xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 271171e0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
168     const char **ereport);
169 static void spa_vdev_resilver_done(spa_t *spa);
170 
171 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
172 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
173 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
174 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
175 
176 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
177 
178 /*
179  * Report any spa_load_verify errors found, but do not fail spa_load.
180  * This is used by zdb to analyze non-idle pools.
181  */
182 boolean_t	spa_load_verify_dryrun = B_FALSE;
183 
184 /*
185  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
186  * This is used by zdb for spacemaps verification.
187  */
188 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
189 
190 /*
191  * This (illegal) pool name is used when temporarily importing a spa_t in order
192  * to get the vdev stats associated with the imported devices.
193  */
194 #define	TRYIMPORT_NAME	"$import"
195 
196 /*
197  * For debugging purposes: print out vdev tree during pool import.
198  */
199 static int		spa_load_print_vdev_tree = B_FALSE;
200 
201 /*
202  * A non-zero value for zfs_max_missing_tvds means that we allow importing
203  * pools with missing top-level vdevs. This is strictly intended for advanced
204  * pool recovery cases since missing data is almost inevitable. Pools with
205  * missing devices can only be imported read-only for safety reasons, and their
206  * fail-mode will be automatically set to "continue".
207  *
208  * With 1 missing vdev we should be able to import the pool and mount all
209  * datasets. User data that was not modified after the missing device has been
210  * added should be recoverable. This means that snapshots created prior to the
211  * addition of that device should be completely intact.
212  *
213  * With 2 missing vdevs, some datasets may fail to mount since there are
214  * dataset statistics that are stored as regular metadata. Some data might be
215  * recoverable if those vdevs were added recently.
216  *
217  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
218  * may be missing entirely. Chances of data recovery are very low. Note that
219  * there are also risks of performing an inadvertent rewind as we might be
220  * missing all the vdevs with the latest uberblocks.
221  */
222 unsigned long	zfs_max_missing_tvds = 0;
223 
224 /*
225  * The parameters below are similar to zfs_max_missing_tvds but are only
226  * intended for a preliminary open of the pool with an untrusted config which
227  * might be incomplete or out-dated.
228  *
229  * We are more tolerant for pools opened from a cachefile since we could have
230  * an out-dated cachefile where a device removal was not registered.
231  * We could have set the limit arbitrarily high but in the case where devices
232  * are really missing we would want to return the proper error codes; we chose
233  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
234  * and we get a chance to retrieve the trusted config.
235  */
236 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
237 
238 /*
239  * In the case where config was assembled by scanning device paths (/dev/dsks
240  * by default) we are less tolerant since all the existing devices should have
241  * been detected and we want spa_load to return the right error codes.
242  */
243 uint64_t	zfs_max_missing_tvds_scan = 0;
244 
245 /*
246  * Debugging aid that pauses spa_sync() towards the end.
247  */
248 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
249 
250 /*
251  * Variables to indicate the livelist condense zthr func should wait at certain
252  * points for the livelist to be removed - used to test condense/destroy races
253  */
254 static int zfs_livelist_condense_zthr_pause = 0;
255 static int zfs_livelist_condense_sync_pause = 0;
256 
257 /*
258  * Variables to track whether or not condense cancellation has been
259  * triggered in testing.
260  */
261 static int zfs_livelist_condense_sync_cancel = 0;
262 static int zfs_livelist_condense_zthr_cancel = 0;
263 
264 /*
265  * Variable to track whether or not extra ALLOC blkptrs were added to a
266  * livelist entry while it was being condensed (caused by the way we track
267  * remapped blkptrs in dbuf_remap_impl)
268  */
269 static int zfs_livelist_condense_new_alloc = 0;
270 
271 /*
272  * ==========================================================================
273  * SPA properties routines
274  * ==========================================================================
275  */
276 
277 /*
278  * Add a (source=src, propname=propval) list to an nvlist.
279  */
280 static void
281 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
282     uint64_t intval, zprop_source_t src)
283 {
284 	const char *propname = zpool_prop_to_name(prop);
285 	nvlist_t *propval;
286 
287 	propval = fnvlist_alloc();
288 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
289 
290 	if (strval != NULL)
291 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
292 	else
293 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
294 
295 	fnvlist_add_nvlist(nvl, propname, propval);
296 	nvlist_free(propval);
297 }
298 
299 /*
300  * Get property values from the spa configuration.
301  */
302 static void
303 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
304 {
305 	vdev_t *rvd = spa->spa_root_vdev;
306 	dsl_pool_t *pool = spa->spa_dsl_pool;
307 	uint64_t size, alloc, cap, version;
308 	const zprop_source_t src = ZPROP_SRC_NONE;
309 	spa_config_dirent_t *dp;
310 	metaslab_class_t *mc = spa_normal_class(spa);
311 
312 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
313 
314 	if (rvd != NULL) {
315 		alloc = metaslab_class_get_alloc(mc);
316 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
318 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
319 
320 		size = metaslab_class_get_space(mc);
321 		size += metaslab_class_get_space(spa_special_class(spa));
322 		size += metaslab_class_get_space(spa_dedup_class(spa));
323 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
324 
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
328 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
329 		    size - alloc, src);
330 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
331 		    spa->spa_checkpoint_info.sci_dspace, src);
332 
333 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
334 		    metaslab_class_fragmentation(mc), src);
335 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
336 		    metaslab_class_expandable_space(mc), src);
337 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
338 		    (spa_mode(spa) == SPA_MODE_READ), src);
339 
340 		cap = (size == 0) ? 0 : (alloc * 100 / size);
341 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
342 
343 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
344 		    ddt_get_pool_dedup_ratio(spa), src);
345 
346 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
347 		    rvd->vdev_state, src);
348 
349 		version = spa_version(spa);
350 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
351 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
352 			    version, ZPROP_SRC_DEFAULT);
353 		} else {
354 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
355 			    version, ZPROP_SRC_LOCAL);
356 		}
357 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
358 		    NULL, spa_load_guid(spa), src);
359 	}
360 
361 	if (pool != NULL) {
362 		/*
363 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
364 		 * when opening pools before this version freedir will be NULL.
365 		 */
366 		if (pool->dp_free_dir != NULL) {
367 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
368 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
369 			    src);
370 		} else {
371 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
372 			    NULL, 0, src);
373 		}
374 
375 		if (pool->dp_leak_dir != NULL) {
376 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
377 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
378 			    src);
379 		} else {
380 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
381 			    NULL, 0, src);
382 		}
383 	}
384 
385 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
386 
387 	if (spa->spa_comment != NULL) {
388 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
389 		    0, ZPROP_SRC_LOCAL);
390 	}
391 
392 	if (spa->spa_compatibility != NULL) {
393 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
394 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
395 	}
396 
397 	if (spa->spa_root != NULL)
398 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
399 		    0, ZPROP_SRC_LOCAL);
400 
401 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
402 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
403 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
404 	} else {
405 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
406 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
407 	}
408 
409 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
410 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
411 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
412 	} else {
413 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
414 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
415 	}
416 
417 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
418 		if (dp->scd_path == NULL) {
419 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
420 			    "none", 0, ZPROP_SRC_LOCAL);
421 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
422 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
423 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
424 		}
425 	}
426 }
427 
428 /*
429  * Get zpool property values.
430  */
431 int
432 spa_prop_get(spa_t *spa, nvlist_t **nvp)
433 {
434 	objset_t *mos = spa->spa_meta_objset;
435 	zap_cursor_t zc;
436 	zap_attribute_t za;
437 	dsl_pool_t *dp;
438 	int err;
439 
440 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
441 	if (err)
442 		return (err);
443 
444 	dp = spa_get_dsl(spa);
445 	dsl_pool_config_enter(dp, FTAG);
446 	mutex_enter(&spa->spa_props_lock);
447 
448 	/*
449 	 * Get properties from the spa config.
450 	 */
451 	spa_prop_get_config(spa, nvp);
452 
453 	/* If no pool property object, no more prop to get. */
454 	if (mos == NULL || spa->spa_pool_props_object == 0)
455 		goto out;
456 
457 	/*
458 	 * Get properties from the MOS pool property object.
459 	 */
460 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
461 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
462 	    zap_cursor_advance(&zc)) {
463 		uint64_t intval = 0;
464 		char *strval = NULL;
465 		zprop_source_t src = ZPROP_SRC_DEFAULT;
466 		zpool_prop_t prop;
467 
468 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
469 			continue;
470 
471 		switch (za.za_integer_length) {
472 		case 8:
473 			/* integer property */
474 			if (za.za_first_integer !=
475 			    zpool_prop_default_numeric(prop))
476 				src = ZPROP_SRC_LOCAL;
477 
478 			if (prop == ZPOOL_PROP_BOOTFS) {
479 				dsl_dataset_t *ds = NULL;
480 
481 				err = dsl_dataset_hold_obj(dp,
482 				    za.za_first_integer, FTAG, &ds);
483 				if (err != 0)
484 					break;
485 
486 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
487 				    KM_SLEEP);
488 				dsl_dataset_name(ds, strval);
489 				dsl_dataset_rele(ds, FTAG);
490 			} else {
491 				strval = NULL;
492 				intval = za.za_first_integer;
493 			}
494 
495 			spa_prop_add_list(*nvp, prop, strval, intval, src);
496 
497 			if (strval != NULL)
498 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
499 
500 			break;
501 
502 		case 1:
503 			/* string property */
504 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
505 			err = zap_lookup(mos, spa->spa_pool_props_object,
506 			    za.za_name, 1, za.za_num_integers, strval);
507 			if (err) {
508 				kmem_free(strval, za.za_num_integers);
509 				break;
510 			}
511 			spa_prop_add_list(*nvp, prop, strval, 0, src);
512 			kmem_free(strval, za.za_num_integers);
513 			break;
514 
515 		default:
516 			break;
517 		}
518 	}
519 	zap_cursor_fini(&zc);
520 out:
521 	mutex_exit(&spa->spa_props_lock);
522 	dsl_pool_config_exit(dp, FTAG);
523 	if (err && err != ENOENT) {
524 		nvlist_free(*nvp);
525 		*nvp = NULL;
526 		return (err);
527 	}
528 
529 	return (0);
530 }
531 
532 /*
533  * Validate the given pool properties nvlist and modify the list
534  * for the property values to be set.
535  */
536 static int
537 spa_prop_validate(spa_t *spa, nvlist_t *props)
538 {
539 	nvpair_t *elem;
540 	int error = 0, reset_bootfs = 0;
541 	uint64_t objnum = 0;
542 	boolean_t has_feature = B_FALSE;
543 
544 	elem = NULL;
545 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
546 		uint64_t intval;
547 		char *strval, *slash, *check, *fname;
548 		const char *propname = nvpair_name(elem);
549 		zpool_prop_t prop = zpool_name_to_prop(propname);
550 
551 		switch (prop) {
552 		case ZPOOL_PROP_INVAL:
553 			if (!zpool_prop_feature(propname)) {
554 				error = SET_ERROR(EINVAL);
555 				break;
556 			}
557 
558 			/*
559 			 * Sanitize the input.
560 			 */
561 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
562 				error = SET_ERROR(EINVAL);
563 				break;
564 			}
565 
566 			if (nvpair_value_uint64(elem, &intval) != 0) {
567 				error = SET_ERROR(EINVAL);
568 				break;
569 			}
570 
571 			if (intval != 0) {
572 				error = SET_ERROR(EINVAL);
573 				break;
574 			}
575 
576 			fname = strchr(propname, '@') + 1;
577 			if (zfeature_lookup_name(fname, NULL) != 0) {
578 				error = SET_ERROR(EINVAL);
579 				break;
580 			}
581 
582 			has_feature = B_TRUE;
583 			break;
584 
585 		case ZPOOL_PROP_VERSION:
586 			error = nvpair_value_uint64(elem, &intval);
587 			if (!error &&
588 			    (intval < spa_version(spa) ||
589 			    intval > SPA_VERSION_BEFORE_FEATURES ||
590 			    has_feature))
591 				error = SET_ERROR(EINVAL);
592 			break;
593 
594 		case ZPOOL_PROP_DELEGATION:
595 		case ZPOOL_PROP_AUTOREPLACE:
596 		case ZPOOL_PROP_LISTSNAPS:
597 		case ZPOOL_PROP_AUTOEXPAND:
598 		case ZPOOL_PROP_AUTOTRIM:
599 			error = nvpair_value_uint64(elem, &intval);
600 			if (!error && intval > 1)
601 				error = SET_ERROR(EINVAL);
602 			break;
603 
604 		case ZPOOL_PROP_MULTIHOST:
605 			error = nvpair_value_uint64(elem, &intval);
606 			if (!error && intval > 1)
607 				error = SET_ERROR(EINVAL);
608 
609 			if (!error) {
610 				uint32_t hostid = zone_get_hostid(NULL);
611 				if (hostid)
612 					spa->spa_hostid = hostid;
613 				else
614 					error = SET_ERROR(ENOTSUP);
615 			}
616 
617 			break;
618 
619 		case ZPOOL_PROP_BOOTFS:
620 			/*
621 			 * If the pool version is less than SPA_VERSION_BOOTFS,
622 			 * or the pool is still being created (version == 0),
623 			 * the bootfs property cannot be set.
624 			 */
625 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
626 				error = SET_ERROR(ENOTSUP);
627 				break;
628 			}
629 
630 			/*
631 			 * Make sure the vdev config is bootable
632 			 */
633 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
634 				error = SET_ERROR(ENOTSUP);
635 				break;
636 			}
637 
638 			reset_bootfs = 1;
639 
640 			error = nvpair_value_string(elem, &strval);
641 
642 			if (!error) {
643 				objset_t *os;
644 
645 				if (strval == NULL || strval[0] == '\0') {
646 					objnum = zpool_prop_default_numeric(
647 					    ZPOOL_PROP_BOOTFS);
648 					break;
649 				}
650 
651 				error = dmu_objset_hold(strval, FTAG, &os);
652 				if (error != 0)
653 					break;
654 
655 				/* Must be ZPL. */
656 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
657 					error = SET_ERROR(ENOTSUP);
658 				} else {
659 					objnum = dmu_objset_id(os);
660 				}
661 				dmu_objset_rele(os, FTAG);
662 			}
663 			break;
664 
665 		case ZPOOL_PROP_FAILUREMODE:
666 			error = nvpair_value_uint64(elem, &intval);
667 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
668 				error = SET_ERROR(EINVAL);
669 
670 			/*
671 			 * This is a special case which only occurs when
672 			 * the pool has completely failed. This allows
673 			 * the user to change the in-core failmode property
674 			 * without syncing it out to disk (I/Os might
675 			 * currently be blocked). We do this by returning
676 			 * EIO to the caller (spa_prop_set) to trick it
677 			 * into thinking we encountered a property validation
678 			 * error.
679 			 */
680 			if (!error && spa_suspended(spa)) {
681 				spa->spa_failmode = intval;
682 				error = SET_ERROR(EIO);
683 			}
684 			break;
685 
686 		case ZPOOL_PROP_CACHEFILE:
687 			if ((error = nvpair_value_string(elem, &strval)) != 0)
688 				break;
689 
690 			if (strval[0] == '\0')
691 				break;
692 
693 			if (strcmp(strval, "none") == 0)
694 				break;
695 
696 			if (strval[0] != '/') {
697 				error = SET_ERROR(EINVAL);
698 				break;
699 			}
700 
701 			slash = strrchr(strval, '/');
702 			ASSERT(slash != NULL);
703 
704 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
705 			    strcmp(slash, "/..") == 0)
706 				error = SET_ERROR(EINVAL);
707 			break;
708 
709 		case ZPOOL_PROP_COMMENT:
710 			if ((error = nvpair_value_string(elem, &strval)) != 0)
711 				break;
712 			for (check = strval; *check != '\0'; check++) {
713 				if (!isprint(*check)) {
714 					error = SET_ERROR(EINVAL);
715 					break;
716 				}
717 			}
718 			if (strlen(strval) > ZPROP_MAX_COMMENT)
719 				error = SET_ERROR(E2BIG);
720 			break;
721 
722 		default:
723 			break;
724 		}
725 
726 		if (error)
727 			break;
728 	}
729 
730 	(void) nvlist_remove_all(props,
731 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
732 
733 	if (!error && reset_bootfs) {
734 		error = nvlist_remove(props,
735 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
736 
737 		if (!error) {
738 			error = nvlist_add_uint64(props,
739 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
740 		}
741 	}
742 
743 	return (error);
744 }
745 
746 void
747 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
748 {
749 	char *cachefile;
750 	spa_config_dirent_t *dp;
751 
752 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
753 	    &cachefile) != 0)
754 		return;
755 
756 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
757 	    KM_SLEEP);
758 
759 	if (cachefile[0] == '\0')
760 		dp->scd_path = spa_strdup(spa_config_path);
761 	else if (strcmp(cachefile, "none") == 0)
762 		dp->scd_path = NULL;
763 	else
764 		dp->scd_path = spa_strdup(cachefile);
765 
766 	list_insert_head(&spa->spa_config_list, dp);
767 	if (need_sync)
768 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
769 }
770 
771 int
772 spa_prop_set(spa_t *spa, nvlist_t *nvp)
773 {
774 	int error;
775 	nvpair_t *elem = NULL;
776 	boolean_t need_sync = B_FALSE;
777 
778 	if ((error = spa_prop_validate(spa, nvp)) != 0)
779 		return (error);
780 
781 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
782 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
783 
784 		if (prop == ZPOOL_PROP_CACHEFILE ||
785 		    prop == ZPOOL_PROP_ALTROOT ||
786 		    prop == ZPOOL_PROP_READONLY)
787 			continue;
788 
789 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
790 			uint64_t ver = 0;
791 
792 			if (prop == ZPOOL_PROP_VERSION) {
793 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
794 			} else {
795 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
796 				ver = SPA_VERSION_FEATURES;
797 				need_sync = B_TRUE;
798 			}
799 
800 			/* Save time if the version is already set. */
801 			if (ver == spa_version(spa))
802 				continue;
803 
804 			/*
805 			 * In addition to the pool directory object, we might
806 			 * create the pool properties object, the features for
807 			 * read object, the features for write object, or the
808 			 * feature descriptions object.
809 			 */
810 			error = dsl_sync_task(spa->spa_name, NULL,
811 			    spa_sync_version, &ver,
812 			    6, ZFS_SPACE_CHECK_RESERVED);
813 			if (error)
814 				return (error);
815 			continue;
816 		}
817 
818 		need_sync = B_TRUE;
819 		break;
820 	}
821 
822 	if (need_sync) {
823 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
824 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
825 	}
826 
827 	return (0);
828 }
829 
830 /*
831  * If the bootfs property value is dsobj, clear it.
832  */
833 void
834 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
835 {
836 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
837 		VERIFY(zap_remove(spa->spa_meta_objset,
838 		    spa->spa_pool_props_object,
839 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
840 		spa->spa_bootfs = 0;
841 	}
842 }
843 
844 static int
845 spa_change_guid_check(void *arg, dmu_tx_t *tx)
846 {
847 	uint64_t *newguid __maybe_unused = arg;
848 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
849 	vdev_t *rvd = spa->spa_root_vdev;
850 	uint64_t vdev_state;
851 
852 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
853 		int error = (spa_has_checkpoint(spa)) ?
854 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
855 		return (SET_ERROR(error));
856 	}
857 
858 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859 	vdev_state = rvd->vdev_state;
860 	spa_config_exit(spa, SCL_STATE, FTAG);
861 
862 	if (vdev_state != VDEV_STATE_HEALTHY)
863 		return (SET_ERROR(ENXIO));
864 
865 	ASSERT3U(spa_guid(spa), !=, *newguid);
866 
867 	return (0);
868 }
869 
870 static void
871 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
872 {
873 	uint64_t *newguid = arg;
874 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
875 	uint64_t oldguid;
876 	vdev_t *rvd = spa->spa_root_vdev;
877 
878 	oldguid = spa_guid(spa);
879 
880 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
881 	rvd->vdev_guid = *newguid;
882 	rvd->vdev_guid_sum += (*newguid - oldguid);
883 	vdev_config_dirty(rvd);
884 	spa_config_exit(spa, SCL_STATE, FTAG);
885 
886 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
887 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
888 }
889 
890 /*
891  * Change the GUID for the pool.  This is done so that we can later
892  * re-import a pool built from a clone of our own vdevs.  We will modify
893  * the root vdev's guid, our own pool guid, and then mark all of our
894  * vdevs dirty.  Note that we must make sure that all our vdevs are
895  * online when we do this, or else any vdevs that weren't present
896  * would be orphaned from our pool.  We are also going to issue a
897  * sysevent to update any watchers.
898  */
899 int
900 spa_change_guid(spa_t *spa)
901 {
902 	int error;
903 	uint64_t guid;
904 
905 	mutex_enter(&spa->spa_vdev_top_lock);
906 	mutex_enter(&spa_namespace_lock);
907 	guid = spa_generate_guid(NULL);
908 
909 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
910 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
911 
912 	if (error == 0) {
913 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
914 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
915 	}
916 
917 	mutex_exit(&spa_namespace_lock);
918 	mutex_exit(&spa->spa_vdev_top_lock);
919 
920 	return (error);
921 }
922 
923 /*
924  * ==========================================================================
925  * SPA state manipulation (open/create/destroy/import/export)
926  * ==========================================================================
927  */
928 
929 static int
930 spa_error_entry_compare(const void *a, const void *b)
931 {
932 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
933 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
934 	int ret;
935 
936 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
937 	    sizeof (zbookmark_phys_t));
938 
939 	return (TREE_ISIGN(ret));
940 }
941 
942 /*
943  * Utility function which retrieves copies of the current logs and
944  * re-initializes them in the process.
945  */
946 void
947 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
948 {
949 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
950 
951 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
952 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
953 
954 	avl_create(&spa->spa_errlist_scrub,
955 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
956 	    offsetof(spa_error_entry_t, se_avl));
957 	avl_create(&spa->spa_errlist_last,
958 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
959 	    offsetof(spa_error_entry_t, se_avl));
960 }
961 
962 static void
963 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
964 {
965 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
966 	enum zti_modes mode = ztip->zti_mode;
967 	uint_t value = ztip->zti_value;
968 	uint_t count = ztip->zti_count;
969 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970 	uint_t cpus, flags = TASKQ_DYNAMIC;
971 	boolean_t batch = B_FALSE;
972 
973 	switch (mode) {
974 	case ZTI_MODE_FIXED:
975 		ASSERT3U(value, >, 0);
976 		break;
977 
978 	case ZTI_MODE_BATCH:
979 		batch = B_TRUE;
980 		flags |= TASKQ_THREADS_CPU_PCT;
981 		value = MIN(zio_taskq_batch_pct, 100);
982 		break;
983 
984 	case ZTI_MODE_SCALE:
985 		flags |= TASKQ_THREADS_CPU_PCT;
986 		/*
987 		 * We want more taskqs to reduce lock contention, but we want
988 		 * less for better request ordering and CPU utilization.
989 		 */
990 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
991 		if (zio_taskq_batch_tpq > 0) {
992 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
993 			    zio_taskq_batch_tpq);
994 		} else {
995 			/*
996 			 * Prefer 6 threads per taskq, but no more taskqs
997 			 * than threads in them on large systems. For 80%:
998 			 *
999 			 *                 taskq   taskq   total
1000 			 * cpus    taskqs  percent threads threads
1001 			 * ------- ------- ------- ------- -------
1002 			 * 1       1       80%     1       1
1003 			 * 2       1       80%     1       1
1004 			 * 4       1       80%     3       3
1005 			 * 8       2       40%     3       6
1006 			 * 16      3       27%     4       12
1007 			 * 32      5       16%     5       25
1008 			 * 64      7       11%     7       49
1009 			 * 128     10      8%      10      100
1010 			 * 256     14      6%      15      210
1011 			 */
1012 			count = 1 + cpus / 6;
1013 			while (count * count > cpus)
1014 				count--;
1015 		}
1016 		/* Limit each taskq within 100% to not trigger assertion. */
1017 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1018 		value = (zio_taskq_batch_pct + count / 2) / count;
1019 		break;
1020 
1021 	case ZTI_MODE_NULL:
1022 		tqs->stqs_count = 0;
1023 		tqs->stqs_taskq = NULL;
1024 		return;
1025 
1026 	default:
1027 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1028 		    "spa_activate()",
1029 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1030 		break;
1031 	}
1032 
1033 	ASSERT3U(count, >, 0);
1034 	tqs->stqs_count = count;
1035 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1036 
1037 	for (uint_t i = 0; i < count; i++) {
1038 		taskq_t *tq;
1039 		char name[32];
1040 
1041 		if (count > 1)
1042 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1043 			    zio_type_name[t], zio_taskq_types[q], i);
1044 		else
1045 			(void) snprintf(name, sizeof (name), "%s_%s",
1046 			    zio_type_name[t], zio_taskq_types[q]);
1047 
1048 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1049 			if (batch)
1050 				flags |= TASKQ_DC_BATCH;
1051 
1052 			(void) zio_taskq_basedc;
1053 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1054 			    spa->spa_proc, zio_taskq_basedc, flags);
1055 		} else {
1056 			pri_t pri = maxclsyspri;
1057 			/*
1058 			 * The write issue taskq can be extremely CPU
1059 			 * intensive.  Run it at slightly less important
1060 			 * priority than the other taskqs.
1061 			 *
1062 			 * Under Linux and FreeBSD this means incrementing
1063 			 * the priority value as opposed to platforms like
1064 			 * illumos where it should be decremented.
1065 			 *
1066 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1067 			 * are equal then a difference between them is
1068 			 * insignificant.
1069 			 */
1070 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1071 #if defined(__linux__)
1072 				pri++;
1073 #elif defined(__FreeBSD__)
1074 				pri += 4;
1075 #else
1076 #error "unknown OS"
1077 #endif
1078 			}
1079 			tq = taskq_create_proc(name, value, pri, 50,
1080 			    INT_MAX, spa->spa_proc, flags);
1081 		}
1082 
1083 		tqs->stqs_taskq[i] = tq;
1084 	}
1085 }
1086 
1087 static void
1088 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1089 {
1090 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1091 
1092 	if (tqs->stqs_taskq == NULL) {
1093 		ASSERT3U(tqs->stqs_count, ==, 0);
1094 		return;
1095 	}
1096 
1097 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1098 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1099 		taskq_destroy(tqs->stqs_taskq[i]);
1100 	}
1101 
1102 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1103 	tqs->stqs_taskq = NULL;
1104 }
1105 
1106 /*
1107  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1108  * Note that a type may have multiple discrete taskqs to avoid lock contention
1109  * on the taskq itself. In that case we choose which taskq at random by using
1110  * the low bits of gethrtime().
1111  */
1112 void
1113 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1114     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1115 {
1116 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1117 	taskq_t *tq;
1118 
1119 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1120 	ASSERT3U(tqs->stqs_count, !=, 0);
1121 
1122 	if (tqs->stqs_count == 1) {
1123 		tq = tqs->stqs_taskq[0];
1124 	} else {
1125 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1126 	}
1127 
1128 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1129 }
1130 
1131 /*
1132  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1133  */
1134 void
1135 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1136     task_func_t *func, void *arg, uint_t flags)
1137 {
1138 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1139 	taskq_t *tq;
1140 	taskqid_t id;
1141 
1142 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1143 	ASSERT3U(tqs->stqs_count, !=, 0);
1144 
1145 	if (tqs->stqs_count == 1) {
1146 		tq = tqs->stqs_taskq[0];
1147 	} else {
1148 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1149 	}
1150 
1151 	id = taskq_dispatch(tq, func, arg, flags);
1152 	if (id)
1153 		taskq_wait_id(tq, id);
1154 }
1155 
1156 static void
1157 spa_create_zio_taskqs(spa_t *spa)
1158 {
1159 	for (int t = 0; t < ZIO_TYPES; t++) {
1160 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1161 			spa_taskqs_init(spa, t, q);
1162 		}
1163 	}
1164 }
1165 
1166 /*
1167  * Disabled until spa_thread() can be adapted for Linux.
1168  */
1169 #undef HAVE_SPA_THREAD
1170 
1171 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1172 static void
1173 spa_thread(void *arg)
1174 {
1175 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1176 	callb_cpr_t cprinfo;
1177 
1178 	spa_t *spa = arg;
1179 	user_t *pu = PTOU(curproc);
1180 
1181 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1182 	    spa->spa_name);
1183 
1184 	ASSERT(curproc != &p0);
1185 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1186 	    "zpool-%s", spa->spa_name);
1187 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1188 
1189 	/* bind this thread to the requested psrset */
1190 	if (zio_taskq_psrset_bind != PS_NONE) {
1191 		pool_lock();
1192 		mutex_enter(&cpu_lock);
1193 		mutex_enter(&pidlock);
1194 		mutex_enter(&curproc->p_lock);
1195 
1196 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1197 		    0, NULL, NULL) == 0)  {
1198 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1199 		} else {
1200 			cmn_err(CE_WARN,
1201 			    "Couldn't bind process for zfs pool \"%s\" to "
1202 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1203 		}
1204 
1205 		mutex_exit(&curproc->p_lock);
1206 		mutex_exit(&pidlock);
1207 		mutex_exit(&cpu_lock);
1208 		pool_unlock();
1209 	}
1210 
1211 	if (zio_taskq_sysdc) {
1212 		sysdc_thread_enter(curthread, 100, 0);
1213 	}
1214 
1215 	spa->spa_proc = curproc;
1216 	spa->spa_did = curthread->t_did;
1217 
1218 	spa_create_zio_taskqs(spa);
1219 
1220 	mutex_enter(&spa->spa_proc_lock);
1221 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1222 
1223 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1224 	cv_broadcast(&spa->spa_proc_cv);
1225 
1226 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1227 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1228 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1229 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1230 
1231 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1232 	spa->spa_proc_state = SPA_PROC_GONE;
1233 	spa->spa_proc = &p0;
1234 	cv_broadcast(&spa->spa_proc_cv);
1235 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1236 
1237 	mutex_enter(&curproc->p_lock);
1238 	lwp_exit();
1239 }
1240 #endif
1241 
1242 /*
1243  * Activate an uninitialized pool.
1244  */
1245 static void
1246 spa_activate(spa_t *spa, spa_mode_t mode)
1247 {
1248 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1249 
1250 	spa->spa_state = POOL_STATE_ACTIVE;
1251 	spa->spa_mode = mode;
1252 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1253 
1254 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1255 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1256 	spa->spa_embedded_log_class =
1257 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1258 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1259 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1260 
1261 	/* Try to create a covering process */
1262 	mutex_enter(&spa->spa_proc_lock);
1263 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1264 	ASSERT(spa->spa_proc == &p0);
1265 	spa->spa_did = 0;
1266 
1267 	(void) spa_create_process;
1268 #ifdef HAVE_SPA_THREAD
1269 	/* Only create a process if we're going to be around a while. */
1270 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1271 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1272 		    NULL, 0) == 0) {
1273 			spa->spa_proc_state = SPA_PROC_CREATED;
1274 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1275 				cv_wait(&spa->spa_proc_cv,
1276 				    &spa->spa_proc_lock);
1277 			}
1278 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1279 			ASSERT(spa->spa_proc != &p0);
1280 			ASSERT(spa->spa_did != 0);
1281 		} else {
1282 #ifdef _KERNEL
1283 			cmn_err(CE_WARN,
1284 			    "Couldn't create process for zfs pool \"%s\"\n",
1285 			    spa->spa_name);
1286 #endif
1287 		}
1288 	}
1289 #endif /* HAVE_SPA_THREAD */
1290 	mutex_exit(&spa->spa_proc_lock);
1291 
1292 	/* If we didn't create a process, we need to create our taskqs. */
1293 	if (spa->spa_proc == &p0) {
1294 		spa_create_zio_taskqs(spa);
1295 	}
1296 
1297 	for (size_t i = 0; i < TXG_SIZE; i++) {
1298 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1299 		    ZIO_FLAG_CANFAIL);
1300 	}
1301 
1302 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1303 	    offsetof(vdev_t, vdev_config_dirty_node));
1304 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1305 	    offsetof(objset_t, os_evicting_node));
1306 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1307 	    offsetof(vdev_t, vdev_state_dirty_node));
1308 
1309 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1310 	    offsetof(struct vdev, vdev_txg_node));
1311 
1312 	avl_create(&spa->spa_errlist_scrub,
1313 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1314 	    offsetof(spa_error_entry_t, se_avl));
1315 	avl_create(&spa->spa_errlist_last,
1316 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1317 	    offsetof(spa_error_entry_t, se_avl));
1318 	avl_create(&spa->spa_errlist_healed,
1319 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1320 	    offsetof(spa_error_entry_t, se_avl));
1321 
1322 	spa_activate_os(spa);
1323 
1324 	spa_keystore_init(&spa->spa_keystore);
1325 
1326 	/*
1327 	 * This taskq is used to perform zvol-minor-related tasks
1328 	 * asynchronously. This has several advantages, including easy
1329 	 * resolution of various deadlocks.
1330 	 *
1331 	 * The taskq must be single threaded to ensure tasks are always
1332 	 * processed in the order in which they were dispatched.
1333 	 *
1334 	 * A taskq per pool allows one to keep the pools independent.
1335 	 * This way if one pool is suspended, it will not impact another.
1336 	 *
1337 	 * The preferred location to dispatch a zvol minor task is a sync
1338 	 * task. In this context, there is easy access to the spa_t and minimal
1339 	 * error handling is required because the sync task must succeed.
1340 	 */
1341 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1342 	    1, INT_MAX, 0);
1343 
1344 	/*
1345 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1346 	 * pool traverse code from monopolizing the global (and limited)
1347 	 * system_taskq by inappropriately scheduling long running tasks on it.
1348 	 */
1349 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1350 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1351 
1352 	/*
1353 	 * The taskq to upgrade datasets in this pool. Currently used by
1354 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1355 	 */
1356 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1357 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1358 }
1359 
1360 /*
1361  * Opposite of spa_activate().
