa;
6349 	/*
6350 	 * The pool will be in core if it's openable, in which case we can
6351 	 * modify its state.  Objsets may be open only because they're dirty,
6352 	 * so we have to force it to sync before checking spa_refcnt.
6353 	 */
6354 	if (spa->spa_sync_on) {
6355 		txg_wait_synced(spa->spa_dsl_pool, 0);
6356 		spa_evicting_os_wait(spa);
6357 	}
6358 
6359 	/*
6360 	 * A pool cannot be exported or destroyed if there are active
6361 	 * references.  If we are resetting a pool, allow references by
6362 	 * fault injection handlers.
6363 	 */
6364 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6365 		error = SET_ERROR(EBUSY);
6366 		goto fail;
6367 	}
6368 
6369 	if (spa->spa_sync_on) {
6370 		/*
6371 		 * A pool cannot be exported if it has an active shared spare.
6372 		 * This is to prevent other pools stealing the active spare
6373 		 * from an exported pool. At user's own will, such pool can
6374 		 * be forcedly exported.
6375 		 */
6376 		if (!force && new_state == POOL_STATE_EXPORTED &&
6377 		    spa_has_active_shared_spare(spa)) {
6378 			error = SET_ERROR(EXDEV);
6379 			goto fail;
6380 		}
6381 
6382 		/*
6383 		 * We're about to export or destroy this pool. Make sure
6384 		 * we stop all initialization and trim activity here before
6385 		 * we set the spa_final_txg. This will ensure that all
6386 		 * dirty data resulting from the initialization is
6387 		 * committed to disk before we unload the pool.
6388 		 */
6389 		if (spa->spa_root_vdev != NULL) {
6390 			vdev_t *rvd = spa->spa_root_vdev;
6391 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6392 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6393 			vdev_autotrim_stop_all(spa);
6394 			vdev_rebuild_stop_all(spa);
6395 		}
6396 
6397 		/*
6398 		 * We want this to be reflected on every label,
6399 		 * so mark them all dirty.  spa_unload() will do the
6400 		 * final sync that pushes these changes out.
6401 		 */
6402 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6403 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6404 			spa->spa_state = new_state;
6405 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6406 			    TXG_DEFER_SIZE + 1;
6407 			vdev_config_dirty(spa->spa_root_vdev);
6408 			spa_config_exit(spa, SCL_ALL, FTAG);
6409 		}
6410 	}
6411 
6412 export_spa:
6413 	if (new_state == POOL_STATE_DESTROYED)
6414 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6415 	else if (new_state == POOL_STATE_EXPORTED)
6416 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6417 
6418 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6419 		spa_unload(spa);
6420 		spa_deactivate(spa);
6421 	}
6422 
6423 	if (oldconfig && spa->spa_config)
6424 		*oldconfig = fnvlist_dup(spa->spa_config);
6425 
6426 	if (new_state != POOL_STATE_UNINITIALIZED) {
6427 		if (!hardforce)
6428 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6429 		spa_remove(spa);
6430 	} else {
6431 		/*
6432 		 * If spa_remove() is not called for this spa_t and
6433 		 * there is any possibility that it can be reused,
6434 		 * we make sure to reset the exporting flag.
6435 		 */
6436 		spa->spa_is_exporting = B_FALSE;
6437 	}
6438 
6439 	mutex_exit(&spa_namespace_lock);
6440 	return (0);
6441 
6442 fail:
6443 	spa->spa_is_exporting = B_FALSE;
6444 	spa_async_resume(spa);
6445 	mutex_exit(&spa_namespace_lock);
6446 	return (error);
6447 }
6448 
6449 /*
6450  * Destroy a storage pool.
6451  */
6452 int
6453 spa_destroy(const char *pool)
6454 {
6455 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6456 	    B_FALSE, B_FALSE));
6457 }
6458 
6459 /*
6460  * Export a storage pool.
6461  */
6462 int
6463 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6464     boolean_t hardforce)
6465 {
6466 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6467 	    force, hardforce));
6468 }
6469 
6470 /*
6471  * Similar to spa_export(), this unloads the spa_t without actually removing it
6472  * from the namespace in any way.
6473  */
6474 int
6475 spa_reset(const char *pool)
6476 {
6477 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6478 	    B_FALSE, B_FALSE));
6479 }
6480 
6481 /*
6482  * ==========================================================================
6483  * Device manipulation
6484  * ==========================================================================
6485  */
6486 
6487 /*
6488  * This is called as a synctask to increment the draid feature flag
6489  */
6490 static void
6491 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6492 {
6493 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6494 	int draid = (int)(uintptr_t)arg;
6495 
6496 	for (int c = 0; c < draid; c++)
6497 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6498 }
6499 
6500 /*
6501  * Add a device to a storage pool.
6502  */
6503 int
6504 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6505 {
6506 	uint64_t txg, ndraid = 0;
6507 	int error;
6508 	vdev_t *rvd = spa->spa_root_vdev;
6509 	vdev_t *vd, *tvd;
6510 	nvlist_t **spares, **l2cache;
6511 	uint_t nspares, nl2cache;
6512 
6513 	ASSERT(spa_writeable(spa));
6514 
6515 	txg = spa_vdev_enter(spa);
6516 
6517 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6518 	    VDEV_ALLOC_ADD)) != 0)
6519 		return (spa_vdev_exit(spa, NULL, txg, error));
6520 
6521 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6522 
6523 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6524 	    &nspares) != 0)
6525 		nspares = 0;
6526 
6527 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6528 	    &nl2cache) != 0)
6529 		nl2cache = 0;
6530 
6531 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6532 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6533 
6534 	if (vd->vdev_children != 0 &&
6535 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6536 		return (spa_vdev_exit(spa, vd, txg, error));
6537 	}
6538 
6539 	/*
6540 	 * The virtual dRAID spares must be added after vdev tree is created
6541 	 * and the vdev guids are generated.  The guid of their associated
6542 	 * dRAID is stored in the config and used when opening the spare.
6543 	 */
6544 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6545 	    rvd->vdev_children)) == 0) {
6546 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6547 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6548 			nspares = 0;
6549 	} else {
6550 		return (spa_vdev_exit(spa, vd, txg, error));
6551 	}
6552 
6553 	/*
6554 	 * We must validate the spares and l2cache devices after checking the
6555 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6556 	 */
6557 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6558 		return (spa_vdev_exit(spa, vd, txg, error));
6559 
6560 	/*
6561 	 * If we are in the middle of a device removal, we can only add
6562 	 * devices which match the existing devices in the pool.
6563 	 * If we are in the middle of a removal, or have some indirect
6564 	 * vdevs, we can not add raidz or dRAID top levels.
6565 	 */
6566 	if (spa->spa_vdev_removal != NULL ||
6567 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6568 		for (int c = 0; c < vd->vdev_children; c++) {
6569 			tvd = vd->vdev_child[c];
6570 			if (spa->spa_vdev_removal != NULL &&
6571 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6572 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6573 			}
6574 			/* Fail if top level vdev is raidz or a dRAID */
6575 			if (vdev_get_nparity(tvd) != 0)
6576 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6577 
6578 			/*
6579 			 * Need the top level mirror to be
6580 			 * a mirror of leaf vdevs only
6581 			 */
6582 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6583 				for (uint64_t cid = 0;
6584 				    cid < tvd->vdev_children; cid++) {
6585 					vdev_t *cvd = tvd->vdev_child[cid];
6586 					if (!cvd->vdev_ops->vdev_op_leaf) {
6587 						return (spa_vdev_exit(spa, vd,
6588 						    txg, EINVAL));
6589 					}
6590 				}
6591 			}
6592 		}
6593 	}
6594 
6595 	for (int c = 0; c < vd->vdev_children; c++) {
6596 		tvd = vd->vdev_child[c];
6597 		vdev_remove_child(vd, tvd);
6598 		tvd->vdev_id = rvd->vdev_children;
6599 		vdev_add_child(rvd, tvd);
6600 		vdev_config_dirty(tvd);
6601 	}
6602 
6603 	if (nspares != 0) {
6604 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6605 		    ZPOOL_CONFIG_SPARES);
6606 		spa_load_spares(spa);
6607 		spa->spa_spares.sav_sync = B_TRUE;
6608 	}
6609 
6610 	if (nl2cache != 0) {
6611 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6612 		    ZPOOL_CONFIG_L2CACHE);
6613 		spa_load_l2cache(spa);
6614 		spa->spa_l2cache.sav_sync = B_TRUE;
6615 	}
6616 
6617 	/*
6618 	 * We can't increment a feature while holding spa_vdev so we
6619 	 * have to do it in a synctask.
6620 	 */
6621 	if (ndraid != 0) {
6622 		dmu_tx_t *tx;
6623 
6624 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6625 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6626 		    (void *)(uintptr_t)ndraid, tx);
6627 		dmu_tx_commit(tx);
6628 	}
6629 
6630 	/*
6631 	 * We have to be careful when adding new vdevs to an existing pool.
6632 	 * If other threads start allocating from these vdevs before we
6633 	 * sync the config cache, and we lose power, then upon reboot we may
6634 	 * fail to open the pool because there are DVAs that the config cache
6635 	 * can't translate.  Therefore, we first add the vdevs without
6636 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6637 	 * and then let spa_config_update() initialize the new metaslabs.
6638 	 *
6639 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6640 	 * if we lose power at any point in this sequence, the remaining
6641 	 * steps will be completed the next time we load the pool.
6642 	 */
6643 	(void) spa_vdev_exit(spa, vd, txg, 0);
6644 
6645 	mutex_enter(&spa_namespace_lock);
6646 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6647 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6648 	mutex_exit(&spa_namespace_lock);
6649 
6650 	return (0);
6651 }
6652 
6653 /*
6654  * Attach a device to a mirror.  The arguments are the path to any device
6655  * in the mirror, and the nvroot for the new device.  If the path specifies
6656  * a device that is not mirrored, we automatically insert the mirror vdev.
6657  *
6658  * If 'replacing' is specified, the new device is intended to replace the
6659  * existing device; in this case the two devices are made into their own
6660  * mirror using the 'replacing' vdev, which is functionally identical to
6661  * the mirror vdev (it actually reuses all the same ops) but has a few
6662  * extra rules: you can't attach to it after it's been created, and upon
6663  * completion of resilvering, the first disk (the one being replaced)
6664  * is automatically detached.
6665  *
6666  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6667  * should be performed instead of traditional healing reconstruction.  From
6668  * an administrators perspective these are both resilver operations.
6669  */
6670 int
6671 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6672     int rebuild)
6673 {
6674 	uint64_t txg, dtl_max_txg;
6675 	vdev_t *rvd = spa->spa_root_vdev;
6676 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6677 	vdev_ops_t *pvops;
6678 	char *oldvdpath, *newvdpath;
6679 	int newvd_isspare;
6680 	int error;
6681 
6682 	ASSERT(spa_writeable(spa));
6683 
6684 	txg = spa_vdev_enter(spa);
6685 
6686 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6687 
6688 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6689 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6690 		error = (spa_has_checkpoint(spa)) ?
6691 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6692 		return (spa_vdev_exit(spa, NULL, txg, error));
6693 	}
6694 
6695 	if (rebuild) {
6696 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6697 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6698 
6699 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6700 			return (spa_vdev_exit(spa, NULL, txg,
6701 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6702 	} else {
6703 		if (vdev_rebuild_active(rvd))
6704 			return (spa_vdev_exit(spa, NULL, txg,
6705 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6706 	}
6707 
6708 	if (spa->spa_vdev_removal != NULL)
6709 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6710 
6711 	if (oldvd == NULL)
6712 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6713 
6714 	if (!oldvd->vdev_ops->vdev_op_leaf)
6715 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6716 
6717 	pvd = oldvd->vdev_parent;
6718 
6719 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6720 	    VDEV_ALLOC_ATTACH)) != 0)
6721 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6722 
6723 	if (newrootvd->vdev_children != 1)
6724 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6725 
6726 	newvd = newrootvd->vdev_child[0];
6727 
6728 	if (!newvd->vdev_ops->vdev_op_leaf)
6729 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6730 
6731 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6732 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6733 
6734 	/*
6735 	 * Spares can't replace logs
6736 	 */
6737 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6738 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6739 
6740 	/*
6741 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6742 	 */
6743 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6744 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6745 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6746 	}
6747 
6748 	if (rebuild) {
6749 		/*
6750 		 * For rebuilds, the top vdev must support reconstruction
6751 		 * using only space maps.  This means the only allowable
6752 		 * vdevs types are the root vdev, a mirror, or dRAID.
6753 		 */
6754 		tvd = pvd;
6755 		if (pvd->vdev_top != NULL)
6756 			tvd = pvd->vdev_top;
6757 
6758 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6759 		    tvd->vdev_ops != &vdev_root_ops &&
6760 		    tvd->vdev_ops != &vdev_draid_ops) {
6761 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6762 		}
6763 	}
6764 
6765 	if (!replacing) {
6766 		/*
6767 		 * For attach, the only allowable parent is a mirror or the root
6768 		 * vdev.
6769 		 */
6770 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6771 		    pvd->vdev_ops != &vdev_root_ops)
6772 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6773 
6774 		pvops = &vdev_mirror_ops;
6775 	} else {
6776 		/*
6777 		 * Active hot spares can only be replaced by inactive hot
6778 		 * spares.
6779 		 */
6780 		if (pvd->vdev_ops == &vdev_spare_ops &&
6781 		    oldvd->vdev_isspare &&
6782 		    !spa_has_spare(spa, newvd->vdev_guid))
6783 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6784 
6785 		/*
6786 		 * If the source is a hot spare, and the parent isn't already a
6787 		 * spare, then we want to create a new hot spare.  Otherwise, we
6788 		 * want to create a replacing vdev.  The user is not allowed to
6789 		 * attach to a spared vdev child unless the 'isspare' state is
6790 		 * the same (spare replaces spare, non-spare replaces
6791 		 * non-spare).