1362  */
1363 static void
1364 spa_deactivate(spa_t *spa)
1365 {
1366 	ASSERT(spa->spa_sync_on == B_FALSE);
1367 	ASSERT(spa->spa_dsl_pool == NULL);
1368 	ASSERT(spa->spa_root_vdev == NULL);
1369 	ASSERT(spa->spa_async_zio_root == NULL);
1370 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1371 
1372 	spa_evicting_os_wait(spa);
1373 
1374 	if (spa->spa_zvol_taskq) {
1375 		taskq_destroy(spa->spa_zvol_taskq);
1376 		spa->spa_zvol_taskq = NULL;
1377 	}
1378 
1379 	if (spa->spa_prefetch_taskq) {
1380 		taskq_destroy(spa->spa_prefetch_taskq);
1381 		spa->spa_prefetch_taskq = NULL;
1382 	}
1383 
1384 	if (spa->spa_upgrade_taskq) {
1385 		taskq_destroy(spa->spa_upgrade_taskq);
1386 		spa->spa_upgrade_taskq = NULL;
1387 	}
1388 
1389 	txg_list_destroy(&spa->spa_vdev_txg_list);
1390 
1391 	list_destroy(&spa->spa_config_dirty_list);
1392 	list_destroy(&spa->spa_evicting_os_list);
1393 	list_destroy(&spa->spa_state_dirty_list);
1394 
1395 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1396 
1397 	for (int t = 0; t < ZIO_TYPES; t++) {
1398 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1399 			spa_taskqs_fini(spa, t, q);
1400 		}
1401 	}
1402 
1403 	for (size_t i = 0; i < TXG_SIZE; i++) {
1404 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1405 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1406 		spa->spa_txg_zio[i] = NULL;
1407 	}
1408 
1409 	metaslab_class_destroy(spa->spa_normal_class);
1410 	spa->spa_normal_class = NULL;
1411 
1412 	metaslab_class_destroy(spa->spa_log_class);
1413 	spa->spa_log_class = NULL;
1414 
1415 	metaslab_class_destroy(spa->spa_embedded_log_class);
1416 	spa->spa_embedded_log_class = NULL;
1417 
1418 	metaslab_class_destroy(spa->spa_special_class);
1419 	spa->spa_special_class = NULL;
1420 
1421 	metaslab_class_destroy(spa->spa_dedup_class);
1422 	spa->spa_dedup_class = NULL;
1423 
1424 	/*
1425 	 * If this was part of an import or the open otherwise failed, we may
1426 	 * still have errors left in the queues.  Empty them just in case.
1427 	 */
1428 	spa_errlog_drain(spa);
1429 	avl_destroy(&spa->spa_errlist_scrub);
1430 	avl_destroy(&spa->spa_errlist_last);
1431 	avl_destroy(&spa->spa_errlist_healed);
1432 
1433 	spa_keystore_fini(&spa->spa_keystore);
1434 
1435 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1436 
1437 	mutex_enter(&spa->spa_proc_lock);
1438 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1439 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1440 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1441 		cv_broadcast(&spa->spa_proc_cv);
1442 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1443 			ASSERT(spa->spa_proc != &p0);
1444 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1445 		}
1446 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1447 		spa->spa_proc_state = SPA_PROC_NONE;
1448 	}
1449 	ASSERT(spa->spa_proc == &p0);
1450 	mutex_exit(&spa->spa_proc_lock);
1451 
1452 	/*
1453 	 * We want to make sure spa_thread() has actually exited the ZFS
1454 	 * module, so that the module can't be unloaded out from underneath
1455 	 * it.
1456 	 */
1457 	if (spa->spa_did != 0) {
1458 		thread_join(spa->spa_did);
1459 		spa->spa_did = 0;
1460 	}
1461 
1462 	spa_deactivate_os(spa);
1463 
1464 }
1465 
1466 /*
1467  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1468  * will create all the necessary vdevs in the appropriate layout, with each vdev
1469  * in the CLOSED state.  This will prep the pool before open/creation/import.
1470  * All vdev validation is done by the vdev_alloc() routine.
1471  */
1472 int
1473 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1474     uint_t id, int atype)
1475 {
1476 	nvlist_t **child;
1477 	uint_t children;
1478 	int error;
1479 
1480 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1481 		return (error);
1482 
1483 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1484 		return (0);
1485 
1486 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1487 	    &child, &children);
1488 
1489 	if (error == ENOENT)
1490 		return (0);
1491 
1492 	if (error) {
1493 		vdev_free(*vdp);
1494 		*vdp = NULL;
1495 		return (SET_ERROR(EINVAL));
1496 	}
1497 
1498 	for (int c = 0; c < children; c++) {
1499 		vdev_t *vd;
1500 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1501 		    atype)) != 0) {
1502 			vdev_free(*vdp);
1503 			*vdp = NULL;
1504 			return (error);
1505 		}
1506 	}
1507 
1508 	ASSERT(*vdp != NULL);
1509 
1510 	return (0);
1511 }
1512 
1513 static boolean_t
1514 spa_should_flush_logs_on_unload(spa_t *spa)
1515 {
1516 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1517 		return (B_FALSE);
1518 
1519 	if (!spa_writeable(spa))
1520 		return (B_FALSE);
1521 
1522 	if (!spa->spa_sync_on)
1523 		return (B_FALSE);
1524 
1525 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1526 		return (B_FALSE);
1527 
1528 	if (zfs_keep_log_spacemaps_at_export)
1529 		return (B_FALSE);
1530 
1531 	return (B_TRUE);
1532 }
1533 
1534 /*
1535  * Opens a transaction that will set the flag that will instruct
1536  * spa_sync to attempt to flush all the metaslabs for that txg.
1537  */
1538 static void
1539 spa_unload_log_sm_flush_all(spa_t *spa)
1540 {
1541 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1542 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1543 
1544 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1545 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1546 
1547 	dmu_tx_commit(tx);
1548 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1549 }
1550 
1551 static void
1552 spa_unload_log_sm_metadata(spa_t *spa)
1553 {
1554 	void *cookie = NULL;
1555 	spa_log_sm_t *sls;
1556 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1557 	    &cookie)) != NULL) {
1558 		VERIFY0(sls->sls_mscount);
1559 		kmem_free(sls, sizeof (spa_log_sm_t));
1560 	}
1561 
1562 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1563 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1564 		VERIFY0(e->lse_mscount);
1565 		list_remove(&spa->spa_log_summary, e);
1566 		kmem_free(e, sizeof (log_summary_entry_t));
1567 	}
1568 
1569 	spa->spa_unflushed_stats.sus_nblocks = 0;
1570 	spa->spa_unflushed_stats.sus_memused = 0;
1571 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1572 }
1573 
1574 static void
1575 spa_destroy_aux_threads(spa_t *spa)
1576 {
1577 	if (spa->spa_condense_zthr != NULL) {
1578 		zthr_destroy(spa->spa_condense_zthr);
1579 		spa->spa_condense_zthr = NULL;
1580 	}
1581 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1582 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1583 		spa->spa_checkpoint_discard_zthr = NULL;
1584 	}
1585 	if (spa->spa_livelist_delete_zthr != NULL) {
1586 		zthr_destroy(spa->spa_livelist_delete_zthr);
1587 		spa->spa_livelist_delete_zthr = NULL;
1588 	}
1589 	if (spa->spa_livelist_condense_zthr != NULL) {
1590 		zthr_destroy(spa->spa_livelist_condense_zthr);
1591 		spa->spa_livelist_condense_zthr = NULL;
1592 	}
1593 }
1594 
1595 /*
1596  * Opposite of spa_load().
1597  */
1598 static void
1599 spa_unload(spa_t *spa)
1600 {
1601 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1602 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1603 
1604 	spa_import_progress_remove(spa_guid(spa));
1605 	spa_load_note(spa, "UNLOADING");
1606 
1607 	spa_wake_waiters(spa);
1608 
1609 	/*
1610 	 * If we have set the spa_final_txg, we have already performed the
1611 	 * tasks below in spa_export_common(). We should not redo it here since
1612 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1613 	 */
1614 	if (spa->spa_final_txg == UINT64_MAX) {
1615 		/*
1616 		 * If the log space map feature is enabled and the pool is
1617 		 * getting exported (but not destroyed), we want to spend some
1618 		 * time flushing as many metaslabs as we can in an attempt to
1619 		 * destroy log space maps and save import time.
1620 		 */
1621 		if (spa_should_flush_logs_on_unload(spa))
1622 			spa_unload_log_sm_flush_all(spa);
1623 
1624 		/*
1625 		 * Stop async tasks.
1626 		 */
1627 		spa_async_suspend(spa);
1628 
1629 		if (spa->spa_root_vdev) {
1630 			vdev_t *root_vdev = spa->spa_root_vdev;
1631 			vdev_initialize_stop_all(root_vdev,
1632 			    VDEV_INITIALIZE_ACTIVE);
1633 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1634 			vdev_autotrim_stop_all(spa);
1635 			vdev_rebuild_stop_all(spa);
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Stop syncing.
1641 	 */
1642 	if (spa->spa_sync_on) {
1643 		txg_sync_stop(spa->spa_dsl_pool);
1644 		spa->spa_sync_on = B_FALSE;
1645 	}
1646 
1647 	/*
1648 	 * This ensures that there is no async metaslab prefetching
1649 	 * while we attempt to unload the spa.
1650 	 */
1651 	if (spa->spa_root_vdev != NULL) {
1652 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1653 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1654 			if (vc->vdev_mg != NULL)
1655 				taskq_wait(vc->vdev_mg->mg_taskq);
1656 		}
1657 	}
1658 
1659 	if (spa->spa_mmp.mmp_thread)
1660 		mmp_thread_stop(spa);
1661 
1662 	/*
1663 	 * Wait for any outstanding async I/O to complete.
1664 	 */
1665 	if (spa->spa_async_zio_root != NULL) {
1666 		for (int i = 0; i < max_ncpus; i++)
1667 			(void) zio_wait(spa->spa_async_zio_root[i]);
1668 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1669 		spa->spa_async_zio_root = NULL;
1670 	}
1671 
1672 	if (spa->spa_vdev_removal != NULL) {
1673 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1674 		spa->spa_vdev_removal = NULL;
1675 	}
1676 
1677 	spa_destroy_aux_threads(spa);
1678 
1679 	spa_condense_fini(spa);
1680 
1681 	bpobj_close(&spa->spa_deferred_bpobj);
1682 
1683 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1684 
1685 	/*
1686 	 * Close all vdevs.
1687 	 */
1688 	if (spa->spa_root_vdev)
1689 		vdev_free(spa->spa_root_vdev);
1690 	ASSERT(spa->spa_root_vdev == NULL);
1691 
1692 	/*
1693 	 * Close the dsl pool.
1694 	 */
1695 	if (spa->spa_dsl_pool) {
1696 		dsl_pool_close(spa->spa_dsl_pool);
1697 		spa->spa_dsl_pool = NULL;
1698 		spa->spa_meta_objset = NULL;
1699 	}
1700 
1701 	ddt_unload(spa);
1702 	spa_unload_log_sm_metadata(spa);
1703 
1704 	/*
1705 	 * Drop and purge level 2 cache
1706 	 */
1707 	spa_l2cache_drop(spa);
1708 
1709 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1710 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1711 	if (spa->spa_spares.sav_vdevs) {
1712 		kmem_free(spa->spa_spares.sav_vdevs,
1713 		    spa->spa_spares.sav_count * sizeof (void *));
1714 		spa->spa_spares.sav_vdevs = NULL;
1715 	}
1716 	if (spa->spa_spares.sav_config) {
1717 		nvlist_free(spa->spa_spares.sav_config);
1718 		spa->spa_spares.sav_config = NULL;
1719 	}
1720 	spa->spa_spares.sav_count = 0;
1721 
1722 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1723 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1724 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1725 	}
1726 	if (spa->spa_l2cache.sav_vdevs) {
1727 		kmem_free(spa->spa_l2cache.sav_vdevs,
1728 		    spa->spa_l2cache.sav_count * sizeof (void *));
1729 		spa->spa_l2cache.sav_vdevs = NULL;
1730 	}
1731 	if (spa->spa_l2cache.sav_config) {
1732 		nvlist_free(spa->spa_l2cache.sav_config);
1733 		spa->spa_l2cache.sav_config = NULL;
1734 	}
1735 	spa->spa_l2cache.sav_count = 0;
1736 
1737 	spa->spa_async_suspended = 0;
1738 
1739 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1740 
1741 	if (spa->spa_comment != NULL) {
1742 		spa_strfree(spa->spa_comment);
1743 		spa->spa_comment = NULL;
1744 	}
1745 	if (spa->spa_compatibility != NULL) {
1746 		spa_strfree(spa->spa_compatibility);
1747 		spa->spa_compatibility = NULL;
1748 	}
1749 
1750 	spa_config_exit(spa, SCL_ALL, spa);
1751 }
1752 
1753 /*
1754  * Load (or re-load) the current list of vdevs describing the active spares for
1755  * this pool.  When this is called, we have some form of basic information in
1756  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1757  * then re-generate a more complete list including status information.
1758  */
1759 void
1760 spa_load_spares(spa_t *spa)
1761 {
1762 	nvlist_t **spares;
1763 	uint_t nspares;
1764 	int i;
1765 	vdev_t *vd, *tvd;
1766 
1767 #ifndef _KERNEL
1768 	/*
1769 	 * zdb opens both the current state of the pool and the
1770 	 * checkpointed state (if present), with a different spa_t.
1771 	 *
1772 	 * As spare vdevs are shared among open pools, we skip loading
1773 	 * them when we load the checkpointed state of the pool.
1774 	 */
1775 	if (!spa_writeable(spa))
1776 		return;
1777 #endif
1778 
1779 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1780 
1781 	/*
1782 	 * First, close and free any existing spare vdevs.
1783 	 */
1784 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1785 		vd = spa->spa_spares.sav_vdevs[i];
1786 
1787 		/* Undo the call to spa_activate() below */
1788 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1789 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1790 			spa_spare_remove(tvd);
1791 		vdev_close(vd);
1792 		vdev_free(vd);
1793 	}
1794 
1795 	if (spa->spa_spares.sav_vdevs)
1796 		kmem_free(spa->spa_spares.sav_vdevs,
1797 		    spa->spa_spares.sav_count * sizeof (void *));
1798 
1799 	if (spa->spa_spares.sav_config == NULL)
1800 		nspares = 0;
1801 	else
1802 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1803 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1804 
1805 	spa->spa_spares.sav_count = (int)nspares;
1806 	spa->spa_spares.sav_vdevs = NULL;
1807 
1808 	if (nspares == 0)
1809 		return;
1810 
1811 	/*
1812 	 * Construct the array of vdevs, opening them to get status in the
1813 	 * process.   For each spare, there is potentially two different vdev_t
1814 	 * structures associated with it: one in the list of spares (used only
1815 	 * for basic validation purposes) and one in the active vdev
1816 	 * configuration (if it's spared in).  During this phase we open and
1817 	 * validate each vdev on the spare list.  If the vdev also exists in the
1818 	 * active configuration, then we also mark this vdev as an active spare.
1819 	 */
1820 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1821 	    KM_SLEEP);
1822 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1823 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1824 		    VDEV_ALLOC_SPARE) == 0);
1825 		ASSERT(vd != NULL);
1826 
1827 		spa->spa_spares.sav_vdevs[i] = vd;
1828 
1829 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1830 		    B_FALSE)) != NULL) {
1831 			if (!tvd->vdev_isspare)
1832 				spa_spare_add(tvd);
1833 
1834 			/*
1835 			 * We only mark the spare active if we were successfully
1836 			 * able to load the vdev.  Otherwise, importing a pool
1837 			 * with a bad active spare would result in strange
1838 			 * behavior, because multiple pool would think the spare
1839 			 * is actively in use.
1840 			 *
1841 			 * There is a vulnerability here to an equally bizarre
1842 			 * circumstance, where a dead active spare is later
1843 			 * brought back to life (onlined or otherwise).  Given
1844 			 * the rarity of this scenario, and the extra complexity
1845 			 * it adds, we ignore the possibility.
1846 			 */
1847 			if (!vdev_is_dead(tvd))
1848 				spa_spare_activate(tvd);
1849 		}
1850 
1851 		vd->vdev_top = vd;
1852 		vd->vdev_aux = &spa->spa_spares;
1853 
1854 		if (vdev_open(vd) != 0)
1855 			continue;
1856 
1857 		if (vdev_validate_aux(vd) == 0)
1858 			spa_spare_add(vd);
1859 	}
1860 
1861 	/*
1862 	 * Recompute the stashed list of spares, with status information
1863 	 * this time.
1864 	 */
1865 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1866 
1867 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1868 	    KM_SLEEP);
1869 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1870 		spares[i] = vdev_config_generate(spa,
1871 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1872 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1873 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1874 	    spa->spa_spares.sav_count);
1875 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1876 		nvlist_free(spares[i]);
1877 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1878 }
1879 
1880 /*
1881  * Load (or re-load) the current list of vdevs describing the active l2cache for
1882  * this pool.  When this is called, we have some form of basic information in
1883  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1884  * then re-generate a more complete list including status information.
1885  * Devices which are already active have their details maintained, and are
1886  * not re-opened.
1887  */
1888 void
1889 spa_load_l2cache(spa_t *spa)
1890 {
1891 	nvlist_t **l2cache = NULL;
1892 	uint_t nl2cache;
1893 	int i, j, oldnvdevs;
1894 	uint64_t guid;
1895 	vdev_t *vd, **oldvdevs, **newvdevs;
1896 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1897 
1898 #ifndef _KERNEL
1899 	/*
1900 	 * zdb opens both the current state of the pool and the
1901 	 * checkpointed state (if present), with a different spa_t.
1902 	 *
1903 	 * As L2 caches are part of the ARC which is shared among open
1904 	 * pools, we skip loading them when we load the checkpointed
1905 	 * state of the pool.
1906 	 */
1907 	if (!spa_writeable(spa))
1908 		return;
1909 #endif
1910 
1911 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1912 
1913 	oldvdevs = sav->sav_vdevs;
1914 	oldnvdevs = sav->sav_count;
1915 	sav->sav_vdevs = NULL;
1916 	sav->sav_count = 0;
1917 
1918 	if (sav->sav_config == NULL) {
1919 		nl2cache = 0;
1920 		newvdevs = NULL;
1921 		goto out;
1922 	}
1923 
1924 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1925 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1926 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1927 
1928 	/*
1929 	 * Process new nvlist of vdevs.
1930 	 */
1931 	for (i = 0; i < nl2cache; i++) {
1932 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1933 
1934 		newvdevs[i] = NULL;
1935 		for (j = 0; j < oldnvdevs; j++) {
1936 			vd = oldvdevs[j];
1937 			if (vd != NULL && guid == vd->vdev_guid) {
1938 				/*
1939 				 * Retain previous vdev for add/remove ops.
1940 				 */
1941 				newvdevs[i] = vd;
1942 				oldvdevs[j] = NULL;
1943 				break;
1944 			}
1945 		}
1946 
1947 		if (newvdevs[i] == NULL) {
1948 			/*
1949 			 * Create new vdev
1950 			 */
1951 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1952 			    VDEV_ALLOC_L2CACHE) == 0);
1953 			ASSERT(vd != NULL);
1954 			newvdevs[i] = vd;
1955 
1956 			/*
1957 			 * Commit this vdev as an l2cache device,
1958 			 * even if it fails to open.
1959 			 */
1960 			spa_l2cache_add(vd);
1961 
1962 			vd->vdev_top = vd;
1963 			vd->vdev_aux = sav;
1964 
1965 			spa_l2cache_activate(vd);
1966 
1967 			if (vdev_open(vd) != 0)
1968 				continue;
1969 
1970 			(void) vdev_validate_aux(vd);
1971 
1972 			if (!vdev_is_dead(vd))
1973 				l2arc_add_vdev(spa, vd);
1974 
1975 			/*
1976 			 * Upon cache device addition to a pool or pool
1977 			 * creation with a cache device or if the header
1978 			 * of the device is invalid we issue an async
1979 			 * TRIM command for the whole device which will
1980 			 * execute if l2arc_trim_ahead > 0.
1981 			 */
1982 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1983 		}
1984 	}
1985 
1986 	sav->sav_vdevs = newvdevs;
1987 	sav->sav_count = (int)nl2cache;
1988 
1989 	/*
1990 	 * Recompute the stashed list of l2cache devices, with status
1991 	 * information this time.
1992 	 */
1993 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
1994 
1995 	if (sav->sav_count > 0)
1996 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1997 		    KM_SLEEP);
1998 	for (i = 0; i < sav->sav_count; i++)
1999 		l2cache[i] = vdev_config_generate(spa,
2000 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2001 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2002 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2003 
2004 out:
2005 	/*
2006 	 * Purge vdevs that were dropped
2007 	 */
2008 	for (i = 0; i < oldnvdevs; i++) {
2009 		uint64_t pool;
2010 
2011 		vd = oldvdevs[i];
2012 		if (vd != NULL) {
2013 			ASSERT(vd->vdev_isl2cache);
2014 
2015 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2016 			    pool != 0ULL && l2arc_vdev_present(vd))
2017 				l2arc_remove_vdev(vd);
2018 			vdev_clear_stats(vd);
2019 			vdev_free(vd);
2020 		}
2021 	}
2022 
2023 	if (oldvdevs)
2024 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2025 
2026 	for (i = 0; i < sav->sav_count; i++)
2027 		nvlist_free(l2cache[i]);
2028 	if (sav->sav_count)
2029 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2030 }
2031 
2032 static int
2033 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2034 {
2035 	dmu_buf_t *db;
2036 	char *packed = NULL;
2037 	size_t nvsize = 0;
2038 	int error;
2039 	*value = NULL;
2040 
2041 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2042 	if (error)
2043 		return (error);
2044 
2045 	nvsize = *(uint64_t *)db->db_data;
2046 	dmu_buf_rele(db, FTAG);
2047 
2048 	packed = vmem_alloc(nvsize, KM_SLEEP);
2049 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2050 	    DMU_READ_PREFETCH);
2051 	if (error == 0)
2052 		error = nvlist_unpack(packed, nvsize, value, 0);
2053 	vmem_free(packed, nvsize);
2054 
2055 	return (error);
2056 }
2057 
2058 /*
2059  * Concrete top-level vdevs that are not missing and are not logs. At every
2060  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2061  */
2062 static uint64_t
2063 spa_healthy_core_tvds(spa_t *spa)
2064 {
2065 	vdev_t *rvd = spa->spa_root_vdev;
2066 	uint64_t tvds = 0;
2067 
2068 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2069 		vdev_t *vd = rvd->vdev_child[i];
2070 		if (vd->vdev_islog)
2071 			continue;
2072 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2073 			tvds++;
2074 	}
2075 
2076 	return (tvds);
2077 }
2078 
2079 /*
2080  * Checks to see if the given vdev could not be opened, in which case we post a
2081  * sysevent to notify the autoreplace code that the device has been removed.
2082  */
2083 static void
2084 spa_check_removed(vdev_t *vd)
2085 {
2086 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2087 		spa_check_removed(vd->vdev_child[c]);
2088 
2089 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2090 	    vdev_is_concrete(vd)) {
2091 		zfs_post_autoreplace(vd->vdev_spa, vd);
2092 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2093 	}
2094 }
2095 
2096 static int
2097 spa_check_for_missing_logs(spa_t *spa)
2098 {
2099 	vdev_t *rvd = spa->spa_root_vdev;
2100 
2101 	/*
2102 	 * If we're doing a normal import, then build up any additional
2103 	 * diagnostic information about missing log devices.
2104 	 * We'll pass this up to the user for further processing.
2105 	 */
2106 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2107 		nvlist_t **child, *nv;
2108 		uint64_t idx = 0;
2109 
2110 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2111 		    KM_SLEEP);
2112 		nv = fnvlist_alloc();
2113 
2114 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2115 			vdev_t *tvd = rvd->vdev_child[c];
2116 
2117 			/*
2118 			 * We consider a device as missing only if it failed
2119 			 * to open (i.e. offline or faulted is not considered
2120 			 * as missing).
2121 			 */
2122 			if (tvd->vdev_islog &&
2123 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2124 				child[idx++] = vdev_config_generate(spa, tvd,
2125 				    B_FALSE, VDEV_CONFIG_MISSING);
2126 			}
2127 		}
2128 
2129 		if (idx > 0) {
2130 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2131 			    (const nvlist_t * const *)child, idx);
2132 			fnvlist_add_nvlist(spa->spa_load_info,
2133 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2134 
2135 			for (uint64_t i = 0; i < idx; i++)
2136 				nvlist_free(child[i]);
2137 		}
2138 		nvlist_free(nv);
2139 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2140 
2141 		if (idx > 0) {
2142 			spa_load_failed(spa, "some log devices are missing");
2143 			vdev_dbgmsg_print_tree(rvd, 2);
2144 			return (SET_ERROR(ENXIO));
2145 		}
2146 	} else {
2147 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2148 			vdev_t *tvd = rvd->vdev_child[c];
2149 
2150 			if (tvd->vdev_islog &&
2151 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2152 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2153 				spa_load_note(spa, "some log devices are "
2154 				    "missing, ZIL is dropped.");
2155 				vdev_dbgmsg_print_tree(rvd, 2);
2156 				break;
2157 			}
2158 		}
2159 	}
2160 
2161 	return (0);
2162 }
2163 
2164 /*
2165  * Check for missing log devices
2166  */
2167 static boolean_t
2168 spa_check_logs(spa_t *spa)
2169 {
2170 	boolean_t rv = B_FALSE;
2171 	dsl_pool_t *dp = spa_get_dsl(spa);
2172 
2173 	switch (spa->spa_log_state) {
2174 	default:
2175 		break;
2176 	case SPA_LOG_MISSING:
2177 		/* need to recheck in case slog has been restored */
2178 	case SPA_LOG_UNKNOWN:
2179 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2180 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2181 		if (rv)
2182 			spa_set_log_state(spa, SPA_LOG_MISSING);
2183 		break;
2184 	}
2185 	return (rv);
2186 }
2187 
2188 /*
2189  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2190  */
2191 static boolean_t
2192 spa_passivate_log(spa_t *spa)
2193 {
2194 	vdev_t *rvd = spa->spa_root_vdev;
2195 	boolean_t slog_found = B_FALSE;
2196 
2197 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2198 
2199 	for (int c = 0; c < rvd->vdev_children; c++) {
2200 		vdev_t *tvd = rvd->vdev_child[c];
2201 
2202 		if (tvd->vdev_islog) {
2203 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2204 			metaslab_group_passivate(tvd->vdev_mg);
2205 			slog_found = B_TRUE;
2206 		}
2207 	}
2208 
2209 	return (slog_found);
2210 }
2211 
2212 /*
2213  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2214  */
2215 static void
2216 spa_activate_log(spa_t *spa)
2217 {
2218 	vdev_t *rvd = spa->spa_root_vdev;
2219 
2220 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2221 
2222 	for (int c = 0; c < rvd->vdev_children; c++) {
2223 		vdev_t *tvd = rvd->vdev_child[c];
2224 
2225 		if (tvd->vdev_islog) {
2226 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2227 			metaslab_group_activate(tvd->vdev_mg);
2228 		}
2229 	}
2230 }
2231 
2232 int
2233 spa_reset_logs(spa_t *spa)
2234 {
2235 	int error;
2236 
2237 	error = dmu_objset_find(spa_name(spa), zil_reset,
2238 	    NULL, DS_FIND_CHILDREN);
2239 	if (error == 0) {
2240 		/*
2241 		 * We successfully offlined the log device, sync out the
2242 		 * current txg so that the "stubby" block can be removed
2243 		 * by zil_sync().
2244 		 */
2245 		txg_wait_synced(spa->spa_dsl_pool, 0);
2246 	}
2247 	return (error);
2248 }
2249 
2250 static void
2251 spa_aux_check_removed(spa_aux_vdev_t *sav)
2252 {
2253 	for (int i = 0; i < sav->sav_count; i++)
2254 		spa_check_removed(sav->sav_vdevs[i]);
2255 }
2256 
2257 void
2258 spa_claim_notify(zio_t *zio)
2259 {
2260 	spa_t *spa = zio->io_spa;
2261 
2262 	if (zio->io_error)
2263 		return;
2264 
2265 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2266 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2267 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2268 	mutex_exit(&spa->spa_props_lock);
2269 }
2270 
2271 typedef struct spa_load_error {
2272 	boolean_t	sle_verify_data;
2273 	uint64_t	sle_meta_count;
2274 	uint64_t	sle_data_count;
2275 } spa_load_error_t;
2276 
2277 static void
2278 spa_load_verify_done(zio_t *zio)
2279 {
2280 	blkptr_t *bp = zio->io_bp;
2281 	spa_load_error_t *sle = zio->io_private;
2282 	dmu_object_type_t type = BP_GET_TYPE(bp);
2283 	int error = zio->io_error;
2284 	spa_t *spa = zio->io_spa;
2285 
2286 	abd_free(zio->io_abd);
2287 	if (error) {
2288 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2289 		    type != DMU_OT_INTENT_LOG)
2290 			atomic_inc_64(&sle->sle_meta_count);
2291 		else
2292 			atomic_inc_64(&sle->sle_data_count);
2293 	}
2294 
2295 	mutex_enter(&spa->spa_scrub_lock);
2296 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2297 	cv_broadcast(&spa->spa_scrub_io_cv);
2298 	mutex_exit(&spa->spa_scrub_lock);
2299 }
2300 
2301 /*
2302  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2303  * By default, we set it to 1/16th of the arc.
2304  */
2305 static int spa_load_verify_shift = 4;
2306 static int spa_load_verify_metadata = B_TRUE;
2307 static int spa_load_verify_data = B_TRUE;
2308 
2309 static int
2310 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2311     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2312 {
2313 	zio_t *rio = arg;
2314 	spa_load_error_t *sle = rio->io_private;
2315 
2316 	(void) zilog, (void) dnp;
2317 
2318 	/*
2319 	 * Note: normally this routine will not be called if
2320 	 * spa_load_verify_metadata is not set.  However, it may be useful
2321 	 * to manually set the flag after the traversal has begun.
2322 	 */
2323 	if (!spa_load_verify_metadata)
2324 		return (0);
2325 
2326 	/*
2327 	 * Sanity check the block pointer in order to detect obvious damage
2328 	 * before using the contents in subsequent checks or in zio_read().
2329 	 * When damaged consider it to be a metadata error since we cannot
2330 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2331 	 */
2332 	if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2333 		atomic_inc_64(&sle->sle_meta_count);
2334 		return (0);
2335 	}
2336 
2337 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2338 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2339 		return (0);
2340 
2341 	if (!BP_IS_METADATA(bp) &&
2342 	    (!spa_load_verify_data || !sle->sle_verify_data))
2343 		return (0);
2344 
2345 	uint64_t maxinflight_bytes =
2346 	    arc_target_bytes() >> spa_load_verify_shift;
2347 	size_t size = BP_GET_PSIZE(bp);
2348 
2349 	mutex_enter(&spa->spa_scrub_lock);
2350 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2351 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2352 	spa->spa_load_verify_bytes += size;
2353 	mutex_exit(&spa->spa_scrub_lock);
2354 
2355 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2356 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2357 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2358 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2359 	return (0);
2360 }
2361 
2362 static int
2363 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2364 {
2365 	(void) dp, (void) arg;
2366 
2367 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2368 		return (SET_ERROR(ENAMETOOLONG));
2369 
2370 	return (0);
2371 }
2372 
2373 static int
2374 spa_load_verify(spa_t *spa)
2375 {
2376 	zio_t *rio;
2377 	spa_load_error_t sle = { 0 };
2378 	zpool_load_policy_t policy;
2379 	boolean_t verify_ok = B_FALSE;
2380 	int error = 0;
2381 
2382 	zpool_get_load_policy(spa->spa_config, &policy);
2383 
2384 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2385 	    policy.zlp_maxmeta == UINT64_MAX)
2386 		return (0);
2387 
2388 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2389 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2390 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2391 	    DS_FIND_CHILDREN);
2392 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2393 	if (error != 0)
2394 		return (error);
2395 
2396 	/*
2397 	 * Verify data only if we are rewinding or error limit was set.
2398 	 * Otherwise nothing except dbgmsg care about it to waste time.
2399 	 */
2400 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2401 	    (policy.zlp_maxdata < UINT64_MAX);
2402 
2403 	rio = zio_root(spa, NULL, &sle,
2404 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2405 
2406 	if (spa_load_verify_metadata) {
2407 		if (spa->spa_extreme_rewind) {
2408 			spa_load_note(spa, "performing a complete scan of the "
2409 			    "pool since extreme rewind is on. This may take "
2410 			    "a very long time.\n  (spa_load_verify_data=%u, "
2411 			    "spa_load_verify_metadata=%u)",
2412 			    spa_load_verify_data, spa_load_verify_metadata);
2413 		}
2414 
2415 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2416 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2417 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2418 	}
2419 
2420 	(void) zio_wait(rio);
2421 	ASSERT0(spa->spa_load_verify_bytes);
2422 
2423 	spa->spa_load_meta_errors = sle.sle_meta_count;
2424 	spa->spa_load_data_errors = sle.sle_data_count;
2425 
2426 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2427 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2428 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2429 		    (u_longlong_t)sle.sle_data_count);
2430 	}
2431 
2432 	if (spa_load_verify_dryrun ||
2433 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2434 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2435 		int64_t loss = 0;
2436 
2437 		verify_ok = B_TRUE;
2438 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2439 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2440 
2441 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2442 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2443 		    spa->spa_load_txg_ts);
2444 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2445 		    loss);
2446 		fnvlist_add_uint64(spa->spa_load_info,
2447 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2448 		fnvlist_add_uint64(spa->spa_load_info,
2449 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2450 	} else {
2451 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2452 	}
2453 
2454 	if (spa_load_verify_dryrun)
2455 		return (0);
2456 
2457 	if (error) {
2458 		if (error != ENXIO && error != EIO)
2459 			error = SET_ERROR(EIO);
2460 		return (error);
2461 	}
2462 
2463 	return (verify_ok ? 0 : EIO);
2464 }
2465 
2466 /*
2467  * Find a value in the pool props object.
2468  */
2469 static void
2470 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2471 {
2472 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2473 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2474 }
2475 
2476 /*
2477  * Find a value in the pool directory object.
2478  */
2479 static int
2480 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2481 {
2482 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2483 	    name, sizeof (uint64_t), 1, val);
2484 
2485 	if (error != 0 && (error != ENOENT || log_enoent)) {
2486 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2487 		    "[error=%d]", name, error);
2488 	}
2489 
2490 	return (error);
2491 }
2492 
2493 static int
2494 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2495 {
2496 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2497 	return (SET_ERROR(err));
2498 }
2499 
2500 boolean_t
2501 spa_livelist_delete_check(spa_t *spa)
2502 {
2503 	return (spa->spa_livelists_to_delete != 0);
2504 }
2505 
2506 static boolean_t
2507 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2508 {
2509 	(void) z;
2510 	spa_t *spa = arg;
2511 	return (spa_livelist_delete_check(spa));
2512 }
2513 
2514 static int
2515 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2516 {
2517 	spa_t *spa = arg;
2518 	zio_free(spa, tx->tx_txg, bp);
2519 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2520 	    -bp_get_dsize_sync(spa, bp),
2521 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2522 	return (0);
2523 }
2524 
2525 static int
2526 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2527 {
2528 	int err;
2529 	zap_cursor_t zc;
2530 	zap_attribute_t za;
2531 	zap_cursor_init(&zc, os, zap_obj);
2532 	err = zap_cursor_retrieve(&zc, &za);
2533 	zap_cursor_fini(&zc);
2534 	if (err == 0)
2535 		*llp = za.za_first_integer;
2536 	return (err);
2537 }
2538 
2539 /*
2540  * Components of livelist deletion that must be performed in syncing
2541  * context: freeing block pointers and updating the pool-wide data
2542  * structures to indicate how much work is left to do
2543  */
2544 typedef struct sublist_delete_arg {
2545 	spa_t *spa;
2546 	dsl_deadlist_t *ll;
2547 	uint64_t key;
2548 	bplist_t *to_free;
2549 } sublist_delete_arg_t;
2550 
2551 static void
2552 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2553 {
2554 	sublist_delete_arg_t *sda = arg;
2555 	spa_t *spa = sda->spa;
2556 	dsl_deadlist_t *ll = sda->ll;
2557 	uint64_t key = sda->key;
2558 	bplist_t *to_free = sda->to_free;
2559 
2560 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2561 	dsl_deadlist_remove_entry(ll, key, tx);
2562 }
2563 
2564 typedef struct livelist_delete_arg {
2565 	spa_t *spa;
2566 	uint64_t ll_obj;
2567 	uint64_t zap_obj;
2568 } livelist_delete_arg_t;
2569 
2570 static void
2571 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2572 {
2573 	livelist_delete_arg_t *lda = arg;
2574 	spa_t *spa = lda->spa;
2575 	uint64_t ll_obj = lda->ll_obj;
2576 	uint64_t zap_obj = lda->zap_obj;
2577 	objset_t *mos = spa->spa_meta_objset;
2578 	uint64_t count;
2579 
2580 	/* free the livelist and decrement the feature count */
2581 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2582 	dsl_deadlist_free(mos, ll_obj, tx);
2583 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2584 	VERIFY0(zap_count(mos, zap_obj, &count));
2585 	if (count == 0) {
2586 		/* no more livelists to delete */
2587 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2588 		    DMU_POOL_DELETED_CLONES, tx));
2589 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2590 		spa->spa_livelists_to_delete = 0;
2591 		spa_notify_waiters(spa);
2592 	}
2593 }
2594 
2595 /*
2596  * Load in the value for the livelist to be removed and open it. Then,
2597  * load its first sublist and determine which block pointers should actually
2598  * be freed. Then, call a synctask which performs the actual frees and updates
2599  * the pool-wide livelist data.
2600  */
2601 static void
2602 spa_livelist_delete_cb(void *arg, zthr_t *z)
2603 {
2604 	spa_t *spa = arg;
2605 	uint64_t ll_obj = 0, count;
2606 	objset_t *mos = spa->spa_meta_objset;
2607 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2608 	/*
2609 	 * Determine the next livelist to delete. This function should only
2610 	 * be called if there is at least one deleted clone.
2611 	 */
2612 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2613 	VERIFY0(zap_count(mos, ll_obj, &count));
2614 	if (count > 0) {
2615 		dsl_deadlist_t *ll;
2616 		dsl_deadlist_entry_t *dle;
2617 		bplist_t to_free;
2618 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2619 		dsl_deadlist_open(ll, mos, ll_obj);
2620 		dle = dsl_deadlist_first(ll);
2621 		ASSERT3P(dle, !=, NULL);
2622 		bplist_create(&to_free);
2623 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2624 		    z, NULL);
2625 		if (err == 0) {
2626 			sublist_delete_arg_t sync_arg = {
2627 			    .spa = spa,
2628 			    .ll = ll,
2629 			    .key = dle->dle_mintxg,
2630 			    .to_free = &to_free
2631 			};
2632 			zfs_dbgmsg("deleting sublist (id %llu) from"
2633 			    " livelist %llu, %lld remaining",
2634 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2635 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2636 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2637 			    sublist_delete_sync, &sync_arg, 0,
2638 			    ZFS_SPACE_CHECK_DESTROY));
2639 		} else {
2640 			VERIFY3U(err, ==, EINTR);
2641 		}
2642 		bplist_clear(&to_free);
2643 		bplist_destroy(&to_free);
2644 		dsl_deadlist_close(ll);
2645 		kmem_free(ll, sizeof (dsl_deadlist_t));
2646 	} else {
2647 		livelist_delete_arg_t sync_arg = {
2648 		    .spa = spa,
2649 		    .ll_obj = ll_obj,
2650 		    .zap_obj = zap_obj
2651 		};
2652 		zfs_dbgmsg("deletion of livelist %llu completed",
2653 		    (u_longlong_t)ll_obj);
2654 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2655 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2656 	}
2657 }
2658 
2659 static void
2660 spa_start_livelist_destroy_thread(spa_t *spa)
2661 {
2662 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2663 	spa->spa_livelist_delete_zthr =
2664 	    zthr_create("z_livelist_destroy",
2665 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2666 	    minclsyspri);
2667 }
2668 
2669 typedef struct livelist_new_arg {
2670 	bplist_t *allocs;
2671 	bplist_t *frees;
2672 } livelist_new_arg_t;
2673 
2674 static int
2675 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2676     dmu_tx_t *tx)
2677 {
2678 	ASSERT(tx == NULL);
2679 	livelist_new_arg_t *lna = arg;
2680 	if (bp_freed) {
2681 		bplist_append(lna->frees, bp);
2682 	} else {
2683 		bplist_append(lna->allocs, bp);
2684 		zfs_livelist_condense_new_alloc++;
2685 	}
2686 	return (0);
2687 }
2688 
2689 typedef struct livelist_condense_arg {
2690 	spa_t *spa;
2691 	bplist_t to_keep;
2692 	uint64_t first_size;
2693 	uint64_t next_size;
2694 } livelist_condense_arg_t;
2695 
2696 static void
2697 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2698 {
2699 	livelist_condense_arg_t *lca = arg;
2700 	spa_t *spa = lca->spa;
2701 	bplist_t new_frees;
2702 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2703 
2704 	/* Have we been cancelled? */
2705 	if (spa->spa_to_condense.cancelled) {
2706 		zfs_livelist_condense_sync_cancel++;
2707 		goto out;
2708 	}
2709 
2710 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2711 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2712 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2713 
2714 	/*
2715 	 * It's possible that the livelist was changed while the zthr was
2716 	 * running. Therefore, we need to check for new blkptrs in the two
2717 	 * entries being condensed and continue to track them in the livelist.
2718 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2719 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2720 	 * we need to sort them into two different bplists.
2721 	 */
2722 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2723 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2724 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2725 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2726 
2727 	bplist_create(&new_frees);
2728 	livelist_new_arg_t new_bps = {
2729 	    .allocs = &lca->to_keep,
2730 	    .frees = &new_frees,
2731 	};
2732 
2733 	if (cur_first_size > lca->first_size) {
2734 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2735 		    livelist_track_new_cb, &new_bps, lca->first_size));
2736 	}
2737 	if (cur_next_size > lca->next_size) {
2738 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2739 		    livelist_track_new_cb, &new_bps, lca->next_size));
2740 	}
2741 
2742 	dsl_deadlist_clear_entry(first, ll, tx);
2743 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2744 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2745 
2746 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2747 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2748 	bplist_destroy(&new_frees);
2749 
2750 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2751 	dsl_dataset_name(ds, dsname);
2752 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2753 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2754 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2755 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2756 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2757 	    (u_longlong_t)cur_next_size,
2758 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2759 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2760 out:
2761 	dmu_buf_rele(ds->ds_dbuf, spa);
2762 	spa->spa_to_condense.ds = NULL;
2763 	bplist_clear(&lca->to_keep);
2764 	bplist_destroy(&lca->to_keep);
2765 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2766 	spa->spa_to_condense.syncing = B_FALSE;
2767 }
2768 
2769 static void
2770 spa_livelist_condense_cb(void *arg, zthr_t *t)
2771 {
2772 	while (zfs_livelist_condense_zthr_pause &&
2773 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2774 		delay(1);
2775 
2776 	spa_t *spa = arg;
2777 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2778 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2779 	uint64_t first_size, next_size;
2780 
2781 	livelist_condense_arg_t *lca =
2782 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2783 	bplist_create(&lca->to_keep);
2784 
2785 	/*
2786 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2787 	 * so we have minimal work in syncing context to condense.
2788 	 *
2789 	 * We save bpobj sizes (first_size and next_size) to use later in
2790 	 * syncing context to determine if entries were added to these sublists
2791 	 * while in open context. This is possible because the clone is still
2792 	 * active and open for normal writes and we want to make sure the new,
2793 	 * unprocessed blockpointers are inserted into the livelist normally.
2794 	 *
2795 	 * Note that dsl_process_sub_livelist() both stores the size number of
2796 	 * blockpointers and iterates over them while the bpobj's lock held, so
2797 	 * the sizes returned to us are consistent which what was actually
2798 	 * processed.
2799 	 */
2800 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2801 	    &first_size);
2802 	if (err == 0)
2803 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2804 		    t, &next_size);
2805 
2806 	if (err == 0) {
2807 		while (zfs_livelist_condense_sync_pause &&
2808 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2809 			delay(1);
2810 
2811 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2812 		dmu_tx_mark_netfree(tx);
2813 		dmu_tx_hold_space(tx, 1);
2814 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2815 		if (err == 0) {
2816 			/*
2817 			 * Prevent the condense zthr restarting before
2818 			 * the synctask completes.
2819 			 */
2820 			spa->spa_to_condense.syncing = B_TRUE;
2821 			lca->spa = spa;
2822 			lca->first_size = first_size;
2823 			lca->next_size = next_size;
2824 			dsl_sync_task_nowait(spa_get_dsl(spa),
2825 			    spa_livelist_condense_sync, lca, tx);
2826 			dmu_tx_commit(tx);
2827 			return;
2828 		}
2829 	}
2830 	/*
2831 	 * Condensing can not continue: either it was externally stopped or
2832 	 * we were unable to assign to a tx because the pool has run out of
2833 	 * space. In the second case, we'll just end up trying to condense
2834 	 * again in a later txg.
2835 	 */
2836 	ASSERT(err != 0);
2837 	bplist_clear(&lca->to_keep);
2838 	bplist_destroy(&lca->to_keep);
2839 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2840 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2841 	spa->spa_to_condense.ds = NULL;
2842 	if (err == EINTR)
2843 		zfs_livelist_condense_zthr_cancel++;
2844 }
2845 
2846 /*
2847  * Check that there is something to condense but that a condense is not
2848  * already in progress and that condensing has not been cancelled.
2849  */
2850 static boolean_t
2851 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2852 {
2853 	(void) z;
2854 	spa_t *spa = arg;
2855 	if ((spa->spa_to_condense.ds != NULL) &&
2856 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2857 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2858 		return (B_TRUE);
2859 	}
2860 	return (B_FALSE);
2861 }
2862 
2863 static void
2864 spa_start_livelist_condensing_thread(spa_t *spa)
2865 {
2866 	spa->spa_to_condense.ds = NULL;
2867 	spa->spa_to_condense.first = NULL;
2868 	spa->spa_to_condense.next = NULL;
2869 	spa->spa_to_condense.syncing = B_FALSE;
2870 	spa->spa_to_condense.cancelled = B_FALSE;
2871 
2872 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2873 	spa->spa_livelist_condense_zthr =
2874 	    zthr_create("z_livelist_condense",
2875 	    spa_livelist_condense_cb_check,
2876 	    spa_livelist_condense_cb, spa, minclsyspri);
2877 }
2878 
2879 static void
2880 spa_spawn_aux_threads(spa_t *spa)
2881 {
2882 	ASSERT(spa_writeable(spa));
2883 
2884 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2885 
2886 	spa_start_indirect_condensing_thread(spa);
2887 	spa_start_livelist_destroy_thread(spa);
2888 	spa_start_livelist_condensing_thread(spa);
2889 
2890 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2891 	spa->spa_checkpoint_discard_zthr =
2892 	    zthr_create("z_checkpoint_discard",
2893 	    spa_checkpoint_discard_thread_check,
2894 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2895 }
2896 
2897 /*
2898  * Fix up config after a partly-completed split.  This is done with the
2899  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2900  * pool have that entry in their config, but only the splitting one contains
2901  * a list of all the guids of the vdevs that are being split off.
2902  *
2903  * This function determines what to do with that list: either rejoin
2904  * all the disks to the pool, or complete the splitting process.  To attempt
2905  * the rejoin, each disk that is offlined is marked online again, and
2906  * we do a reopen() call.  If the vdev label for every disk that was
2907  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2908  * then we call vdev_split() on each disk, and complete the split.
2909  *
2910  * Otherwise we leave the config alone, with all the vdevs in place in
2911  * the original pool.
2912  */
2913 static void
2914 spa_try_repair(spa_t *spa, nvlist_t *config)
2915 {
2916 	uint_t extracted;
2917 	uint64_t *glist;
2918 	uint_t i, gcount;
2919 	nvlist_t *nvl;
2920 	vdev_t **vd;
2921 	boolean_t attempt_reopen;
2922 
2923 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2924 		return;
2925 
2926 	/* check that the config is complete */
2927 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2928 	    &glist, &gcount) != 0)
2929 		return;
2930 
2931 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2932 
2933 	/* attempt to online all the vdevs & validate */
2934 	attempt_reopen = B_TRUE;
2935 	for (i = 0; i < gcount; i++) {
2936 		if (glist[i] == 0)	/* vdev is hole */
2937 			continue;
2938 
2939 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2940 		if (vd[i] == NULL) {
2941 			/*
2942 			 * Don't bother attempting to reopen the disks;
2943 			 * just do the split.
2944 			 */
2945 			attempt_reopen = B_FALSE;
2946 		} else {
2947 			/* attempt to re-online it */
2948 			vd[i]->vdev_offline = B_FALSE;
2949 		}
2950 	}
2951 
2952 	if (attempt_reopen) {
2953 		vdev_reopen(spa->spa_root_vdev);
2954 
2955 		/* check each device to see what state it's in */
2956 		for (extracted = 0, i = 0; i < gcount; i++) {
2957 			if (vd[i] != NULL &&
2958 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2959 				break;
2960 			++extracted;
2961 		}
2962 	}
2963 
2964 	/*
2965 	 * If every disk has been moved to the new pool, or if we never
2966 	 * even attempted to look at them, then we split them off for
2967 	 * good.
2968 	 */
2969 	if (!attempt_reopen || gcount == extracted) {
2970 		for (i = 0; i < gcount; i++)
2971 			if (vd[i] != NULL)
2972 				vdev_split(vd[i]);
2973 		vdev_reopen(spa->spa_root_vdev);
2974 	}
2975 
2976 	kmem_free(vd, gcount * sizeof (vdev_t *));
2977 }
2978 
2979 static int
2980 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2981 {
2982 	const char *ereport = FM_EREPORT_ZFS_POOL;
2983 	int error;
2984 
2985 	spa->spa_load_state = state;
2986 	(void) spa_import_progress_set_state(spa_guid(spa),
2987 	    spa_load_state(spa));
2988 
2989 	gethrestime(&spa->spa_loaded_ts);
2990 	error = spa_load_impl(spa, type, &ereport);
2991 
2992 	/*
2993 	 * Don't count references from objsets that are already closed
2994 	 * and are making their way through the eviction process.
2995 	 */
2996 	spa_evicting_os_wait(spa);
2997 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2998 	if (error) {
2999 		if (error != EEXIST) {
3000 			spa->spa_loaded_ts.tv_sec = 0;
3001 			spa->spa_loaded_ts.tv_nsec = 0;
3002 		}
3003 		if (error != EBADF) {
3004 			(void) zfs_ereport_post(ereport, spa,
3005 			    NULL, NULL, NULL, 0);
3006 		}
3007 	}
3008 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3009 	spa->spa_ena = 0;
3010 
3011 	(void) spa_import_progress_set_state(spa_guid(spa),
3012 	    spa_load_state(spa));
3013 
3014 	return (error);
3015 }
3016 
3017 #ifdef ZFS_DEBUG
3018 /*
3019  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3020  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3021  * spa's per-vdev ZAP list.
3022  */
3023 static uint64_t
3024 vdev_count_verify_zaps(vdev_t *vd)
3025 {
3026 	spa_t *spa = vd->vdev_spa;
3027 	uint64_t total = 0;
3028 
3029 	if (vd->vdev_top_zap != 0) {
3030 		total++;
3031 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3032 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3033 	}
3034 	if (vd->vdev_leaf_zap != 0) {
3035 		total++;
3036 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3037 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3038 	}
3039 
3040 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3041 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3042 	}
3043 
3044 	return (total);
3045 }
3046 #else
3047 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3048 #endif
3049 
3050 /*
3051  * Determine whether the activity check is required.
3052  */
3053 static boolean_t
3054 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3055     nvlist_t *config)
3056 {
3057 	uint64_t state = 0;
3058 	uint64_t hostid = 0;
3059 	uint64_t tryconfig_txg = 0;
3060 	uint64_t tryconfig_timestamp = 0;
3061 	uint16_t tryconfig_mmp_seq = 0;
3062 	nvlist_t *nvinfo;
3063 
3064 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3065 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3066 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3067 		    &tryconfig_txg);
3068 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3069 		    &tryconfig_timestamp);
3070 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3071 		    &tryconfig_mmp_seq);
3072 	}
3073 
3074 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3075 
3076 	/*
3077 	 * Disable the MMP activity check - This is used by zdb which
3078 	 * is intended to be used on potentially active pools.
3079 	 */
3080 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3081 		return (B_FALSE);
3082 
3083 	/*
3084 	 * Skip the activity check when the MMP feature is disabled.
3085 	 */
3086 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3087 		return (B_FALSE);
3088 
3089 	/*
3090 	 * If the tryconfig_ values are nonzero, they are the results of an
3091 	 * earlier tryimport.  If they all match the uberblock we just found,
3092 	 * then the pool has not changed and we return false so we do not test
3093 	 * a second time.
3094 	 */
3095 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3096 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3097 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3098 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3099 		return (B_FALSE);
3100 
3101 	/*
3102 	 * Allow the activity check to be skipped when importing the pool
3103 	 * on the same host which last imported it.  Since the hostid from
3104 	 * configuration may be stale use the one read from the label.
3105 	 */
3106 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3107 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3108 
3109 	if (hostid == spa_get_hostid(spa))
3110 		return (B_FALSE);
3111 
3112 	/*
3113 	 * Skip the activity test when the pool was cleanly exported.
3114 	 */
3115 	if (state != POOL_STATE_ACTIVE)
3116 		return (B_FALSE);
3117 
3118 	return (B_TRUE);
3119 }
3120 
3121 /*
3122  * Nanoseconds the activity check must watch for changes on-disk.
3123  */
3124 static uint64_t
3125 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3126 {
3127 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3128 	uint64_t multihost_interval = MSEC2NSEC(
3129 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3130 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3131 	    multihost_interval);
3132 
3133 	/*
3134 	 * Local tunables determine a minimum duration except for the case
3135 	 * where we know when the remote host will suspend the pool if MMP
3136 	 * writes do not land.
3137 	 *
3138 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3139 	 * these cases and times.
3140 	 */
3141 
3142 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3143 
3144 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3145 	    MMP_FAIL_INT(ub) > 0) {
3146 
3147 		/* MMP on remote host will suspend pool after failed writes */
3148 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3149 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3150 
3151 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3152 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3153 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3154 		    (u_longlong_t)MMP_FAIL_INT(ub),
3155 		    (u_longlong_t)MMP_INTERVAL(ub),
3156 		    (u_longlong_t)import_intervals);
3157 
3158 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3159 	    MMP_FAIL_INT(ub) == 0) {
3160 
3161 		/* MMP on remote host will never suspend pool */
3162 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3163 		    ub->ub_mmp_delay) * import_intervals);
3164 
3165 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3166 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3167 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3168 		    (u_longlong_t)MMP_INTERVAL(ub),
3169 		    (u_longlong_t)ub->ub_mmp_delay,
3170 		    (u_longlong_t)import_intervals);
3171 
3172 	} else if (MMP_VALID(ub)) {
3173 		/*
3174 		 * zfs-0.7 compatibility case
3175 		 */
3176 
3177 		import_delay = MAX(import_delay, (multihost_interval +
3178 		    ub->ub_mmp_delay) * import_intervals);
3179 
3180 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3181 		    "import_intervals=%llu leaves=%u",
3182 		    (u_longlong_t)import_delay,
3183 		    (u_longlong_t)ub->ub_mmp_delay,
3184 		    (u_longlong_t)import_intervals,
3185 		    vdev_count_leaves(spa));
3186 	} else {
3187 		/* Using local tunings is the only reasonable option */
3188 		zfs_dbgmsg("pool last imported on non-MMP aware "
3189 		    "host using import_delay=%llu multihost_interval=%llu "
3190 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3191 		    (u_longlong_t)multihost_interval,
3192 		    (u_longlong_t)import_intervals);
3193 	}
3194 
3195 	return (import_delay);
3196 }
3197 
3198 /*
3199  * Perform the import activity check.  If the user canceled the import or
3200  * we detected activity then fail.
3201  */
3202 static int
3203 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3204 {
3205 	uint64_t txg = ub->ub_txg;
3206 	uint64_t timestamp = ub->ub_timestamp;
3207 	uint64_t mmp_config = ub->ub_mmp_config;
3208 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3209 	uint64_t import_delay;
3210 	hrtime_t import_expire;
3211 	nvlist_t *mmp_label = NULL;
3212 	vdev_t *rvd = spa->spa_root_vdev;
3213 	kcondvar_t cv;
3214 	kmutex_t mtx;
3215 	int error = 0;
3216 
3217 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3218 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3219 	mutex_enter(&mtx);
3220 
3221 	/*
3222 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3223 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3224 	 * the pool is known to be active on another host.
3225 	 *
3226 	 * Otherwise, the pool might be in use on another host.  Check for
3227 	 * changes in the uberblocks on disk if necessary.
3228 	 */
3229 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3230 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3231 		    ZPOOL_CONFIG_LOAD_INFO);
3232 
3233 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3234 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3235 			vdev_uberblock_load(rvd, ub, &mmp_label);
3236 			error = SET_ERROR(EREMOTEIO);
3237 			goto out;
3238 		}
3239 	}
3240 
3241 	import_delay = spa_activity_check_duration(spa, ub);
3242 
3243 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3244 	import_delay += import_delay * random_in_range(250) / 1000;
3245 
3246 	import_expire = gethrtime() + import_delay;
3247 
3248 	while (gethrtime() < import_expire) {
3249 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3250 		    NSEC2SEC(import_expire - gethrtime()));
3251 
3252 		vdev_uberblock_load(rvd, ub, &mmp_label);
3253 
3254 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3255 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3256 			zfs_dbgmsg("multihost activity detected "
3257 			    "txg %llu ub_txg  %llu "
3258 			    "timestamp %llu ub_timestamp  %llu "
3259 			    "mmp_config %#llx ub_mmp_config %#llx",
3260 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3261 			    (u_longlong_t)timestamp,
3262 			    (u_longlong_t)ub->ub_timestamp,
3263 			    (u_longlong_t)mmp_config,
3264 			    (u_longlong_t)ub->ub_mmp_config);
3265 
3266 			error = SET_ERROR(EREMOTEIO);
3267 			break;
3268 		}
3269 
3270 		if (mmp_label) {
3271 			nvlist_free(mmp_label);
3272 			mmp_label = NULL;
3273 		}
3274 
3275 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3276 		if (error != -1) {
3277 			error = SET_ERROR(EINTR);
3278 			break;
3279 		}
3280 		error = 0;
3281 	}
3282 
3283 out:
3284 	mutex_exit(&mtx);
3285 	mutex_destroy(&mtx);
3286 	cv_destroy(&cv);
3287 
3288 	/*
3289 	 * If the pool is determined to be active store the status in the
3290 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3291 	 * available from configuration read from disk store them as well.
3292 	 * This allows 'zpool import' to generate a more useful message.
3293 	 *
3294 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3295 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3296 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3297 	 */
3298 	if (error == EREMOTEIO) {
3299 		const char *hostname = "<unknown>";
3300 		uint64_t hostid = 0;
3301 
3302 		if (mmp_label) {
3303 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3304 				hostname = fnvlist_lookup_string(mmp_label,
3305 				    ZPOOL_CONFIG_HOSTNAME);
3306 				fnvlist_add_string(spa->spa_load_info,
3307 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3308 			}
3309 
3310 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3311 				hostid = fnvlist_lookup_uint64(mmp_label,
3312 				    ZPOOL_CONFIG_HOSTID);
3313 				fnvlist_add_uint64(spa->spa_load_info,
3314 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3315 			}
3316 		}
3317 
3318 		fnvlist_add_uint64(spa->spa_load_info,
3319 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3320 		fnvlist_add_uint64(spa->spa_load_info,
3321 		    ZPOOL_CONFIG_MMP_TXG, 0);
3322 
3323 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3324 	}
3325 
3326 	if (mmp_label)
3327 		nvlist_free(mmp_label);
3328 
3329 	return (error);
3330 }
3331 
3332 static int
3333 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3334 {
3335 	uint64_t hostid;
3336 	char *hostname;
3337 	uint64_t myhostid = 0;
3338 
3339 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3340 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3341 		hostname = fnvlist_lookup_string(mos_config,
3342 		    ZPOOL_CONFIG_HOSTNAME);
3343 
3344 		myhostid = zone_get_hostid(NULL);
3345 
3346 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3347 			cmn_err(CE_WARN, "pool '%s' could not be "
3348 			    "loaded as it was last accessed by "
3349 			    "another system (host: %s hostid: 0x%llx). "
3350 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3351 			    "ZFS-8000-EY",
3352 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3353 			spa_load_failed(spa, "hostid verification failed: pool "
3354 			    "last accessed by host: %s (hostid: 0x%llx)",
3355 			    hostname, (u_longlong_t)hostid);
3356 			return (SET_ERROR(EBADF));
3357 		}
3358 	}
3359 
3360 	return (0);
3361 }
3362 
3363 static int
3364 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3365 {
3366 	int error = 0;
3367 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3368 	int parse;
3369 	vdev_t *rvd;
3370 	uint64_t pool_guid;
3371 	char *comment;
3372 	char *compatibility;
3373 
3374 	/*
3375 	 * Versioning wasn't explicitly added to the label until later, so if
3376 	 * it's not present treat it as the initial version.
3377 	 */
3378 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3379 	    &spa->spa_ubsync.ub_version) != 0)
3380 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3381 
3382 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3383 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3384 		    ZPOOL_CONFIG_POOL_GUID);
3385 		return (SET_ERROR(EINVAL));
3386 	}
3387 
3388 	/*
3389 	 * If we are doing an import, ensure that the pool is not already
3390 	 * imported by checking if its pool guid already exists in the
3391 	 * spa namespace.
3392 	 *
3393 	 * The only case that we allow an already imported pool to be
3394 	 * imported again, is when the pool is checkpointed and we want to
3395 	 * look at its checkpointed state from userland tools like zdb.
3396 	 */
3397 #ifdef _KERNEL
3398 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3399 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3400 	    spa_guid_exists(pool_guid, 0)) {
3401 #else
3402 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3403 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3404 	    spa_guid_exists(pool_guid, 0) &&
3405 	    !spa_importing_readonly_checkpoint(spa)) {
3406 #endif
3407 		spa_load_failed(spa, "a pool with guid %llu is already open",
3408 		    (u_longlong_t)pool_guid);
3409 		return (SET_ERROR(EEXIST));
3410 	}
3411 
3412 	spa->spa_config_guid = pool_guid;
3413 
3414 	nvlist_free(spa->spa_load_info);
3415 	spa->spa_load_info = fnvlist_alloc();
3416 
3417 	ASSERT(spa->spa_comment == NULL);
3418 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3419 		spa->spa_comment = spa_strdup(comment);
3420 
3421 	ASSERT(spa->spa_compatibility == NULL);
3422 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3423 	    &compatibility) == 0)
3424 		spa->spa_compatibility = spa_strdup(compatibility);
3425 
3426 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3427 	    &spa->spa_config_txg);
3428 
3429 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3430 		spa->spa_config_splitting = fnvlist_dup(nvl);
3431 
3432 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3433 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3434 		    ZPOOL_CONFIG_VDEV_TREE);
3435 		return (SET_ERROR(EINVAL));
3436 	}
3437 
3438 	/*
3439 	 * Create "The Godfather" zio to hold all async IOs
3440 	 */
3441 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3442 	    KM_SLEEP);
3443 	for (int i = 0; i < max_ncpus; i++) {
3444 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3445 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3446 		    ZIO_FLAG_GODFATHER);
3447 	}
3448 
3449 	/*
3450 	 * Parse the configuration into a vdev tree.  We explicitly set the
3451 	 * value that will be returned by spa_version() since parsing the
3452 	 * configuration requires knowing the version number.
3453 	 */
3454 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3455 	parse = (type == SPA_IMPORT_EXISTING ?
3456 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3457 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3458 	spa_config_exit(spa, SCL_ALL, FTAG);
3459 
3460 	if (error != 0) {
3461 		spa_load_failed(spa, "unable to parse config [error=%d]",
3462 		    error);
3463 		return (error);
3464 	}
3465 
3466 	ASSERT(spa->spa_root_vdev == rvd);
3467 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3468 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3469 
3470 	if (type != SPA_IMPORT_ASSEMBLE) {
3471 		ASSERT(spa_guid(spa) == pool_guid);
3472 	}
3473 
3474 	return (0);
3475 }
3476 
3477 /*
3478  * Recursively open all vdevs in the vdev tree. This function is called twice:
3479  * first with the untrusted config, then with the trusted config.
3480  */
3481 static int
3482 spa_ld_open_vdevs(spa_t *spa)
3483 {
3484 	int error = 0;
3485 
3486 	/*
3487 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3488 	 * missing/unopenable for the root vdev to be still considered openable.
3489 	 */
3490 	if (spa->spa_trust_config) {
3491 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3492 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3493 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3494 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3495 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3496 	} else {
3497 		spa->spa_missing_tvds_allowed = 0;
3498 	}
3499 
3500 	spa->spa_missing_tvds_allowed =
3501 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3502 
3503 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3504 	error = vdev_open(spa->spa_root_vdev);
3505 	spa_config_exit(spa, SCL_ALL, FTAG);
3506 
3507 	if (spa->spa_missing_tvds != 0) {
3508 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3509 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3510 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3511 			/*
3512 			 * Although theoretically we could allow users to open
3513 			 * incomplete pools in RW mode, we'd need to add a lot
3514 			 * of extra logic (e.g. adjust pool space to account
3515 			 * for missing vdevs).
3516 			 * This limitation also prevents users from accidentally
3517 			 * opening the pool in RW mode during data recovery and
3518 			 * damaging it further.
3519 			 */
3520 			spa_load_note(spa, "pools with missing top-level "
3521 			    "vdevs can only be opened in read-only mode.");
3522 			error = SET_ERROR(ENXIO);
3523 		} else {
3524 			spa_load_note(spa, "current settings allow for maximum "
3525 			    "%lld missing top-level vdevs at this stage.",
3526 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3527 		}
3528 	}
3529 	if (error != 0) {
3530 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3531 		    error);
3532 	}
3533 	if (spa->spa_missing_tvds != 0 || error != 0)
3534 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3535 
3536 	return (error);
3537 }
3538 
3539 /*
3540  * We need to validate the vdev labels against the configuration that
3541  * we have in hand. This function is called twice: first with an untrusted
3542  * config, then with a trusted config. The validation is more strict when the
3543  * config is trusted.