6792 		 */
6793 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6794 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6795 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6796 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6797 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6798 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6799 		}
6800 
6801 		if (newvd->vdev_isspare)
6802 			pvops = &vdev_spare_ops;
6803 		else
6804 			pvops = &vdev_replacing_ops;
6805 	}
6806 
6807 	/*
6808 	 * Make sure the new device is big enough.
6809 	 */
6810 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6811 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6812 
6813 	/*
6814 	 * The new device cannot have a higher alignment requirement
6815 	 * than the top-level vdev.
6816 	 */
6817 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6818 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6819 
6820 	/*
6821 	 * If this is an in-place replacement, update oldvd's path and devid
6822 	 * to make it distinguishable from newvd, and unopenable from now on.
6823 	 */
6824 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6825 		spa_strfree(oldvd->vdev_path);
6826 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6827 		    KM_SLEEP);
6828 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6829 		    "%s/%s", newvd->vdev_path, "old");
6830 		if (oldvd->vdev_devid != NULL) {
6831 			spa_strfree(oldvd->vdev_devid);
6832 			oldvd->vdev_devid = NULL;
6833 		}
6834 	}
6835 
6836 	/*
6837 	 * If the parent is not a mirror, or if we're replacing, insert the new
6838 	 * mirror/replacing/spare vdev above oldvd.
6839 	 */
6840 	if (pvd->vdev_ops != pvops)
6841 		pvd = vdev_add_parent(oldvd, pvops);
6842 
6843 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6844 	ASSERT(pvd->vdev_ops == pvops);
6845 	ASSERT(oldvd->vdev_parent == pvd);
6846 
6847 	/*
6848 	 * Extract the new device from its root and add it to pvd.
6849 	 */
6850 	vdev_remove_child(newrootvd, newvd);
6851 	newvd->vdev_id = pvd->vdev_children;
6852 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6853 	vdev_add_child(pvd, newvd);
6854 
6855 	/*
6856 	 * Reevaluate the parent vdev state.
6857 	 */
6858 	vdev_propagate_state(pvd);
6859 
6860 	tvd = newvd->vdev_top;
6861 	ASSERT(pvd->vdev_top == tvd);
6862 	ASSERT(tvd->vdev_parent == rvd);
6863 
6864 	vdev_config_dirty(tvd);
6865 
6866 	/*
6867 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6868 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6869 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6870 	 */
6871 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6872 
6873 	vdev_dtl_dirty(newvd, DTL_MISSING,
6874 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6875 
6876 	if (newvd->vdev_isspare) {
6877 		spa_spare_activate(newvd);
6878 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6879 	}
6880 
6881 	oldvdpath = spa_strdup(oldvd->vdev_path);
6882 	newvdpath = spa_strdup(newvd->vdev_path);
6883 	newvd_isspare = newvd->vdev_isspare;
6884 
6885 	/*
6886 	 * Mark newvd's DTL dirty in this txg.
6887 	 */
6888 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6889 
6890 	/*
6891 	 * Schedule the resilver or rebuild to restart in the future. We do
6892 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6893 	 * respective datasets.
6894 	 */
6895 	if (rebuild) {
6896 		newvd->vdev_rebuild_txg = txg;
6897 
6898 		vdev_rebuild(tvd);
6899 	} else {
6900 		newvd->vdev_resilver_txg = txg;
6901 
6902 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6903 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6904 			vdev_defer_resilver(newvd);
6905 		} else {
6906 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6907 			    dtl_max_txg);
6908 		}
6909 	}
6910 
6911 	if (spa->spa_bootfs)
6912 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6913 
6914 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6915 
6916 	/*
6917 	 * Commit the config
6918 	 */
6919 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6920 
6921 	spa_history_log_internal(spa, "vdev attach", NULL,
6922 	    "%s vdev=%s %s vdev=%s",
6923 	    replacing && newvd_isspare ? "spare in" :
6924 	    replacing ? "replace" : "attach", newvdpath,
6925 	    replacing ? "for" : "to", oldvdpath);
6926 
6927 	spa_strfree(oldvdpath);
6928 	spa_strfree(newvdpath);
6929 
6930 	return (0);
6931 }
6932 
6933 /*
6934  * Detach a device from a mirror or replacing vdev.
6935  *
6936  * If 'replace_done' is specified, only detach if the parent
6937  * is a replacing vdev.
6938  */
6939 int
6940 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6941 {
6942 	uint64_t txg;
6943 	int error;
6944 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6945 	vdev_t *vd, *pvd, *cvd, *tvd;
6946 	boolean_t unspare = B_FALSE;
6947 	uint64_t unspare_guid = 0;
6948 	char *vdpath;
6949 
6950 	ASSERT(spa_writeable(spa));
6951 
6952 	txg = spa_vdev_detach_enter(spa, guid);
6953 
6954 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6955 
6956 	/*
6957 	 * Besides being called directly from the userland through the
6958 	 * ioctl interface, spa_vdev_detach() can be potentially called
6959 	 * at the end of spa_vdev_resilver_done().
6960 	 *
6961 	 * In the regular case, when we have a checkpoint this shouldn't
6962 	 * happen as we never empty the DTLs of a vdev during the scrub
6963 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6964 	 * should never get here when we have a checkpoint.
6965 	 *
6966 	 * That said, even in a case when we checkpoint the pool exactly
6967 	 * as spa_vdev_resilver_done() calls this function everything
6968 	 * should be fine as the resilver will return right away.
6969 	 */
6970 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6971 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6972 		error = (spa_has_checkpoint(spa)) ?
6973 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6974 		return (spa_vdev_exit(spa, NULL, txg, error));
6975 	}
6976 
6977 	if (vd == NULL)
6978 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6979 
6980 	if (!vd->vdev_ops->vdev_op_leaf)
6981 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6982 
6983 	pvd = vd->vdev_parent;
6984 
6985 	/*
6986 	 * If the parent/child relationship is not as expected, don't do it.
6987 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6988 	 * vdev that's replacing B with C.  The user's intent in replacing
6989 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6990 	 * the replace by detaching C, the expected behavior is to end up
6991 	 * M(A,B).  But suppose that right after deciding to detach C,
6992 	 * the replacement of B completes.  We would have M(A,C), and then
6993 	 * ask to detach C, which would leave us with just A -- not what
6994 	 * the user wanted.  To prevent this, we make sure that the
6995 	 * parent/child relationship hasn't changed -- in this example,
6996 	 * that C's parent is still the replacing vdev R.
6997 	 */
6998 	if (pvd->vdev_guid != pguid && pguid != 0)
6999 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7000 
7001 	/*
7002 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7003 	 */
7004 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7005 	    pvd->vdev_ops != &vdev_spare_ops)
7006 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7007 
7008 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7009 	    spa_version(spa) >= SPA_VERSION_SPARES);
7010 
7011 	/*
7012 	 * Only mirror, replacing, and spare vdevs support detach.
7013 	 */
7014 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7015 	    pvd->vdev_ops != &vdev_mirror_ops &&
7016 	    pvd->vdev_ops != &vdev_spare_ops)
7017 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7018 
7019 	/*
7020 	 * If this device has the only valid copy of some data,
7021 	 * we cannot safely detach it.
7022 	 */
7023 	if (vdev_dtl_required(vd))
7024 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7025 
7026 	ASSERT(pvd->vdev_children >= 2);
7027 
7028 	/*
7029 	 * If we are detaching the second disk from a replacing vdev, then
7030 	 * check to see if we changed the original vdev's path to have "/old"
7031 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7032 	 */
7033 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7034 	    vd->vdev_path != NULL) {
7035 		size_t len = strlen(vd->vdev_path);
7036 
7037 		for (int c = 0; c < pvd->vdev_children; c++) {
7038 			cvd = pvd->vdev_child[c];
7039 
7040 			if (cvd == vd || cvd->vdev_path == NULL)
7041 				continue;
7042 
7043 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7044 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7045 				spa_strfree(cvd->vdev_path);
7046 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7047 				break;
7048 			}
7049 		}
7050 	}
7051 
7052 	/*
7053 	 * If we are detaching the original disk from a normal spare, then it
7054 	 * implies that the spare should become a real disk, and be removed
7055 	 * from the active spare list for the pool.  dRAID spares on the
7056 	 * other hand are coupled to the pool and thus should never be removed
7057 	 * from the spares list.
7058 	 */
7059 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7060 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7061 
7062 		if (last_cvd->vdev_isspare &&
7063 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7064 			unspare = B_TRUE;
7065 		}
7066 	}
7067 
7068 	/*
7069 	 * Erase the disk labels so the disk can be used for other things.
7070 	 * This must be done after all other error cases are handled,
7071 	 * but before we disembowel vd (so we can still do I/O to it).
7072 	 * But if we can't do it, don't treat the error as fatal --
7073 	 * it may be that the unwritability of the disk is the reason
7074 	 * it's being detached!
7075 	 */
7076 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7077 
7078 	/*
7079 	 * Remove vd from its parent and compact the parent's children.
7080 	 */
7081 	vdev_remove_child(pvd, vd);
7082 	vdev_compact_children(pvd);
7083 
7084 	/*
7085 	 * Remember one of the remaining children so we can get tvd below.
7086 	 */
7087 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7088 
7089 	/*
7090 	 * If we need to remove the remaining child from the list of hot spares,
7091 	 * do it now, marking the vdev as no longer a spare in the process.
7092 	 * We must do this before vdev_remove_parent(), because that can
7093 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7094 	 * reason, we must remove the spare now, in the same txg as the detach;
7095 	 * otherwise someone could attach a new sibling, change the GUID, and
7096 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7097 	 */
7098 	if (unspare) {
7099 		ASSERT(cvd->vdev_isspare);
7100 		spa_spare_remove(cvd);
7101 		unspare_guid = cvd->vdev_guid;
7102 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7103 		cvd->vdev_unspare = B_TRUE;
7104 	}
7105 
7106 	/*
7107 	 * If the parent mirror/replacing vdev only has one child,
7108 	 * the parent is no longer needed.  Remove it from the tree.
7109 	 */
7110 	if (pvd->vdev_children == 1) {
7111 		if (pvd->vdev_ops == &vdev_spare_ops)
7112 			cvd->vdev_unspare = B_FALSE;
7113 		vdev_remove_parent(cvd);
7114 	}
7115 
7116 	/*
7117 	 * We don't set tvd until now because the parent we just removed
7118 	 * may have been the previous top-level vdev.
7119 	 */
7120 	tvd = cvd->vdev_top;
7121 	ASSERT(tvd->vdev_parent == rvd);
7122 
7123 	/*
7124 	 * Reevaluate the parent vdev state.
7125 	 */
7126 	vdev_propagate_state(cvd);
7127 
7128 	/*
7129 	 * If the 'autoexpand' property is set on the pool then automatically
7130 	 * try to expand the size of the pool. For example if the device we
7131 	 * just detached was smaller than the others, it may be possible to
7132 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7133 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7134 	 */
7135 	if (spa->spa_autoexpand) {
7136 		vdev_reopen(tvd);
7137 		vdev_expand(tvd, txg);
7138 	}
7139 
7140 	vdev_config_dirty(tvd);
7141 
7142 	/*
7143 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7144 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7145 	 * But first make sure we're not on any *other* txg's DTL list, to
7146 	 * prevent vd from being accessed after it's freed.
7147 	 */
7148 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7149 	for (int t = 0; t < TXG_SIZE; t++)
7150 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7151 	vd->vdev_detached = B_TRUE;
7152 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7153 
7154 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7155 	spa_notify_waiters(spa);
7156 
7157 	/* hang on to the spa before we release the lock */
7158 	spa_open_ref(spa, FTAG);
7159 
7160 	error = spa_vdev_exit(spa, vd, txg, 0);
7161 
7162 	spa_history_log_internal(spa, "detach", NULL,
7163 	    "vdev=%s", vdpath);
7164 	spa_strfree(vdpath);
7165 
7166 	/*
7167 	 * If this was the removal of the original device in a hot spare vdev,
7168 	 * then we want to go through and remove the device from the hot spare
7169 	 * list of every other pool.
7170 	 */
7171 	if (unspare) {
7172 		spa_t *altspa = NULL;
7173 
7174 		mutex_enter(&spa_namespace_lock);
7175 		while ((altspa = spa_next(altspa)) != NULL) {
7176 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7177 			    altspa == spa)
7178 				continue;
7179 
7180 			spa_open_ref(altspa, FTAG);
7181 			mutex_exit(&spa_namespace_lock);
7182 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7183 			mutex_enter(&spa_namespace_lock);
7184 			spa_close(altspa, FTAG);
7185 		}
7186 		mutex_exit(&spa_namespace_lock);
7187 
7188 		/* search the rest of the vdevs for spares to remove */
7189 		spa_vdev_resilver_done(spa);
7190 	}
7191 
7192 	/* all done with the spa; OK to release */
7193 	mutex_enter(&spa_namespace_lock);
7194 	spa_close(spa, FTAG);
7195 	mutex_exit(&spa_namespace_lock);
7196 
7197 	return (error);
7198 }
7199 
7200 static int
7201 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7202     list_t *vd_list)
7203 {
7204 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7205 
7206 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7207 
7208 	/* Look up vdev and ensure it's a leaf. */
7209 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7210 	if (vd == NULL || vd->vdev_detached) {
7211 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7212 		return (SET_ERROR(ENODEV));
7213 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7214 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7215 		return (SET_ERROR(EINVAL));
7216 	} else if (!vdev_writeable(vd)) {
7217 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7218 		return (SET_ERROR(EROFS));
7219 	}
7220 	mutex_enter(&vd->vdev_initialize_lock);
7221 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7222 
7223 	/*
7224 	 * When we activate an initialize action we check to see
7225 	 * if the vdev_initialize_thread is NULL. We do this instead
7226 	 * of using the vdev_initialize_state since there might be
7227 	 * a previous initialization process which has completed but
7228 	 * the thread is not exited.
7229 	 */
7230 	if (cmd_type == POOL_INITIALIZE_START &&
7231 	    (vd->vdev_initialize_thread != NULL ||
7232 	    vd->vdev_top->vdev_removing)) {
7233 		mutex_exit(&vd->vdev_initialize_lock);
7234 		return (SET_ERROR(EBUSY));
7235 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7236 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7237 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7238 		mutex_exit(&vd->vdev_initialize_lock);
7239 		return (SET_ERROR(ESRCH));
7240 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7241 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7242 		mutex_exit(&vd->vdev_initialize_lock);
7243 		return (SET_ERROR(ESRCH));
7244 	}
7245 
7246 	switch (cmd_type) {
7247 	case POOL_INITIALIZE_START:
7248 		vdev_initialize(vd);
7249 		break;
7250 	case POOL_INITIALIZE_CANCEL:
7251 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7252 		break;
7253 	case POOL_INITIALIZE_SUSPEND:
7254 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7255 		break;
7256 	default:
7257 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7258 	}
7259 	mutex_exit(&vd->vdev_initialize_lock);
7260 
7261 	return (0);
7262 }
7263 
7264 int
7265 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7266     nvlist_t *vdev_errlist)
7267 {
7268 	int total_errors = 0;
7269 	list_t vd_list;
7270 
7271 	list_create(&vd_list, sizeof (vdev_t),
7272 	    offsetof(vdev_t, vdev_initialize_node));
7273 
7274 	/*
7275 	 * We hold the namespace lock through the whole function
7276 	 * to prevent any changes to the pool while we're starting or
7277 	 * stopping initialization. The config and state locks are held so that
7278 	 * we can properly assess the vdev state before we commit to
7279 	 * the initializing operation.
7280 	 */
7281 	mutex_enter(&spa_namespace_lock);
7282 
7283 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7284 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7285 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7286 
7287 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7288 		    &vd_list);
7289 		if (error != 0) {
7290 			char guid_as_str[MAXNAMELEN];
7291 
7292 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7293 			    "%llu", (unsigned long long)vdev_guid);
7294 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7295 			total_errors++;
7296 		}
7297 	}
7298 
7299 	/* Wait for all initialize threads to stop. */
7300 	vdev_initialize_stop_wait(spa, &vd_list);
7301 
7302 	/* Sync out the initializing state */
7303 	txg_wait_synced(spa->spa_dsl_pool, 0);
7304 	mutex_exit(&spa_namespace_lock);
7305 
7306 	list_destroy(&vd_list);
7307 
7308 	return (total_errors);
7309 }
7310 
7311 static int
7312 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7313     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7314 {
7315 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7316 
7317 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7318 
7319 	/* Look up vdev and ensure it's a leaf. */
7320 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7321 	if (vd == NULL || vd->vdev_detached) {
7322 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7323 		return (SET_ERROR(ENODEV));
7324 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7325 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7326 		return (SET_ERROR(EINVAL));
7327 	} else if (!vdev_writeable(vd)) {
7328 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7329 		return (SET_ERROR(EROFS));
7330 	} else if (!vd->vdev_has_trim) {
7331 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7332 		return (SET_ERROR(EOPNOTSUPP));
7333 	} else if (secure && !vd->vdev_has_securetrim) {
7334 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7335 		return (SET_ERROR(EOPNOTSUPP));
7336 	}
7337 	mutex_enter(&vd->vdev_trim_lock);
7338 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7339 
7340 	/*
7341 	 * When we activate a TRIM action we check to see if the
7342 	 * vdev_trim_thread is NULL. We do this instead of using the
7343 	 * vdev_trim_state since there might be a previous TRIM process
7344 	 * which has completed but the thread is not exited.
7345 	 */
7346 	if (cmd_type == POOL_TRIM_START &&
7347 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7348 		mutex_exit(&vd->vdev_trim_lock);
7349 		return (SET_ERROR(EBUSY));
7350 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7351 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7352 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7353 		mutex_exit(&vd->vdev_trim_lock);
7354 		return (SET_ERROR(ESRCH));
7355 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7356 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7357 		mutex_exit(&vd->vdev_trim_lock);
7358 		return (SET_ERROR(ESRCH));
7359 	}
7360 
7361 	switch (cmd_type) {
7362 	case POOL_TRIM_START:
7363 		vdev_trim(vd, rate, partial, secure);
7364 		break;
7365 	case POOL_TRIM_CANCEL:
7366 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7367 		break;
7368 	case POOL_TRIM_SUSPEND:
7369 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7370 		break;
7371 	default:
7372 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7373 	}
7374 	mutex_exit(&vd->vdev_trim_lock);
7375 
7376 	return (0);
7377 }
7378 
7379 /*
7380  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7381  * TRIM threads for each child vdev.  These threads pass over all of the free
7382  * space in the vdev's metaslabs and issues TRIM commands for that space.
7383  */
7384 int
7385 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7386     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7387 {
7388 	int total_errors = 0;
7389 	list_t vd_list;
7390 
7391 	list_create(&vd_list, sizeof (vdev_t),
7392 	    offsetof(vdev_t, vdev_trim_node));
7393 
7394 	/*
7395 	 * We hold the namespace lock through the whole function
7396 	 * to prevent any changes to the pool while we're starting or
7397 	 * stopping TRIM. The config and state locks are held so that
7398 	 * we can properly assess the vdev state before we commit to
7399 	 * the TRIM operation.
7400 	 */
7401 	mutex_enter(&spa_namespace_lock);
7402 
7403 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7404 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7405 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7406 
7407 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7408 		    rate, partial, secure, &vd_list);
7409 		if (error != 0) {
7410 			char guid_as_str[MAXNAMELEN];
7411 
7412 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7413 			    "%llu", (unsigned long long)vdev_guid);
7414 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7415 			total_errors++;
7416 		}
7417 	}
7418 
7419 	/* Wait for all TRIM threads to stop. */
7420 	vdev_trim_stop_wait(spa, &vd_list);
7421 
7422 	/* Sync out the TRIM state */
7423 	txg_wait_synced(spa->spa_dsl_pool, 0);
7424 	mutex_exit(&spa_namespace_lock);
7425 
7426 	list_destroy(&vd_list);
7427 
7428 	return (total_errors);
7429 }
7430 
7431 /*
7432  * Split a set of devices from their mirrors, and create a new pool from them.
7433  */
7434 int
7435 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7436     nvlist_t *props, boolean_t exp)
7437 {
7438 	int error = 0;
7439 	uint64_t txg, *glist;
7440 	spa_t *newspa;
7441 	uint_t c, children, lastlog;
7442 	nvlist_t **child, *nvl, *tmp;
7443 	dmu_tx_t *tx;
7444 	char *altroot = NULL;
7445 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7446 	boolean_t activate_slog;
7447 
7448 	ASSERT(spa_writeable(spa));
7449 
7450 	txg = spa_vdev_enter(spa);
7451 
7452 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7453 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7454 		error = (spa_has_checkpoint(spa)) ?
7455 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7456 		return (spa_vdev_exit(spa, NULL, txg, error));
7457 	}
7458 
7459 	/* clear the log and flush everything up to now */
7460 	activate_slog = spa_passivate_log(spa);
7461 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7462 	error = spa_reset_logs(spa);
7463 	txg = spa_vdev_config_enter(spa);
7464 
7465 	if (activate_slog)
7466 		spa_activate_log(spa);
7467 
7468 	if (error != 0)
7469 		return (spa_vdev_exit(spa, NULL, txg, error));
7470 
7471 	/* check new spa name before going any further */
7472 	if (spa_lookup(newname) != NULL)
7473 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7474 
7475 	/*
7476 	 * scan through all the children to ensure they're all mirrors
7477 	 */
7478 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7479 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7480 	    &children) != 0)
7481 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7482 
7483 	/* first, check to ensure we've got the right child count */
7484 	rvd = spa->spa_root_vdev;
7485 	lastlog = 0;
7486 	for (c = 0; c < rvd->vdev_children; c++) {
7487 		vdev_t *vd = rvd->vdev_child[c];
7488 
7489 		/* don't count the holes & logs as children */
7490 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7491 		    !vdev_is_concrete(vd))) {
7492 			if (lastlog == 0)
7493 				lastlog = c;
7494 			continue;
7495 		}
7496 
7497 		lastlog = 0;
7498 	}
7499 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7500 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7501 
7502 	/* next, ensure no spare or cache devices are part of the split */
7503 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7504 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7505 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7506 
7507 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7508 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7509 
7510 	/* then, loop over each vdev and validate it */
7511 	for (c = 0; c < children; c++) {
7512 		uint64_t is_hole = 0;
7513 
7514 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7515 		    &is_hole);
7516 
7517 		if (is_hole != 0) {
7518 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7519 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7520 				continue;
7521 			} else {
7522 				error = SET_ERROR(EINVAL);
7523 				break;
7524 			}
7525 		}
7526 
7527 		/* deal with indirect vdevs */
7528 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7529 		    &vdev_indirect_ops)
7530 			continue;
7531 
7532 		/* which disk is going to be split? */
7533 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7534 		    &glist[c]) != 0) {
7535 			error = SET_ERROR(EINVAL);
7536 			break;
7537 		}
7538 
7539 		/* look it up in the spa */
7540 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7541 		if (vml[c] == NULL) {
7542 			error = SET_ERROR(ENODEV);
7543 			break;
7544 		}
7545 
7546 		/* make sure there's nothing stopping the split */
7547 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7548 		    vml[c]->vdev_islog ||
7549 		    !vdev_is_concrete(vml[c]) ||
7550 		    vml[c]->vdev_isspare ||
7551 		    vml[c]->vdev_isl2cache ||
7552 		    !vdev_writeable(vml[c]) ||
7553 		    vml[c]->vdev_children != 0 ||
7554 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7555 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7556 			error = SET_ERROR(EINVAL);
7557 			break;
7558 		}
7559 
7560 		if (vdev_dtl_required(vml[c]) ||
7561 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7562 			error = SET_ERROR(EBUSY);
7563 			break;
7564 		}
7565 
7566 		/* we need certain info from the top level */
7567 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7568 		    vml[c]->vdev_top->vdev_ms_array);
7569 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7570 		    vml[c]->vdev_top->vdev_ms_shift);
7571 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7572 		    vml[c]->vdev_top->vdev_asize);
7573 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7574 		    vml[c]->vdev_top->vdev_ashift);
7575 
7576 		/* transfer per-vdev ZAPs */
7577 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7578 		VERIFY0(nvlist_add_uint64(child[c],
7579 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7580 
7581 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7582 		VERIFY0(nvlist_add_uint64(child[c],
7583 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7584 		    vml[c]->vdev_parent->vdev_top_zap));
7585 	}
7586 
7587 	if (error != 0) {
7588 		kmem_free(vml, children * sizeof (vdev_t *));
7589 		kmem_free(glist, children * sizeof (uint64_t));
7590 		return (spa_vdev_exit(spa, NULL, txg, error));
7591 	}
7592 
7593 	/* stop writers from using the disks */
7594 	for (c = 0; c < children; c++) {
7595 		if (vml[c] != NULL)
7596 			vml[c]->vdev_offline = B_TRUE;
7597 	}
7598 	vdev_reopen(spa->spa_root_vdev);
7599 
7600 	/*
7601 	 * Temporarily record the splitting vdevs in the spa config.  This
7602 	 * will disappear once the config is regenerated.
7603 	 */
7604 	nvl = fnvlist_alloc();
7605 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7606 	kmem_free(glist, children * sizeof (uint64_t));
7607 
7608 	mutex_enter(&spa->spa_props_lock);
7609 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7610 	mutex_exit(&spa->spa_props_lock);
7611 	spa->spa_config_splitting = nvl;
7612 	vdev_config_dirty(spa->spa_root_vdev);
7613 
7614 	/* configure and create the new pool */
7615 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7616 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7617 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7618 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7619 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7620 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7621 	    spa_generate_guid(NULL));
7622 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7623 	(void) nvlist_lookup_string(props,
7624 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7625 
7626 	/* add the new pool to the namespace */
7627 	newspa = spa_add(newname, config, altroot);
7628 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7629 	newspa->spa_config_txg = spa->spa_config_txg;
7630 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7631 
7632 	/* release the spa config lock, retaining the namespace lock */
7633 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7634 
7635 	if (zio_injection_enabled)
7636 		zio_handle_panic_injection(spa, FTAG, 1);
7637 
7638 	spa_activate(newspa, spa_mode_global);
7639 	spa_async_suspend(newspa);
7640 
7641 	/*
7642 	 * Temporarily stop the initializing and TRIM activity.  We set the
7643 	 * state to ACTIVE so that we know to resume initializing or TRIM
7644 	 * once the split has completed.
7645 	 */
7646 	list_t vd_initialize_list;
7647 	list_create(&vd_initialize_list, sizeof (vdev_t),
7648 	    offsetof(vdev_t, vdev_initialize_node));
7649 
7650 	list_t vd_trim_list;
7651 	list_create(&vd_trim_list, sizeof (vdev_t),
7652 	    offsetof(vdev_t, vdev_trim_node));
7653 
7654 	for (c = 0; c < children; c++) {
7655 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7656 			mutex_enter(&vml[c]->vdev_initialize_lock);
7657 			vdev_initialize_stop(vml[c],
7658 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7659 			mutex_exit(&vml[c]->vdev_initialize_lock);
7660 
7661 			mutex_enter(&vml[c]->vdev_trim_lock);
7662 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7663 			mutex_exit(&vml[c]->vdev_trim_lock);
7664 		}
7665 	}
7666 
7667 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7668 	vdev_trim_stop_wait(spa, &vd_trim_list);
7669 
7670 	list_destroy(&vd_initialize_list);
7671 	list_destroy(&vd_trim_list);
7672 
7673 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7674 	newspa->spa_is_splitting = B_TRUE;
7675 
7676 	/* create the new pool from the disks of the original pool */
7677 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7678 	if (error)
7679 		goto out;
7680 
7681 	/* if that worked, generate a real config for the new pool */
7682 	if (newspa->spa_root_vdev != NULL) {
7683 		newspa->spa_config_splitting = fnvlist_alloc();
7684 		fnvlist_add_uint64(newspa->spa_config_splitting,
7685 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7686 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7687 		    B_TRUE));
7688 	}
7689 
7690 	/* set the props */
7691 	if (props != NULL) {
7692 		spa_configfile_set(newspa, props, B_FALSE);
7693 		error = spa_prop_set(newspa, props);
7694 		if (error)
7695 			goto out;
7696 	}
7697 
7698 	/* flush everything */
7699 	txg = spa_vdev_config_enter(newspa);
7700 	vdev_config_dirty(newspa->spa_root_vdev);
7701 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7702 
7703 	if (zio_injection_enabled)
7704 		zio_handle_panic_injection(spa, FTAG, 2);
7705 
7706 	spa_async_resume(newspa);
7707 
7708 	/* finally, update the original pool's config */
7709 	txg = spa_vdev_config_enter(spa);
7710 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7711 	error = dmu_tx_assign(tx, TXG_WAIT);
7712 	if (error != 0)
7713 		dmu_tx_abort(tx);
7714 	for (c = 0; c < children; c++) {
7715 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7716 			vdev_t *tvd = vml[c]->vdev_top;
7717 
7718 			/*
7719 			 * Need to be sure the detachable VDEV is not
7720 			 * on any *other* txg's DTL list to prevent it
7721 			 * from being accessed after it's freed.