3544  */
3545 static int
3546 spa_ld_validate_vdevs(spa_t *spa)
3547 {
3548 	int error = 0;
3549 	vdev_t *rvd = spa->spa_root_vdev;
3550 
3551 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3552 	error = vdev_validate(rvd);
3553 	spa_config_exit(spa, SCL_ALL, FTAG);
3554 
3555 	if (error != 0) {
3556 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3557 		return (error);
3558 	}
3559 
3560 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3561 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3562 		    "some vdevs");
3563 		vdev_dbgmsg_print_tree(rvd, 2);
3564 		return (SET_ERROR(ENXIO));
3565 	}
3566 
3567 	return (0);
3568 }
3569 
3570 static void
3571 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3572 {
3573 	spa->spa_state = POOL_STATE_ACTIVE;
3574 	spa->spa_ubsync = spa->spa_uberblock;
3575 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3576 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3577 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3578 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3579 	spa->spa_claim_max_txg = spa->spa_first_txg;
3580 	spa->spa_prev_software_version = ub->ub_software_version;
3581 }
3582 
3583 static int
3584 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3585 {
3586 	vdev_t *rvd = spa->spa_root_vdev;
3587 	nvlist_t *label;
3588 	uberblock_t *ub = &spa->spa_uberblock;
3589 	boolean_t activity_check = B_FALSE;
3590 
3591 	/*
3592 	 * If we are opening the checkpointed state of the pool by
3593 	 * rewinding to it, at this point we will have written the
3594 	 * checkpointed uberblock to the vdev labels, so searching
3595 	 * the labels will find the right uberblock.  However, if
3596 	 * we are opening the checkpointed state read-only, we have
3597 	 * not modified the labels. Therefore, we must ignore the
3598 	 * labels and continue using the spa_uberblock that was set
3599 	 * by spa_ld_checkpoint_rewind.
3600 	 *
3601 	 * Note that it would be fine to ignore the labels when
3602 	 * rewinding (opening writeable) as well. However, if we
3603 	 * crash just after writing the labels, we will end up
3604 	 * searching the labels. Doing so in the common case means
3605 	 * that this code path gets exercised normally, rather than
3606 	 * just in the edge case.
3607 	 */
3608 	if (ub->ub_checkpoint_txg != 0 &&
3609 	    spa_importing_readonly_checkpoint(spa)) {
3610 		spa_ld_select_uberblock_done(spa, ub);
3611 		return (0);
3612 	}
3613 
3614 	/*
3615 	 * Find the best uberblock.
3616 	 */
3617 	vdev_uberblock_load(rvd, ub, &label);
3618 
3619 	/*
3620 	 * If we weren't able to find a single valid uberblock, return failure.
3621 	 */
3622 	if (ub->ub_txg == 0) {
3623 		nvlist_free(label);
3624 		spa_load_failed(spa, "no valid uberblock found");
3625 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3626 	}
3627 
3628 	if (spa->spa_load_max_txg != UINT64_MAX) {
3629 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3630 		    (u_longlong_t)spa->spa_load_max_txg);
3631 	}
3632 	spa_load_note(spa, "using uberblock with txg=%llu",
3633 	    (u_longlong_t)ub->ub_txg);
3634 
3635 
3636 	/*
3637 	 * For pools which have the multihost property on determine if the
3638 	 * pool is truly inactive and can be safely imported.  Prevent
3639 	 * hosts which don't have a hostid set from importing the pool.
3640 	 */
3641 	activity_check = spa_activity_check_required(spa, ub, label,
3642 	    spa->spa_config);
3643 	if (activity_check) {
3644 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3645 		    spa_get_hostid(spa) == 0) {
3646 			nvlist_free(label);
3647 			fnvlist_add_uint64(spa->spa_load_info,
3648 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3649 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3650 		}
3651 
3652 		int error = spa_activity_check(spa, ub, spa->spa_config);
3653 		if (error) {
3654 			nvlist_free(label);
3655 			return (error);
3656 		}
3657 
3658 		fnvlist_add_uint64(spa->spa_load_info,
3659 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3660 		fnvlist_add_uint64(spa->spa_load_info,
3661 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3662 		fnvlist_add_uint16(spa->spa_load_info,
3663 		    ZPOOL_CONFIG_MMP_SEQ,
3664 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3665 	}
3666 
3667 	/*
3668 	 * If the pool has an unsupported version we can't open it.
3669 	 */
3670 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3671 		nvlist_free(label);
3672 		spa_load_failed(spa, "version %llu is not supported",
3673 		    (u_longlong_t)ub->ub_version);
3674 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3675 	}
3676 
3677 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3678 		nvlist_t *features;
3679 
3680 		/*
3681 		 * If we weren't able to find what's necessary for reading the
3682 		 * MOS in the label, return failure.
3683 		 */
3684 		if (label == NULL) {
3685 			spa_load_failed(spa, "label config unavailable");
3686 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3687 			    ENXIO));
3688 		}
3689 
3690 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3691 		    &features) != 0) {
3692 			nvlist_free(label);
3693 			spa_load_failed(spa, "invalid label: '%s' missing",
3694 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3695 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3696 			    ENXIO));
3697 		}
3698 
3699 		/*
3700 		 * Update our in-core representation with the definitive values
3701 		 * from the label.
3702 		 */
3703 		nvlist_free(spa->spa_label_features);
3704 		spa->spa_label_features = fnvlist_dup(features);
3705 	}
3706 
3707 	nvlist_free(label);
3708 
3709 	/*
3710 	 * Look through entries in the label nvlist's features_for_read. If
3711 	 * there is a feature listed there which we don't understand then we
3712 	 * cannot open a pool.
3713 	 */
3714 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3715 		nvlist_t *unsup_feat;
3716 
3717 		unsup_feat = fnvlist_alloc();
3718 
3719 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3720 		    NULL); nvp != NULL;
3721 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3722 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3723 				fnvlist_add_string(unsup_feat,
3724 				    nvpair_name(nvp), "");
3725 			}
3726 		}
3727 
3728 		if (!nvlist_empty(unsup_feat)) {
3729 			fnvlist_add_nvlist(spa->spa_load_info,
3730 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3731 			nvlist_free(unsup_feat);
3732 			spa_load_failed(spa, "some features are unsupported");
3733 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3734 			    ENOTSUP));
3735 		}
3736 
3737 		nvlist_free(unsup_feat);
3738 	}
3739 
3740 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3741 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3742 		spa_try_repair(spa, spa->spa_config);
3743 		spa_config_exit(spa, SCL_ALL, FTAG);
3744 		nvlist_free(spa->spa_config_splitting);
3745 		spa->spa_config_splitting = NULL;
3746 	}
3747 
3748 	/*
3749 	 * Initialize internal SPA structures.
3750 	 */
3751 	spa_ld_select_uberblock_done(spa, ub);
3752 
3753 	return (0);
3754 }
3755 
3756 static int
3757 spa_ld_open_rootbp(spa_t *spa)
3758 {
3759 	int error = 0;
3760 	vdev_t *rvd = spa->spa_root_vdev;
3761 
3762 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3763 	if (error != 0) {
3764 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3765 		    "[error=%d]", error);
3766 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3767 	}
3768 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3769 
3770 	return (0);
3771 }
3772 
3773 static int
3774 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3775     boolean_t reloading)
3776 {
3777 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3778 	nvlist_t *nv, *mos_config, *policy;
3779 	int error = 0, copy_error;
3780 	uint64_t healthy_tvds, healthy_tvds_mos;
3781 	uint64_t mos_config_txg;
3782 
3783 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3784 	    != 0)
3785 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3786 
3787 	/*
3788 	 * If we're assembling a pool from a split, the config provided is
3789 	 * already trusted so there is nothing to do.
3790 	 */
3791 	if (type == SPA_IMPORT_ASSEMBLE)
3792 		return (0);
3793 
3794 	healthy_tvds = spa_healthy_core_tvds(spa);
3795 
3796 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3797 	    != 0) {
3798 		spa_load_failed(spa, "unable to retrieve MOS config");
3799 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3800 	}
3801 
3802 	/*
3803 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3804 	 * the verification here.
3805 	 */
3806 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3807 		error = spa_verify_host(spa, mos_config);
3808 		if (error != 0) {
3809 			nvlist_free(mos_config);
3810 			return (error);
3811 		}
3812 	}
3813 
3814 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3815 
3816 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3817 
3818 	/*
3819 	 * Build a new vdev tree from the trusted config
3820 	 */
3821 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3822 	if (error != 0) {
3823 		nvlist_free(mos_config);
3824 		spa_config_exit(spa, SCL_ALL, FTAG);
3825 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3826 		    error);
3827 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3828 	}
3829 
3830 	/*
3831 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3832 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3833 	 * paths. We update the trusted MOS config with this information.
3834 	 * We first try to copy the paths with vdev_copy_path_strict, which
3835 	 * succeeds only when both configs have exactly the same vdev tree.
3836 	 * If that fails, we fall back to a more flexible method that has a
3837 	 * best effort policy.
3838 	 */
3839 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3840 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3841 		spa_load_note(spa, "provided vdev tree:");
3842 		vdev_dbgmsg_print_tree(rvd, 2);
3843 		spa_load_note(spa, "MOS vdev tree:");
3844 		vdev_dbgmsg_print_tree(mrvd, 2);
3845 	}
3846 	if (copy_error != 0) {
3847 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3848 		    "back to vdev_copy_path_relaxed");
3849 		vdev_copy_path_relaxed(rvd, mrvd);
3850 	}
3851 
3852 	vdev_close(rvd);
3853 	vdev_free(rvd);
3854 	spa->spa_root_vdev = mrvd;
3855 	rvd = mrvd;
3856 	spa_config_exit(spa, SCL_ALL, FTAG);
3857 
3858 	/*
3859 	 * We will use spa_config if we decide to reload the spa or if spa_load
3860 	 * fails and we rewind. We must thus regenerate the config using the
3861 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3862 	 * pass settings on how to load the pool and is not stored in the MOS.
3863 	 * We copy it over to our new, trusted config.
3864 	 */
3865 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3866 	    ZPOOL_CONFIG_POOL_TXG);
3867 	nvlist_free(mos_config);
3868 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3869 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3870 	    &policy) == 0)
3871 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3872 	spa_config_set(spa, mos_config);
3873 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3874 
3875 	/*
3876 	 * Now that we got the config from the MOS, we should be more strict
3877 	 * in checking blkptrs and can make assumptions about the consistency
3878 	 * of the vdev tree. spa_trust_config must be set to true before opening
3879 	 * vdevs in order for them to be writeable.
3880 	 */
3881 	spa->spa_trust_config = B_TRUE;
3882 
3883 	/*
3884 	 * Open and validate the new vdev tree
3885 	 */
3886 	error = spa_ld_open_vdevs(spa);
3887 	if (error != 0)
3888 		return (error);
3889 
3890 	error = spa_ld_validate_vdevs(spa);
3891 	if (error != 0)
3892 		return (error);
3893 
3894 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3895 		spa_load_note(spa, "final vdev tree:");
3896 		vdev_dbgmsg_print_tree(rvd, 2);
3897 	}
3898 
3899 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3900 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3901 		/*
3902 		 * Sanity check to make sure that we are indeed loading the
3903 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3904 		 * in the config provided and they happened to be the only ones
3905 		 * to have the latest uberblock, we could involuntarily perform
3906 		 * an extreme rewind.
3907 		 */
3908 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3909 		if (healthy_tvds_mos - healthy_tvds >=
3910 		    SPA_SYNC_MIN_VDEVS) {
3911 			spa_load_note(spa, "config provided misses too many "
3912 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3913 			    (u_longlong_t)healthy_tvds,
3914 			    (u_longlong_t)healthy_tvds_mos);
3915 			spa_load_note(spa, "vdev tree:");
3916 			vdev_dbgmsg_print_tree(rvd, 2);
3917 			if (reloading) {
3918 				spa_load_failed(spa, "config was already "
3919 				    "provided from MOS. Aborting.");
3920 				return (spa_vdev_err(rvd,
3921 				    VDEV_AUX_CORRUPT_DATA, EIO));
3922 			}
3923 			spa_load_note(spa, "spa must be reloaded using MOS "
3924 			    "config");
3925 			return (SET_ERROR(EAGAIN));
3926 		}
3927 	}
3928 
3929 	error = spa_check_for_missing_logs(spa);
3930 	if (error != 0)
3931 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3932 
3933 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3934 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3935 		    "guid sum (%llu != %llu)",
3936 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3937 		    (u_longlong_t)rvd->vdev_guid_sum);
3938 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3939 		    ENXIO));
3940 	}
3941 
3942 	return (0);
3943 }
3944 
3945 static int
3946 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3947 {
3948 	int error = 0;
3949 	vdev_t *rvd = spa->spa_root_vdev;
3950 
3951 	/*
3952 	 * Everything that we read before spa_remove_init() must be stored
3953 	 * on concreted vdevs.  Therefore we do this as early as possible.
3954 	 */
3955 	error = spa_remove_init(spa);
3956 	if (error != 0) {
3957 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3958 		    error);
3959 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3960 	}
3961 
3962 	/*
3963 	 * Retrieve information needed to condense indirect vdev mappings.
3964 	 */
3965 	error = spa_condense_init(spa);
3966 	if (error != 0) {
3967 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3968 		    error);
3969 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3970 	}
3971 
3972 	return (0);
3973 }
3974 
3975 static int
3976 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3977 {
3978 	int error = 0;
3979 	vdev_t *rvd = spa->spa_root_vdev;
3980 
3981 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3982 		boolean_t missing_feat_read = B_FALSE;
3983 		nvlist_t *unsup_feat, *enabled_feat;
3984 
3985 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3986 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3987 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3988 		}
3989 
3990 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3991 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3992 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3993 		}
3994 
3995 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3996 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3997 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3998 		}
3999 
4000 		enabled_feat = fnvlist_alloc();
4001 		unsup_feat = fnvlist_alloc();
4002 
4003 		if (!spa_features_check(spa, B_FALSE,
4004 		    unsup_feat, enabled_feat))
4005 			missing_feat_read = B_TRUE;
4006 
4007 		if (spa_writeable(spa) ||
4008 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4009 			if (!spa_features_check(spa, B_TRUE,
4010 			    unsup_feat, enabled_feat)) {
4011 				*missing_feat_writep = B_TRUE;
4012 			}
4013 		}
4014 
4015 		fnvlist_add_nvlist(spa->spa_load_info,
4016 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4017 
4018 		if (!nvlist_empty(unsup_feat)) {
4019 			fnvlist_add_nvlist(spa->spa_load_info,
4020 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4021 		}
4022 
4023 		fnvlist_free(enabled_feat);
4024 		fnvlist_free(unsup_feat);
4025 
4026 		if (!missing_feat_read) {
4027 			fnvlist_add_boolean(spa->spa_load_info,
4028 			    ZPOOL_CONFIG_CAN_RDONLY);
4029 		}
4030 
4031 		/*
4032 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4033 		 * twofold: to determine whether the pool is available for
4034 		 * import in read-write mode and (if it is not) whether the
4035 		 * pool is available for import in read-only mode. If the pool
4036 		 * is available for import in read-write mode, it is displayed
4037 		 * as available in userland; if it is not available for import
4038 		 * in read-only mode, it is displayed as unavailable in
4039 		 * userland. If the pool is available for import in read-only
4040 		 * mode but not read-write mode, it is displayed as unavailable
4041 		 * in userland with a special note that the pool is actually
4042 		 * available for open in read-only mode.
4043 		 *
4044 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4045 		 * missing a feature for write, we must first determine whether
4046 		 * the pool can be opened read-only before returning to
4047 		 * userland in order to know whether to display the
4048 		 * abovementioned note.
4049 		 */
4050 		if (missing_feat_read || (*missing_feat_writep &&
4051 		    spa_writeable(spa))) {
4052 			spa_load_failed(spa, "pool uses unsupported features");
4053 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4054 			    ENOTSUP));
4055 		}
4056 
4057 		/*
4058 		 * Load refcounts for ZFS features from disk into an in-memory
4059 		 * cache during SPA initialization.
4060 		 */
4061 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4062 			uint64_t refcount;
4063 
4064 			error = feature_get_refcount_from_disk(spa,
4065 			    &spa_feature_table[i], &refcount);
4066 			if (error == 0) {
4067 				spa->spa_feat_refcount_cache[i] = refcount;
4068 			} else if (error == ENOTSUP) {
4069 				spa->spa_feat_refcount_cache[i] =
4070 				    SPA_FEATURE_DISABLED;
4071 			} else {
4072 				spa_load_failed(spa, "error getting refcount "
4073 				    "for feature %s [error=%d]",
4074 				    spa_feature_table[i].fi_guid, error);
4075 				return (spa_vdev_err(rvd,
4076 				    VDEV_AUX_CORRUPT_DATA, EIO));
4077 			}
4078 		}
4079 	}
4080 
4081 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4082 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4083 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4084 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4085 	}
4086 
4087 	/*
4088 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4089 	 * is now a dependency. If this pool has encryption enabled without
4090 	 * bookmark_v2, trigger an errata message.
4091 	 */
4092 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4093 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4094 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4095 	}
4096 
4097 	return (0);
4098 }
4099 
4100 static int
4101 spa_ld_load_special_directories(spa_t *spa)
4102 {
4103 	int error = 0;
4104 	vdev_t *rvd = spa->spa_root_vdev;
4105 
4106 	spa->spa_is_initializing = B_TRUE;
4107 	error = dsl_pool_open(spa->spa_dsl_pool);
4108 	spa->spa_is_initializing = B_FALSE;
4109 	if (error != 0) {
4110 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4111 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4112 	}
4113 
4114 	return (0);
4115 }
4116 
4117 static int
4118 spa_ld_get_props(spa_t *spa)
4119 {
4120 	int error = 0;
4121 	uint64_t obj;
4122 	vdev_t *rvd = spa->spa_root_vdev;
4123 
4124 	/* Grab the checksum salt from the MOS. */
4125 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4126 	    DMU_POOL_CHECKSUM_SALT, 1,
4127 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4128 	    spa->spa_cksum_salt.zcs_bytes);
4129 	if (error == ENOENT) {
4130 		/* Generate a new salt for subsequent use */
4131 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4132 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4133 	} else if (error != 0) {
4134 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4135 		    "MOS [error=%d]", error);
4136 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4137 	}
4138 
4139 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4140 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4141 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4142 	if (error != 0) {
4143 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4144 		    "[error=%d]", error);
4145 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4146 	}
4147 
4148 	/*
4149 	 * Load the bit that tells us to use the new accounting function
4150 	 * (raid-z deflation).  If we have an older pool, this will not
4151 	 * be present.
4152 	 */
4153 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4154 	if (error != 0 && error != ENOENT)
4155 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4156 
4157 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4158 	    &spa->spa_creation_version, B_FALSE);
4159 	if (error != 0 && error != ENOENT)
4160 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4161 
4162 	/*
4163 	 * Load the persistent error log.  If we have an older pool, this will
4164 	 * not be present.
4165 	 */
4166 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4167 	    B_FALSE);
4168 	if (error != 0 && error != ENOENT)
4169 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4170 
4171 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4172 	    &spa->spa_errlog_scrub, B_FALSE);
4173 	if (error != 0 && error != ENOENT)
4174 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4175 
4176 	/*
4177 	 * Load the livelist deletion field. If a livelist is queued for
4178 	 * deletion, indicate that in the spa
4179 	 */
4180 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4181 	    &spa->spa_livelists_to_delete, B_FALSE);
4182 	if (error != 0 && error != ENOENT)
4183 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4184 
4185 	/*
4186 	 * Load the history object.  If we have an older pool, this
4187 	 * will not be present.
4188 	 */
4189 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4190 	if (error != 0 && error != ENOENT)
4191 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4192 
4193 	/*
4194 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4195 	 * be present; in this case, defer its creation to a later time to
4196 	 * avoid dirtying the MOS this early / out of sync context. See
4197 	 * spa_sync_config_object.
4198 	 */
4199 
4200 	/* The sentinel is only available in the MOS config. */
4201 	nvlist_t *mos_config;
4202 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4203 		spa_load_failed(spa, "unable to retrieve MOS config");
4204 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4205 	}
4206 
4207 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4208 	    &spa->spa_all_vdev_zaps, B_FALSE);
4209 
4210 	if (error == ENOENT) {
4211 		VERIFY(!nvlist_exists(mos_config,
4212 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4213 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4214 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4215 	} else if (error != 0) {
4216 		nvlist_free(mos_config);
4217 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4218 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4219 		/*
4220 		 * An older version of ZFS overwrote the sentinel value, so
4221 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4222 		 * destruction to later; see spa_sync_config_object.
4223 		 */
4224 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4225 		/*
4226 		 * We're assuming that no vdevs have had their ZAPs created
4227 		 * before this. Better be sure of it.
4228 		 */
4229 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4230 	}
4231 	nvlist_free(mos_config);
4232 
4233 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4234 
4235 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4236 	    B_FALSE);
4237 	if (error && error != ENOENT)
4238 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4239 
4240 	if (error == 0) {
4241 		uint64_t autoreplace = 0;
4242 
4243 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4244 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4245 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4246 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4247 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4248 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4249 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4250 		spa->spa_autoreplace = (autoreplace != 0);
4251 	}
4252 
4253 	/*
4254 	 * If we are importing a pool with missing top-level vdevs,
4255 	 * we enforce that the pool doesn't panic or get suspended on
4256 	 * error since the likelihood of missing data is extremely high.
4257 	 */
4258 	if (spa->spa_missing_tvds > 0 &&
4259 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4260 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4261 		spa_load_note(spa, "forcing failmode to 'continue' "
4262 		    "as some top level vdevs are missing");
4263 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4264 	}
4265 
4266 	return (0);
4267 }
4268 
4269 static int
4270 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4271 {
4272 	int error = 0;
4273 	vdev_t *rvd = spa->spa_root_vdev;
4274 
4275 	/*
4276 	 * If we're assembling the pool from the split-off vdevs of
4277 	 * an existing pool, we don't want to attach the spares & cache
4278 	 * devices.
4279 	 */
4280 
4281 	/*
4282 	 * Load any hot spares for this pool.
4283 	 */
4284 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4285 	    B_FALSE);
4286 	if (error != 0 && error != ENOENT)
4287 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4288 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4289 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4290 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4291 		    &spa->spa_spares.sav_config) != 0) {
4292 			spa_load_failed(spa, "error loading spares nvlist");
4293 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4294 		}
4295 
4296 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4297 		spa_load_spares(spa);
4298 		spa_config_exit(spa, SCL_ALL, FTAG);
4299 	} else if (error == 0) {
4300 		spa->spa_spares.sav_sync = B_TRUE;
4301 	}
4302 
4303 	/*
4304 	 * Load any level 2 ARC devices for this pool.
4305 	 */
4306 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4307 	    &spa->spa_l2cache.sav_object, B_FALSE);
4308 	if (error != 0 && error != ENOENT)
4309 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4310 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4311 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4312 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4313 		    &spa->spa_l2cache.sav_config) != 0) {
4314 			spa_load_failed(spa, "error loading l2cache nvlist");
4315 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4316 		}
4317 
4318 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4319 		spa_load_l2cache(spa);
4320 		spa_config_exit(spa, SCL_ALL, FTAG);
4321 	} else if (error == 0) {
4322 		spa->spa_l2cache.sav_sync = B_TRUE;
4323 	}
4324 
4325 	return (0);
4326 }
4327 
4328 static int
4329 spa_ld_load_vdev_metadata(spa_t *spa)
4330 {
4331 	int error = 0;
4332 	vdev_t *rvd = spa->spa_root_vdev;
4333 
4334 	/*
4335 	 * If the 'multihost' property is set, then never allow a pool to
4336 	 * be imported when the system hostid is zero.  The exception to
4337 	 * this rule is zdb which is always allowed to access pools.
4338 	 */
4339 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4340 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4341 		fnvlist_add_uint64(spa->spa_load_info,
4342 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4343 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4344 	}
4345 
4346 	/*
4347 	 * If the 'autoreplace' property is set, then post a resource notifying
4348 	 * the ZFS DE that it should not issue any faults for unopenable
4349 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4350 	 * unopenable vdevs so that the normal autoreplace handler can take
4351 	 * over.
4352 	 */
4353 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4354 		spa_check_removed(spa->spa_root_vdev);
4355 		/*
4356 		 * For the import case, this is done in spa_import(), because
4357 		 * at this point we're using the spare definitions from
4358 		 * the MOS config, not necessarily from the userland config.
4359 		 */
4360 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4361 			spa_aux_check_removed(&spa->spa_spares);
4362 			spa_aux_check_removed(&spa->spa_l2cache);
4363 		}
4364 	}
4365 
4366 	/*
4367 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4368 	 */
4369 	error = vdev_load(rvd);
4370 	if (error != 0) {
4371 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4372 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4373 	}
4374 
4375 	error = spa_ld_log_spacemaps(spa);
4376 	if (error != 0) {
4377 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4378 		    error);
4379 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4380 	}
4381 
4382 	/*
4383 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4384 	 */
4385 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4386 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4387 	spa_config_exit(spa, SCL_ALL, FTAG);
4388 
4389 	return (0);
4390 }
4391 
4392 static int
4393 spa_ld_load_dedup_tables(spa_t *spa)
4394 {
4395 	int error = 0;
4396 	vdev_t *rvd = spa->spa_root_vdev;
4397 
4398 	error = ddt_load(spa);
4399 	if (error != 0) {
4400 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4401 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4402 	}
4403 
4404 	return (0);
4405 }
4406 
4407 static int
4408 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4409 {
4410 	vdev_t *rvd = spa->spa_root_vdev;
4411 
4412 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4413 		boolean_t missing = spa_check_logs(spa);
4414 		if (missing) {
4415 			if (spa->spa_missing_tvds != 0) {
4416 				spa_load_note(spa, "spa_check_logs failed "
4417 				    "so dropping the logs");
4418 			} else {
4419 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4420 				spa_load_failed(spa, "spa_check_logs failed");
4421 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4422 				    ENXIO));
4423 			}
4424 		}
4425 	}
4426 
4427 	return (0);
4428 }
4429 
4430 static int
4431 spa_ld_verify_pool_data(spa_t *spa)
4432 {
4433 	int error = 0;
4434 	vdev_t *rvd = spa->spa_root_vdev;
4435 
4436 	/*
4437 	 * We've successfully opened the pool, verify that we're ready
4438 	 * to start pushing transactions.
4439 	 */
4440 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4441 		error = spa_load_verify(spa);
4442 		if (error != 0) {
4443 			spa_load_failed(spa, "spa_load_verify failed "
4444 			    "[error=%d]", error);
4445 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4446 			    error));
4447 		}
4448 	}
4449 
4450 	return (0);
4451 }
4452 
4453 static void
4454 spa_ld_claim_log_blocks(spa_t *spa)
4455 {
4456 	dmu_tx_t *tx;
4457 	dsl_pool_t *dp = spa_get_dsl(spa);
4458 
4459 	/*
4460 	 * Claim log blocks that haven't been committed yet.
4461 	 * This must all happen in a single txg.
4462 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4463 	 * invoked from zil_claim_log_block()'s i/o done callback.
4464 	 * Price of rollback is that we abandon the log.
4465 	 */
4466 	spa->spa_claiming = B_TRUE;
4467 
4468 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4469 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4470 	    zil_claim, tx, DS_FIND_CHILDREN);
4471 	dmu_tx_commit(tx);
4472 
4473 	spa->spa_claiming = B_FALSE;
4474 
4475 	spa_set_log_state(spa, SPA_LOG_GOOD);
4476 }
4477 
4478 static void
4479 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4480     boolean_t update_config_cache)
4481 {
4482 	vdev_t *rvd = spa->spa_root_vdev;
4483 	int need_update = B_FALSE;
4484 
4485 	/*
4486 	 * If the config cache is stale, or we have uninitialized
4487 	 * metaslabs (see spa_vdev_add()), then update the config.
4488 	 *
4489 	 * If this is a verbatim import, trust the current
4490 	 * in-core spa_config and update the disk labels.
4491 	 */
4492 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4493 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4494 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4495 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4496 		need_update = B_TRUE;
4497 
4498 	for (int c = 0; c < rvd->vdev_children; c++)
4499 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4500 			need_update = B_TRUE;
4501 
4502 	/*
4503 	 * Update the config cache asynchronously in case we're the
4504 	 * root pool, in which case the config cache isn't writable yet.
4505 	 */
4506 	if (need_update)
4507 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4508 }
4509 
4510 static void
4511 spa_ld_prepare_for_reload(spa_t *spa)
4512 {
4513 	spa_mode_t mode = spa->spa_mode;
4514 	int async_suspended = spa->spa_async_suspended;
4515 
4516 	spa_unload(spa);
4517 	spa_deactivate(spa);
4518 	spa_activate(spa, mode);
4519 
4520 	/*
4521 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4522 	 * spa_unload(). We want to restore it back to the original value before
4523 	 * returning as we might be calling spa_async_resume() later.
4524 	 */
4525 	spa->spa_async_suspended = async_suspended;
4526 }
4527 
4528 static int
4529 spa_ld_read_checkpoint_txg(spa_t *spa)
4530 {
4531 	uberblock_t checkpoint;
4532 	int error = 0;
4533 
4534 	ASSERT0(spa->spa_checkpoint_txg);
4535 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4536 
4537 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4538 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4539 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4540 
4541 	if (error == ENOENT)
4542 		return (0);
4543 
4544 	if (error != 0)
4545 		return (error);
4546 
4547 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4548 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4549 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4550 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4551 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4552 
4553 	return (0);
4554 }
4555 
4556 static int
4557 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4558 {
4559 	int error = 0;
4560 
4561 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4562 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4563 
4564 	/*
4565 	 * Never trust the config that is provided unless we are assembling
4566 	 * a pool following a split.
4567 	 * This means don't trust blkptrs and the vdev tree in general. This
4568 	 * also effectively puts the spa in read-only mode since
4569 	 * spa_writeable() checks for spa_trust_config to be true.
4570 	 * We will later load a trusted config from the MOS.
4571 	 */
4572 	if (type != SPA_IMPORT_ASSEMBLE)
4573 		spa->spa_trust_config = B_FALSE;
4574 
4575 	/*
4576 	 * Parse the config provided to create a vdev tree.
4577 	 */
4578 	error = spa_ld_parse_config(spa, type);
4579 	if (error != 0)
4580 		return (error);
4581 
4582 	spa_import_progress_add(spa);
4583 
4584 	/*
4585 	 * Now that we have the vdev tree, try to open each vdev. This involves
4586 	 * opening the underlying physical device, retrieving its geometry and
4587 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4588 	 * based on the success of those operations. After this we'll be ready
4589 	 * to read from the vdevs.
4590 	 */
4591 	error = spa_ld_open_vdevs(spa);
4592 	if (error != 0)
4593 		return (error);
4594 
4595 	/*
4596 	 * Read the label of each vdev and make sure that the GUIDs stored
4597 	 * there match the GUIDs in the config provided.
4598 	 * If we're assembling a new pool that's been split off from an
4599 	 * existing pool, the labels haven't yet been updated so we skip
4600 	 * validation for now.
4601 	 */
4602 	if (type != SPA_IMPORT_ASSEMBLE) {
4603 		error = spa_ld_validate_vdevs(spa);
4604 		if (error != 0)
4605 			return (error);
4606 	}
4607 
4608 	/*
4609 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4610 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4611 	 * get the list of features required to read blkptrs in the MOS from
4612 	 * the vdev label with the best uberblock and verify that our version
4613 	 * of zfs supports them all.
4614 	 */
4615 	error = spa_ld_select_uberblock(spa, type);
4616 	if (error != 0)
4617 		return (error);
4618 
4619 	/*
4620 	 * Pass that uberblock to the dsl_pool layer which will open the root
4621 	 * blkptr. This blkptr points to the latest version of the MOS and will
4622 	 * allow us to read its contents.
4623 	 */
4624 	error = spa_ld_open_rootbp(spa);
4625 	if (error != 0)
4626 		return (error);
4627 
4628 	return (0);
4629 }
4630 
4631 static int
4632 spa_ld_checkpoint_rewind(spa_t *spa)
4633 {
4634 	uberblock_t checkpoint;
4635 	int error = 0;
4636 
4637 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4638 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4639 
4640 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4641 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4642 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4643 
4644 	if (error != 0) {
4645 		spa_load_failed(spa, "unable to retrieve checkpointed "
4646 		    "uberblock from the MOS config [error=%d]", error);
4647 
4648 		if (error == ENOENT)
4649 			error = ZFS_ERR_NO_CHECKPOINT;
4650 
4651 		return (error);
4652 	}
4653 
4654 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4655 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4656 
4657 	/*
4658 	 * We need to update the txg and timestamp of the checkpointed
4659 	 * uberblock to be higher than the latest one. This ensures that
4660 	 * the checkpointed uberblock is selected if we were to close and
4661 	 * reopen the pool right after we've written it in the vdev labels.
4662 	 * (also see block comment in vdev_uberblock_compare)
4663 	 */
4664 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4665 	checkpoint.ub_timestamp = gethrestime_sec();
4666 
4667 	/*
4668 	 * Set current uberblock to be the checkpointed uberblock.
4669 	 */
4670 	spa->spa_uberblock = checkpoint;
4671 
4672 	/*
4673 	 * If we are doing a normal rewind, then the pool is open for
4674 	 * writing and we sync the "updated" checkpointed uberblock to
4675 	 * disk. Once this is done, we've basically rewound the whole
4676 	 * pool and there is no way back.
4677 	 *
4678 	 * There are cases when we don't want to attempt and sync the
4679 	 * checkpointed uberblock to disk because we are opening a
4680 	 * pool as read-only. Specifically, verifying the checkpointed
4681 	 * state with zdb, and importing the checkpointed state to get
4682 	 * a "preview" of its content.
4683 	 */
4684 	if (spa_writeable(spa)) {
4685 		vdev_t *rvd = spa->spa_root_vdev;
4686 
4687 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4688 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4689 		int svdcount = 0;
4690 		int children = rvd->vdev_children;
4691 		int c0 = random_in_range(children);
4692 
4693 		for (int c = 0; c < children; c++) {
4694 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4695 
4696 			/* Stop when revisiting the first vdev */
4697 			if (c > 0 && svd[0] == vd)
4698 				break;
4699 
4700 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4701 			    !vdev_is_concrete(vd))
4702 				continue;
4703 
4704 			svd[svdcount++] = vd;
4705 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4706 				break;
4707 		}
4708 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4709 		if (error == 0)
4710 			spa->spa_last_synced_guid = rvd->vdev_guid;
4711 		spa_config_exit(spa, SCL_ALL, FTAG);
4712 
4713 		if (error != 0) {
4714 			spa_load_failed(spa, "failed to write checkpointed "
4715 			    "uberblock to the vdev labels [error=%d]", error);
4716 			return (error);
4717 		}
4718 	}
4719 
4720 	return (0);
4721 }
4722 
4723 static int
4724 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4725     boolean_t *update_config_cache)
4726 {
4727 	int error;
4728 
4729 	/*
4730 	 * Parse the config for pool, open and validate vdevs,
4731 	 * select an uberblock, and use that uberblock to open
4732 	 * the MOS.