7722 			 */
7723 			for (int t = 0; t < TXG_SIZE; t++) {
7724 				(void) txg_list_remove_this(
7725 				    &tvd->vdev_dtl_list, vml[c], t);
7726 			}
7727 
7728 			vdev_split(vml[c]);
7729 			if (error == 0)
7730 				spa_history_log_internal(spa, "detach", tx,
7731 				    "vdev=%s", vml[c]->vdev_path);
7732 
7733 			vdev_free(vml[c]);
7734 		}
7735 	}
7736 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7737 	vdev_config_dirty(spa->spa_root_vdev);
7738 	spa->spa_config_splitting = NULL;
7739 	nvlist_free(nvl);
7740 	if (error == 0)
7741 		dmu_tx_commit(tx);
7742 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7743 
7744 	if (zio_injection_enabled)
7745 		zio_handle_panic_injection(spa, FTAG, 3);
7746 
7747 	/* split is complete; log a history record */
7748 	spa_history_log_internal(newspa, "split", NULL,
7749 	    "from pool %s", spa_name(spa));
7750 
7751 	newspa->spa_is_splitting = B_FALSE;
7752 	kmem_free(vml, children * sizeof (vdev_t *));
7753 
7754 	/* if we're not going to mount the filesystems in userland, export */
7755 	if (exp)
7756 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7757 		    B_FALSE, B_FALSE);
7758 
7759 	return (error);
7760 
7761 out:
7762 	spa_unload(newspa);
7763 	spa_deactivate(newspa);
7764 	spa_remove(newspa);
7765 
7766 	txg = spa_vdev_config_enter(spa);
7767 
7768 	/* re-online all offlined disks */
7769 	for (c = 0; c < children; c++) {
7770 		if (vml[c] != NULL)
7771 			vml[c]->vdev_offline = B_FALSE;
7772 	}
7773 
7774 	/* restart initializing or trimming disks as necessary */
7775 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7776 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7777 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7778 
7779 	vdev_reopen(spa->spa_root_vdev);
7780 
7781 	nvlist_free(spa->spa_config_splitting);
7782 	spa->spa_config_splitting = NULL;
7783 	(void) spa_vdev_exit(spa, NULL, txg, error);
7784 
7785 	kmem_free(vml, children * sizeof (vdev_t *));
7786 	return (error);
7787 }
7788 
7789 /*
7790  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7791  * currently spared, so we can detach it.
7792  */
7793 static vdev_t *
7794 spa_vdev_resilver_done_hunt(vdev_t *vd)
7795 {
7796 	vdev_t *newvd, *oldvd;
7797 
7798 	for (int c = 0; c < vd->vdev_children; c++) {
7799 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7800 		if (oldvd != NULL)
7801 			return (oldvd);
7802 	}
7803 
7804 	/*
7805 	 * Check for a completed replacement.  We always consider the first
7806 	 * vdev in the list to be the oldest vdev, and the last one to be
7807 	 * the newest (see spa_vdev_attach() for how that works).  In
7808 	 * the case where the newest vdev is faulted, we will not automatically
7809 	 * remove it after a resilver completes.  This is OK as it will require
7810 	 * user intervention to determine which disk the admin wishes to keep.
7811 	 */
7812 	if (vd->vdev_ops == &vdev_replacing_ops) {
7813 		ASSERT(vd->vdev_children > 1);
7814 
7815 		newvd = vd->vdev_child[vd->vdev_children - 1];
7816 		oldvd = vd->vdev_child[0];
7817 
7818 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7819 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7820 		    !vdev_dtl_required(oldvd))
7821 			return (oldvd);
7822 	}
7823 
7824 	/*
7825 	 * Check for a completed resilver with the 'unspare' flag set.
7826 	 * Also potentially update faulted state.
7827 	 */
7828 	if (vd->vdev_ops == &vdev_spare_ops) {
7829 		vdev_t *first = vd->vdev_child[0];
7830 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7831 
7832 		if (last->vdev_unspare) {
7833 			oldvd = first;
7834 			newvd = last;
7835 		} else if (first->vdev_unspare) {
7836 			oldvd = last;
7837 			newvd = first;
7838 		} else {
7839 			oldvd = NULL;
7840 		}
7841 
7842 		if (oldvd != NULL &&
7843 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7844 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7845 		    !vdev_dtl_required(oldvd))
7846 			return (oldvd);
7847 
7848 		vdev_propagate_state(vd);
7849 
7850 		/*
7851 		 * If there are more than two spares attached to a disk,
7852 		 * and those spares are not required, then we want to
7853 		 * attempt to free them up now so that they can be used
7854 		 * by other pools.  Once we're back down to a single
7855 		 * disk+spare, we stop removing them.
7856 		 */
7857 		if (vd->vdev_children > 2) {
7858 			newvd = vd->vdev_child[1];
7859 
7860 			if (newvd->vdev_isspare && last->vdev_isspare &&
7861 			    vdev_dtl_empty(last, DTL_MISSING) &&
7862 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7863 			    !vdev_dtl_required(newvd))
7864 				return (newvd);
7865 		}
7866 	}
7867 
7868 	return (NULL);
7869 }
7870 
7871 static void
7872 spa_vdev_resilver_done(spa_t *spa)
7873 {
7874 	vdev_t *vd, *pvd, *ppvd;
7875 	uint64_t guid, sguid, pguid, ppguid;
7876 
7877 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7878 
7879 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7880 		pvd = vd->vdev_parent;
7881 		ppvd = pvd->vdev_parent;
7882 		guid = vd->vdev_guid;
7883 		pguid = pvd->vdev_guid;
7884 		ppguid = ppvd->vdev_guid;
7885 		sguid = 0;
7886 		/*
7887 		 * If we have just finished replacing a hot spared device, then
7888 		 * we need to detach the parent's first child (the original hot
7889 		 * spare) as well.
7890 		 */
7891 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7892 		    ppvd->vdev_children == 2) {
7893 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7894 			sguid = ppvd->vdev_child[1]->vdev_guid;
7895 		}
7896 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7897 
7898 		spa_config_exit(spa, SCL_ALL, FTAG);
7899 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7900 			return;
7901 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7902 			return;
7903 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7904 	}
7905 
7906 	spa_config_exit(spa, SCL_ALL, FTAG);
7907 
7908 	/*
7909 	 * If a detach was not performed above replace waiters will not have
7910 	 * been notified.  In which case we must do so now.
7911 	 */
7912 	spa_notify_waiters(spa);
7913 }
7914 
7915 /*
7916  * Update the stored path or FRU for this vdev.
7917  */
7918 static int
7919 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7920     boolean_t ispath)
7921 {
7922 	vdev_t *vd;
7923 	boolean_t sync = B_FALSE;
7924 
7925 	ASSERT(spa_writeable(spa));
7926 
7927 	spa_vdev_state_enter(spa, SCL_ALL);
7928 
7929 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7930 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7931 
7932 	if (!vd->vdev_ops->vdev_op_leaf)
7933 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7934 
7935 	if (ispath) {
7936 		if (strcmp(value, vd->vdev_path) != 0) {
7937 			spa_strfree(vd->vdev_path);
7938 			vd->vdev_path = spa_strdup(value);
7939 			sync = B_TRUE;
7940 		}
7941 	} else {
7942 		if (vd->vdev_fru == NULL) {
7943 			vd->vdev_fru = spa_strdup(value);
7944 			sync = B_TRUE;
7945 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7946 			spa_strfree(vd->vdev_fru);
7947 			vd->vdev_fru = spa_strdup(value);
7948 			sync = B_TRUE;
7949 		}
7950 	}
7951 
7952 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7953 }
7954 
7955 int
7956 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7957 {
7958 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7959 }
7960 
7961 int
7962 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7963 {
7964 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7965 }
7966 
7967 /*
7968  * ==========================================================================
7969  * SPA Scanning
7970  * ==========================================================================
7971  */
7972 int
7973 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7974 {
7975 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7976 
7977 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7978 		return (SET_ERROR(EBUSY));
7979 
7980 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7981 }
7982 
7983 int
7984 spa_scan_stop(spa_t *spa)
7985 {
7986 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7987 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7988 		return (SET_ERROR(EBUSY));
7989 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7990 }
7991 
7992 int
7993 spa_scan(spa_t *spa, pool_scan_func_t func)
7994 {
7995 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7996 
7997 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7998 		return (SET_ERROR(ENOTSUP));
7999 
8000 	if (func == POOL_SCAN_RESILVER &&
8001 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8002 		return (SET_ERROR(ENOTSUP));
8003 
8004 	/*
8005 	 * If a resilver was requested, but there is no DTL on a
8006 	 * writeable leaf device, we have nothing to do.
8007 	 */
8008 	if (func == POOL_SCAN_RESILVER &&
8009 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8010 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8011 		return (0);
8012 	}
8013 
8014 	return (dsl_scan(spa->spa_dsl_pool, func));
8015 }
8016 
8017 /*
8018  * ==========================================================================
8019  * SPA async task processing
8020  * ==========================================================================
8021  */
8022 
8023 static void
8024 spa_async_remove(spa_t *spa, vdev_t *vd)
8025 {
8026 	if (vd->vdev_remove_wanted) {
8027 		vd->vdev_remove_wanted = B_FALSE;
8028 		vd->vdev_delayed_close = B_FALSE;
8029 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8030 
8031 		/*
8032 		 * We want to clear the stats, but we don't want to do a full
8033 		 * vdev_clear() as that will cause us to throw away
8034 		 * degraded/faulted state as well as attempt to reopen the
8035 		 * device, all of which is a waste.
8036 		 */
8037 		vd->vdev_stat.vs_read_errors = 0;
8038 		vd->vdev_stat.vs_write_errors = 0;
8039 		vd->vdev_stat.vs_checksum_errors = 0;
8040 
8041 		vdev_state_dirty(vd->vdev_top);
8042 
8043 		/* Tell userspace that the vdev is gone. */
8044 		zfs_post_remove(spa, vd);
8045 	}
8046 
8047 	for (int c = 0; c < vd->vdev_children; c++)
8048 		spa_async_remove(spa, vd->vdev_child[c]);
8049 }
8050 
8051 static void
8052 spa_async_probe(spa_t *spa, vdev_t *vd)
8053 {
8054 	if (vd->vdev_probe_wanted) {
8055 		vd->vdev_probe_wanted = B_FALSE;
8056 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8057 	}
8058 
8059 	for (int c = 0; c < vd->vdev_children; c++)
8060 		spa_async_probe(spa, vd->vdev_child[c]);
8061 }
8062 
8063 static void
8064 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8065 {
8066 	if (!spa->spa_autoexpand)
8067 		return;
8068 
8069 	for (int c = 0; c < vd->vdev_children; c++) {
8070 		vdev_t *cvd = vd->vdev_child[c];
8071 		spa_async_autoexpand(spa, cvd);
8072 	}
8073 
8074 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8075 		return;
8076 
8077 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8078 }
8079 
8080 static void
8081 spa_async_thread(void *arg)
8082 {
8083 	spa_t *spa = (spa_t *)arg;
8084 	dsl_pool_t *dp = spa->spa_dsl_pool;
8085 	int tasks;
8086 
8087 	ASSERT(spa->spa_sync_on);
8088 
8089 	mutex_enter(&spa->spa_async_lock);
8090 	tasks = spa->spa_async_tasks;
8091 	spa->spa_async_tasks = 0;
8092 	mutex_exit(&spa->spa_async_lock);
8093 
8094 	/*
8095 	 * See if the config needs to be updated.
8096 	 */
8097 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8098 		uint64_t old_space, new_space;
8099 
8100 		mutex_enter(&spa_namespace_lock);
8101 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8102 		old_space += metaslab_class_get_space(spa_special_class(spa));
8103 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8104 		old_space += metaslab_class_get_space(
8105 		    spa_embedded_log_class(spa));
8106 
8107 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8108 
8109 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8110 		new_space += metaslab_class_get_space(spa_special_class(spa));
8111 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8112 		new_space += metaslab_class_get_space(
8113 		    spa_embedded_log_class(spa));
8114 		mutex_exit(&spa_namespace_lock);
8115 
8116 		/*
8117 		 * If the pool grew as a result of the config update,
8118 		 * then log an internal history event.
8119 		 */
8120 		if (new_space != old_space) {
8121 			spa_history_log_internal(spa, "vdev online", NULL,
8122 			    "pool '%s' size: %llu(+%llu)",
8123 			    spa_name(spa), (u_longlong_t)new_space,
8124 			    (u_longlong_t)(new_space - old_space));
8125 		}
8126 	}
8127 
8128 	/*
8129 	 * See if any devices need to be marked REMOVED.
8130 	 */
8131 	if (tasks & SPA_ASYNC_REMOVE) {
8132 		spa_vdev_state_enter(spa, SCL_NONE);
8133 		spa_async_remove(spa, spa->spa_root_vdev);
8134 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8135 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8136 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8137 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8138 		(void) spa_vdev_state_exit(spa, NULL, 0);
8139 	}
8140 
8141 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8142 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8143 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8144 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8145 	}
8146 
8147 	/*
8148 	 * See if any devices need to be probed.
8149 	 */
8150 	if (tasks & SPA_ASYNC_PROBE) {
8151 		spa_vdev_state_enter(spa, SCL_NONE);
8152 		spa_async_probe(spa, spa->spa_root_vdev);
8153 		(void) spa_vdev_state_exit(spa, NULL, 0);
8154 	}
8155 
8156 	/*
8157 	 * If any devices are done replacing, detach them.
8158 	 */
8159 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8160 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8161 		spa_vdev_resilver_done(spa);
8162 	}
8163 
8164 	/*
8165 	 * Kick off a resilver.
8166 	 */
8167 	if (tasks & SPA_ASYNC_RESILVER &&
8168 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8169 	    (!dsl_scan_resilvering(dp) ||
8170 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8171 		dsl_scan_restart_resilver(dp, 0);
8172 
8173 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8174 		mutex_enter(&spa_namespace_lock);
8175 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8176 		vdev_initialize_restart(spa->spa_root_vdev);
8177 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8178 		mutex_exit(&spa_namespace_lock);
8179 	}
8180 
8181 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8182 		mutex_enter(&spa_namespace_lock);
8183 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8184 		vdev_trim_restart(spa->spa_root_vdev);
8185 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8186 		mutex_exit(&spa_namespace_lock);
8187 	}
8188 
8189 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8190 		mutex_enter(&spa_namespace_lock);
8191 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8192 		vdev_autotrim_restart(spa);
8193 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8194 		mutex_exit(&spa_namespace_lock);
8195 	}
8196 
8197 	/*
8198 	 * Kick off L2 cache whole device TRIM.
8199 	 */
8200 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8201 		mutex_enter(&spa_namespace_lock);
8202 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8203 		vdev_trim_l2arc(spa);
8204 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8205 		mutex_exit(&spa_namespace_lock);
8206 	}
8207 
8208 	/*
8209 	 * Kick off L2 cache rebuilding.
8210 	 */
8211 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8212 		mutex_enter(&spa_namespace_lock);
8213 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8214 		l2arc_spa_rebuild_start(spa);
8215 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8216 		mutex_exit(&spa_namespace_lock);
8217 	}
8218 
8219 	/*
8220 	 * Let the world know that we're done.
8221 	 */
8222 	mutex_enter(&spa->spa_async_lock);
8223 	spa->spa_async_thread = NULL;
8224 	cv_broadcast(&spa->spa_async_cv);
8225 	mutex_exit(&spa->spa_async_lock);
8226 	thread_exit();
8227 }
8228 
8229 void
8230 spa_async_suspend(spa_t *spa)
8231 {
8232 	mutex_enter(&spa->spa_async_lock);
8233 	spa->spa_async_suspended++;
8234 	while (spa->spa_async_thread != NULL)
8235 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8236 	mutex_exit(&spa->spa_async_lock);
8237 
8238 	spa_vdev_remove_suspend(spa);
8239 
8240 	zthr_t *condense_thread = spa->spa_condense_zthr;
8241 	if (condense_thread != NULL)
8242 		zthr_cancel(condense_thread);
8243 
8244 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8245 	if (discard_thread != NULL)
8246 		zthr_cancel(discard_thread);
8247 
8248 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8249 	if (ll_delete_thread != NULL)
8250 		zthr_cancel(ll_delete_thread);
8251 
8252 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8253 	if (ll_condense_thread != NULL)
8254 		zthr_cancel(ll_condense_thread);
8255 }
8256 
8257 void
8258 spa_async_resume(spa_t *spa)
8259 {
8260 	mutex_enter(&spa->spa_async_lock);
8261 	ASSERT(spa->spa_async_suspended != 0);
8262 	spa->spa_async_suspended--;
8263 	mutex_exit(&spa->spa_async_lock);
8264 	spa_restart_removal(spa);
8265 
8266 	zthr_t *condense_thread = spa->spa_condense_zthr;
8267 	if (condense_thread != NULL)
8268 		zthr_resume(condense_thread);
8269 
8270 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8271 	if (discard_thread != NULL)
8272 		zthr_resume(discard_thread);
8273 
8274 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8275 	if (ll_delete_thread != NULL)
8276 		zthr_resume(ll_delete_thread);
8277 
8278 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8279 	if (ll_condense_thread != NULL)
8280 		zthr_resume(ll_condense_thread);
8281 }
8282 
8283 static boolean_t
8284 spa_async_tasks_pending(spa_t *spa)
8285 {
8286 	uint_t non_config_tasks;
8287 	uint_t config_task;
8288 	boolean_t config_task_suspended;
8289 
8290 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8291 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8292 	if (spa->spa_ccw_fail_time == 0) {
8293 		config_task_suspended = B_FALSE;
8294 	} else {
8295 		config_task_suspended =
8296 		    (gethrtime() - spa->spa_ccw_fail_time) <
8297 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8298 	}
8299 
8300 	return (non_config_tasks || (config_task && !config_task_suspended));
8301 }
8302 
8303 static void
8304 spa_async_dispatch(spa_t *spa)
8305 {
8306 	mutex_enter(&spa->spa_async_lock);
8307 	if (spa_async_tasks_pending(spa) &&
8308 	    !spa->spa_async_suspended &&
8309 	    spa->spa_async_thread == NULL)
8310 		spa->spa_async_thread = thread_create(NULL, 0,
8311 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8312 	mutex_exit(&spa->spa_async_lock);
8313 }
8314 
8315 void
8316 spa_async_request(spa_t *spa, int task)
8317 {
8318 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8319 	mutex_enter(&spa->spa_async_lock);
8320 	spa->spa_async_tasks |= task;
8321 	mutex_exit(&spa->spa_async_lock);
8322 }
8323 
8324 int
8325 spa_async_tasks(spa_t *spa)
8326 {
8327 	return (spa->spa_async_tasks);
8328 }
8329 
8330 /*
8331  * ==========================================================================
8332  * SPA syncing routines
8333  * ==========================================================================
8334  */
8335 
8336 
8337 static int
8338 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8339     dmu_tx_t *tx)
8340 {
8341 	bpobj_t *bpo = arg;
8342 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8343 	return (0);
8344 }
8345 
8346 int
8347 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8348 {
8349 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8350 }
8351 
8352 int
8353 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8354 {
8355 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8356 }
8357 
8358 static int
8359 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8360 {
8361 	zio_t *pio = arg;
8362 
8363 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8364 	    pio->io_flags));
8365 	return (0);
8366 }
8367 
8368 static int
8369 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8370     dmu_tx_t *tx)
8371 {
8372 	ASSERT(!bp_freed);
8373 	return (spa_free_sync_cb(arg, bp, tx));
8374 }
8375 
8376 /*
8377  * Note: this simple function is not inlined to make it easier to dtrace the
8378  * amount of time spent syncing frees.
8379  */
8380 static void
8381 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8382 {
8383 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8384 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8385 	VERIFY(zio_wait(zio) == 0);
8386 }
8387 
8388 /*
8389  * Note: this simple function is not inlined to make it easier to dtrace the
8390  * amount of time spent syncing deferred frees.
8391  */
8392 static void
8393 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8394 {
8395 	if (spa_sync_pass(spa) != 1)
8396 		return;
8397 
8398 	/*
8399 	 * Note:
8400 	 * If the log space map feature is active, we stop deferring
8401 	 * frees to the next TXG and therefore running this function
8402 	 * would be considered a no-op as spa_deferred_bpobj should
8403 	 * not have any entries.
8404 	 *
8405 	 * That said we run this function anyway (instead of returning
8406 	 * immediately) for the edge-case scenario where we just
8407 	 * activated the log space map feature in this TXG but we have
8408 	 * deferred frees from the previous TXG.
8409 	 */
8410 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8411 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8412 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8413 	VERIFY0(zio_wait(zio));
8414 }
8415 
8416 static void
8417 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8418 {
8419 	char *packed = NULL;
8420 	size_t bufsize;
8421 	size_t nvsize = 0;
8422 	dmu_buf_t *db;
8423 
8424 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8425 
8426 	/*
8427 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8428 	 * information.  This avoids the dmu_buf_will_dirty() path and
8429 	 * saves us a pre-read to get data we don't actually care about.
8430 	 */
8431 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8432 	packed = vmem_alloc(bufsize, KM_SLEEP);
8433 
8434 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8435 	    KM_SLEEP) == 0);
8436 	bzero(packed + nvsize, bufsize - nvsize);
8437 
8438 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8439 
8440 	vmem_free(packed, bufsize);
8441 
8442 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8443 	dmu_buf_will_dirty(db, tx);
8444 	*(uint64_t *)db->db_data = nvsize;
8445 	dmu_buf_rele(db, FTAG);
8446 }
8447 
8448 static void
8449 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8450     const char *config, const char *entry)
8451 {
8452 	nvlist_t *nvroot;
8453 	nvlist_t **list;
8454 	int i;
8455 
8456 	if (!sav->sav_sync)
8457 		return;
8458 
8459 	/*
8460 	 * Update the MOS nvlist describing the list of available devices.
8461 	 * spa_validate_aux() will have already made sure this nvlist is
8462 	 * valid and the vdevs are labeled appropriately.
8463 	 */
8464 	if (sav->sav_object == 0) {
8465 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8466 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8467 		    sizeof (uint64_t), tx);
8468 		VERIFY(zap_update(spa->spa_meta_objset,
8469 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8470 		    &sav->sav_object, tx) == 0);
8471 	}
8472 
8473 	nvroot = fnvlist_alloc();
8474 	if (sav->sav_count == 0) {
8475 		fnvlist_add_nvlist_array(nvroot, config, NULL, 0);
8476 	} else {
8477 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8478 		for (i = 0; i < sav->sav_count; i++)
8479 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8480 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8481 		fnvlist_add_nvlist_array(nvroot, config, list, sav->sav_count);
8482 		for (i = 0; i < sav->sav_count; i++)
8483 			nvlist_free(list[i]);
8484 		kmem_free(list, sav->sav_count * sizeof (void *));
8485 	}
8486 
8487 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8488 	nvlist_free(nvroot);
8489 
8490 	sav->sav_sync = B_FALSE;
8491 }
8492 
8493 /*
8494  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8495  * The all-vdev ZAP must be empty.
8496  */
8497 static void
8498 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8499 {
8500 	spa_t *spa = vd->vdev_spa;
8501 
8502 	if (vd->vdev_top_zap != 0) {
8503 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8504 		    vd->vdev_top_zap, tx));
8505 	}
8506 	if (vd->vdev_leaf_zap != 0) {
8507 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8508 		    vd->vdev_leaf_zap, tx));
8509 	}
8510 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8511 		spa_avz_build(vd->vdev_child[i], avz, tx);
8512 	}
8513 }
8514 
8515 static void
8516 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8517 {
8518 	nvlist_t *config;
8519 
8520 	/*
8521 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8522 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8523 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8524 	 * need to rebuild the AVZ although the config may not be dirty.
8525 	 */
8526 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8527 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8528 		return;
8529 
8530 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8531 
8532 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8533 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8534 	    spa->spa_all_vdev_zaps != 0);
8535 
8536 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8537 		/* Make and build the new AVZ */
8538 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8539 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8540 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8541 
8542 		/* Diff old AVZ with new one */
8543 		zap_cursor_t zc;
8544 		zap_attribute_t za;
8545 
8546 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8547 		    spa->spa_all_vdev_zaps);
8548 		    zap_cursor_retrieve(&zc, &za) == 0;
8549 		    zap_cursor_advance(&zc)) {
8550 			uint64_t vdzap = za.za_first_integer;
8551 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8552 			    vdzap) == ENOENT) {
8553 				/*
8554 				 * ZAP is listed in old AVZ but not in new one;
8555 				 * destroy it
8556 				 */
8557 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8558 				    tx));
8559 			}
8560 		}
8561 
8562 		zap_cursor_fini(&zc);
8563 
8564 		/* Destroy the old AVZ */
8565 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8566 		    spa->spa_all_vdev_zaps, tx));
8567 
8568 		/* Replace the old AVZ in the dir obj with the new one */
8569 		VERIFY0(zap_update(spa->spa_meta_objset,
8570 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8571 		    sizeof (new_avz), 1, &new_avz, tx));
8572 
8573 		spa->spa_all_vdev_zaps = new_avz;
8574 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8575 		zap_cursor_t zc;
8576 		zap_attribute_t za;
8577 
8578 		/* Walk through the AVZ and destroy all listed ZAPs */
8579 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8580 		    spa->spa_all_vdev_zaps);
8581 		    zap_cursor_retrieve(&zc, &za) == 0;
8582 		    zap_cursor_advance(&zc)) {
8583 			uint64_t zap = za.za_first_integer;
8584 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8585 		}
8586 
8587 		zap_cursor_fini(&zc);
8588 
8589 		/* Destroy and unlink the AVZ itself */
8590 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8591 		    spa->spa_all_vdev_zaps, tx));
8592 		VERIFY0(zap_remove(spa->spa_meta_objset,
8593 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8594 		spa->spa_all_vdev_zaps = 0;
8595 	}
8596 
8597 	if (spa->spa_all_vdev_zaps == 0) {
8598 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8599 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8600 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8601 	}
8602 	spa->spa_avz_action = AVZ_ACTION_NONE;
8603 
8604 	/* Create ZAPs for vdevs that don't have them. */
8605 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8606 
8607 	config = spa_config_generate(spa, spa->spa_root_vdev,
8608 	    dmu_tx_get_txg(tx), B_FALSE);
8609 
8610 	/*
8611 	 * If we're upgrading the spa version then make sure that
8612 	 * the config object gets updated with the correct version.