4733 	 */
4734 	error = spa_ld_mos_init(spa, type);
4735 	if (error != 0)
4736 		return (error);
4737 
4738 	/*
4739 	 * Retrieve the trusted config stored in the MOS and use it to create
4740 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4741 	 */
4742 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4743 	if (error == EAGAIN) {
4744 		if (update_config_cache != NULL)
4745 			*update_config_cache = B_TRUE;
4746 
4747 		/*
4748 		 * Redo the loading process with the trusted config if it is
4749 		 * too different from the untrusted config.
4750 		 */
4751 		spa_ld_prepare_for_reload(spa);
4752 		spa_load_note(spa, "RELOADING");
4753 		error = spa_ld_mos_init(spa, type);
4754 		if (error != 0)
4755 			return (error);
4756 
4757 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4758 		if (error != 0)
4759 			return (error);
4760 
4761 	} else if (error != 0) {
4762 		return (error);
4763 	}
4764 
4765 	return (0);
4766 }
4767 
4768 /*
4769  * Load an existing storage pool, using the config provided. This config
4770  * describes which vdevs are part of the pool and is later validated against
4771  * partial configs present in each vdev's label and an entire copy of the
4772  * config stored in the MOS.
4773  */
4774 static int
4775 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4776 {
4777 	int error = 0;
4778 	boolean_t missing_feat_write = B_FALSE;
4779 	boolean_t checkpoint_rewind =
4780 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4781 	boolean_t update_config_cache = B_FALSE;
4782 
4783 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4784 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4785 
4786 	spa_load_note(spa, "LOADING");
4787 
4788 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4789 	if (error != 0)
4790 		return (error);
4791 
4792 	/*
4793 	 * If we are rewinding to the checkpoint then we need to repeat
4794 	 * everything we've done so far in this function but this time
4795 	 * selecting the checkpointed uberblock and using that to open
4796 	 * the MOS.
4797 	 */
4798 	if (checkpoint_rewind) {
4799 		/*
4800 		 * If we are rewinding to the checkpoint update config cache
4801 		 * anyway.
4802 		 */
4803 		update_config_cache = B_TRUE;
4804 
4805 		/*
4806 		 * Extract the checkpointed uberblock from the current MOS
4807 		 * and use this as the pool's uberblock from now on. If the
4808 		 * pool is imported as writeable we also write the checkpoint
4809 		 * uberblock to the labels, making the rewind permanent.
4810 		 */
4811 		error = spa_ld_checkpoint_rewind(spa);
4812 		if (error != 0)
4813 			return (error);
4814 
4815 		/*
4816 		 * Redo the loading process again with the
4817 		 * checkpointed uberblock.
4818 		 */
4819 		spa_ld_prepare_for_reload(spa);
4820 		spa_load_note(spa, "LOADING checkpointed uberblock");
4821 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4822 		if (error != 0)
4823 			return (error);
4824 	}
4825 
4826 	/*
4827 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4828 	 */
4829 	error = spa_ld_read_checkpoint_txg(spa);
4830 	if (error != 0)
4831 		return (error);
4832 
4833 	/*
4834 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4835 	 * from the pool and their contents were re-mapped to other vdevs. Note
4836 	 * that everything that we read before this step must have been
4837 	 * rewritten on concrete vdevs after the last device removal was
4838 	 * initiated. Otherwise we could be reading from indirect vdevs before
4839 	 * we have loaded their mappings.
4840 	 */
4841 	error = spa_ld_open_indirect_vdev_metadata(spa);
4842 	if (error != 0)
4843 		return (error);
4844 
4845 	/*
4846 	 * Retrieve the full list of active features from the MOS and check if
4847 	 * they are all supported.
4848 	 */
4849 	error = spa_ld_check_features(spa, &missing_feat_write);
4850 	if (error != 0)
4851 		return (error);
4852 
4853 	/*
4854 	 * Load several special directories from the MOS needed by the dsl_pool
4855 	 * layer.
4856 	 */
4857 	error = spa_ld_load_special_directories(spa);
4858 	if (error != 0)
4859 		return (error);
4860 
4861 	/*
4862 	 * Retrieve pool properties from the MOS.
4863 	 */
4864 	error = spa_ld_get_props(spa);
4865 	if (error != 0)
4866 		return (error);
4867 
4868 	/*
4869 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4870 	 * and open them.
4871 	 */
4872 	error = spa_ld_open_aux_vdevs(spa, type);
4873 	if (error != 0)
4874 		return (error);
4875 
4876 	/*
4877 	 * Load the metadata for all vdevs. Also check if unopenable devices
4878 	 * should be autoreplaced.
4879 	 */
4880 	error = spa_ld_load_vdev_metadata(spa);
4881 	if (error != 0)
4882 		return (error);
4883 
4884 	error = spa_ld_load_dedup_tables(spa);
4885 	if (error != 0)
4886 		return (error);
4887 
4888 	/*
4889 	 * Verify the logs now to make sure we don't have any unexpected errors
4890 	 * when we claim log blocks later.
4891 	 */
4892 	error = spa_ld_verify_logs(spa, type, ereport);
4893 	if (error != 0)
4894 		return (error);
4895 
4896 	if (missing_feat_write) {
4897 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4898 
4899 		/*
4900 		 * At this point, we know that we can open the pool in
4901 		 * read-only mode but not read-write mode. We now have enough
4902 		 * information and can return to userland.
4903 		 */
4904 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4905 		    ENOTSUP));
4906 	}
4907 
4908 	/*
4909 	 * Traverse the last txgs to make sure the pool was left off in a safe
4910 	 * state. When performing an extreme rewind, we verify the whole pool,
4911 	 * which can take a very long time.
4912 	 */
4913 	error = spa_ld_verify_pool_data(spa);
4914 	if (error != 0)
4915 		return (error);
4916 
4917 	/*
4918 	 * Calculate the deflated space for the pool. This must be done before
4919 	 * we write anything to the pool because we'd need to update the space
4920 	 * accounting using the deflated sizes.
4921 	 */
4922 	spa_update_dspace(spa);
4923 
4924 	/*
4925 	 * We have now retrieved all the information we needed to open the
4926 	 * pool. If we are importing the pool in read-write mode, a few
4927 	 * additional steps must be performed to finish the import.
4928 	 */
4929 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4930 	    spa->spa_load_max_txg == UINT64_MAX)) {
4931 		uint64_t config_cache_txg = spa->spa_config_txg;
4932 
4933 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4934 
4935 		/*
4936 		 * In case of a checkpoint rewind, log the original txg
4937 		 * of the checkpointed uberblock.
4938 		 */
4939 		if (checkpoint_rewind) {
4940 			spa_history_log_internal(spa, "checkpoint rewind",
4941 			    NULL, "rewound state to txg=%llu",
4942 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4943 		}
4944 
4945 		/*
4946 		 * Traverse the ZIL and claim all blocks.
4947 		 */
4948 		spa_ld_claim_log_blocks(spa);
4949 
4950 		/*
4951 		 * Kick-off the syncing thread.
4952 		 */
4953 		spa->spa_sync_on = B_TRUE;
4954 		txg_sync_start(spa->spa_dsl_pool);
4955 		mmp_thread_start(spa);
4956 
4957 		/*
4958 		 * Wait for all claims to sync.  We sync up to the highest
4959 		 * claimed log block birth time so that claimed log blocks
4960 		 * don't appear to be from the future.  spa_claim_max_txg
4961 		 * will have been set for us by ZIL traversal operations
4962 		 * performed above.
4963 		 */
4964 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4965 
4966 		/*
4967 		 * Check if we need to request an update of the config. On the
4968 		 * next sync, we would update the config stored in vdev labels
4969 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4970 		 */
4971 		spa_ld_check_for_config_update(spa, config_cache_txg,
4972 		    update_config_cache);
4973 
4974 		/*
4975 		 * Check if a rebuild was in progress and if so resume it.
4976 		 * Then check all DTLs to see if anything needs resilvering.
4977 		 * The resilver will be deferred if a rebuild was started.
4978 		 */
4979 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4980 			vdev_rebuild_restart(spa);
4981 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4982 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4983 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4984 		}
4985 
4986 		/*
4987 		 * Log the fact that we booted up (so that we can detect if
4988 		 * we rebooted in the middle of an operation).
4989 		 */
4990 		spa_history_log_version(spa, "open", NULL);
4991 
4992 		spa_restart_removal(spa);
4993 		spa_spawn_aux_threads(spa);
4994 
4995 		/*
4996 		 * Delete any inconsistent datasets.
4997 		 *
4998 		 * Note:
4999 		 * Since we may be issuing deletes for clones here,
5000 		 * we make sure to do so after we've spawned all the
5001 		 * auxiliary threads above (from which the livelist
5002 		 * deletion zthr is part of).
5003 		 */
5004 		(void) dmu_objset_find(spa_name(spa),
5005 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5006 
5007 		/*
5008 		 * Clean up any stale temporary dataset userrefs.
5009 		 */
5010 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5011 
5012 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5013 		vdev_initialize_restart(spa->spa_root_vdev);
5014 		vdev_trim_restart(spa->spa_root_vdev);
5015 		vdev_autotrim_restart(spa);
5016 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5017 	}
5018 
5019 	spa_import_progress_remove(spa_guid(spa));
5020 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5021 
5022 	spa_load_note(spa, "LOADED");
5023 
5024 	return (0);
5025 }
5026 
5027 static int
5028 spa_load_retry(spa_t *spa, spa_load_state_t state)
5029 {
5030 	spa_mode_t mode = spa->spa_mode;
5031 
5032 	spa_unload(spa);
5033 	spa_deactivate(spa);
5034 
5035 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5036 
5037 	spa_activate(spa, mode);
5038 	spa_async_suspend(spa);
5039 
5040 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5041 	    (u_longlong_t)spa->spa_load_max_txg);
5042 
5043 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5044 }
5045 
5046 /*
5047  * If spa_load() fails this function will try loading prior txg's. If
5048  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5049  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5050  * function will not rewind the pool and will return the same error as
5051  * spa_load().
5052  */
5053 static int
5054 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5055     int rewind_flags)
5056 {
5057 	nvlist_t *loadinfo = NULL;
5058 	nvlist_t *config = NULL;
5059 	int load_error, rewind_error;
5060 	uint64_t safe_rewind_txg;
5061 	uint64_t min_txg;
5062 
5063 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5064 		spa->spa_load_max_txg = spa->spa_load_txg;
5065 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5066 	} else {
5067 		spa->spa_load_max_txg = max_request;
5068 		if (max_request != UINT64_MAX)
5069 			spa->spa_extreme_rewind = B_TRUE;
5070 	}
5071 
5072 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5073 	if (load_error == 0)
5074 		return (0);
5075 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5076 		/*
5077 		 * When attempting checkpoint-rewind on a pool with no
5078 		 * checkpoint, we should not attempt to load uberblocks
5079 		 * from previous txgs when spa_load fails.
5080 		 */
5081 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5082 		spa_import_progress_remove(spa_guid(spa));
5083 		return (load_error);
5084 	}
5085 
5086 	if (spa->spa_root_vdev != NULL)
5087 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5088 
5089 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5090 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5091 
5092 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5093 		nvlist_free(config);
5094 		spa_import_progress_remove(spa_guid(spa));
5095 		return (load_error);
5096 	}
5097 
5098 	if (state == SPA_LOAD_RECOVER) {
5099 		/* Price of rolling back is discarding txgs, including log */
5100 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5101 	} else {
5102 		/*
5103 		 * If we aren't rolling back save the load info from our first
5104 		 * import attempt so that we can restore it after attempting
5105 		 * to rewind.
5106 		 */
5107 		loadinfo = spa->spa_load_info;
5108 		spa->spa_load_info = fnvlist_alloc();
5109 	}
5110 
5111 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5112 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5113 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5114 	    TXG_INITIAL : safe_rewind_txg;
5115 
5116 	/*
5117 	 * Continue as long as we're finding errors, we're still within
5118 	 * the acceptable rewind range, and we're still finding uberblocks
5119 	 */
5120 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5121 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5122 		if (spa->spa_load_max_txg < safe_rewind_txg)
5123 			spa->spa_extreme_rewind = B_TRUE;
5124 		rewind_error = spa_load_retry(spa, state);
5125 	}
5126 
5127 	spa->spa_extreme_rewind = B_FALSE;
5128 	spa->spa_load_max_txg = UINT64_MAX;
5129 
5130 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5131 		spa_config_set(spa, config);
5132 	else
5133 		nvlist_free(config);
5134 
5135 	if (state == SPA_LOAD_RECOVER) {
5136 		ASSERT3P(loadinfo, ==, NULL);
5137 		spa_import_progress_remove(spa_guid(spa));
5138 		return (rewind_error);
5139 	} else {
5140 		/* Store the rewind info as part of the initial load info */
5141 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5142 		    spa->spa_load_info);
5143 
5144 		/* Restore the initial load info */
5145 		fnvlist_free(spa->spa_load_info);
5146 		spa->spa_load_info = loadinfo;
5147 
5148 		spa_import_progress_remove(spa_guid(spa));
5149 		return (load_error);
5150 	}
5151 }
5152 
5153 /*
5154  * Pool Open/Import
5155  *
5156  * The import case is identical to an open except that the configuration is sent
5157  * down from userland, instead of grabbed from the configuration cache.  For the
5158  * case of an open, the pool configuration will exist in the
5159  * POOL_STATE_UNINITIALIZED state.
5160  *
5161  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5162  * the same time open the pool, without having to keep around the spa_t in some
5163  * ambiguous state.
5164  */
5165 static int
5166 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5167     nvlist_t *nvpolicy, nvlist_t **config)
5168 {
5169 	spa_t *spa;
5170 	spa_load_state_t state = SPA_LOAD_OPEN;
5171 	int error;
5172 	int locked = B_FALSE;
5173 	int firstopen = B_FALSE;
5174 
5175 	*spapp = NULL;
5176 
5177 	/*
5178 	 * As disgusting as this is, we need to support recursive calls to this
5179 	 * function because dsl_dir_open() is called during spa_load(), and ends
5180 	 * up calling spa_open() again.  The real fix is to figure out how to
5181 	 * avoid dsl_dir_open() calling this in the first place.
5182 	 */
5183 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5184 		mutex_enter(&spa_namespace_lock);
5185 		locked = B_TRUE;
5186 	}
5187 
5188 	if ((spa = spa_lookup(pool)) == NULL) {
5189 		if (locked)
5190 			mutex_exit(&spa_namespace_lock);
5191 		return (SET_ERROR(ENOENT));
5192 	}
5193 
5194 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5195 		zpool_load_policy_t policy;
5196 
5197 		firstopen = B_TRUE;
5198 
5199 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5200 		    &policy);
5201 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5202 			state = SPA_LOAD_RECOVER;
5203 
5204 		spa_activate(spa, spa_mode_global);
5205 
5206 		if (state != SPA_LOAD_RECOVER)
5207 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5208 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5209 
5210 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5211 		error = spa_load_best(spa, state, policy.zlp_txg,
5212 		    policy.zlp_rewind);
5213 
5214 		if (error == EBADF) {
5215 			/*
5216 			 * If vdev_validate() returns failure (indicated by
5217 			 * EBADF), it indicates that one of the vdevs indicates
5218 			 * that the pool has been exported or destroyed.  If
5219 			 * this is the case, the config cache is out of sync and
5220 			 * we should remove the pool from the namespace.
5221 			 */
5222 			spa_unload(spa);
5223 			spa_deactivate(spa);
5224 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5225 			spa_remove(spa);
5226 			if (locked)
5227 				mutex_exit(&spa_namespace_lock);
5228 			return (SET_ERROR(ENOENT));
5229 		}
5230 
5231 		if (error) {
5232 			/*
5233 			 * We can't open the pool, but we still have useful
5234 			 * information: the state of each vdev after the
5235 			 * attempted vdev_open().  Return this to the user.
5236 			 */
5237 			if (config != NULL && spa->spa_config) {
5238 				*config = fnvlist_dup(spa->spa_config);
5239 				fnvlist_add_nvlist(*config,
5240 				    ZPOOL_CONFIG_LOAD_INFO,
5241 				    spa->spa_load_info);
5242 			}
5243 			spa_unload(spa);
5244 			spa_deactivate(spa);
5245 			spa->spa_last_open_failed = error;
5246 			if (locked)
5247 				mutex_exit(&spa_namespace_lock);
5248 			*spapp = NULL;
5249 			return (error);
5250 		}
5251 	}
5252 
5253 	spa_open_ref(spa, tag);
5254 
5255 	if (config != NULL)
5256 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5257 
5258 	/*
5259 	 * If we've recovered the pool, pass back any information we
5260 	 * gathered while doing the load.
5261 	 */
5262 	if (state == SPA_LOAD_RECOVER) {
5263 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5264 		    spa->spa_load_info);
5265 	}
5266 
5267 	if (locked) {
5268 		spa->spa_last_open_failed = 0;
5269 		spa->spa_last_ubsync_txg = 0;
5270 		spa->spa_load_txg = 0;
5271 		mutex_exit(&spa_namespace_lock);
5272 	}
5273 
5274 	if (firstopen)
5275 		zvol_create_minors_recursive(spa_name(spa));
5276 
5277 	*spapp = spa;
5278 
5279 	return (0);
5280 }
5281 
5282 int
5283 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5284     nvlist_t *policy, nvlist_t **config)
5285 {
5286 	return (spa_open_common(name, spapp, tag, policy, config));
5287 }
5288 
5289 int
5290 spa_open(const char *name, spa_t **spapp, const void *tag)
5291 {
5292 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5293 }
5294 
5295 /*
5296  * Lookup the given spa_t, incrementing the inject count in the process,
5297  * preventing it from being exported or destroyed.
5298  */
5299 spa_t *
5300 spa_inject_addref(char *name)
5301 {
5302 	spa_t *spa;
5303 
5304 	mutex_enter(&spa_namespace_lock);
5305 	if ((spa = spa_lookup(name)) == NULL) {
5306 		mutex_exit(&spa_namespace_lock);
5307 		return (NULL);
5308 	}
5309 	spa->spa_inject_ref++;
5310 	mutex_exit(&spa_namespace_lock);
5311 
5312 	return (spa);
5313 }
5314 
5315 void
5316 spa_inject_delref(spa_t *spa)
5317 {
5318 	mutex_enter(&spa_namespace_lock);
5319 	spa->spa_inject_ref--;
5320 	mutex_exit(&spa_namespace_lock);
5321 }
5322 
5323 /*
5324  * Add spares device information to the nvlist.
5325  */
5326 static void
5327 spa_add_spares(spa_t *spa, nvlist_t *config)
5328 {
5329 	nvlist_t **spares;
5330 	uint_t i, nspares;
5331 	nvlist_t *nvroot;
5332 	uint64_t guid;
5333 	vdev_stat_t *vs;
5334 	uint_t vsc;
5335 	uint64_t pool;
5336 
5337 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5338 
5339 	if (spa->spa_spares.sav_count == 0)
5340 		return;
5341 
5342 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5343 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5344 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5345 	if (nspares != 0) {
5346 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5347 		    (const nvlist_t * const *)spares, nspares);
5348 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5349 		    &spares, &nspares));
5350 
5351 		/*
5352 		 * Go through and find any spares which have since been
5353 		 * repurposed as an active spare.  If this is the case, update
5354 		 * their status appropriately.
5355 		 */
5356 		for (i = 0; i < nspares; i++) {
5357 			guid = fnvlist_lookup_uint64(spares[i],
5358 			    ZPOOL_CONFIG_GUID);
5359 			if (spa_spare_exists(guid, &pool, NULL) &&
5360 			    pool != 0ULL) {
5361 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5362 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5363 				    &vsc));
5364 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5365 				vs->vs_aux = VDEV_AUX_SPARED;
5366 			}
5367 		}
5368 	}
5369 }
5370 
5371 /*
5372  * Add l2cache device information to the nvlist, including vdev stats.
5373  */
5374 static void
5375 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5376 {
5377 	nvlist_t **l2cache;
5378 	uint_t i, j, nl2cache;
5379 	nvlist_t *nvroot;
5380 	uint64_t guid;
5381 	vdev_t *vd;
5382 	vdev_stat_t *vs;
5383 	uint_t vsc;
5384 
5385 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5386 
5387 	if (spa->spa_l2cache.sav_count == 0)
5388 		return;
5389 
5390 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5391 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5392 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5393 	if (nl2cache != 0) {
5394 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5395 		    (const nvlist_t * const *)l2cache, nl2cache);
5396 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5397 		    &l2cache, &nl2cache));
5398 
5399 		/*
5400 		 * Update level 2 cache device stats.
5401 		 */
5402 
5403 		for (i = 0; i < nl2cache; i++) {
5404 			guid = fnvlist_lookup_uint64(l2cache[i],
5405 			    ZPOOL_CONFIG_GUID);
5406 
5407 			vd = NULL;
5408 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5409 				if (guid ==
5410 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5411 					vd = spa->spa_l2cache.sav_vdevs[j];
5412 					break;
5413 				}
5414 			}
5415 			ASSERT(vd != NULL);
5416 
5417 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5418 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5419 			vdev_get_stats(vd, vs);
5420 			vdev_config_generate_stats(vd, l2cache[i]);
5421 
5422 		}
5423 	}
5424 }
5425 
5426 static void
5427 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5428 {
5429 	zap_cursor_t zc;
5430 	zap_attribute_t za;
5431 
5432 	if (spa->spa_feat_for_read_obj != 0) {
5433 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5434 		    spa->spa_feat_for_read_obj);
5435 		    zap_cursor_retrieve(&zc, &za) == 0;
5436 		    zap_cursor_advance(&zc)) {
5437 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5438 			    za.za_num_integers == 1);
5439 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5440 			    za.za_first_integer));
5441 		}
5442 		zap_cursor_fini(&zc);
5443 	}
5444 
5445 	if (spa->spa_feat_for_write_obj != 0) {
5446 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5447 		    spa->spa_feat_for_write_obj);
5448 		    zap_cursor_retrieve(&zc, &za) == 0;
5449 		    zap_cursor_advance(&zc)) {
5450 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5451 			    za.za_num_integers == 1);
5452 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5453 			    za.za_first_integer));
5454 		}
5455 		zap_cursor_fini(&zc);
5456 	}
5457 }
5458 
5459 static void
5460 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5461 {
5462 	int i;
5463 
5464 	for (i = 0; i < SPA_FEATURES; i++) {
5465 		zfeature_info_t feature = spa_feature_table[i];
5466 		uint64_t refcount;
5467 
5468 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5469 			continue;
5470 
5471 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5472 	}
5473 }
5474 
5475 /*
5476  * Store a list of pool features and their reference counts in the
5477  * config.
5478  *
5479  * The first time this is called on a spa, allocate a new nvlist, fetch
5480  * the pool features and reference counts from disk, then save the list
5481  * in the spa. In subsequent calls on the same spa use the saved nvlist
5482  * and refresh its values from the cached reference counts.  This
5483  * ensures we don't block here on I/O on a suspended pool so 'zpool
5484  * clear' can resume the pool.
5485  */
5486 static void
5487 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5488 {
5489 	nvlist_t *features;
5490 
5491 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5492 
5493 	mutex_enter(&spa->spa_feat_stats_lock);
5494 	features = spa->spa_feat_stats;
5495 
5496 	if (features != NULL) {
5497 		spa_feature_stats_from_cache(spa, features);
5498 	} else {
5499 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5500 		spa->spa_feat_stats = features;
5501 		spa_feature_stats_from_disk(spa, features);
5502 	}
5503 
5504 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5505 	    features));
5506 
5507 	mutex_exit(&spa->spa_feat_stats_lock);
5508 }
5509 
5510 int
5511 spa_get_stats(const char *name, nvlist_t **config,
5512     char *altroot, size_t buflen)
5513 {
5514 	int error;
5515 	spa_t *spa;
5516 
5517 	*config = NULL;
5518 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5519 
5520 	if (spa != NULL) {
5521 		/*
5522 		 * This still leaves a window of inconsistency where the spares
5523 		 * or l2cache devices could change and the config would be
5524 		 * self-inconsistent.
5525 		 */
5526 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5527 
5528 		if (*config != NULL) {
5529 			uint64_t loadtimes[2];
5530 
5531 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5532 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5533 			fnvlist_add_uint64_array(*config,
5534 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5535 
5536 			fnvlist_add_uint64(*config,
5537 			    ZPOOL_CONFIG_ERRCOUNT,
5538 			    spa_get_errlog_size(spa));
5539 
5540 			if (spa_suspended(spa)) {
5541 				fnvlist_add_uint64(*config,
5542 				    ZPOOL_CONFIG_SUSPENDED,
5543 				    spa->spa_failmode);
5544 				fnvlist_add_uint64(*config,
5545 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5546 				    spa->spa_suspended);
5547 			}
5548 
5549 			spa_add_spares(spa, *config);
5550 			spa_add_l2cache(spa, *config);
5551 			spa_add_feature_stats(spa, *config);
5552 		}
5553 	}
5554 
5555 	/*
5556 	 * We want to get the alternate root even for faulted pools, so we cheat
5557 	 * and call spa_lookup() directly.
5558 	 */
5559 	if (altroot) {
5560 		if (spa == NULL) {
5561 			mutex_enter(&spa_namespace_lock);
5562 			spa = spa_lookup(name);
5563 			if (spa)
5564 				spa_altroot(spa, altroot, buflen);
5565 			else
5566 				altroot[0] = '\0';
5567 			spa = NULL;
5568 			mutex_exit(&spa_namespace_lock);
5569 		} else {
5570 			spa_altroot(spa, altroot, buflen);
5571 		}
5572 	}
5573 
5574 	if (spa != NULL) {
5575 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5576 		spa_close(spa, FTAG);
5577 	}
5578 
5579 	return (error);
5580 }
5581 
5582 /*
5583  * Validate that the auxiliary device array is well formed.  We must have an
5584  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5585  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5586  * specified, as long as they are well-formed.
5587  */
5588 static int
5589 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5590     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5591     vdev_labeltype_t label)
5592 {
5593 	nvlist_t **dev;
5594 	uint_t i, ndev;
5595 	vdev_t *vd;
5596 	int error;
5597 
5598 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5599 
5600 	/*
5601 	 * It's acceptable to have no devs specified.
5602 	 */
5603 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5604 		return (0);
5605 
5606 	if (ndev == 0)
5607 		return (SET_ERROR(EINVAL));
5608 
5609 	/*
5610 	 * Make sure the pool is formatted with a version that supports this
5611 	 * device type.
5612 	 */
5613 	if (spa_version(spa) < version)
5614 		return (SET_ERROR(ENOTSUP));
5615 
5616 	/*
5617 	 * Set the pending device list so we correctly handle device in-use
5618 	 * checking.
5619 	 */
5620 	sav->sav_pending = dev;
5621 	sav->sav_npending = ndev;
5622 
5623 	for (i = 0; i < ndev; i++) {
5624 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5625 		    mode)) != 0)
5626 			goto out;
5627 
5628 		if (!vd->vdev_ops->vdev_op_leaf) {
5629 			vdev_free(vd);
5630 			error = SET_ERROR(EINVAL);
5631 			goto out;
5632 		}
5633 
5634 		vd->vdev_top = vd;
5635 
5636 		if ((error = vdev_open(vd)) == 0 &&
5637 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5638 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5639 			    vd->vdev_guid);
5640 		}
5641 
5642 		vdev_free(vd);
5643 
5644 		if (error &&
5645 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5646 			goto out;
5647 		else
5648 			error = 0;
5649 	}
5650 
5651 out:
5652 	sav->sav_pending = NULL;
5653 	sav->sav_npending = 0;
5654 	return (error);
5655 }
5656 
5657 static int
5658 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5659 {
5660 	int error;
5661 
5662 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5663 
5664 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5665 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5666 	    VDEV_LABEL_SPARE)) != 0) {
5667 		return (error);
5668 	}
5669 
5670 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5671 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5672 	    VDEV_LABEL_L2CACHE));
5673 }
5674 
5675 static void
5676 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5677     const char *config)
5678 {
5679 	int i;
5680 
5681 	if (sav->sav_config != NULL) {
5682 		nvlist_t **olddevs;
5683 		uint_t oldndevs;
5684 		nvlist_t **newdevs;
5685 
5686 		/*
5687 		 * Generate new dev list by concatenating with the
5688 		 * current dev list.
5689 		 */
5690 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5691 		    &olddevs, &oldndevs));
5692 
5693 		newdevs = kmem_alloc(sizeof (void *) *
5694 		    (ndevs + oldndevs), KM_SLEEP);
5695 		for (i = 0; i < oldndevs; i++)
5696 			newdevs[i] = fnvlist_dup(olddevs[i]);
5697 		for (i = 0; i < ndevs; i++)
5698 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5699 
5700 		fnvlist_remove(sav->sav_config, config);
5701 
5702 		fnvlist_add_nvlist_array(sav->sav_config, config,
5703 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5704 		for (i = 0; i < oldndevs + ndevs; i++)
5705 			nvlist_free(newdevs[i]);
5706 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5707 	} else {
5708 		/*
5709 		 * Generate a new dev list.
5710 		 */
5711 		sav->sav_config = fnvlist_alloc();
5712 		fnvlist_add_nvlist_array(sav->sav_config, config,
5713 		    (const nvlist_t * const *)devs, ndevs);
5714 	}
5715 }
5716 
5717 /*
5718  * Stop and drop level 2 ARC devices
5719  */
5720 void
5721 spa_l2cache_drop(spa_t *spa)
5722 {
5723 	vdev_t *vd;
5724 	int i;
5725 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5726 
5727 	for (i = 0; i < sav->sav_count; i++) {
5728 		uint64_t pool;
5729 
5730 		vd = sav->sav_vdevs[i];
5731 		ASSERT(vd != NULL);
5732 
5733 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5734 		    pool != 0ULL && l2arc_vdev_present(vd))
5735 			l2arc_remove_vdev(vd);
5736 	}
5737 }
5738 
5739 /*
5740  * Verify encryption parameters for spa creation. If we are encrypting, we must
5741  * have the encryption feature flag enabled.
5742  */
5743 static int
5744 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5745     boolean_t has_encryption)
5746 {
5747 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5748 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5749 	    !has_encryption)
5750 		return (SET_ERROR(ENOTSUP));
5751 
5752 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5753 }
5754 
5755 /*
5756  * Pool Creation
5757  */
5758 int
5759 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5760     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5761 {
5762 	spa_t *spa;
5763 	char *altroot = NULL;
5764 	vdev_t *rvd;
5765 	dsl_pool_t *dp;
5766 	dmu_tx_t *tx;
5767 	int error = 0;
5768 	uint64_t txg = TXG_INITIAL;
5769 	nvlist_t **spares, **l2cache;
5770 	uint_t nspares, nl2cache;
5771 	uint64_t version, obj, ndraid = 0;
5772 	boolean_t has_features;
5773 	boolean_t has_encryption;
5774 	boolean_t has_allocclass;
5775 	spa_feature_t feat;
5776 	char *feat_name;
5777 	char *poolname;
5778 	nvlist_t *nvl;
5779 
5780 	if (props == NULL ||
5781 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5782 		poolname = (char *)pool;
5783 
5784 	/*
5785 	 * If this pool already exists, return failure.
5786 	 */
5787 	mutex_enter(&spa_namespace_lock);
5788 	if (spa_lookup(poolname) != NULL) {
5789 		mutex_exit(&spa_namespace_lock);
5790 		return (SET_ERROR(EEXIST));
5791 	}
5792 
5793 	/*
5794 	 * Allocate a new spa_t structure.
5795 	 */
5796 	nvl = fnvlist_alloc();
5797 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5798 	(void) nvlist_lookup_string(props,
5799 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5800 	spa = spa_add(poolname, nvl, altroot);
5801 	fnvlist_free(nvl);
5802 	spa_activate(spa, spa_mode_global);
5803 
5804 	if (props && (error = spa_prop_validate(spa, props))) {
5805 		spa_deactivate(spa);
5806 		spa_remove(spa);
5807 		mutex_exit(&spa_namespace_lock);
5808 		return (error);
5809 	}
5810 
5811 	/*
5812 	 * Temporary pool names should never be written to disk.
5813 	 */
5814 	if (poolname != pool)
5815 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5816 
5817 	has_features = B_FALSE;
5818 	has_encryption = B_FALSE;
5819 	has_allocclass = B_FALSE;
5820 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5821 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5822 		if (zpool_prop_feature(nvpair_name(elem))) {
5823 			has_features = B_TRUE;
5824 
5825 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5826 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5827 			if (feat == SPA_FEATURE_ENCRYPTION)
5828 				has_encryption = B_TRUE;
5829 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5830 				has_allocclass = B_TRUE;
5831 		}
5832 	}
5833 
5834 	/* verify encryption params, if they were provided */
5835 	if (dcp != NULL) {
5836 		error = spa_create_check_encryption_params(dcp, has_encryption);
5837 		if (error != 0) {
5838 			spa_deactivate(spa);
5839 			spa_remove(spa);
5840 			mutex_exit(&spa_namespace_lock);
5841 			return (error);
5842 		}
5843 	}
5844 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5845 		spa_deactivate(spa);
5846 		spa_remove(spa);
5847 		mutex_exit(&spa_namespace_lock);
5848 		return (ENOTSUP);
5849 	}
5850 
5851 	if (has_features || nvlist_lookup_uint64(props,
5852 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5853 		version = SPA_VERSION;
5854 	}
5855 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5856 
5857 	spa->spa_first_txg = txg;
5858 	spa->spa_uberblock.ub_txg = txg - 1;
5859 	spa->spa_uberblock.ub_version = version;
5860 	spa->spa_ubsync = spa->spa_uberblock;
5861 	spa->spa_load_state = SPA_LOAD_CREATE;
5862 	spa->spa_removing_phys.sr_state = DSS_NONE;
5863 	spa->spa_removing_phys.sr_removing_vdev = -1;
5864 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5865 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5866 
5867 	/*
5868 	 * Create "The Godfather" zio to hold all async IOs
5869 	 */
5870 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5871 	    KM_SLEEP);
5872 	for (int i = 0; i < max_ncpus; i++) {
5873 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5874 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5875 		    ZIO_FLAG_GODFATHER);
5876 	}
5877 
5878 	/*
5879 	 * Create the root vdev.