8613 	 */
8614 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8615 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8616 		    spa->spa_uberblock.ub_version);
8617 
8618 	spa_config_exit(spa, SCL_STATE, FTAG);
8619 
8620 	nvlist_free(spa->spa_config_syncing);
8621 	spa->spa_config_syncing = config;
8622 
8623 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8624 }
8625 
8626 static void
8627 spa_sync_version(void *arg, dmu_tx_t *tx)
8628 {
8629 	uint64_t *versionp = arg;
8630 	uint64_t version = *versionp;
8631 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8632 
8633 	/*
8634 	 * Setting the version is special cased when first creating the pool.
8635 	 */
8636 	ASSERT(tx->tx_txg != TXG_INITIAL);
8637 
8638 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8639 	ASSERT(version >= spa_version(spa));
8640 
8641 	spa->spa_uberblock.ub_version = version;
8642 	vdev_config_dirty(spa->spa_root_vdev);
8643 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8644 	    (longlong_t)version);
8645 }
8646 
8647 /*
8648  * Set zpool properties.
8649  */
8650 static void
8651 spa_sync_props(void *arg, dmu_tx_t *tx)
8652 {
8653 	nvlist_t *nvp = arg;
8654 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8655 	objset_t *mos = spa->spa_meta_objset;
8656 	nvpair_t *elem = NULL;
8657 
8658 	mutex_enter(&spa->spa_props_lock);
8659 
8660 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8661 		uint64_t intval;
8662 		char *strval, *fname;
8663 		zpool_prop_t prop;
8664 		const char *propname;
8665 		zprop_type_t proptype;
8666 		spa_feature_t fid;
8667 
8668 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8669 		case ZPOOL_PROP_INVAL:
8670 			/*
8671 			 * We checked this earlier in spa_prop_validate().
8672 			 */
8673 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8674 
8675 			fname = strchr(nvpair_name(elem), '@') + 1;
8676 			VERIFY0(zfeature_lookup_name(fname, &fid));
8677 
8678 			spa_feature_enable(spa, fid, tx);
8679 			spa_history_log_internal(spa, "set", tx,
8680 			    "%s=enabled", nvpair_name(elem));
8681 			break;
8682 
8683 		case ZPOOL_PROP_VERSION:
8684 			intval = fnvpair_value_uint64(elem);
8685 			/*
8686 			 * The version is synced separately before other
8687 			 * properties and should be correct by now.
8688 			 */
8689 			ASSERT3U(spa_version(spa), >=, intval);
8690 			break;
8691 
8692 		case ZPOOL_PROP_ALTROOT:
8693 			/*
8694 			 * 'altroot' is a non-persistent property. It should
8695 			 * have been set temporarily at creation or import time.
8696 			 */
8697 			ASSERT(spa->spa_root != NULL);
8698 			break;
8699 
8700 		case ZPOOL_PROP_READONLY:
8701 		case ZPOOL_PROP_CACHEFILE:
8702 			/*
8703 			 * 'readonly' and 'cachefile' are also non-persistent
8704 			 * properties.
8705 			 */
8706 			break;
8707 		case ZPOOL_PROP_COMMENT:
8708 			strval = fnvpair_value_string(elem);
8709 			if (spa->spa_comment != NULL)
8710 				spa_strfree(spa->spa_comment);
8711 			spa->spa_comment = spa_strdup(strval);
8712 			/*
8713 			 * We need to dirty the configuration on all the vdevs
8714 			 * so that their labels get updated.  We also need to
8715 			 * update the cache file to keep it in sync with the
8716 			 * MOS version. It's unnecessary to do this for pool
8717 			 * creation since the vdev's configuration has already
8718 			 * been dirtied.
8719 			 */
8720 			if (tx->tx_txg != TXG_INITIAL) {
8721 				vdev_config_dirty(spa->spa_root_vdev);
8722 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8723 			}
8724 			spa_history_log_internal(spa, "set", tx,
8725 			    "%s=%s", nvpair_name(elem), strval);
8726 			break;
8727 		case ZPOOL_PROP_COMPATIBILITY:
8728 			strval = fnvpair_value_string(elem);
8729 			if (spa->spa_compatibility != NULL)
8730 				spa_strfree(spa->spa_compatibility);
8731 			spa->spa_compatibility = spa_strdup(strval);
8732 			/*
8733 			 * Dirty the configuration on vdevs as above.
8734 			 */
8735 			if (tx->tx_txg != TXG_INITIAL) {
8736 				vdev_config_dirty(spa->spa_root_vdev);
8737 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8738 			}
8739 
8740 			spa_history_log_internal(spa, "set", tx,
8741 			    "%s=%s", nvpair_name(elem), strval);
8742 			break;
8743 
8744 		default:
8745 			/*
8746 			 * Set pool property values in the poolprops mos object.
8747 			 */
8748 			if (spa->spa_pool_props_object == 0) {
8749 				spa->spa_pool_props_object =
8750 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8751 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8752 				    tx);
8753 			}
8754 
8755 			/* normalize the property name */
8756 			propname = zpool_prop_to_name(prop);
8757 			proptype = zpool_prop_get_type(prop);
8758 
8759 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8760 				ASSERT(proptype == PROP_TYPE_STRING);
8761 				strval = fnvpair_value_string(elem);
8762 				VERIFY0(zap_update(mos,
8763 				    spa->spa_pool_props_object, propname,
8764 				    1, strlen(strval) + 1, strval, tx));
8765 				spa_history_log_internal(spa, "set", tx,
8766 				    "%s=%s", nvpair_name(elem), strval);
8767 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8768 				intval = fnvpair_value_uint64(elem);
8769 
8770 				if (proptype == PROP_TYPE_INDEX) {
8771 					const char *unused;
8772 					VERIFY0(zpool_prop_index_to_string(
8773 					    prop, intval, &unused));
8774 				}
8775 				VERIFY0(zap_update(mos,
8776 				    spa->spa_pool_props_object, propname,
8777 				    8, 1, &intval, tx));
8778 				spa_history_log_internal(spa, "set", tx,
8779 				    "%s=%lld", nvpair_name(elem),
8780 				    (longlong_t)intval);
8781 			} else {
8782 				ASSERT(0); /* not allowed */
8783 			}
8784 
8785 			switch (prop) {
8786 			case ZPOOL_PROP_DELEGATION:
8787 				spa->spa_delegation = intval;
8788 				break;
8789 			case ZPOOL_PROP_BOOTFS:
8790 				spa->spa_bootfs = intval;
8791 				break;
8792 			case ZPOOL_PROP_FAILUREMODE:
8793 				spa->spa_failmode = intval;
8794 				break;
8795 			case ZPOOL_PROP_AUTOTRIM:
8796 				spa->spa_autotrim = intval;
8797 				spa_async_request(spa,
8798 				    SPA_ASYNC_AUTOTRIM_RESTART);
8799 				break;
8800 			case ZPOOL_PROP_AUTOEXPAND:
8801 				spa->spa_autoexpand = intval;
8802 				if (tx->tx_txg != TXG_INITIAL)
8803 					spa_async_request(spa,
8804 					    SPA_ASYNC_AUTOEXPAND);
8805 				break;
8806 			case ZPOOL_PROP_MULTIHOST:
8807 				spa->spa_multihost = intval;
8808 				break;
8809 			default:
8810 				break;
8811 			}
8812 		}
8813 
8814 	}
8815 
8816 	mutex_exit(&spa->spa_props_lock);
8817 }
8818 
8819 /*
8820  * Perform one-time upgrade on-disk changes.  spa_version() does not
8821  * reflect the new version this txg, so there must be no changes this
8822  * txg to anything that the upgrade code depends on after it executes.
8823  * Therefore this must be called after dsl_pool_sync() does the sync
8824  * tasks.
8825  */
8826 static void
8827 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8828 {
8829 	if (spa_sync_pass(spa) != 1)
8830 		return;
8831 
8832 	dsl_pool_t *dp = spa->spa_dsl_pool;
8833 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8834 
8835 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8836 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8837 		dsl_pool_create_origin(dp, tx);
8838 
8839 		/* Keeping the origin open increases spa_minref */
8840 		spa->spa_minref += 3;
8841 	}
8842 
8843 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8844 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8845 		dsl_pool_upgrade_clones(dp, tx);
8846 	}
8847 
8848 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8849 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8850 		dsl_pool_upgrade_dir_clones(dp, tx);
8851 
8852 		/* Keeping the freedir open increases spa_minref */
8853 		spa->spa_minref += 3;
8854 	}
8855 
8856 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8857 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8858 		spa_feature_create_zap_objects(spa, tx);
8859 	}
8860 
8861 	/*
8862 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8863 	 * when possibility to use lz4 compression for metadata was added
8864 	 * Old pools that have this feature enabled must be upgraded to have
8865 	 * this feature active
8866 	 */
8867 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8868 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8869 		    SPA_FEATURE_LZ4_COMPRESS);
8870 		boolean_t lz4_ac = spa_feature_is_active(spa,
8871 		    SPA_FEATURE_LZ4_COMPRESS);
8872 
8873 		if (lz4_en && !lz4_ac)
8874 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8875 	}
8876 
8877 	/*
8878 	 * If we haven't written the salt, do so now.  Note that the
8879 	 * feature may not be activated yet, but that's fine since
8880 	 * the presence of this ZAP entry is backwards compatible.
8881 	 */
8882 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8883 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8884 		VERIFY0(zap_add(spa->spa_meta_objset,
8885 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8886 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8887 		    spa->spa_cksum_salt.zcs_bytes, tx));
8888 	}
8889 
8890 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8891 }
8892 
8893 static void
8894 vdev_indirect_state_sync_verify(vdev_t *vd)
8895 {
8896 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8897 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8898 
8899 	if (vd->vdev_ops == &vdev_indirect_ops) {
8900 		ASSERT(vim != NULL);
8901 		ASSERT(vib != NULL);
8902 	}
8903 
8904 	uint64_t obsolete_sm_object = 0;
8905 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8906 	if (obsolete_sm_object != 0) {
8907 		ASSERT(vd->vdev_obsolete_sm != NULL);
8908 		ASSERT(vd->vdev_removing ||
8909 		    vd->vdev_ops == &vdev_indirect_ops);
8910 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8911 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8912 		ASSERT3U(obsolete_sm_object, ==,
8913 		    space_map_object(vd->vdev_obsolete_sm));
8914 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8915 		    space_map_allocated(vd->vdev_obsolete_sm));
8916 	}
8917 	ASSERT(vd->vdev_obsolete_segments != NULL);
8918 
8919 	/*
8920 	 * Since frees / remaps to an indirect vdev can only
8921 	 * happen in syncing context, the obsolete segments
8922 	 * tree must be empty when we start syncing.
8923 	 */
8924 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8925 }
8926 
8927 /*
8928  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8929  * async write queue depth in case it changed. The max queue depth will
8930  * not change in the middle of syncing out this txg.
8931  */
8932 static void
8933 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8934 {
8935 	ASSERT(spa_writeable(spa));
8936 
8937 	vdev_t *rvd = spa->spa_root_vdev;
8938 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8939 	    zfs_vdev_queue_depth_pct / 100;
8940 	metaslab_class_t *normal = spa_normal_class(spa);
8941 	metaslab_class_t *special = spa_special_class(spa);
8942 	metaslab_class_t *dedup = spa_dedup_class(spa);
8943 
8944 	uint64_t slots_per_allocator = 0;
8945 	for (int c = 0; c < rvd->vdev_children; c++) {
8946 		vdev_t *tvd = rvd->vdev_child[c];
8947 
8948 		metaslab_group_t *mg = tvd->vdev_mg;
8949 		if (mg == NULL || !metaslab_group_initialized(mg))
8950 			continue;
8951 
8952 		metaslab_class_t *mc = mg->mg_class;
8953 		if (mc != normal && mc != special && mc != dedup)
8954 			continue;
8955 
8956 		/*
8957 		 * It is safe to do a lock-free check here because only async
8958 		 * allocations look at mg_max_alloc_queue_depth, and async
8959 		 * allocations all happen from spa_sync().
8960 		 */
8961 		for (int i = 0; i < mg->mg_allocators; i++) {
8962 			ASSERT0(zfs_refcount_count(
8963 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8964 		}
8965 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8966 
8967 		for (int i = 0; i < mg->mg_allocators; i++) {
8968 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8969 			    zfs_vdev_def_queue_depth;
8970 		}
8971 		slots_per_allocator += zfs_vdev_def_queue_depth;
8972 	}
8973 
8974 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8975 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8976 		    mca_alloc_slots));
8977 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8978 		    mca_alloc_slots));
8979 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8980 		    mca_alloc_slots));
8981 		normal->mc_allocator[i].mca_alloc_max_slots =
8982 		    slots_per_allocator;
8983 		special->mc_allocator[i].mca_alloc_max_slots =
8984 		    slots_per_allocator;
8985 		dedup->mc_allocator[i].mca_alloc_max_slots =
8986 		    slots_per_allocator;
8987 	}
8988 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8989 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8990 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8991 }
8992 
8993 static void
8994 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8995 {
8996 	ASSERT(spa_writeable(spa));
8997 
8998 	vdev_t *rvd = spa->spa_root_vdev;
8999 	for (int c = 0; c < rvd->vdev_children; c++) {
9000 		vdev_t *vd = rvd->vdev_child[c];
9001 		vdev_indirect_state_sync_verify(vd);
9002 
9003 		if (vdev_indirect_should_condense(vd)) {
9004 			spa_condense_indirect_start_sync(vd, tx);
9005 			break;
9006 		}
9007 	}
9008 }
9009 
9010 static void
9011 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9012 {
9013 	objset_t *mos = spa->spa_meta_objset;
9014 	dsl_pool_t *dp = spa->spa_dsl_pool;
9015 	uint64_t txg = tx->tx_txg;
9016 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9017 
9018 	do {
9019 		int pass = ++spa->spa_sync_pass;
9020 
9021 		spa_sync_config_object(spa, tx);
9022 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9023 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9024 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9025 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9026 		spa_errlog_sync(spa, txg);
9027 		dsl_pool_sync(dp, txg);
9028 
9029 		if (pass < zfs_sync_pass_deferred_free ||
9030 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9031 			/*
9032 			 * If the log space map feature is active we don't
9033 			 * care about deferred frees and the deferred bpobj
9034 			 * as the log space map should effectively have the
9035 			 * same results (i.e. appending only to one object).
9036 			 */
9037 			spa_sync_frees(spa, free_bpl, tx);
9038 		} else {
9039 			/*
9040 			 * We can not defer frees in pass 1, because
9041 			 * we sync the deferred frees later in pass 1.
9042 			 */
9043 			ASSERT3U(pass, >, 1);
9044 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9045 			    &spa->spa_deferred_bpobj, tx);
9046 		}
9047 
9048 		ddt_sync(spa, txg);
9049 		dsl_scan_sync(dp, tx);
9050 		svr_sync(spa, tx);
9051 		spa_sync_upgrades(spa, tx);
9052 
9053 		spa_flush_metaslabs(spa, tx);
9054 
9055 		vdev_t *vd = NULL;
9056 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9057 		    != NULL)
9058 			vdev_sync(vd, txg);
9059 
9060 		/*
9061 		 * Note: We need to check if the MOS is dirty because we could
9062 		 * have marked the MOS dirty without updating the uberblock
9063 		 * (e.g. if we have sync tasks but no dirty user data). We need
9064 		 * to check the uberblock's rootbp because it is updated if we
9065 		 * have synced out dirty data (though in this case the MOS will
9066 		 * most likely also be dirty due to second order effects, we
9067 		 * don't want to rely on that here).
9068 		 */
9069 		if (pass == 1 &&
9070 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9071 		    !dmu_objset_is_dirty(mos, txg)) {
9072 			/*
9073 			 * Nothing changed on the first pass, therefore this
9074 			 * TXG is a no-op. Avoid syncing deferred frees, so
9075 			 * that we can keep this TXG as a no-op.
9076 			 */
9077 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9078 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9079 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9080 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9081 			break;
9082 		}
9083 
9084 		spa_sync_deferred_frees(spa, tx);
9085 	} while (dmu_objset_is_dirty(mos, txg));
9086 }
9087 
9088 /*
9089  * Rewrite the vdev configuration (which includes the uberblock) to
9090  * commit the transaction group.
9091  *
9092  * If there are no dirty vdevs, we sync the uberblock to a few random
9093  * top-level vdevs that are known to be visible in the config cache
9094  * (see spa_vdev_add() for a complete description). If there *are* dirty
9095  * vdevs, sync the uberblock to all vdevs.
9096  */
9097 static void
9098 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9099 {
9100 	vdev_t *rvd = spa->spa_root_vdev;
9101 	uint64_t txg = tx->tx_txg;
9102 
9103 	for (;;) {
9104 		int error = 0;
9105 
9106 		/*
9107 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9108 		 * while we're attempting to write the vdev labels.
9109 		 */
9110 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9111 
9112 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9113 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9114 			int svdcount = 0;
9115 			int children = rvd->vdev_children;
9116 			int c0 = random_in_range(children);
9117 
9118 			for (int c = 0; c < children; c++) {
9119 				vdev_t *vd =
9120 				    rvd->vdev_child[(c0 + c) % children];
9121 
9122 				/* Stop when revisiting the first vdev */
9123 				if (c > 0 && svd[0] == vd)
9124 					break;
9125 
9126 				if (vd->vdev_ms_array == 0 ||
9127 				    vd->vdev_islog ||
9128 				    !vdev_is_concrete(vd))
9129 					continue;
9130 
9131 				svd[svdcount++] = vd;
9132 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9133 					break;
9134 			}
9135 			error = vdev_config_sync(svd, svdcount, txg);
9136 		} else {
9137 			error = vdev_config_sync(rvd->vdev_child,
9138 			    rvd->vdev_children, txg);
9139 		}
9140 
9141 		if (error == 0)
9142 			spa->spa_last_synced_guid = rvd->vdev_guid;
9143 
9144 		spa_config_exit(spa, SCL_STATE, FTAG);
9145 
9146 		if (error == 0)
9147 			break;
9148 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9149 		zio_resume_wait(spa);
9150 	}
9151 }
9152 
9153 /*
9154  * Sync the specified transaction group.  New blocks may be dirtied as
9155  * part of the process, so we iterate until it converges.
9156  */
9157 void
9158 spa_sync(spa_t *spa, uint64_t txg)
9159 {
9160 	vdev_t *vd = NULL;
9161 
9162 	VERIFY(spa_writeable(spa));
9163 
9164 	/*
9165 	 * Wait for i/os issued in open context that need to complete
9166 	 * before this txg syncs.
9167 	 */
9168 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9169 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9170 	    ZIO_FLAG_CANFAIL);
9171 
9172 	/*
9173 	 * Lock out configuration changes.
9174 	 */
9175 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9176 
9177 	spa->spa_syncing_txg = txg;
9178 	spa->spa_sync_pass = 0;
9179 
9180 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9181 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9182 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9183 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9184 	}
9185 
9186 	/*
9187 	 * If there are any pending vdev state changes, convert them
9188 	 * into config changes that go out with this transaction group.
9189 	 */
9190 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9191 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9192 		/*
9193 		 * We need the write lock here because, for aux vdevs,
9194 		 * calling vdev_config_dirty() modifies sav_config.
9195 		 * This is ugly and will become unnecessary when we
9196 		 * eliminate the aux vdev wart by integrating all vdevs
9197 		 * into the root vdev tree.
9198 		 */
9199 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9200 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9201 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9202 			vdev_state_clean(vd);
9203 			vdev_config_dirty(vd);
9204 		}
9205 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9206 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9207 	}
9208 	spa_config_exit(spa, SCL_STATE, FTAG);
9209 
9210 	dsl_pool_t *dp = spa->spa_dsl_pool;
9211 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9212 
9213 	spa->spa_sync_starttime = gethrtime();
9214 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9215 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9216 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9217 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9218 
9219 	/*
9220 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9221 	 * set spa_deflate if we have no raid-z vdevs.
9222 	 */
9223 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9224 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9225 		vdev_t *rvd = spa->spa_root_vdev;
9226 
9227 		int i;
9228 		for (i = 0; i < rvd->vdev_children; i++) {
9229 			vd = rvd->vdev_child[i];
9230 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9231 				break;
9232 		}
9233 		if (i == rvd->vdev_children) {
9234 			spa->spa_deflate = TRUE;
9235 			VERIFY0(zap_add(spa->spa_meta_objset,
9236 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9237 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9238 		}
9239 	}
9240 
9241 	spa_sync_adjust_vdev_max_queue_depth(spa);
9242 
9243 	spa_sync_condense_indirect(spa, tx);
9244 
9245 	spa_sync_iterate_to_convergence(spa, tx);
9246 
9247 #ifdef ZFS_DEBUG
9248 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9249 	/*
9250 	 * Make sure that the number of ZAPs for all the vdevs matches
9251 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9252 	 * called if the config is dirty; otherwise there may be
9253 	 * outstanding AVZ operations that weren't completed in
9254 	 * spa_sync_config_object.
9255 	 */
9256 		uint64_t all_vdev_zap_entry_count;
9257 		ASSERT0(zap_count(spa->spa_meta_objset,
9258 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9259 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9260 		    all_vdev_zap_entry_count);
9261 	}
9262 #endif
9263 
9264 	if (spa->spa_vdev_removal != NULL) {
9265 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9266 	}
9267 
9268 	spa_sync_rewrite_vdev_config(spa, tx);
9269 	dmu_tx_commit(tx);
9270 
9271 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9272 	spa->spa_deadman_tqid = 0;
9273 
9274 	/*
9275 	 * Clear the dirty config list.
9276 	 */
9277 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9278 		vdev_config_clean(vd);
9279 
9280 	/*
9281 	 * Now that the new config has synced transactionally,
9282 	 * let it become visible to the config cache.
9283 	 */
9284 	if (spa->spa_config_syncing != NULL) {
9285 		spa_config_set(spa, spa->spa_config_syncing);
9286 		spa->spa_config_txg = txg;
9287 		spa->spa_config_syncing = NULL;
9288 	}
9289 
9290 	dsl_pool_sync_done(dp, txg);
9291 
9292 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9293 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9294 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9295 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9296 	}
9297 
9298 	/*
9299 	 * Update usable space statistics.
9300 	 */
9301 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9302 	    != NULL)
9303 		vdev_sync_done(vd, txg);
9304 
9305 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9306 	metaslab_class_evict_old(spa->spa_log_class, txg);
9307 
9308 	spa_sync_close_syncing_log_sm(spa);
9309 
9310 	spa_update_dspace(spa);
9311 
9312 	/*
9313 	 * It had better be the case that we didn't dirty anything
9314 	 * since vdev_config_sync().
9315 	 */
9316 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9317 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9318 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9319 
9320 	while (zfs_pause_spa_sync)
9321 		delay(1);
9322 
9323 	spa->spa_sync_pass = 0;
9324 
9325 	/*
9326 	 * Update the last synced uberblock here. We want to do this at
9327 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9328 	 * will be guaranteed that all the processing associated with
9329 	 * that txg has been completed.
9330 	 */
9331 	spa->spa_ubsync = spa->spa_uberblock;
9332 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9333 
9334 	spa_handle_ignored_writes(spa);
9335 
9336 	/*
9337 	 * If any async tasks have been requested, kick them off.
9338 	 */
9339 	spa_async_dispatch(spa);
9340 }
9341 
9342 /*
9343  * Sync all pools.  We don't want to hold the namespace lock across these
9344  * operations, so we take a reference on the spa_t and drop the lock during the
9345  * sync.
9346  */
9347 void
9348 spa_sync_allpools(void)
9349 {
9350 	spa_t *spa = NULL;
9351 	mutex_enter(&spa_namespace_lock);
9352 	while ((spa = spa_next(spa)) != NULL) {
9353 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9354 		    !spa_writeable(spa) || spa_suspended(spa))
9355 			continue;
9356 		spa_open_ref(spa, FTAG);
9357 		mutex_exit(&spa_namespace_lock);
9358 		txg_wait_synced(spa_get_dsl(spa), 0);
9359 		mutex_enter(&spa_namespace_lock);
9360 		spa_close(spa, FTAG);
9361 	}
9362 	mutex_exit(&spa_namespace_lock);
9363 }
9364 
9365 /*
9366  * ==========================================================================
9367  * Miscellaneous routines
9368  * ==========================================================================
9369  */
9370 
9371 /*
9372  * Remove all pools in the system.
9373  */
9374 void
9375 spa_evict_all(void)
9376 {
9377 	spa_t *spa;
9378 
9379 	/*
9380 	 * Remove all cached state.  All pools should be closed now,
9381 	 * so every spa in the AVL tree should be unreferenced.
9382 	 */
9383 	mutex_enter(&spa_namespace_lock);
9384 	while ((spa = spa_next(NULL)) != NULL) {
9385 		/*
9386 		 * Stop async tasks.  The async thread may need to detach
9387 		 * a device that's been replaced, which requires grabbing
9388 		 * spa_namespace_lock, so we must drop it here.
9389 		 */
9390 		spa_open_ref(spa, FTAG);
9391 		mutex_exit(&spa_namespace_lock);
9392 		spa_async_suspend(spa);
9393 		mutex_enter(&spa_namespace_lock);
9394 		spa_close(spa, FTAG);
9395 
9396 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9397 			spa_unload(spa);
9398 			spa_deactivate(spa);
9399 		}
9400 		spa_remove(spa);
9401 	}
9402 	mutex_exit(&spa_namespace_lock);
9403 }
9404 
9405 vdev_t *
9406 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9407 {
9408 	vdev_t *vd;
9409 	int i;
9410 
9411 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9412 		return (vd);
9413 
9414 	if (aux) {
9415 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9416 			vd = spa->spa_l2cache.sav_vdevs[i];
9417 			if (vd->vdev_guid == guid)
9418 				return (vd);
9419 		}
9420 
9421 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9422 			vd = spa->spa_spares.sav_vdevs[i];
9423 			if (vd->vdev_guid == guid)
9424 				return (vd);
9425 		}
9426 	}
9427 
9428 	return (NULL);
9429 }
9430 
9431 void
9432 spa_upgrade(spa_t *spa, uint64_t version)
9433 {
9434 	ASSERT(spa_writeable(spa));
9435 
9436 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9437 
9438 	/*
9439 	 * This should only be called for a non-faulted pool, and since a
9440 	 * future version would result in an unopenable pool, this shouldn't be
9441 	 * possible.
9442 	 */
9443 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9444 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9445 
9446 	spa->spa_uberblock.ub_version = version;
9447 	vdev_config_dirty(spa->spa_root_vdev);
9448 
9449 	spa_config_exit(spa, SCL_ALL, FTAG);
9450 
9451 	txg_wait_synced(spa_get_dsl(spa), 0);
9452 }
9453 
9454 static boolean_t
9455 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9456 {
9457 	int i;
9458 	uint64_t vdev_guid;
9459 
9460 	for (i = 0; i < sav->sav_count; i++)
9461 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9462 			return (B_TRUE);
9463 
9464 	for (i = 0; i < sav->sav_npending; i++) {
9465 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9466 		    &vdev_guid) == 0 && vdev_guid == guid)
9467 			return (B_TRUE);
9468 	}
9469 
9470 	return (B_FALSE);
9471 }
9472 
9473 boolean_t
9474 spa_has_l2cache(spa_t *spa, uint64_t guid)
9475 {
9476 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9477 }
9478 
9479 boolean_t
9480 spa_has_spare(spa_t *spa, uint64_t guid)
9481 {
9482 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9483 }
9484 
9485 /*
9486  * Check if a pool has an active shared spare device.