5880 	 */
5881 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5882 
5883 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5884 
5885 	ASSERT(error != 0 || rvd != NULL);
5886 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5887 
5888 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5889 		error = SET_ERROR(EINVAL);
5890 
5891 	if (error == 0 &&
5892 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5893 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5894 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5895 		/*
5896 		 * instantiate the metaslab groups (this will dirty the vdevs)
5897 		 * we can no longer error exit past this point
5898 		 */
5899 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5900 			vdev_t *vd = rvd->vdev_child[c];
5901 
5902 			vdev_metaslab_set_size(vd);
5903 			vdev_expand(vd, txg);
5904 		}
5905 	}
5906 
5907 	spa_config_exit(spa, SCL_ALL, FTAG);
5908 
5909 	if (error != 0) {
5910 		spa_unload(spa);
5911 		spa_deactivate(spa);
5912 		spa_remove(spa);
5913 		mutex_exit(&spa_namespace_lock);
5914 		return (error);
5915 	}
5916 
5917 	/*
5918 	 * Get the list of spares, if specified.
5919 	 */
5920 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5921 	    &spares, &nspares) == 0) {
5922 		spa->spa_spares.sav_config = fnvlist_alloc();
5923 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5924 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5925 		    nspares);
5926 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5927 		spa_load_spares(spa);
5928 		spa_config_exit(spa, SCL_ALL, FTAG);
5929 		spa->spa_spares.sav_sync = B_TRUE;
5930 	}
5931 
5932 	/*
5933 	 * Get the list of level 2 cache devices, if specified.
5934 	 */
5935 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5936 	    &l2cache, &nl2cache) == 0) {
5937 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5938 		    NV_UNIQUE_NAME, KM_SLEEP));
5939 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5940 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5941 		    nl2cache);
5942 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5943 		spa_load_l2cache(spa);
5944 		spa_config_exit(spa, SCL_ALL, FTAG);
5945 		spa->spa_l2cache.sav_sync = B_TRUE;
5946 	}
5947 
5948 	spa->spa_is_initializing = B_TRUE;
5949 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5950 	spa->spa_is_initializing = B_FALSE;
5951 
5952 	/*
5953 	 * Create DDTs (dedup tables).
5954 	 */
5955 	ddt_create(spa);
5956 
5957 	spa_update_dspace(spa);
5958 
5959 	tx = dmu_tx_create_assigned(dp, txg);
5960 
5961 	/*
5962 	 * Create the pool's history object.
5963 	 */
5964 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5965 		spa_history_create_obj(spa, tx);
5966 
5967 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5968 	spa_history_log_version(spa, "create", tx);
5969 
5970 	/*
5971 	 * Create the pool config object.
5972 	 */
5973 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5974 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5975 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5976 
5977 	if (zap_add(spa->spa_meta_objset,
5978 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5979 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5980 		cmn_err(CE_PANIC, "failed to add pool config");
5981 	}
5982 
5983 	if (zap_add(spa->spa_meta_objset,
5984 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5985 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5986 		cmn_err(CE_PANIC, "failed to add pool version");
5987 	}
5988 
5989 	/* Newly created pools with the right version are always deflated. */
5990 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5991 		spa->spa_deflate = TRUE;
5992 		if (zap_add(spa->spa_meta_objset,
5993 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5994 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5995 			cmn_err(CE_PANIC, "failed to add deflate");
5996 		}
5997 	}
5998 
5999 	/*
6000 	 * Create the deferred-free bpobj.  Turn off compression
6001 	 * because sync-to-convergence takes longer if the blocksize
6002 	 * keeps changing.
6003 	 */
6004 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6005 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6006 	    ZIO_COMPRESS_OFF, tx);
6007 	if (zap_add(spa->spa_meta_objset,
6008 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6009 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6010 		cmn_err(CE_PANIC, "failed to add bpobj");
6011 	}
6012 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6013 	    spa->spa_meta_objset, obj));
6014 
6015 	/*
6016 	 * Generate some random noise for salted checksums to operate on.
6017 	 */
6018 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6019 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6020 
6021 	/*
6022 	 * Set pool properties.
6023 	 */
6024 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6025 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6026 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6027 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6028 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6029 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6030 
6031 	if (props != NULL) {
6032 		spa_configfile_set(spa, props, B_FALSE);
6033 		spa_sync_props(props, tx);
6034 	}
6035 
6036 	for (int i = 0; i < ndraid; i++)
6037 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6038 
6039 	dmu_tx_commit(tx);
6040 
6041 	spa->spa_sync_on = B_TRUE;
6042 	txg_sync_start(dp);
6043 	mmp_thread_start(spa);
6044 	txg_wait_synced(dp, txg);
6045 
6046 	spa_spawn_aux_threads(spa);
6047 
6048 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
6049 
6050 	/*
6051 	 * Don't count references from objsets that are already closed
6052 	 * and are making their way through the eviction process.
6053 	 */
6054 	spa_evicting_os_wait(spa);
6055 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6056 	spa->spa_load_state = SPA_LOAD_NONE;
6057 
6058 	spa_import_os(spa);
6059 
6060 	mutex_exit(&spa_namespace_lock);
6061 
6062 	return (0);
6063 }
6064 
6065 /*
6066  * Import a non-root pool into the system.
6067  */
6068 int
6069 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6070 {
6071 	spa_t *spa;
6072 	char *altroot = NULL;
6073 	spa_load_state_t state = SPA_LOAD_IMPORT;
6074 	zpool_load_policy_t policy;
6075 	spa_mode_t mode = spa_mode_global;
6076 	uint64_t readonly = B_FALSE;
6077 	int error;
6078 	nvlist_t *nvroot;
6079 	nvlist_t **spares, **l2cache;
6080 	uint_t nspares, nl2cache;
6081 
6082 	/*
6083 	 * If a pool with this name exists, return failure.
6084 	 */
6085 	mutex_enter(&spa_namespace_lock);
6086 	if (spa_lookup(pool) != NULL) {
6087 		mutex_exit(&spa_namespace_lock);
6088 		return (SET_ERROR(EEXIST));
6089 	}
6090 
6091 	/*
6092 	 * Create and initialize the spa structure.
6093 	 */
6094 	(void) nvlist_lookup_string(props,
6095 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6096 	(void) nvlist_lookup_uint64(props,
6097 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6098 	if (readonly)
6099 		mode = SPA_MODE_READ;
6100 	spa = spa_add(pool, config, altroot);
6101 	spa->spa_import_flags = flags;
6102 
6103 	/*
6104 	 * Verbatim import - Take a pool and insert it into the namespace
6105 	 * as if it had been loaded at boot.
6106 	 */
6107 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6108 		if (props != NULL)
6109 			spa_configfile_set(spa, props, B_FALSE);
6110 
6111 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6112 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6113 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6114 		mutex_exit(&spa_namespace_lock);
6115 		return (0);
6116 	}
6117 
6118 	spa_activate(spa, mode);
6119 
6120 	/*
6121 	 * Don't start async tasks until we know everything is healthy.
6122 	 */
6123 	spa_async_suspend(spa);
6124 
6125 	zpool_get_load_policy(config, &policy);
6126 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6127 		state = SPA_LOAD_RECOVER;
6128 
6129 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6130 
6131 	if (state != SPA_LOAD_RECOVER) {
6132 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6133 		zfs_dbgmsg("spa_import: importing %s", pool);
6134 	} else {
6135 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6136 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6137 	}
6138 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6139 
6140 	/*
6141 	 * Propagate anything learned while loading the pool and pass it
6142 	 * back to caller (i.e. rewind info, missing devices, etc).
6143 	 */
6144 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6145 
6146 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6147 	/*
6148 	 * Toss any existing sparelist, as it doesn't have any validity
6149 	 * anymore, and conflicts with spa_has_spare().
6150 	 */
6151 	if (spa->spa_spares.sav_config) {
6152 		nvlist_free(spa->spa_spares.sav_config);
6153 		spa->spa_spares.sav_config = NULL;
6154 		spa_load_spares(spa);
6155 	}
6156 	if (spa->spa_l2cache.sav_config) {
6157 		nvlist_free(spa->spa_l2cache.sav_config);
6158 		spa->spa_l2cache.sav_config = NULL;
6159 		spa_load_l2cache(spa);
6160 	}
6161 
6162 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6163 	spa_config_exit(spa, SCL_ALL, FTAG);
6164 
6165 	if (props != NULL)
6166 		spa_configfile_set(spa, props, B_FALSE);
6167 
6168 	if (error != 0 || (props && spa_writeable(spa) &&
6169 	    (error = spa_prop_set(spa, props)))) {
6170 		spa_unload(spa);
6171 		spa_deactivate(spa);
6172 		spa_remove(spa);
6173 		mutex_exit(&spa_namespace_lock);
6174 		return (error);
6175 	}
6176 
6177 	spa_async_resume(spa);
6178 
6179 	/*
6180 	 * Override any spares and level 2 cache devices as specified by
6181 	 * the user, as these may have correct device names/devids, etc.
6182 	 */
6183 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6184 	    &spares, &nspares) == 0) {
6185 		if (spa->spa_spares.sav_config)
6186 			fnvlist_remove(spa->spa_spares.sav_config,
6187 			    ZPOOL_CONFIG_SPARES);
6188 		else
6189 			spa->spa_spares.sav_config = fnvlist_alloc();
6190 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6191 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6192 		    nspares);
6193 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6194 		spa_load_spares(spa);
6195 		spa_config_exit(spa, SCL_ALL, FTAG);
6196 		spa->spa_spares.sav_sync = B_TRUE;
6197 	}
6198 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6199 	    &l2cache, &nl2cache) == 0) {
6200 		if (spa->spa_l2cache.sav_config)
6201 			fnvlist_remove(spa->spa_l2cache.sav_config,
6202 			    ZPOOL_CONFIG_L2CACHE);
6203 		else
6204 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6205 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6206 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6207 		    nl2cache);
6208 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6209 		spa_load_l2cache(spa);
6210 		spa_config_exit(spa, SCL_ALL, FTAG);
6211 		spa->spa_l2cache.sav_sync = B_TRUE;
6212 	}
6213 
6214 	/*
6215 	 * Check for any removed devices.
6216 	 */
6217 	if (spa->spa_autoreplace) {
6218 		spa_aux_check_removed(&spa->spa_spares);
6219 		spa_aux_check_removed(&spa->spa_l2cache);
6220 	}
6221 
6222 	if (spa_writeable(spa)) {
6223 		/*
6224 		 * Update the config cache to include the newly-imported pool.
6225 		 */
6226 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6227 	}
6228 
6229 	/*
6230 	 * It's possible that the pool was expanded while it was exported.
6231 	 * We kick off an async task to handle this for us.
6232 	 */
6233 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6234 
6235 	spa_history_log_version(spa, "import", NULL);
6236 
6237 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6238 
6239 	mutex_exit(&spa_namespace_lock);
6240 
6241 	zvol_create_minors_recursive(pool);
6242 
6243 	spa_import_os(spa);
6244 
6245 	return (0);
6246 }
6247 
6248 nvlist_t *
6249 spa_tryimport(nvlist_t *tryconfig)
6250 {
6251 	nvlist_t *config = NULL;
6252 	char *poolname, *cachefile;
6253 	spa_t *spa;
6254 	uint64_t state;
6255 	int error;
6256 	zpool_load_policy_t policy;
6257 
6258 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6259 		return (NULL);
6260 
6261 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6262 		return (NULL);
6263 
6264 	/*
6265 	 * Create and initialize the spa structure.
6266 	 */
6267 	mutex_enter(&spa_namespace_lock);
6268 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6269 	spa_activate(spa, SPA_MODE_READ);
6270 
6271 	/*
6272 	 * Rewind pool if a max txg was provided.
6273 	 */
6274 	zpool_get_load_policy(spa->spa_config, &policy);
6275 	if (policy.zlp_txg != UINT64_MAX) {
6276 		spa->spa_load_max_txg = policy.zlp_txg;
6277 		spa->spa_extreme_rewind = B_TRUE;
6278 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6279 		    poolname, (longlong_t)policy.zlp_txg);
6280 	} else {
6281 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6282 	}
6283 
6284 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6285 	    == 0) {
6286 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6287 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6288 	} else {
6289 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6290 	}
6291 
6292 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6293 
6294 	/*
6295 	 * If 'tryconfig' was at least parsable, return the current config.
6296 	 */
6297 	if (spa->spa_root_vdev != NULL) {
6298 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6299 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6300 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6301 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6302 		    spa->spa_uberblock.ub_timestamp);
6303 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6304 		    spa->spa_load_info);
6305 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6306 		    spa->spa_errata);
6307 
6308 		/*
6309 		 * If the bootfs property exists on this pool then we
6310 		 * copy it out so that external consumers can tell which
6311 		 * pools are bootable.
6312 		 */
6313 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6314 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6315 
6316 			/*
6317 			 * We have to play games with the name since the
6318 			 * pool was opened as TRYIMPORT_NAME.
6319 			 */
6320 			if (dsl_dsobj_to_dsname(spa_name(spa),
6321 			    spa->spa_bootfs, tmpname) == 0) {
6322 				char *cp;
6323 				char *dsname;
6324 
6325 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6326 
6327 				cp = strchr(tmpname, '/');
6328 				if (cp == NULL) {
6329 					(void) strlcpy(dsname, tmpname,
6330 					    MAXPATHLEN);
6331 				} else {
6332 					(void) snprintf(dsname, MAXPATHLEN,
6333 					    "%s/%s", poolname, ++cp);
6334 				}
6335 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6336 				    dsname);
6337 				kmem_free(dsname, MAXPATHLEN);
6338 			}
6339 			kmem_free(tmpname, MAXPATHLEN);
6340 		}
6341 
6342 		/*
6343 		 * Add the list of hot spares and level 2 cache devices.
6344 		 */
6345 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6346 		spa_add_spares(spa, config);
6347 		spa_add_l2cache(spa, config);
6348 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6349 	}
6350 
6351 	spa_unload(spa);
6352 	spa_deactivate(spa);
6353 	spa_remove(spa);
6354 	mutex_exit(&spa_namespace_lock);
6355 
6356 	return (config);
6357 }
6358 
6359 /*
6360  * Pool export/destroy
6361  *
6362  * The act of destroying or exporting a pool is very simple.  We make sure there
6363  * is no more pending I/O and any references to the pool are gone.  Then, we
6364  * update the pool state and sync all the labels to disk, removing the
6365  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6366  * we don't sync the labels or remove the configuration cache.
6367  */
6368 static int
6369 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6370     boolean_t force, boolean_t hardforce)
6371 {
6372 	int error;
6373 	spa_t *spa;
6374 
6375 	if (oldconfig)
6376 		*oldconfig = NULL;
6377 
6378 	if (!(spa_mode_global & SPA_MODE_WRITE))
6379 		return (SET_ERROR(EROFS));
6380 
6381 	mutex_enter(&spa_namespace_lock);
6382 	if ((spa = spa_lookup(pool)) == NULL) {
6383 		mutex_exit(&spa_namespace_lock);
6384 		return (SET_ERROR(ENOENT));
6385 	}
6386 
6387 	if (spa->spa_is_exporting) {
6388 		/* the pool is being exported by another thread */
6389 		mutex_exit(&spa_namespace_lock);
6390 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6391 	}
6392 	spa->spa_is_exporting = B_TRUE;
6393 
6394 	/*
6395 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6396 	 * reacquire the namespace lock, and see if we can export.
6397 	 */
6398 	spa_open_ref(spa, FTAG);
6399 	mutex_exit(&spa_namespace_lock);
6400 	spa_async_suspend(spa);
6401 	if (spa->spa_zvol_taskq) {
6402 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6403 		taskq_wait(spa->spa_zvol_taskq);
6404 	}
6405 	mutex_enter(&spa_namespace_lock);
6406 	spa_close(spa, FTAG);
6407 
6408 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6409 		goto export_spa;
6410 	/*
6411 	 * The pool will be in core if it's openable, in which case we can
6412 	 * modify its state.  Objsets may be open only because they're dirty,
6413 	 * so we have to force it to sync before checking spa_refcnt.
6414 	 */
6415 	if (spa->spa_sync_on) {
6416 		txg_wait_synced(spa->spa_dsl_pool, 0);
6417 		spa_evicting_os_wait(spa);
6418 	}
6419 
6420 	/*
6421 	 * A pool cannot be exported or destroyed if there are active
6422 	 * references.  If we are resetting a pool, allow references by
6423 	 * fault injection handlers.
6424 	 */
6425 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6426 		error = SET_ERROR(EBUSY);
6427 		goto fail;
6428 	}
6429 
6430 	if (spa->spa_sync_on) {
6431 		/*
6432 		 * A pool cannot be exported if it has an active shared spare.
6433 		 * This is to prevent other pools stealing the active spare
6434 		 * from an exported pool. At user's own will, such pool can
6435 		 * be forcedly exported.
6436 		 */
6437 		if (!force && new_state == POOL_STATE_EXPORTED &&
6438 		    spa_has_active_shared_spare(spa)) {
6439 			error = SET_ERROR(EXDEV);
6440 			goto fail;
6441 		}
6442 
6443 		/*
6444 		 * We're about to export or destroy this pool. Make sure
6445 		 * we stop all initialization and trim activity here before
6446 		 * we set the spa_final_txg. This will ensure that all
6447 		 * dirty data resulting from the initialization is
6448 		 * committed to disk before we unload the pool.
6449 		 */
6450 		if (spa->spa_root_vdev != NULL) {
6451 			vdev_t *rvd = spa->spa_root_vdev;
6452 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6453 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6454 			vdev_autotrim_stop_all(spa);
6455 			vdev_rebuild_stop_all(spa);
6456 		}
6457 
6458 		/*
6459 		 * We want this to be reflected on every label,
6460 		 * so mark them all dirty.  spa_unload() will do the
6461 		 * final sync that pushes these changes out.
6462 		 */
6463 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6464 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6465 			spa->spa_state = new_state;
6466 			vdev_config_dirty(spa->spa_root_vdev);
6467 			spa_config_exit(spa, SCL_ALL, FTAG);
6468 		}
6469 
6470 		/*
6471 		 * If the log space map feature is enabled and the pool is
6472 		 * getting exported (but not destroyed), we want to spend some
6473 		 * time flushing as many metaslabs as we can in an attempt to
6474 		 * destroy log space maps and save import time. This has to be
6475 		 * done before we set the spa_final_txg, otherwise
6476 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6477 		 * spa_should_flush_logs_on_unload() should be called after
6478 		 * spa_state has been set to the new_state.
6479 		 */
6480 		if (spa_should_flush_logs_on_unload(spa))
6481 			spa_unload_log_sm_flush_all(spa);
6482 
6483 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6484 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6485 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6486 			    TXG_DEFER_SIZE + 1;
6487 			spa_config_exit(spa, SCL_ALL, FTAG);
6488 		}
6489 	}
6490 
6491 export_spa:
6492 	spa_export_os(spa);
6493 
6494 	if (new_state == POOL_STATE_DESTROYED)
6495 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6496 	else if (new_state == POOL_STATE_EXPORTED)
6497 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6498 
6499 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6500 		spa_unload(spa);
6501 		spa_deactivate(spa);
6502 	}
6503 
6504 	if (oldconfig && spa->spa_config)
6505 		*oldconfig = fnvlist_dup(spa->spa_config);
6506 
6507 	if (new_state != POOL_STATE_UNINITIALIZED) {
6508 		if (!hardforce)
6509 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6510 		spa_remove(spa);
6511 	} else {
6512 		/*
6513 		 * If spa_remove() is not called for this spa_t and
6514 		 * there is any possibility that it can be reused,
6515 		 * we make sure to reset the exporting flag.
6516 		 */
6517 		spa->spa_is_exporting = B_FALSE;
6518 	}
6519 
6520 	mutex_exit(&spa_namespace_lock);
6521 	return (0);
6522 
6523 fail:
6524 	spa->spa_is_exporting = B_FALSE;
6525 	spa_async_resume(spa);
6526 	mutex_exit(&spa_namespace_lock);
6527 	return (error);
6528 }
6529 
6530 /*
6531  * Destroy a storage pool.
6532  */
6533 int
6534 spa_destroy(const char *pool)
6535 {
6536 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6537 	    B_FALSE, B_FALSE));
6538 }
6539 
6540 /*
6541  * Export a storage pool.
6542  */
6543 int
6544 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6545     boolean_t hardforce)
6546 {
6547 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6548 	    force, hardforce));
6549 }
6550 
6551 /*
6552  * Similar to spa_export(), this unloads the spa_t without actually removing it
6553  * from the namespace in any way.
6554  */
6555 int
6556 spa_reset(const char *pool)
6557 {
6558 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6559 	    B_FALSE, B_FALSE));
6560 }
6561 
6562 /*
6563  * ==========================================================================
6564  * Device manipulation
6565  * ==========================================================================
6566  */
6567 
6568 /*
6569  * This is called as a synctask to increment the draid feature flag
6570  */
6571 static void
6572 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6573 {
6574 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6575 	int draid = (int)(uintptr_t)arg;
6576 
6577 	for (int c = 0; c < draid; c++)
6578 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6579 }
6580 
6581 /*
6582  * Add a device to a storage pool.
6583  */
6584 int
6585 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6586 {
6587 	uint64_t txg, ndraid = 0;
6588 	int error;
6589 	vdev_t *rvd = spa->spa_root_vdev;
6590 	vdev_t *vd, *tvd;
6591 	nvlist_t **spares, **l2cache;
6592 	uint_t nspares, nl2cache;
6593 
6594 	ASSERT(spa_writeable(spa));
6595 
6596 	txg = spa_vdev_enter(spa);
6597 
6598 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6599 	    VDEV_ALLOC_ADD)) != 0)
6600 		return (spa_vdev_exit(spa, NULL, txg, error));
6601 
6602 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6603 
6604 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6605 	    &nspares) != 0)
6606 		nspares = 0;
6607 
6608 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6609 	    &nl2cache) != 0)
6610 		nl2cache = 0;
6611 
6612 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6613 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6614 
6615 	if (vd->vdev_children != 0 &&
6616 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6617 		return (spa_vdev_exit(spa, vd, txg, error));
6618 	}
6619 
6620 	/*
6621 	 * The virtual dRAID spares must be added after vdev tree is created
6622 	 * and the vdev guids are generated.  The guid of their associated
6623 	 * dRAID is stored in the config and used when opening the spare.
6624 	 */
6625 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6626 	    rvd->vdev_children)) == 0) {
6627 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6628 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6629 			nspares = 0;
6630 	} else {
6631 		return (spa_vdev_exit(spa, vd, txg, error));
6632 	}
6633 
6634 	/*
6635 	 * We must validate the spares and l2cache devices after checking the
6636 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6637 	 */
6638 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6639 		return (spa_vdev_exit(spa, vd, txg, error));
6640 
6641 	/*
6642 	 * If we are in the middle of a device removal, we can only add
6643 	 * devices which match the existing devices in the pool.
6644 	 * If we are in the middle of a removal, or have some indirect
6645 	 * vdevs, we can not add raidz or dRAID top levels.
6646 	 */
6647 	if (spa->spa_vdev_removal != NULL ||
6648 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6649 		for (int c = 0; c < vd->vdev_children; c++) {
6650 			tvd = vd->vdev_child[c];
6651 			if (spa->spa_vdev_removal != NULL &&
6652 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6653 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6654 			}
6655 			/* Fail if top level vdev is raidz or a dRAID */
6656 			if (vdev_get_nparity(tvd) != 0)
6657 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6658 
6659 			/*
6660 			 * Need the top level mirror to be
6661 			 * a mirror of leaf vdevs only
6662 			 */
6663 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6664 				for (uint64_t cid = 0;
6665 				    cid < tvd->vdev_children; cid++) {
6666 					vdev_t *cvd = tvd->vdev_child[cid];
6667 					if (!cvd->vdev_ops->vdev_op_leaf) {
6668 						return (spa_vdev_exit(spa, vd,
6669 						    txg, EINVAL));
6670 					}
6671 				}
6672 			}
6673 		}
6674 	}
6675 
6676 	for (int c = 0; c < vd->vdev_children; c++) {
6677 		tvd = vd->vdev_child[c];
6678 		vdev_remove_child(vd, tvd);
6679 		tvd->vdev_id = rvd->vdev_children;
6680 		vdev_add_child(rvd, tvd);
6681 		vdev_config_dirty(tvd);
6682 	}
6683 
6684 	if (nspares != 0) {
6685 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6686 		    ZPOOL_CONFIG_SPARES);
6687 		spa_load_spares(spa);
6688 		spa->spa_spares.sav_sync = B_TRUE;
6689 	}
6690 
6691 	if (nl2cache != 0) {
6692 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6693 		    ZPOOL_CONFIG_L2CACHE);
6694 		spa_load_l2cache(spa);
6695 		spa->spa_l2cache.sav_sync = B_TRUE;
6696 	}
6697 
6698 	/*
6699 	 * We can't increment a feature while holding spa_vdev so we
6700 	 * have to do it in a synctask.
6701 	 */
6702 	if (ndraid != 0) {
6703 		dmu_tx_t *tx;
6704 
6705 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6706 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6707 		    (void *)(uintptr_t)ndraid, tx);
6708 		dmu_tx_commit(tx);
6709 	}
6710 
6711 	/*
6712 	 * We have to be careful when adding new vdevs to an existing pool.
6713 	 * If other threads start allocating from these vdevs before we
6714 	 * sync the config cache, and we lose power, then upon reboot we may
6715 	 * fail to open the pool because there are DVAs that the config cache
6716 	 * can't translate.  Therefore, we first add the vdevs without
6717 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6718 	 * and then let spa_config_update() initialize the new metaslabs.
6719 	 *
6720 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6721 	 * if we lose power at any point in this sequence, the remaining
6722 	 * steps will be completed the next time we load the pool.
6723 	 */
6724 	(void) spa_vdev_exit(spa, vd, txg, 0);
6725 
6726 	mutex_enter(&spa_namespace_lock);
6727 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6728 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6729 	mutex_exit(&spa_namespace_lock);
6730 
6731 	return (0);
6732 }
6733 
6734 /*
6735  * Attach a device to a mirror.  The arguments are the path to any device
6736  * in the mirror, and the nvroot for the new device.  If the path specifies
6737  * a device that is not mirrored, we automatically insert the mirror vdev.
6738  *
6739  * If 'replacing' is specified, the new device is intended to replace the
6740  * existing device; in this case the two devices are made into their own
6741  * mirror using the 'replacing' vdev, which is functionally identical to
6742  * the mirror vdev (it actually reuses all the same ops) but has a few
6743  * extra rules: you can't attach to it after it's been created, and upon
6744  * completion of resilvering, the first disk (the one being replaced)
6745  * is automatically detached.
6746  *
6747  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6748  * should be performed instead of traditional healing reconstruction.  From
6749  * an administrators perspective these are both resilver operations.
6750  */
6751 int
6752 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6753     int rebuild)
6754 {
6755 	uint64_t txg, dtl_max_txg;
6756 	vdev_t *rvd = spa->spa_root_vdev;
6757 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6758 	vdev_ops_t *pvops;
6759 	char *oldvdpath, *newvdpath;
6760 	int newvd_isspare;
6761 	int error;
6762 
6763 	ASSERT(spa_writeable(spa));
6764 
6765 	txg = spa_vdev_enter(spa);
6766 
6767 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6768 
6769 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6770 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6771 		error = (spa_has_checkpoint(spa)) ?
6772 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6773 		return (spa_vdev_exit(spa, NULL, txg, error));
6774 	}
6775 
6776 	if (rebuild) {
6777 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6778 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6779 
6780 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6781 			return (spa_vdev_exit(spa, NULL, txg,
6782 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6783 	} else {
6784 		if (vdev_rebuild_active(rvd))
6785 			return (spa_vdev_exit(spa, NULL, txg,
6786 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6787 	}
6788 
6789 	if (spa->spa_vdev_removal != NULL)
6790 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6791 
6792 	if (oldvd == NULL)
6793 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6794 
6795 	if (!oldvd->vdev_ops->vdev_op_leaf)
6796 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6797 
6798 	pvd = oldvd->vdev_parent;
6799 
6800 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6801 	    VDEV_ALLOC_ATTACH)) != 0)
6802 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6803 
6804 	if (newrootvd->vdev_children != 1)
6805 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6806 
6807 	newvd = newrootvd->vdev_child[0];
6808 
6809 	if (!newvd->vdev_ops->vdev_op_leaf)
6810 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6811 
6812 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6813 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6814 
6815 	/*
6816 	 * Spares can't replace logs
6817 	 */
6818 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6819 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6820 
6821 	/*
6822 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6823 	 */
6824 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6825 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6826 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6827 	}
6828 
6829 	if (rebuild) {
6830 		/*
6831 		 * For rebuilds, the top vdev must support reconstruction
6832 		 * using only space maps.  This means the only allowable
6833 		 * vdevs types are the root vdev, a mirror, or dRAID.
6834 		 */
6835 		tvd = pvd;
6836 		if (pvd->vdev_top != NULL)
6837 			tvd = pvd->vdev_top;
6838 
6839 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6840 		    tvd->vdev_ops != &vdev_root_ops &&
6841 		    tvd->vdev_ops != &vdev_draid_ops) {
6842 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6843 		}
6844 	}
6845 
6846 	if (!replacing) {
6847 		/*
6848 		 * For attach, the only allowable parent is a mirror or the root
6849 		 * vdev.
6850 		 */
6851 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6852 		    pvd->vdev_ops != &vdev_root_ops)
6853 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6854 
6855 		pvops = &vdev_mirror_ops;
6856 	} else {
6857 		/*
6858 		 * Active hot spares can only be replaced by inactive hot
6859 		 * spares.
6860 		 */
6861 		if (pvd->vdev_ops == &vdev_spare_ops &&
6862 		    oldvd->vdev_isspare &&
6863 		    !spa_has_spare(spa, newvd->vdev_guid))
6864 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6865 
6866 		/*
6867 		 * If the source is a hot spare, and the parent isn't already a
6868 		 * spare, then we want to create a new hot spare.  Otherwise, we
6869 		 * want to create a replacing vdev.  The user is not allowed to
6870 		 * attach to a spared vdev child unless the 'isspare' state is
6871 		 * the same (spare replaces spare, non-spare replaces
6872 		 * non-spare).
6873 		 */
6874 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6875 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6876 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6877 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6878 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6879 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6880 		}
6881 
6882 		if (newvd->vdev_isspare)
6883 			pvops = &vdev_spare_ops;
6884 		else
6885 			pvops = &vdev_replacing_ops;
6886 	}
6887 
6888 	/*
6889 	 * Make sure the new device is big enough.
6890 	 */
6891 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6892 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6893 
6894 	/*
6895 	 * The new device cannot have a higher alignment requirement
6896 	 * than the top-level vdev.
6897 	 */
6898 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6899 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6900 
6901 	/*
6902 	 * If this is an in-place replacement, update oldvd's path and devid
6903 	 * to make it distinguishable from newvd, and unopenable from now on.
6904 	 */
6905 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6906 		spa_strfree(oldvd->vdev_path);
6907 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6908 		    KM_SLEEP);
6909 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6910 		    "%s/%s", newvd->vdev_path, "old");
6911 		if (oldvd->vdev_devid != NULL) {
6912 			spa_strfree(oldvd->vdev_devid);
6913 			oldvd->vdev_devid = NULL;
6914 		}
6915 	}
6916 
6917 	/*
6918 	 * If the parent is not a mirror, or if we're replacing, insert the new
6919 	 * mirror/replacing/spare vdev above oldvd.
6920 	 */
6921 	if (pvd->vdev_ops != pvops)
6922 		pvd = vdev_add_parent(oldvd, pvops);
6923 
6924 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6925 	ASSERT(pvd->vdev_ops == pvops);
6926 	ASSERT(oldvd->vdev_parent == pvd);
6927 
6928 	/*
6929 	 * Extract the new device from its root and add it to pvd.
6930 	 */
6931 	vdev_remove_child(newrootvd, newvd);
6932 	newvd->vdev_id = pvd->vdev_children;
6933 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6934 	vdev_add_child(pvd, newvd);
6935 
6936 	/*
6937 	 * Reevaluate the parent vdev state.
6938 	 */
6939 	vdev_propagate_state(pvd);
6940 
6941 	tvd = newvd->vdev_top;
6942 	ASSERT(pvd->vdev_top == tvd);
6943 	ASSERT(tvd->vdev_parent == rvd);
6944 
6945 	vdev_config_dirty(tvd);
6946 
6947 	/*
6948 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6949 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6950 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6951 	 */
6952 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6953 
6954 	vdev_dtl_dirty(newvd, DTL_MISSING,
6955 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6956 
6957 	if (newvd->vdev_isspare) {
6958 		spa_spare_activate(newvd);
6959 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6960 	}
6961 
6962 	oldvdpath = spa_strdup(oldvd->vdev_path);
6963 	newvdpath = spa_strdup(newvd->vdev_path);
6964 	newvd_isspare = newvd->vdev_isspare;
6965 
6966 	/*
6967 	 * Mark newvd's DTL dirty in this txg.