9487  * Note: reference count of an active spare is 2, as a spare and as a replace
9488  */
9489 static boolean_t
9490 spa_has_active_shared_spare(spa_t *spa)
9491 {
9492 	int i, refcnt;
9493 	uint64_t pool;
9494 	spa_aux_vdev_t *sav = &spa->spa_spares;
9495 
9496 	for (i = 0; i < sav->sav_count; i++) {
9497 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9498 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9499 		    refcnt > 2)
9500 			return (B_TRUE);
9501 	}
9502 
9503 	return (B_FALSE);
9504 }
9505 
9506 uint64_t
9507 spa_total_metaslabs(spa_t *spa)
9508 {
9509 	vdev_t *rvd = spa->spa_root_vdev;
9510 
9511 	uint64_t m = 0;
9512 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9513 		vdev_t *vd = rvd->vdev_child[c];
9514 		if (!vdev_is_concrete(vd))
9515 			continue;
9516 		m += vd->vdev_ms_count;
9517 	}
9518 	return (m);
9519 }
9520 
9521 /*
9522  * Notify any waiting threads that some activity has switched from being in-
9523  * progress to not-in-progress so that the thread can wake up and determine
9524  * whether it is finished waiting.
9525  */
9526 void
9527 spa_notify_waiters(spa_t *spa)
9528 {
9529 	/*
9530 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9531 	 * happening between the waiting thread's check and cv_wait.
9532 	 */
9533 	mutex_enter(&spa->spa_activities_lock);
9534 	cv_broadcast(&spa->spa_activities_cv);
9535 	mutex_exit(&spa->spa_activities_lock);
9536 }
9537 
9538 /*
9539  * Notify any waiting threads that the pool is exporting, and then block until
9540  * they are finished using the spa_t.
9541  */
9542 void
9543 spa_wake_waiters(spa_t *spa)
9544 {
9545 	mutex_enter(&spa->spa_activities_lock);
9546 	spa->spa_waiters_cancel = B_TRUE;
9547 	cv_broadcast(&spa->spa_activities_cv);
9548 	while (spa->spa_waiters != 0)
9549 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9550 	spa->spa_waiters_cancel = B_FALSE;
9551 	mutex_exit(&spa->spa_activities_lock);
9552 }
9553 
9554 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9555 static boolean_t
9556 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9557 {
9558 	spa_t *spa = vd->vdev_spa;
9559 
9560 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9561 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9562 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9563 	    activity == ZPOOL_WAIT_TRIM);
9564 
9565 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9566 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9567 
9568 	mutex_exit(&spa->spa_activities_lock);
9569 	mutex_enter(lock);
9570 	mutex_enter(&spa->spa_activities_lock);
9571 
9572 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9573 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9574 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9575 	mutex_exit(lock);
9576 
9577 	if (in_progress)
9578 		return (B_TRUE);
9579 
9580 	for (int i = 0; i < vd->vdev_children; i++) {
9581 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9582 		    activity))
9583 			return (B_TRUE);
9584 	}
9585 
9586 	return (B_FALSE);
9587 }
9588 
9589 /*
9590  * If use_guid is true, this checks whether the vdev specified by guid is
9591  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9592  * is being initialized/trimmed. The caller must hold the config lock and
9593  * spa_activities_lock.
9594  */
9595 static int
9596 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9597     zpool_wait_activity_t activity, boolean_t *in_progress)
9598 {
9599 	mutex_exit(&spa->spa_activities_lock);
9600 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9601 	mutex_enter(&spa->spa_activities_lock);
9602 
9603 	vdev_t *vd;
9604 	if (use_guid) {
9605 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9606 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9607 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9608 			return (EINVAL);
9609 		}
9610 	} else {
9611 		vd = spa->spa_root_vdev;
9612 	}
9613 
9614 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9615 
9616 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9617 	return (0);
9618 }
9619 
9620 /*
9621  * Locking for waiting threads
9622  * ---------------------------
9623  *
9624  * Waiting threads need a way to check whether a given activity is in progress,
9625  * and then, if it is, wait for it to complete. Each activity will have some
9626  * in-memory representation of the relevant on-disk state which can be used to
9627  * determine whether or not the activity is in progress. The in-memory state and
9628  * the locking used to protect it will be different for each activity, and may
9629  * not be suitable for use with a cvar (e.g., some state is protected by the
9630  * config lock). To allow waiting threads to wait without any races, another
9631  * lock, spa_activities_lock, is used.
9632  *
9633  * When the state is checked, both the activity-specific lock (if there is one)
9634  * and spa_activities_lock are held. In some cases, the activity-specific lock
9635  * is acquired explicitly (e.g. the config lock). In others, the locking is
9636  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9637  * thread releases the activity-specific lock and, if the activity is in
9638  * progress, then cv_waits using spa_activities_lock.
9639  *
9640  * The waiting thread is woken when another thread, one completing some
9641  * activity, updates the state of the activity and then calls
9642  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9643  * needs to hold its activity-specific lock when updating the state, and this
9644  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9645  *
9646  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9647  * and because it is held when the waiting thread checks the state of the
9648  * activity, it can never be the case that the completing thread both updates
9649  * the activity state and cv_broadcasts in between the waiting thread's check
9650  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9651  *
9652  * In order to prevent deadlock, when the waiting thread does its check, in some
9653  * cases it will temporarily drop spa_activities_lock in order to acquire the
9654  * activity-specific lock. The order in which spa_activities_lock and the
9655  * activity specific lock are acquired in the waiting thread is determined by
9656  * the order in which they are acquired in the completing thread; if the
9657  * completing thread calls spa_notify_waiters with the activity-specific lock
9658  * held, then the waiting thread must also acquire the activity-specific lock
9659  * first.
9660  */
9661 
9662 static int
9663 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9664     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9665 {
9666 	int error = 0;
9667 
9668 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9669 
9670 	switch (activity) {
9671 	case ZPOOL_WAIT_CKPT_DISCARD:
9672 		*in_progress =
9673 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9674 		    zap_contains(spa_meta_objset(spa),
9675 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9676 		    ENOENT);
9677 		break;
9678 	case ZPOOL_WAIT_FREE:
9679 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9680 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9681 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9682 		    spa_livelist_delete_check(spa));
9683 		break;
9684 	case ZPOOL_WAIT_INITIALIZE:
9685 	case ZPOOL_WAIT_TRIM:
9686 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9687 		    activity, in_progress);
9688 		break;
9689 	case ZPOOL_WAIT_REPLACE:
9690 		mutex_exit(&spa->spa_activities_lock);
9691 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9692 		mutex_enter(&spa->spa_activities_lock);
9693 
9694 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9695 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9696 		break;
9697 	case ZPOOL_WAIT_REMOVE:
9698 		*in_progress = (spa->spa_removing_phys.sr_state ==
9699 		    DSS_SCANNING);
9700 		break;
9701 	case ZPOOL_WAIT_RESILVER:
9702 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9703 			break;
9704 		fallthrough;
9705 	case ZPOOL_WAIT_SCRUB:
9706 	{
9707 		boolean_t scanning, paused, is_scrub;
9708 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9709 
9710 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9711 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9712 		paused = dsl_scan_is_paused_scrub(scn);
9713 		*in_progress = (scanning && !paused &&
9714 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9715 		break;
9716 	}
9717 	default:
9718 		panic("unrecognized value for activity %d", activity);
9719 	}
9720 
9721 	return (error);
9722 }
9723 
9724 static int
9725 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9726     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9727 {
9728 	/*
9729 	 * The tag is used to distinguish between instances of an activity.
9730 	 * 'initialize' and 'trim' are the only activities that we use this for.
9731 	 * The other activities can only have a single instance in progress in a
9732 	 * pool at one time, making the tag unnecessary.
9733 	 *
9734 	 * There can be multiple devices being replaced at once, but since they
9735 	 * all finish once resilvering finishes, we don't bother keeping track
9736 	 * of them individually, we just wait for them all to finish.
9737 	 */
9738 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9739 	    activity != ZPOOL_WAIT_TRIM)
9740 		return (EINVAL);
9741 
9742 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9743 		return (EINVAL);
9744 
9745 	spa_t *spa;
9746 	int error = spa_open(pool, &spa, FTAG);
9747 	if (error != 0)
9748 		return (error);
9749 
9750 	/*
9751 	 * Increment the spa's waiter count so that we can call spa_close and
9752 	 * still ensure that the spa_t doesn't get freed before this thread is
9753 	 * finished with it when the pool is exported. We want to call spa_close
9754 	 * before we start waiting because otherwise the additional ref would
9755 	 * prevent the pool from being exported or destroyed throughout the
9756 	 * potentially long wait.
9757 	 */
9758 	mutex_enter(&spa->spa_activities_lock);
9759 	spa->spa_waiters++;
9760 	spa_close(spa, FTAG);
9761 
9762 	*waited = B_FALSE;
9763 	for (;;) {
9764 		boolean_t in_progress;
9765 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9766 		    &in_progress);
9767 
9768 		if (error || !in_progress || spa->spa_waiters_cancel)
9769 			break;
9770 
9771 		*waited = B_TRUE;
9772 
9773 		if (cv_wait_sig(&spa->spa_activities_cv,
9774 		    &spa->spa_activities_lock) == 0) {
9775 			error = EINTR;
9776 			break;
9777 		}
9778 	}
9779 
9780 	spa->spa_waiters--;
9781 	cv_signal(&spa->spa_waiters_cv);
9782 	mutex_exit(&spa->spa_activities_lock);
9783 
9784 	return (error);
9785 }
9786 
9787 /*
9788  * Wait for a particular instance of the specified activity to complete, where
9789  * the instance is identified by 'tag'
9790  */
9791 int
9792 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9793     boolean_t *waited)
9794 {
9795 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9796 }
9797 
9798 /*
9799  * Wait for all instances of the specified activity complete
9800  */
9801 int
9802 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9803 {
9804 
9805 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9806 }
9807 
9808 sysevent_t *
9809 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9810 {
9811 	sysevent_t *ev = NULL;
9812 #ifdef _KERNEL
9813 	nvlist_t *resource;
9814 
9815 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9816 	if (resource) {
9817 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9818 		ev->resource = resource;
9819 	}
9820 #endif
9821 	return (ev);
9822 }
9823 
9824 void
9825 spa_event_post(sysevent_t *ev)
9826 {
9827 #ifdef _KERNEL
9828 	if (ev) {
9829 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9830 		kmem_free(ev, sizeof (*ev));
9831 	}
9832 #endif
9833 }
9834 
9835 /*
9836  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9837  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9838  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9839  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9840  * or zdb as real changes.
9841  */
9842 void
9843 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9844 {
9845 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9846 }
9847 
9848 /* state manipulation functions */
9849 EXPORT_SYMBOL(spa_open);
9850 EXPORT_SYMBOL(spa_open_rewind);
9851 EXPORT_SYMBOL(spa_get_stats);
9852 EXPORT_SYMBOL(spa_create);
9853 EXPORT_SYMBOL(spa_import);
9854 EXPORT_SYMBOL(spa_tryimport);
9855 EXPORT_SYMBOL(spa_destroy);
9856 EXPORT_SYMBOL(spa_export);
9857 EXPORT_SYMBOL(spa_reset);
9858 EXPORT_SYMBOL(spa_async_request);
9859 EXPORT_SYMBOL(spa_async_suspend);
9860 EXPORT_SYMBOL(spa_async_resume);
9861 EXPORT_SYMBOL(spa_inject_addref);
9862 EXPORT_SYMBOL(spa_inject_delref);
9863 EXPORT_SYMBOL(spa_scan_stat_init);
9864 EXPORT_SYMBOL(spa_scan_get_stats);
9865 
9866 /* device manipulation */
9867 EXPORT_SYMBOL(spa_vdev_add);
9868 EXPORT_SYMBOL(spa_vdev_attach);
9869 EXPORT_SYMBOL(spa_vdev_detach);
9870 EXPORT_SYMBOL(spa_vdev_setpath);
9871 EXPORT_SYMBOL(spa_vdev_setfru);
9872 EXPORT_SYMBOL(spa_vdev_split_mirror);
9873 
9874 /* spare statech is global across all pools) */
9875 EXPORT_SYMBOL(spa_spare_add);
9876 EXPORT_SYMBOL(spa_spare_remove);
9877 EXPORT_SYMBOL(spa_spare_exists);
9878 EXPORT_SYMBOL(spa_spare_activate);
9879 
9880 /* L2ARC statech is global across all pools) */
9881 EXPORT_SYMBOL(spa_l2cache_add);
9882 EXPORT_SYMBOL(spa_l2cache_remove);
9883 EXPORT_SYMBOL(spa_l2cache_exists);
9884 EXPORT_SYMBOL(spa_l2cache_activate);
9885 EXPORT_SYMBOL(spa_l2cache_drop);
9886 
9887 /* scanning */
9888 EXPORT_SYMBOL(spa_scan);
9889 EXPORT_SYMBOL(spa_scan_stop);
9890 
9891 /* spa syncing */
9892 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9893 EXPORT_SYMBOL(spa_sync_allpools);
9894 
9895 /* properties */
9896 EXPORT_SYMBOL(spa_prop_set);
9897 EXPORT_SYMBOL(spa_prop_get);
9898 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9899 
9900 /* asynchronous event notification */
9901 EXPORT_SYMBOL(spa_event_notify);
9902 
9903 /* BEGIN CSTYLED */
9904 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9905 	"log2 fraction of arc that can be used by inflight I/Os when "
9906 	"verifying pool during import");
9907 
9908 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9909 	"Set to traverse metadata on pool import");
9910 
9911 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9912 	"Set to traverse data on pool import");
9913 
9914 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9915 	"Print vdev tree to zfs_dbgmsg during pool import");
9916 
9917 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9918 	"Percentage of CPUs to run an IO worker thread");
9919 
9920 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
9921 	"Number of threads per IO worker taskqueue");
9922 
9923 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9924 	"Allow importing pool with up to this number of missing top-level "
9925 	"vdevs (in read-only mode)");
9926 
9927 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9928 	"Set the livelist condense zthr to pause");
9929 
9930 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9931 	"Set the livelist condense synctask to pause");
9932 
9933 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9934 	"Whether livelist condensing was canceled in the synctask");
9935 
9936 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9937 	"Whether livelist condensing was canceled in the zthr function");
9938 
9939 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9940 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
9941 	"was being condensed");
9942 /* END CSTYLED */
9943