6968 	 */
6969 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6970 
6971 	/*
6972 	 * Schedule the resilver or rebuild to restart in the future. We do
6973 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6974 	 * respective datasets.
6975 	 */
6976 	if (rebuild) {
6977 		newvd->vdev_rebuild_txg = txg;
6978 
6979 		vdev_rebuild(tvd);
6980 	} else {
6981 		newvd->vdev_resilver_txg = txg;
6982 
6983 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6984 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6985 			vdev_defer_resilver(newvd);
6986 		} else {
6987 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6988 			    dtl_max_txg);
6989 		}
6990 	}
6991 
6992 	if (spa->spa_bootfs)
6993 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6994 
6995 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6996 
6997 	/*
6998 	 * Commit the config
6999 	 */
7000 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7001 
7002 	spa_history_log_internal(spa, "vdev attach", NULL,
7003 	    "%s vdev=%s %s vdev=%s",
7004 	    replacing && newvd_isspare ? "spare in" :
7005 	    replacing ? "replace" : "attach", newvdpath,
7006 	    replacing ? "for" : "to", oldvdpath);
7007 
7008 	spa_strfree(oldvdpath);
7009 	spa_strfree(newvdpath);
7010 
7011 	return (0);
7012 }
7013 
7014 /*
7015  * Detach a device from a mirror or replacing vdev.
7016  *
7017  * If 'replace_done' is specified, only detach if the parent
7018  * is a replacing vdev.
7019  */
7020 int
7021 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7022 {
7023 	uint64_t txg;
7024 	int error;
7025 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7026 	vdev_t *vd, *pvd, *cvd, *tvd;
7027 	boolean_t unspare = B_FALSE;
7028 	uint64_t unspare_guid = 0;
7029 	char *vdpath;
7030 
7031 	ASSERT(spa_writeable(spa));
7032 
7033 	txg = spa_vdev_detach_enter(spa, guid);
7034 
7035 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7036 
7037 	/*
7038 	 * Besides being called directly from the userland through the
7039 	 * ioctl interface, spa_vdev_detach() can be potentially called
7040 	 * at the end of spa_vdev_resilver_done().
7041 	 *
7042 	 * In the regular case, when we have a checkpoint this shouldn't
7043 	 * happen as we never empty the DTLs of a vdev during the scrub
7044 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7045 	 * should never get here when we have a checkpoint.
7046 	 *
7047 	 * That said, even in a case when we checkpoint the pool exactly
7048 	 * as spa_vdev_resilver_done() calls this function everything
7049 	 * should be fine as the resilver will return right away.
7050 	 */
7051 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7052 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7053 		error = (spa_has_checkpoint(spa)) ?
7054 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7055 		return (spa_vdev_exit(spa, NULL, txg, error));
7056 	}
7057 
7058 	if (vd == NULL)
7059 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7060 
7061 	if (!vd->vdev_ops->vdev_op_leaf)
7062 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7063 
7064 	pvd = vd->vdev_parent;
7065 
7066 	/*
7067 	 * If the parent/child relationship is not as expected, don't do it.
7068 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7069 	 * vdev that's replacing B with C.  The user's intent in replacing
7070 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7071 	 * the replace by detaching C, the expected behavior is to end up
7072 	 * M(A,B).  But suppose that right after deciding to detach C,
7073 	 * the replacement of B completes.  We would have M(A,C), and then
7074 	 * ask to detach C, which would leave us with just A -- not what
7075 	 * the user wanted.  To prevent this, we make sure that the
7076 	 * parent/child relationship hasn't changed -- in this example,
7077 	 * that C's parent is still the replacing vdev R.
7078 	 */
7079 	if (pvd->vdev_guid != pguid && pguid != 0)
7080 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7081 
7082 	/*
7083 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7084 	 */
7085 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7086 	    pvd->vdev_ops != &vdev_spare_ops)
7087 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7088 
7089 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7090 	    spa_version(spa) >= SPA_VERSION_SPARES);
7091 
7092 	/*
7093 	 * Only mirror, replacing, and spare vdevs support detach.
7094 	 */
7095 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7096 	    pvd->vdev_ops != &vdev_mirror_ops &&
7097 	    pvd->vdev_ops != &vdev_spare_ops)
7098 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7099 
7100 	/*
7101 	 * If this device has the only valid copy of some data,
7102 	 * we cannot safely detach it.
7103 	 */
7104 	if (vdev_dtl_required(vd))
7105 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7106 
7107 	ASSERT(pvd->vdev_children >= 2);
7108 
7109 	/*
7110 	 * If we are detaching the second disk from a replacing vdev, then
7111 	 * check to see if we changed the original vdev's path to have "/old"
7112 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7113 	 */
7114 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7115 	    vd->vdev_path != NULL) {
7116 		size_t len = strlen(vd->vdev_path);
7117 
7118 		for (int c = 0; c < pvd->vdev_children; c++) {
7119 			cvd = pvd->vdev_child[c];
7120 
7121 			if (cvd == vd || cvd->vdev_path == NULL)
7122 				continue;
7123 
7124 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7125 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7126 				spa_strfree(cvd->vdev_path);
7127 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7128 				break;
7129 			}
7130 		}
7131 	}
7132 
7133 	/*
7134 	 * If we are detaching the original disk from a normal spare, then it
7135 	 * implies that the spare should become a real disk, and be removed
7136 	 * from the active spare list for the pool.  dRAID spares on the
7137 	 * other hand are coupled to the pool and thus should never be removed
7138 	 * from the spares list.
7139 	 */
7140 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7141 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7142 
7143 		if (last_cvd->vdev_isspare &&
7144 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7145 			unspare = B_TRUE;
7146 		}
7147 	}
7148 
7149 	/*
7150 	 * Erase the disk labels so the disk can be used for other things.
7151 	 * This must be done after all other error cases are handled,
7152 	 * but before we disembowel vd (so we can still do I/O to it).
7153 	 * But if we can't do it, don't treat the error as fatal --
7154 	 * it may be that the unwritability of the disk is the reason
7155 	 * it's being detached!
7156 	 */
7157 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7158 
7159 	/*
7160 	 * Remove vd from its parent and compact the parent's children.
7161 	 */
7162 	vdev_remove_child(pvd, vd);
7163 	vdev_compact_children(pvd);
7164 
7165 	/*
7166 	 * Remember one of the remaining children so we can get tvd below.
7167 	 */
7168 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7169 
7170 	/*
7171 	 * If we need to remove the remaining child from the list of hot spares,
7172 	 * do it now, marking the vdev as no longer a spare in the process.
7173 	 * We must do this before vdev_remove_parent(), because that can
7174 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7175 	 * reason, we must remove the spare now, in the same txg as the detach;
7176 	 * otherwise someone could attach a new sibling, change the GUID, and
7177 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7178 	 */
7179 	if (unspare) {
7180 		ASSERT(cvd->vdev_isspare);
7181 		spa_spare_remove(cvd);
7182 		unspare_guid = cvd->vdev_guid;
7183 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7184 		cvd->vdev_unspare = B_TRUE;
7185 	}
7186 
7187 	/*
7188 	 * If the parent mirror/replacing vdev only has one child,
7189 	 * the parent is no longer needed.  Remove it from the tree.
7190 	 */
7191 	if (pvd->vdev_children == 1) {
7192 		if (pvd->vdev_ops == &vdev_spare_ops)
7193 			cvd->vdev_unspare = B_FALSE;
7194 		vdev_remove_parent(cvd);
7195 	}
7196 
7197 	/*
7198 	 * We don't set tvd until now because the parent we just removed
7199 	 * may have been the previous top-level vdev.
7200 	 */
7201 	tvd = cvd->vdev_top;
7202 	ASSERT(tvd->vdev_parent == rvd);
7203 
7204 	/*
7205 	 * Reevaluate the parent vdev state.
7206 	 */
7207 	vdev_propagate_state(cvd);
7208 
7209 	/*
7210 	 * If the 'autoexpand' property is set on the pool then automatically
7211 	 * try to expand the size of the pool. For example if the device we
7212 	 * just detached was smaller than the others, it may be possible to
7213 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7214 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7215 	 */
7216 	if (spa->spa_autoexpand) {
7217 		vdev_reopen(tvd);
7218 		vdev_expand(tvd, txg);
7219 	}
7220 
7221 	vdev_config_dirty(tvd);
7222 
7223 	/*
7224 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7225 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7226 	 * But first make sure we're not on any *other* txg's DTL list, to
7227 	 * prevent vd from being accessed after it's freed.
7228 	 */
7229 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7230 	for (int t = 0; t < TXG_SIZE; t++)
7231 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7232 	vd->vdev_detached = B_TRUE;
7233 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7234 
7235 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7236 	spa_notify_waiters(spa);
7237 
7238 	/* hang on to the spa before we release the lock */
7239 	spa_open_ref(spa, FTAG);
7240 
7241 	error = spa_vdev_exit(spa, vd, txg, 0);
7242 
7243 	spa_history_log_internal(spa, "detach", NULL,
7244 	    "vdev=%s", vdpath);
7245 	spa_strfree(vdpath);
7246 
7247 	/*
7248 	 * If this was the removal of the original device in a hot spare vdev,
7249 	 * then we want to go through and remove the device from the hot spare
7250 	 * list of every other pool.
7251 	 */
7252 	if (unspare) {
7253 		spa_t *altspa = NULL;
7254 
7255 		mutex_enter(&spa_namespace_lock);
7256 		while ((altspa = spa_next(altspa)) != NULL) {
7257 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7258 			    altspa == spa)
7259 				continue;
7260 
7261 			spa_open_ref(altspa, FTAG);
7262 			mutex_exit(&spa_namespace_lock);
7263 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7264 			mutex_enter(&spa_namespace_lock);
7265 			spa_close(altspa, FTAG);
7266 		}
7267 		mutex_exit(&spa_namespace_lock);
7268 
7269 		/* search the rest of the vdevs for spares to remove */
7270 		spa_vdev_resilver_done(spa);
7271 	}
7272 
7273 	/* all done with the spa; OK to release */
7274 	mutex_enter(&spa_namespace_lock);
7275 	spa_close(spa, FTAG);
7276 	mutex_exit(&spa_namespace_lock);
7277 
7278 	return (error);
7279 }
7280 
7281 static int
7282 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7283     list_t *vd_list)
7284 {
7285 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7286 
7287 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7288 
7289 	/* Look up vdev and ensure it's a leaf. */
7290 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7291 	if (vd == NULL || vd->vdev_detached) {
7292 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7293 		return (SET_ERROR(ENODEV));
7294 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7295 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7296 		return (SET_ERROR(EINVAL));
7297 	} else if (!vdev_writeable(vd)) {
7298 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7299 		return (SET_ERROR(EROFS));
7300 	}
7301 	mutex_enter(&vd->vdev_initialize_lock);
7302 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7303 
7304 	/*
7305 	 * When we activate an initialize action we check to see
7306 	 * if the vdev_initialize_thread is NULL. We do this instead
7307 	 * of using the vdev_initialize_state since there might be
7308 	 * a previous initialization process which has completed but
7309 	 * the thread is not exited.
7310 	 */
7311 	if (cmd_type == POOL_INITIALIZE_START &&
7312 	    (vd->vdev_initialize_thread != NULL ||
7313 	    vd->vdev_top->vdev_removing)) {
7314 		mutex_exit(&vd->vdev_initialize_lock);
7315 		return (SET_ERROR(EBUSY));
7316 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7317 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7318 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7319 		mutex_exit(&vd->vdev_initialize_lock);
7320 		return (SET_ERROR(ESRCH));
7321 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7322 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7323 		mutex_exit(&vd->vdev_initialize_lock);
7324 		return (SET_ERROR(ESRCH));
7325 	}
7326 
7327 	switch (cmd_type) {
7328 	case POOL_INITIALIZE_START:
7329 		vdev_initialize(vd);
7330 		break;
7331 	case POOL_INITIALIZE_CANCEL:
7332 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7333 		break;
7334 	case POOL_INITIALIZE_SUSPEND:
7335 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7336 		break;
7337 	default:
7338 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7339 	}
7340 	mutex_exit(&vd->vdev_initialize_lock);
7341 
7342 	return (0);
7343 }
7344 
7345 int
7346 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7347     nvlist_t *vdev_errlist)
7348 {
7349 	int total_errors = 0;
7350 	list_t vd_list;
7351 
7352 	list_create(&vd_list, sizeof (vdev_t),
7353 	    offsetof(vdev_t, vdev_initialize_node));
7354 
7355 	/*
7356 	 * We hold the namespace lock through the whole function
7357 	 * to prevent any changes to the pool while we're starting or
7358 	 * stopping initialization. The config and state locks are held so that
7359 	 * we can properly assess the vdev state before we commit to
7360 	 * the initializing operation.
7361 	 */
7362 	mutex_enter(&spa_namespace_lock);
7363 
7364 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7365 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7366 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7367 
7368 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7369 		    &vd_list);
7370 		if (error != 0) {
7371 			char guid_as_str[MAXNAMELEN];
7372 
7373 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7374 			    "%llu", (unsigned long long)vdev_guid);
7375 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7376 			total_errors++;
7377 		}
7378 	}
7379 
7380 	/* Wait for all initialize threads to stop. */
7381 	vdev_initialize_stop_wait(spa, &vd_list);
7382 
7383 	/* Sync out the initializing state */
7384 	txg_wait_synced(spa->spa_dsl_pool, 0);
7385 	mutex_exit(&spa_namespace_lock);
7386 
7387 	list_destroy(&vd_list);
7388 
7389 	return (total_errors);
7390 }
7391 
7392 static int
7393 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7394     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7395 {
7396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7397 
7398 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7399 
7400 	/* Look up vdev and ensure it's a leaf. */
7401 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7402 	if (vd == NULL || vd->vdev_detached) {
7403 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7404 		return (SET_ERROR(ENODEV));
7405 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7406 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7407 		return (SET_ERROR(EINVAL));
7408 	} else if (!vdev_writeable(vd)) {
7409 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7410 		return (SET_ERROR(EROFS));
7411 	} else if (!vd->vdev_has_trim) {
7412 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7413 		return (SET_ERROR(EOPNOTSUPP));
7414 	} else if (secure && !vd->vdev_has_securetrim) {
7415 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7416 		return (SET_ERROR(EOPNOTSUPP));
7417 	}
7418 	mutex_enter(&vd->vdev_trim_lock);
7419 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7420 
7421 	/*
7422 	 * When we activate a TRIM action we check to see if the
7423 	 * vdev_trim_thread is NULL. We do this instead of using the
7424 	 * vdev_trim_state since there might be a previous TRIM process
7425 	 * which has completed but the thread is not exited.
7426 	 */
7427 	if (cmd_type == POOL_TRIM_START &&
7428 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7429 		mutex_exit(&vd->vdev_trim_lock);
7430 		return (SET_ERROR(EBUSY));
7431 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7432 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7433 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7434 		mutex_exit(&vd->vdev_trim_lock);
7435 		return (SET_ERROR(ESRCH));
7436 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7437 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7438 		mutex_exit(&vd->vdev_trim_lock);
7439 		return (SET_ERROR(ESRCH));
7440 	}
7441 
7442 	switch (cmd_type) {
7443 	case POOL_TRIM_START:
7444 		vdev_trim(vd, rate, partial, secure);
7445 		break;
7446 	case POOL_TRIM_CANCEL:
7447 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7448 		break;
7449 	case POOL_TRIM_SUSPEND:
7450 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7451 		break;
7452 	default:
7453 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7454 	}
7455 	mutex_exit(&vd->vdev_trim_lock);
7456 
7457 	return (0);
7458 }
7459 
7460 /*
7461  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7462  * TRIM threads for each child vdev.  These threads pass over all of the free
7463  * space in the vdev's metaslabs and issues TRIM commands for that space.
7464  */
7465 int
7466 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7467     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7468 {
7469 	int total_errors = 0;
7470 	list_t vd_list;
7471 
7472 	list_create(&vd_list, sizeof (vdev_t),
7473 	    offsetof(vdev_t, vdev_trim_node));
7474 
7475 	/*
7476 	 * We hold the namespace lock through the whole function
7477 	 * to prevent any changes to the pool while we're starting or
7478 	 * stopping TRIM. The config and state locks are held so that
7479 	 * we can properly assess the vdev state before we commit to
7480 	 * the TRIM operation.
7481 	 */
7482 	mutex_enter(&spa_namespace_lock);
7483 
7484 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7485 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7486 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7487 
7488 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7489 		    rate, partial, secure, &vd_list);
7490 		if (error != 0) {
7491 			char guid_as_str[MAXNAMELEN];
7492 
7493 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7494 			    "%llu", (unsigned long long)vdev_guid);
7495 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7496 			total_errors++;
7497 		}
7498 	}
7499 
7500 	/* Wait for all TRIM threads to stop. */
7501 	vdev_trim_stop_wait(spa, &vd_list);
7502 
7503 	/* Sync out the TRIM state */
7504 	txg_wait_synced(spa->spa_dsl_pool, 0);
7505 	mutex_exit(&spa_namespace_lock);
7506 
7507 	list_destroy(&vd_list);
7508 
7509 	return (total_errors);
7510 }
7511 
7512 /*
7513  * Split a set of devices from their mirrors, and create a new pool from them.
7514  */
7515 int
7516 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7517     nvlist_t *props, boolean_t exp)
7518 {
7519 	int error = 0;
7520 	uint64_t txg, *glist;
7521 	spa_t *newspa;
7522 	uint_t c, children, lastlog;
7523 	nvlist_t **child, *nvl, *tmp;
7524 	dmu_tx_t *tx;
7525 	char *altroot = NULL;
7526 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7527 	boolean_t activate_slog;
7528 
7529 	ASSERT(spa_writeable(spa));
7530 
7531 	txg = spa_vdev_enter(spa);
7532 
7533 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7534 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7535 		error = (spa_has_checkpoint(spa)) ?
7536 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7537 		return (spa_vdev_exit(spa, NULL, txg, error));
7538 	}
7539 
7540 	/* clear the log and flush everything up to now */
7541 	activate_slog = spa_passivate_log(spa);
7542 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7543 	error = spa_reset_logs(spa);
7544 	txg = spa_vdev_config_enter(spa);
7545 
7546 	if (activate_slog)
7547 		spa_activate_log(spa);
7548 
7549 	if (error != 0)
7550 		return (spa_vdev_exit(spa, NULL, txg, error));
7551 
7552 	/* check new spa name before going any further */
7553 	if (spa_lookup(newname) != NULL)
7554 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7555 
7556 	/*
7557 	 * scan through all the children to ensure they're all mirrors
7558 	 */
7559 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7560 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7561 	    &children) != 0)
7562 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7563 
7564 	/* first, check to ensure we've got the right child count */
7565 	rvd = spa->spa_root_vdev;
7566 	lastlog = 0;
7567 	for (c = 0; c < rvd->vdev_children; c++) {
7568 		vdev_t *vd = rvd->vdev_child[c];
7569 
7570 		/* don't count the holes & logs as children */
7571 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7572 		    !vdev_is_concrete(vd))) {
7573 			if (lastlog == 0)
7574 				lastlog = c;
7575 			continue;
7576 		}
7577 
7578 		lastlog = 0;
7579 	}
7580 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7581 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7582 
7583 	/* next, ensure no spare or cache devices are part of the split */
7584 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7585 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7586 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7587 
7588 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7589 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7590 
7591 	/* then, loop over each vdev and validate it */
7592 	for (c = 0; c < children; c++) {
7593 		uint64_t is_hole = 0;
7594 
7595 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7596 		    &is_hole);
7597 
7598 		if (is_hole != 0) {
7599 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7600 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7601 				continue;
7602 			} else {
7603 				error = SET_ERROR(EINVAL);
7604 				break;
7605 			}
7606 		}
7607 
7608 		/* deal with indirect vdevs */
7609 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7610 		    &vdev_indirect_ops)
7611 			continue;
7612 
7613 		/* which disk is going to be split? */
7614 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7615 		    &glist[c]) != 0) {
7616 			error = SET_ERROR(EINVAL);
7617 			break;
7618 		}
7619 
7620 		/* look it up in the spa */
7621 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7622 		if (vml[c] == NULL) {
7623 			error = SET_ERROR(ENODEV);
7624 			break;
7625 		}
7626 
7627 		/* make sure there's nothing stopping the split */
7628 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7629 		    vml[c]->vdev_islog ||
7630 		    !vdev_is_concrete(vml[c]) ||
7631 		    vml[c]->vdev_isspare ||
7632 		    vml[c]->vdev_isl2cache ||
7633 		    !vdev_writeable(vml[c]) ||
7634 		    vml[c]->vdev_children != 0 ||
7635 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7636 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7637 			error = SET_ERROR(EINVAL);
7638 			break;
7639 		}
7640 
7641 		if (vdev_dtl_required(vml[c]) ||
7642 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7643 			error = SET_ERROR(EBUSY);
7644 			break;
7645 		}
7646 
7647 		/* we need certain info from the top level */
7648 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7649 		    vml[c]->vdev_top->vdev_ms_array);
7650 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7651 		    vml[c]->vdev_top->vdev_ms_shift);
7652 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7653 		    vml[c]->vdev_top->vdev_asize);
7654 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7655 		    vml[c]->vdev_top->vdev_ashift);
7656 
7657 		/* transfer per-vdev ZAPs */
7658 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7659 		VERIFY0(nvlist_add_uint64(child[c],
7660 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7661 
7662 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7663 		VERIFY0(nvlist_add_uint64(child[c],
7664 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7665 		    vml[c]->vdev_parent->vdev_top_zap));
7666 	}
7667 
7668 	if (error != 0) {
7669 		kmem_free(vml, children * sizeof (vdev_t *));
7670 		kmem_free(glist, children * sizeof (uint64_t));
7671 		return (spa_vdev_exit(spa, NULL, txg, error));
7672 	}
7673 
7674 	/* stop writers from using the disks */
7675 	for (c = 0; c < children; c++) {
7676 		if (vml[c] != NULL)
7677 			vml[c]->vdev_offline = B_TRUE;
7678 	}
7679 	vdev_reopen(spa->spa_root_vdev);
7680 
7681 	/*
7682 	 * Temporarily record the splitting vdevs in the spa config.  This
7683 	 * will disappear once the config is regenerated.
7684 	 */
7685 	nvl = fnvlist_alloc();
7686 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7687 	kmem_free(glist, children * sizeof (uint64_t));
7688 
7689 	mutex_enter(&spa->spa_props_lock);
7690 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7691 	mutex_exit(&spa->spa_props_lock);
7692 	spa->spa_config_splitting = nvl;
7693 	vdev_config_dirty(spa->spa_root_vdev);
7694 
7695 	/* configure and create the new pool */
7696 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7697 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7698 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7699 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7700 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7701 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7702 	    spa_generate_guid(NULL));
7703 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7704 	(void) nvlist_lookup_string(props,
7705 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7706 
7707 	/* add the new pool to the namespace */
7708 	newspa = spa_add(newname, config, altroot);
7709 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7710 	newspa->spa_config_txg = spa->spa_config_txg;
7711 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7712 
7713 	/* release the spa config lock, retaining the namespace lock */
7714 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7715 
7716 	if (zio_injection_enabled)
7717 		zio_handle_panic_injection(spa, FTAG, 1);
7718 
7719 	spa_activate(newspa, spa_mode_global);
7720 	spa_async_suspend(newspa);
7721 
7722 	/*
7723 	 * Temporarily stop the initializing and TRIM activity.  We set the
7724 	 * state to ACTIVE so that we know to resume initializing or TRIM
7725 	 * once the split has completed.
7726 	 */
7727 	list_t vd_initialize_list;
7728 	list_create(&vd_initialize_list, sizeof (vdev_t),
7729 	    offsetof(vdev_t, vdev_initialize_node));
7730 
7731 	list_t vd_trim_list;
7732 	list_create(&vd_trim_list, sizeof (vdev_t),
7733 	    offsetof(vdev_t, vdev_trim_node));
7734 
7735 	for (c = 0; c < children; c++) {
7736 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7737 			mutex_enter(&vml[c]->vdev_initialize_lock);
7738 			vdev_initialize_stop(vml[c],
7739 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7740 			mutex_exit(&vml[c]->vdev_initialize_lock);
7741 
7742 			mutex_enter(&vml[c]->vdev_trim_lock);
7743 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7744 			mutex_exit(&vml[c]->vdev_trim_lock);
7745 		}
7746 	}
7747 
7748 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7749 	vdev_trim_stop_wait(spa, &vd_trim_list);
7750 
7751 	list_destroy(&vd_initialize_list);
7752 	list_destroy(&vd_trim_list);
7753 
7754 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7755 	newspa->spa_is_splitting = B_TRUE;
7756 
7757 	/* create the new pool from the disks of the original pool */
7758 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7759 	if (error)
7760 		goto out;
7761 
7762 	/* if that worked, generate a real config for the new pool */
7763 	if (newspa->spa_root_vdev != NULL) {
7764 		newspa->spa_config_splitting = fnvlist_alloc();
7765 		fnvlist_add_uint64(newspa->spa_config_splitting,
7766 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7767 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7768 		    B_TRUE));
7769 	}
7770 
7771 	/* set the props */
7772 	if (props != NULL) {
7773 		spa_configfile_set(newspa, props, B_FALSE);
7774 		error = spa_prop_set(newspa, props);
7775 		if (error)
7776 			goto out;
7777 	}
7778 
7779 	/* flush everything */
7780 	txg = spa_vdev_config_enter(newspa);
7781 	vdev_config_dirty(newspa->spa_root_vdev);
7782 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7783 
7784 	if (zio_injection_enabled)
7785 		zio_handle_panic_injection(spa, FTAG, 2);
7786 
7787 	spa_async_resume(newspa);
7788 
7789 	/* finally, update the original pool's config */
7790 	txg = spa_vdev_config_enter(spa);
7791 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7792 	error = dmu_tx_assign(tx, TXG_WAIT);
7793 	if (error != 0)
7794 		dmu_tx_abort(tx);
7795 	for (c = 0; c < children; c++) {
7796 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7797 			vdev_t *tvd = vml[c]->vdev_top;
7798 
7799 			/*
7800 			 * Need to be sure the detachable VDEV is not
7801 			 * on any *other* txg's DTL list to prevent it
7802 			 * from being accessed after it's freed.
7803 			 */
7804 			for (int t = 0; t < TXG_SIZE; t++) {
7805 				(void) txg_list_remove_this(
7806 				    &tvd->vdev_dtl_list, vml[c], t);
7807 			}
7808 
7809 			vdev_split(vml[c]);
7810 			if (error == 0)
7811 				spa_history_log_internal(spa, "detach", tx,
7812 				    "vdev=%s", vml[c]->vdev_path);
7813 
7814 			vdev_free(vml[c]);
7815 		}
7816 	}
7817 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7818 	vdev_config_dirty(spa->spa_root_vdev);
7819 	spa->spa_config_splitting = NULL;
7820 	nvlist_free(nvl);
7821 	if (error == 0)
7822 		dmu_tx_commit(tx);
7823 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7824 
7825 	if (zio_injection_enabled)
7826 		zio_handle_panic_injection(spa, FTAG, 3);
7827 
7828 	/* split is complete; log a history record */
7829 	spa_history_log_internal(newspa, "split", NULL,
7830 	    "from pool %s", spa_name(spa));
7831 
7832 	newspa->spa_is_splitting = B_FALSE;
7833 	kmem_free(vml, children * sizeof (vdev_t *));
7834 
7835 	/* if we're not going to mount the filesystems in userland, export */
7836 	if (exp)
7837 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7838 		    B_FALSE, B_FALSE);
7839 
7840 	return (error);
7841 
7842 out:
7843 	spa_unload(newspa);
7844 	spa_deactivate(newspa);
7845 	spa_remove(newspa);
7846 
7847 	txg = spa_vdev_config_enter(spa);
7848 
7849 	/* re-online all offlined disks */
7850 	for (c = 0; c < children; c++) {
7851 		if (vml[c] != NULL)
7852 			vml[c]->vdev_offline = B_FALSE;
7853 	}
7854 
7855 	/* restart initializing or trimming disks as necessary */
7856 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7857 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7858 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7859 
7860 	vdev_reopen(spa->spa_root_vdev);
7861 
7862 	nvlist_free(spa->spa_config_splitting);
7863 	spa->spa_config_splitting = NULL;
7864 	(void) spa_vdev_exit(spa, NULL, txg, error);
7865 
7866 	kmem_free(vml, children * sizeof (vdev_t *));
7867 	return (error);
7868 }
7869 
7870 /*
7871  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7872  * currently spared, so we can detach it.
7873  */
7874 static vdev_t *
7875 spa_vdev_resilver_done_hunt(vdev_t *vd)
7876 {
7877 	vdev_t *newvd, *oldvd;
7878 
7879 	for (int c = 0; c < vd->vdev_children; c++) {
7880 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7881 		if (oldvd != NULL)
7882 			return (oldvd);
7883 	}
7884 
7885 	/*
7886 	 * Check for a completed replacement.  We always consider the first
7887 	 * vdev in the list to be the oldest vdev, and the last one to be
7888 	 * the newest (see spa_vdev_attach() for how that works).  In
7889 	 * the case where the newest vdev is faulted, we will not automatically
7890 	 * remove it after a resilver completes.  This is OK as it will require
7891 	 * user intervention to determine which disk the admin wishes to keep.
7892 	 */
7893 	if (vd->vdev_ops == &vdev_replacing_ops) {
7894 		ASSERT(vd->vdev_children > 1);
7895 
7896 		newvd = vd->vdev_child[vd->vdev_children - 1];
7897 		oldvd = vd->vdev_child[0];
7898 
7899 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7900 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7901 		    !vdev_dtl_required(oldvd))
7902 			return (oldvd);
7903 	}
7904 
7905 	/*
7906 	 * Check for a completed resilver with the 'unspare' flag set.
7907 	 * Also potentially update faulted state.
7908 	 */
7909 	if (vd->vdev_ops == &vdev_spare_ops) {
7910 		vdev_t *first = vd->vdev_child[0];
7911 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7912 
7913 		if (last->vdev_unspare) {
7914 			oldvd = first;
7915 			newvd = last;
7916 		} else if (first->vdev_unspare) {
7917 			oldvd = last;
7918 			newvd = first;
7919 		} else {
7920 			oldvd = NULL;
7921 		}
7922 
7923 		if (oldvd != NULL &&
7924 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7925 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7926 		    !vdev_dtl_required(oldvd))
7927 			return (oldvd);
7928 
7929 		vdev_propagate_state(vd);
7930 
7931 		/*
7932 		 * If there are more than two spares attached to a disk,
7933 		 * and those spares are not required, then we want to
7934 		 * attempt to free them up now so that they can be used
7935 		 * by other pools.  Once we're back down to a single
7936 		 * disk+spare, we stop removing them.
7937 		 */
7938 		if (vd->vdev_children > 2) {
7939 			newvd = vd->vdev_child[1];
7940 
7941 			if (newvd->vdev_isspare && last->vdev_isspare &&
7942 			    vdev_dtl_empty(last, DTL_MISSING) &&
7943 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7944 			    !vdev_dtl_required(newvd))
7945 				return (newvd);
7946 		}
7947 	}
7948 
7949 	return (NULL);
7950 }
7951 
7952 static void
7953 spa_vdev_resilver_done(spa_t *spa)
7954 {
7955 	vdev_t *vd, *pvd, *ppvd;
7956 	uint64_t guid, sguid, pguid, ppguid;
7957 
7958 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7959 
7960 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7961 		pvd = vd->vdev_parent;
7962 		ppvd = pvd->vdev_parent;
7963 		guid = vd->vdev_guid;
7964 		pguid = pvd->vdev_guid;
7965 		ppguid = ppvd->vdev_guid;
7966 		sguid = 0;
7967 		/*
7968 		 * If we have just finished replacing a hot spared device, then
7969 		 * we need to detach the parent's first child (the original hot
7970 		 * spare) as well.
7971 		 */
7972 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7973 		    ppvd->vdev_children == 2) {
7974 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7975 			sguid = ppvd->vdev_child[1]->vdev_guid;
7976 		}
7977 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7978 
7979 		spa_config_exit(spa, SCL_ALL, FTAG);
7980 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7981 			return;
7982 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7983 			return;
7984 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7985 	}
7986 
7987 	spa_config_exit(spa, SCL_ALL, FTAG);
7988 
7989 	/*
7990 	 * If a detach was not performed above replace waiters will not have
7991 	 * been notified.  In which case we must do so now.
7992 	 */
7993 	spa_notify_waiters(spa);
7994 }
7995 
7996 /*
7997  * Update the stored path or FRU for this vdev.
7998  */
7999 static int
8000 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8001     boolean_t ispath)
8002 {
8003 	vdev_t *vd;
8004 	boolean_t sync = B_FALSE;
8005 
8006 	ASSERT(spa_writeable(spa));
8007 
8008 	spa_vdev_state_enter(spa, SCL_ALL);
8009 
8010 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8011 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8012 
8013 	if (!vd->vdev_ops->vdev_op_leaf)
8014 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8015 
8016 	if (ispath) {
8017 		if (strcmp(value, vd->vdev_path) != 0) {
8018 			spa_strfree(vd->vdev_path);
8019 			vd->vdev_path = spa_strdup(value);
8020 			sync = B_TRUE;
8021 		}
8022 	} else {
8023 		if (vd->vdev_fru == NULL) {
8024 			vd->vdev_fru = spa_strdup(value);
8025 			sync = B_TRUE;
8026 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8027 			spa_strfree(vd->vdev_fru);
8028 			vd->vdev_fru = spa_strdup(value);
8029 			sync = B_TRUE;
8030 		}
8031 	}
8032 
8033 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8034 }
8035 
8036 int
8037 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8038 {
8039 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8040 }
8041 
8042 int
8043 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8044 {
8045 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8046 }
8047 
8048 /*
8049  * ==========================================================================
8050  * SPA Scanning
8051  * ==========================================================================
8052  */
8053 int
8054 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8055 {
8056 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8057 
8058 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8059 		return (SET_ERROR(EBUSY));
8060 
8061 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8062 }
8063 
8064 int
8065 spa_scan_stop(spa_t *spa)
8066 {
8067 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8068 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8069 		return (SET_ERROR(EBUSY));
8070 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8071 }
8072 
8073 int
8074 spa_scan(spa_t *spa, pool_scan_func_t func)
8075 {
8076 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8077 
8078 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8079 		return (SET_ERROR(ENOTSUP));
8080 
8081 	if (func == POOL_SCAN_RESILVER &&
8082 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8083 		return (SET_ERROR(ENOTSUP));
8084 
8085 	/*
8086 	 * If a resilver was requested, but there is no DTL on a
8087 	 * writeable leaf device, we have nothing to do.
8088 	 */
8089 	if (func == POOL_SCAN_RESILVER &&
8090 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8091 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8092 		return (0);
8093 	}
8094 
8095 	return (dsl_scan(spa->spa_dsl_pool, func));
8096 }
8097 
8098 /*
8099  * ==========================================================================
8100  * SPA async task processing
8101  * ==========================================================================
8102  */
8103 
8104 static void
8105 spa_async_remove(spa_t *spa, vdev_t *vd)
8106 {
8107 	if (vd->vdev_remove_wanted) {
8108 		vd->vdev_remove_wanted = B_FALSE;
8109 		vd->vdev_delayed_close = B_FALSE;
8110 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8111 
8112 		/*
8113 		 * We want to clear the stats, but we don't want to do a full
8114 		 * vdev_clear() as that will cause us to throw away
8115 		 * degraded/faulted state as well as attempt to reopen the
8116 		 * device, all of which is a waste.
8117 		 */
8118 		vd->vdev_stat.vs_read_errors = 0;
8119 		vd->vdev_stat.vs_write_errors = 0;
8120 		vd->vdev_stat.vs_checksum_errors = 0;
8121 
8122 		vdev_state_dirty(vd->vdev_top);
8123 
8124 		/* Tell userspace that the vdev is gone. */
8125 		zfs_post_remove(spa, vd);
8126 	}
8127 
8128 	for (int c = 0; c < vd->vdev_children; c++)
8129 		spa_async_remove(spa, vd->vdev_child[c]);
8130 }
8131 
8132 static void
8133 spa_async_probe(spa_t *spa, vdev_t *vd)
8134 {
8135 	if (vd->vdev_probe_wanted) {
8136 		vd->vdev_probe_wanted = B_FALSE;
8137 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8138 	}
8139 
8140 	for (int c = 0; c < vd->vdev_children; c++)
8141 		spa_async_probe(spa, vd->vdev_child[c]);
8142 }
8143 
8144 static void
8145 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8146 {
8147 	if (!spa->spa_autoexpand)
8148 		return;
8149 
8150 	for (int c = 0; c < vd->vdev_children; c++) {
8151 		vdev_t *cvd = vd->vdev_child[c];
8152 		spa_async_autoexpand(spa, cvd);
8153 	}
8154 
8155 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8156 		return;
8157 
8158 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8159 }
8160 
8161 static __attribute__((noreturn)) void
8162 spa_async_thread(void *arg)
8163 {
8164 	spa_t *spa = (spa_t *)arg;
8165 	dsl_pool_t *dp = spa->spa_dsl_pool;
8166 	int tasks;
8167 
8168 	ASSERT(spa->spa_sync_on);
8169 
8170 	mutex_enter(&spa->spa_async_lock);
8171 	tasks = spa->spa_async_tasks;
8172 	spa->spa_async_tasks = 0;
8173 	mutex_exit(&spa->spa_async_lock);
8174 
8175 	/*
8176 	 * See if the config needs to be updated.
8177 	 */
8178 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8179 		uint64_t old_space, new_space;
8180 
8181 		mutex_enter(&spa_namespace_lock);
8182 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8183 		old_space += metaslab_class_get_space(spa_special_class(spa));
8184 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8185 		old_space += metaslab_class_get_space(
8186 		    spa_embedded_log_class(spa));
8187 
8188 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8189 
8190 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8191 		new_space += metaslab_class_get_space(spa_special_class(spa));
8192 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8193 		new_space += metaslab_class_get_space(
8194 		    spa_embedded_log_class(spa));
8195 		mutex_exit(&spa_namespace_lock);
8196 
8197 		/*
8198 		 * If the pool grew as a result of the config update,
8199 		 * then log an internal history event.
8200 		 */
8201 		if (new_space != old_space) {
8202 			spa_history_log_internal(spa, "vdev online", NULL,
8203 			    "pool '%s' size: %llu(+%llu)",
8204 			    spa_name(spa), (u_longlong_t)new_space,
8205 			    (u_longlong_t)(new_space - old_space));
8206 		}
8207 	}
8208 
8209 	/*
8210 	 * See if any devices need to be marked REMOVED.
8211 	 */
8212 	if (tasks & SPA_ASYNC_REMOVE) {
8213 		spa_vdev_state_enter(spa, SCL_NONE);
8214 		spa_async_remove(spa, spa->spa_root_vdev);
8215 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8216 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8217 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8218 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8219 		(void) spa_vdev_state_exit(spa, NULL, 0);
8220 	}
8221 
8222 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8223 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8224 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8225 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8226 	}
8227 
8228 	/*
8229 	 * See if any devices need to be probed.
8230 	 */
8231 	if (tasks & SPA_ASYNC_PROBE) {
8232 		spa_vdev_state_enter(spa, SCL_NONE);
8233 		spa_async_probe(spa, spa->spa_root_vdev);
8234 		(void) spa_vdev_state_exit(spa, NULL, 0);
8235 	}
8236 
8237 	/*
8238 	 * If any devices are done replacing, detach them.
8239 	 */
8240 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8241 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8242 		spa_vdev_resilver_done(spa);
8243 	}
8244 
8245 	/*
8246 	 * Kick off a resilver.
8247 	 */
8248 	if (tasks & SPA_ASYNC_RESILVER &&
8249 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8250 	    (!dsl_scan_resilvering(dp) ||
8251 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8252 		dsl_scan_restart_resilver(dp, 0);
8253 
8254 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8255 		mutex_enter(&spa_namespace_lock);
8256 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8257 		vdev_initialize_restart(spa->spa_root_vdev);
8258 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8259 		mutex_exit(&spa_namespace_lock);
8260 	}
8261 
8262 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8263 		mutex_enter(&spa_namespace_lock);
8264 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8265 		vdev_trim_restart(spa->spa_root_vdev);
8266 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8267 		mutex_exit(&spa_namespace_lock);
8268 	}
8269 
8270 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8271 		mutex_enter(&spa_namespace_lock);
8272 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8273 		vdev_autotrim_restart(spa);
8274 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8275 		mutex_exit(&spa_namespace_lock);
8276 	}
8277 
8278 	/*
8279 	 * Kick off L2 cache whole device TRIM.
8280 	 */
8281 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8282 		mutex_enter(&spa_namespace_lock);
8283 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8284 		vdev_trim_l2arc(spa);
8285 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8286 		mutex_exit(&spa_namespace_lock);
8287 	}
8288 
8289 	/*
8290 	 * Kick off L2 cache rebuilding.
8291 	 */
8292 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8293 		mutex_enter(&spa_namespace_lock);
8294 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8295 		l2arc_spa_rebuild_start(spa);
8296 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8297 		mutex_exit(&spa_namespace_lock);
8298 	}
8299 
8300 	/*
8301 	 * Let the world know that we're done.
8302 	 */
8303 	mutex_enter(&spa->spa_async_lock);
8304 	spa->spa_async_thread = NULL;
8305 	cv_broadcast(&spa->spa_async_cv);
8306 	mutex_exit(&spa->spa_async_lock);
8307 	thread_exit();
8308 }
8309 
8310 void
8311 spa_async_suspend(spa_t *spa)
8312 {
8313 	mutex_enter(&spa->spa_async_lock);
8314 	spa->spa_async_suspended++;
8315 	while (spa->spa_async_thread != NULL)
8316 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8317 	mutex_exit(&spa->spa_async_lock);
8318 
8319 	spa_vdev_remove_suspend(spa);
8320 
8321 	zthr_t *condense_thread = spa->spa_condense_zthr;
8322 	if (condense_thread != NULL)
8323 		zthr_cancel(condense_thread);
8324 
8325 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8326 	if (discard_thread != NULL)
8327 		zthr_cancel(discard_thread);
8328 
8329 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8330 	if (ll_delete_thread != NULL)
8331 		zthr_cancel(ll_delete_thread);
8332 
8333 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8334 	if (ll_condense_thread != NULL)
8335 		zthr_cancel(ll_condense_thread);
8336 }
8337 
8338 void
8339 spa_async_resume(spa_t *spa)
8340 {
8341 	mutex_enter(&spa->spa_async_lock);
8342 	ASSERT(spa->spa_async_suspended != 0);
8343 	spa->spa_async_suspended--;
8344 	mutex_exit(&spa->spa_async_lock);
8345 	spa_restart_removal(spa);
8346 
8347 	zthr_t *condense_thread = spa->spa_condense_zthr;
8348 	if (condense_thread != NULL)
8349 		zthr_resume(condense_thread);
8350 
8351 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8352 	if (discard_thread != NULL)
8353 		zthr_resume(discard_thread);
8354 
8355 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8356 	if (ll_delete_thread != NULL)
8357 		zthr_resume(ll_delete_thread);
8358 
8359 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8360 	if (ll_condense_thread != NULL)
8361 		zthr_resume(ll_condense_thread);
8362 }
8363 
8364 static boolean_t
8365 spa_async_tasks_pending(spa_t *spa)
8366 {
8367 	uint_t non_config_tasks;
8368 	uint_t config_task;
8369 	boolean_t config_task_suspended;
8370 
8371 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8372 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8373 	if (spa->spa_ccw_fail_time == 0) {
8374 		config_task_suspended = B_FALSE;
8375 	} else {
8376 		config_task_suspended =
8377 		    (gethrtime() - spa->spa_ccw_fail_time) <
8378 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8379 	}
8380 
8381 	return (non_config_tasks || (config_task && !config_task_suspended));
8382 }
8383 
8384 static void
8385 spa_async_dispatch(spa_t *spa)
8386 {
8387 	mutex_enter(&spa->spa_async_lock);
8388 	if (spa_async_tasks_pending(spa) &&
8389 	    !spa->spa_async_suspended &&
8390 	    spa->spa_async_thread == NULL)
8391 		spa->spa_async_thread = thread_create(NULL, 0,
8392 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8393 	mutex_exit(&spa->spa_async_lock);
8394 }
8395 
8396 void
8397 spa_async_request(spa_t *spa, int task)
8398 {
8399 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8400 	mutex_enter(&spa->spa_async_lock);
8401 	spa->spa_async_tasks |= task;
8402 	mutex_exit(&spa->spa_async_lock);
8403 }
8404 
8405 int
8406 spa_async_tasks(spa_t *spa)
8407 {
8408 	return (spa->spa_async_tasks);
8409 }
8410 
8411 /*
8412  * ==========================================================================
8413  * SPA syncing routines
8414  * ==========================================================================
8415  */
8416 
8417 
8418 static int
8419 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8420     dmu_tx_t *tx)
8421 {
8422 	bpobj_t *bpo = arg;
8423 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8424 	return (0);
8425 }
8426 
8427 int
8428 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8429 {
8430 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8431 }
8432 
8433 int
8434 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8435 {
8436 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8437 }
8438 
8439 static int
8440 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8441 {
8442 	zio_t *pio = arg;
8443 
8444 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8445 	    pio->io_flags));
8446 	return (0);
8447 }
8448 
8449 static int
8450 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8451     dmu_tx_t *tx)
8452 {
8453 	ASSERT(!bp_freed);
8454 	return (spa_free_sync_cb(arg, bp, tx));
8455 }
8456 
8457 /*
8458  * Note: this simple function is not inlined to make it easier to dtrace the
8459  * amount of time spent syncing frees.
8460  */
8461 static void
8462 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8463 {
8464 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8465 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8466 	VERIFY(zio_wait(zio) == 0);
8467 }
8468 
8469 /*
8470  * Note: this simple function is not inlined to make it easier to dtrace the
8471  * amount of time spent syncing deferred frees.
8472  */
8473 static void
8474 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8475 {
8476 	if (spa_sync_pass(spa) != 1)
8477 		return;
8478 
8479 	/*
8480 	 * Note:
8481 	 * If the log space map feature is active, we stop deferring
8482 	 * frees to the next TXG and therefore running this function
8483 	 * would be considered a no-op as spa_deferred_bpobj should
8484 	 * not have any entries.
8485 	 *
8486 	 * That said we run this function anyway (instead of returning
8487 	 * immediately) for the edge-case scenario where we just
8488 	 * activated the log space map feature in this TXG but we have
8489 	 * deferred frees from the previous TXG.
8490 	 */
8491 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8492 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8493 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8494 	VERIFY0(zio_wait(zio));
8495 }
8496 
8497 static void
8498 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8499 {
8500 	char *packed = NULL;
8501 	size_t bufsize;
8502 	size_t nvsize = 0;
8503 	dmu_buf_t *db;
8504 
8505 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8506 
8507 	/*
8508 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8509 	 * information.  This avoids the dmu_buf_will_dirty() path and
8510 	 * saves us a pre-read to get data we don't actually care about.
8511 	 */
8512 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8513 	packed = vmem_alloc(bufsize, KM_SLEEP);
8514 
8515 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8516 	    KM_SLEEP) == 0);
8517 	memset(packed + nvsize, 0, bufsize - nvsize);
8518 
8519 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8520 
8521 	vmem_free(packed, bufsize);
8522 
8523 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8524 	dmu_buf_will_dirty(db, tx);
8525 	*(uint64_t *)db->db_data = nvsize;
8526 	dmu_buf_rele(db, FTAG);
8527 }
8528 
8529 static void
8530 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8531     const char *config, const char *entry)
8532 {
8533 	nvlist_t *nvroot;
8534 	nvlist_t **list;
8535 	int i;
8536 
8537 	if (!sav->sav_sync)
8538 		return;
8539 
8540 	/*
8541 	 * Update the MOS nvlist describing the list of available devices.
8542 	 * spa_validate_aux() will have already made sure this nvlist is
8543 	 * valid and the vdevs are labeled appropriately.
8544 	 */
8545 	if (sav->sav_object == 0) {
8546 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8547 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8548 		    sizeof (uint64_t), tx);
8549 		VERIFY(zap_update(spa->spa_meta_objset,
8550 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8551 		    &sav->sav_object, tx) == 0);
8552 	}
8553 
8554 	nvroot = fnvlist_alloc();
8555 	if (sav->sav_count == 0) {
8556 		fnvlist_add_nvlist_array(nvroot, config,
8557 		    (const nvlist_t * const *)NULL, 0);
8558 	} else {
8559 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8560 		for (i = 0; i < sav->sav_count; i++)
8561 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8562 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8563 		fnvlist_add_nvlist_array(nvroot, config,
8564 		    (const nvlist_t * const *)list, sav->sav_count);
8565 		for (i = 0; i < sav->sav_count; i++)
8566 			nvlist_free(list[i]);
8567 		kmem_free(list, sav->sav_count * sizeof (void *));
8568 	}
8569 
8570 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8571 	nvlist_free(nvroot);
8572 
8573 	sav->sav_sync = B_FALSE;
8574 }
8575 
8576 /*
8577  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8578  * The all-vdev ZAP must be empty.
8579  */
8580 static void
8581 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8582 {
8583 	spa_t *spa = vd->vdev_spa;
8584 
8585 	if (vd->vdev_top_zap != 0) {
8586 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8587 		    vd->vdev_top_zap, tx));
8588 	}
8589 	if (vd->vdev_leaf_zap != 0) {
8590 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8591 		    vd->vdev_leaf_zap, tx));
8592 	}
8593 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8594 		spa_avz_build(vd->vdev_child[i], avz, tx);
8595 	}
8596 }
8597 
8598 static void
8599 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8600 {
8601 	nvlist_t *config;
8602 
8603 	/*
8604 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8605 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8606 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8607 	 * need to rebuild the AVZ although the config may not be dirty.
8608 	 */
8609 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8610 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8611 		return;
8612 
8613 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8614 
8615 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8616 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8617 	    spa->spa_all_vdev_zaps != 0);
8618 
8619 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8620 		/* Make and build the new AVZ */
8621 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8622 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8623 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8624 
8625 		/* Diff old AVZ with new one */
8626 		zap_cursor_t zc;
8627 		zap_attribute_t za;
8628 
8629 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8630 		    spa->spa_all_vdev_zaps);
8631 		    zap_cursor_retrieve(&zc, &za) == 0;
8632 		    zap_cursor_advance(&zc)) {
8633 			uint64_t vdzap = za.za_first_integer;
8634 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8635 			    vdzap) == ENOENT) {
8636 				/*
8637 				 * ZAP is listed in old AVZ but not in new one;
8638 				 * destroy it
8639 				 */
8640 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8641 				    tx));
8642 			}
8643 		}
8644 
8645 		zap_cursor_fini(&zc);
8646 
8647 		/* Destroy the old AVZ */
8648 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8649 		    spa->spa_all_vdev_zaps, tx));
8650 
8651 		/* Replace the old AVZ in the dir obj with the new one */
8652 		VERIFY0(zap_update(spa->spa_meta_objset,
8653 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8654 		    sizeof (new_avz), 1, &new_avz, tx));
8655 
8656 		spa->spa_all_vdev_zaps = new_avz;
8657 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8658 		zap_cursor_t zc;
8659 		zap_attribute_t za;
8660 
8661 		/* Walk through the AVZ and destroy all listed ZAPs */
8662 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8663 		    spa->spa_all_vdev_zaps);
8664 		    zap_cursor_retrieve(&zc, &za) == 0;
8665 		    zap_cursor_advance(&zc)) {
8666 			uint64_t zap = za.za_first_integer;
8667 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8668 		}
8669 
8670 		zap_cursor_fini(&zc);
8671 
8672 		/* Destroy and unlink the AVZ itself */
8673 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8674 		    spa->spa_all_vdev_zaps, tx));
8675 		VERIFY0(zap_remove(spa->spa_meta_objset,
8676 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8677 		spa->spa_all_vdev_zaps = 0;
8678 	}
8679 
8680 	if (spa->spa_all_vdev_zaps == 0) {
8681 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8682 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8683 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8684 	}
8685 	spa->spa_avz_action = AVZ_ACTION_NONE;
8686 
8687 	/* Create ZAPs for vdevs that don't have them. */
8688 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8689 
8690 	config = spa_config_generate(spa, spa->spa_root_vdev,
8691 	    dmu_tx_get_txg(tx), B_FALSE);
8692 
8693 	/*
8694 	 * If we're upgrading the spa version then make sure that
8695 	 * the config object gets updated with the correct version.
8696 	 */
8697 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8698 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8699 		    spa->spa_uberblock.ub_version);
8700 
8701 	spa_config_exit(spa, SCL_STATE, FTAG);
8702 
8703 	nvlist_free(spa->spa_config_syncing);
8704 	spa->spa_config_syncing = config;
8705 
8706 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8707 }
8708 
8709 static void
8710 spa_sync_version(void *arg, dmu_tx_t *tx)
8711 {
8712 	uint64_t *versionp = arg;
8713 	uint64_t version = *versionp;
8714 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8715 
8716 	/*
8717 	 * Setting the version is special cased when first creating the pool.
8718 	 */
8719 	ASSERT(tx->tx_txg != TXG_INITIAL);
8720 
8721 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8722 	ASSERT(version >= spa_version(spa));
8723 
8724 	spa->spa_uberblock.ub_version = version;
8725 	vdev_config_dirty(spa->spa_root_vdev);
8726 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8727 	    (longlong_t)version);
8728 }
8729 
8730 /*
8731  * Set zpool properties.
8732  */
8733 static void
8734 spa_sync_props(void *arg, dmu_tx_t *tx)
8735 {
8736 	nvlist_t *nvp = arg;
8737 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8738 	objset_t *mos = spa->spa_meta_objset;
8739 	nvpair_t *elem = NULL;
8740 
8741 	mutex_enter(&spa->spa_props_lock);
8742 
8743 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8744 		uint64_t intval;
8745 		char *strval, *fname;
8746 		zpool_prop_t prop;
8747 		const char *propname;
8748 		zprop_type_t proptype;
8749 		spa_feature_t fid;
8750 
8751 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8752 		case ZPOOL_PROP_INVAL:
8753 			/*
8754 			 * We checked this earlier in spa_prop_validate().
8755 			 */
8756 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8757 
8758 			fname = strchr(nvpair_name(elem), '@') + 1;
8759 			VERIFY0(zfeature_lookup_name(fname, &fid));
8760 
8761 			spa_feature_enable(spa, fid, tx);
8762 			spa_history_log_internal(spa, "set", tx,
8763 			    "%s=enabled", nvpair_name(elem));
8764 			break;
8765 
8766 		case ZPOOL_PROP_VERSION:
8767 			intval = fnvpair_value_uint64(elem);
8768 			/*
8769 			 * The version is synced separately before other
8770 			 * properties and should be correct by now.
8771 			 */
8772 			ASSERT3U(spa_version(spa), >=, intval);
8773 			break;
8774 
8775 		case ZPOOL_PROP_ALTROOT:
8776 			/*
8777 			 * 'altroot' is a non-persistent property. It should
8778 			 * have been set temporarily at creation or import time.
8779 			 */
8780 			ASSERT(spa->spa_root != NULL);
8781 			break;
8782 
8783 		case ZPOOL_PROP_READONLY:
8784 		case ZPOOL_PROP_CACHEFILE:
8785 			/*
8786 			 * 'readonly' and 'cachefile' are also non-persistent
8787 			 * properties.
8788 			 */
8789 			break;
8790 		case ZPOOL_PROP_COMMENT:
8791 			strval = fnvpair_value_string(elem);
8792 			if (spa->spa_comment != NULL)
8793 				spa_strfree(spa->spa_comment);
8794 			spa->spa_comment = spa_strdup(strval);
8795 			/*
8796 			 * We need to dirty the configuration on all the vdevs
8797 			 * so that their labels get updated.  We also need to
8798 			 * update the cache file to keep it in sync with the
8799 			 * MOS version. It's unnecessary to do this for pool
8800 			 * creation since the vdev's configuration has already
8801 			 * been dirtied.
8802 			 */
8803 			if (tx->tx_txg != TXG_INITIAL) {
8804 				vdev_config_dirty(spa->spa_root_vdev);
8805 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8806 			}
8807 			spa_history_log_internal(spa, "set", tx,
8808 			    "%s=%s", nvpair_name(elem), strval);
8809 			break;
8810 		case ZPOOL_PROP_COMPATIBILITY:
8811 			strval = fnvpair_value_string(elem);
8812 			if (spa->spa_compatibility != NULL)
8813 				spa_strfree(spa->spa_compatibility);
8814 			spa->spa_compatibility = spa_strdup(strval);
8815 			/*
8816 			 * Dirty the configuration on vdevs as above.
8817 			 */
8818 			if (tx->tx_txg != TXG_INITIAL) {
8819 				vdev_config_dirty(spa->spa_root_vdev);
8820 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8821 			}
8822 
8823 			spa_history_log_internal(spa, "set", tx,
8824 			    "%s=%s", nvpair_name(elem), strval);
8825 			break;
8826 
8827 		default:
8828 			/*
8829 			 * Set pool property values in the poolprops mos object.
8830 			 */
8831 			if (spa->spa_pool_props_object == 0) {
8832 				spa->spa_pool_props_object =
8833 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8834 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8835 				    tx);
8836 			}
8837 
8838 			/* normalize the property name */
8839 			propname = zpool_prop_to_name(prop);
8840 			proptype = zpool_prop_get_type(prop);
8841 
8842 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8843 				ASSERT(proptype == PROP_TYPE_STRING);
8844 				strval = fnvpair_value_string(elem);
8845 				VERIFY0(zap_update(mos,
8846 				    spa->spa_pool_props_object, propname,
8847 				    1, strlen(strval) + 1, strval, tx));
8848 				spa_history_log_internal(spa, "set", tx,
8849 				    "%s=%s", nvpair_name(elem), strval);
8850 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8851 				intval = fnvpair_value_uint64(elem);
8852 
8853 				if (proptype == PROP_TYPE_INDEX) {
8854 					const char *unused;
8855 					VERIFY0(zpool_prop_index_to_string(
8856 					    prop, intval, &unused));
8857 				}
8858 				VERIFY0(zap_update(mos,
8859 				    spa->spa_pool_props_object, propname,
8860 				    8, 1, &intval, tx));
8861 				spa_history_log_internal(spa, "set", tx,
8862 				    "%s=%lld", nvpair_name(elem),
8863 				    (longlong_t)intval);
8864 			} else {
8865 				ASSERT(0); /* not allowed */
8866 			}
8867 
8868 			switch (prop) {
8869 			case ZPOOL_PROP_DELEGATION:
8870 				spa->spa_delegation = intval;
8871 				break;
8872 			case ZPOOL_PROP_BOOTFS:
8873 				spa->spa_bootfs = intval;
8874 				break;
8875 			case ZPOOL_PROP_FAILUREMODE:
8876 				spa->spa_failmode = intval;
8877 				break;
8878 			case ZPOOL_PROP_AUTOTRIM:
8879 				spa->spa_autotrim = intval;
8880 				spa_async_request(spa,
8881 				    SPA_ASYNC_AUTOTRIM_RESTART);
8882 				break;
8883 			case ZPOOL_PROP_AUTOEXPAND:
8884 				spa->spa_autoexpand = intval;
8885 				if (tx->tx_txg != TXG_INITIAL)
8886 					spa_async_request(spa,
8887 					    SPA_ASYNC_AUTOEXPAND);
8888 				break;
8889 			case ZPOOL_PROP_MULTIHOST:
8890 				spa->spa_multihost = intval;
8891 				break;
8892 			default:
8893 				break;
8894 			}
8895 		}
8896 
8897 	}
8898 
8899 	mutex_exit(&spa->spa_props_lock);
8900 }
8901 
8902 /*
8903  * Perform one-time upgrade on-disk changes.  spa_version() does not
8904  * reflect the new version this txg, so there must be no changes this
8905  * txg to anything that the upgrade code depends on after it executes.
8906  * Therefore this must be called after dsl_pool_sync() does the sync
8907  * tasks.
8908  */
8909 static void
8910 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8911 {
8912 	if (spa_sync_pass(spa) != 1)
8913 		return;
8914 
8915 	dsl_pool_t *dp = spa->spa_dsl_pool;
8916 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8917 
8918 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8919 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8920 		dsl_pool_create_origin(dp, tx);
8921 
8922 		/* Keeping the origin open increases spa_minref */
8923 		spa->spa_minref += 3;
8924 	}
8925 
8926 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8927 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8928 		dsl_pool_upgrade_clones(dp, tx);
8929 	}
8930 
8931 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8932 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8933 		dsl_pool_upgrade_dir_clones(dp, tx);
8934 
8935 		/* Keeping the freedir open increases spa_minref */
8936 		spa->spa_minref += 3;
8937 	}
8938 
8939 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8940 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8941 		spa_feature_create_zap_objects(spa, tx);
8942 	}
8943 
8944 	/*
8945 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8946 	 * when possibility to use lz4 compression for metadata was added
8947 	 * Old pools that have this feature enabled must be upgraded to have
8948 	 * this feature active
8949 	 */
8950 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8951 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8952 		    SPA_FEATURE_LZ4_COMPRESS);
8953 		boolean_t lz4_ac = spa_feature_is_active(spa,
8954 		    SPA_FEATURE_LZ4_COMPRESS);
8955 
8956 		if (lz4_en && !lz4_ac)
8957 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8958 	}
8959 
8960 	/*
8961 	 * If we haven't written the salt, do so now.  Note that the
8962 	 * feature may not be activated yet, but that's fine since
8963 	 * the presence of this ZAP entry is backwards compatible.
8964 	 */
8965 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8966 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8967 		VERIFY0(zap_add(spa->spa_meta_objset,
8968 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8969 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8970 		    spa->spa_cksum_salt.zcs_bytes, tx));
8971 	}
8972 
8973 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8974 }
8975 
8976 static void
8977 vdev_indirect_state_sync_verify(vdev_t *vd)
8978 {
8979 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8980 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8981 
8982 	if (vd->vdev_ops == &vdev_indirect_ops) {
8983 		ASSERT(vim != NULL);
8984 		ASSERT(vib != NULL);
8985 	}
8986 
8987 	uint64_t obsolete_sm_object = 0;
8988 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8989 	if (obsolete_sm_object != 0) {
8990 		ASSERT(vd->vdev_obsolete_sm != NULL);
8991 		ASSERT(vd->vdev_removing ||
8992 		    vd->vdev_ops == &vdev_indirect_ops);
8993 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8994 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8995 		ASSERT3U(obsolete_sm_object, ==,
8996 		    space_map_object(vd->vdev_obsolete_sm));
8997 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8998 		    space_map_allocated(vd->vdev_obsolete_sm));
8999 	}
9000 	ASSERT(vd->vdev_obsolete_segments != NULL);
9001 
9002 	/*
9003 	 * Since frees / remaps to an indirect vdev can only
9004 	 * happen in syncing context, the obsolete segments
9005 	 * tree must be empty when we start syncing.
9006 	 */
9007 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9008 }
9009 
9010 /*
9011  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9012  * async write queue depth in case it changed. The max queue depth will
9013  * not change in the middle of syncing out this txg.
9014  */
9015 static void
9016 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9017 {
9018 	ASSERT(spa_writeable(spa));
9019 
9020 	vdev_t *rvd = spa->spa_root_vdev;
9021 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9022 	    zfs_vdev_queue_depth_pct / 100;
9023 	metaslab_class_t *normal = spa_normal_class(spa);
9024 	metaslab_class_t *special = spa_special_class(spa);
9025 	metaslab_class_t *dedup = spa_dedup_class(spa);
9026 
9027 	uint64_t slots_per_allocator = 0;
9028 	for (int c = 0; c < rvd->vdev_children; c++) {
9029 		vdev_t *tvd = rvd->vdev_child[c];
9030 
9031 		metaslab_group_t *mg = tvd->vdev_mg;
9032 		if (mg == NULL || !metaslab_group_initialized(mg))
9033 			continue;
9034 
9035 		metaslab_class_t *mc = mg->mg_class;
9036 		if (mc != normal && mc != special && mc != dedup)
9037 			continue;
9038 
9039 		/*
9040 		 * It is safe to do a lock-free check here because only async
9041 		 * allocations look at mg_max_alloc_queue_depth, and async
9042 		 * allocations all happen from spa_sync().
9043 		 */
9044 		for (int i = 0; i < mg->mg_allocators; i++) {
9045 			ASSERT0(zfs_refcount_count(
9046 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9047 		}
9048 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9049 
9050 		for (int i = 0; i < mg->mg_allocators; i++) {
9051 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9052 			    zfs_vdev_def_queue_depth;
9053 		}
9054 		slots_per_allocator += zfs_vdev_def_queue_depth;
9055 	}
9056 
9057 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9058 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9059 		    mca_alloc_slots));
9060 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9061 		    mca_alloc_slots));
9062 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9063 		    mca_alloc_slots));
9064 		normal->mc_allocator[i].mca_alloc_max_slots =
9065 		    slots_per_allocator;
9066 		special->mc_allocator[i].mca_alloc_max_slots =
9067 		    slots_per_allocator;
9068 		dedup->mc_allocator[i].mca_alloc_max_slots =
9069 		    slots_per_allocator;
9070 	}
9071 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9072 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9073 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9074 }
9075 
9076 static void
9077 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9078 {
9079 	ASSERT(spa_writeable(spa));
9080 
9081 	vdev_t *rvd = spa->spa_root_vdev;
9082 	for (int c = 0; c < rvd->vdev_children; c++) {
9083 		vdev_t *vd = rvd->vdev_child[c];
9084 		vdev_indirect_state_sync_verify(vd);
9085 
9086 		if (vdev_indirect_should_condense(vd)) {
9087 			spa_condense_indirect_start_sync(vd, tx);
9088 			break;
9089 		}
9090 	}
9091 }
9092 
9093 static void
9094 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9095 {
9096 	objset_t *mos = spa->spa_meta_objset;
9097 	dsl_pool_t *dp = spa->spa_dsl_pool;
9098 	uint64_t txg = tx->tx_txg;
9099 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9100 
9101 	do {
9102 		int pass = ++spa->spa_sync_pass;
9103 
9104 		spa_sync_config_object(spa, tx);
9105 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9106 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9107 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9108 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9109 		spa_errlog_sync(spa, txg);
9110 		dsl_pool_sync(dp, txg);
9111 
9112 		if (pass < zfs_sync_pass_deferred_free ||
9113 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9114 			/*
9115 			 * If the log space map feature is active we don't
9116 			 * care about deferred frees and the deferred bpobj
9117 			 * as the log space map should effectively have the
9118 			 * same results (i.e. appending only to one object).
9119 			 */
9120 			spa_sync_frees(spa, free_bpl, tx);
9121 		} else {
9122 			/*
9123 			 * We can not defer frees in pass 1, because
9124 			 * we sync the deferred frees later in pass 1.
9125 			 */
9126 			ASSERT3U(pass, >, 1);
9127 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9128 			    &spa->spa_deferred_bpobj, tx);
9129 		}
9130 
9131 		ddt_sync(spa, txg);
9132 		dsl_scan_sync(dp, tx);
9133 		svr_sync(spa, tx);
9134 		spa_sync_upgrades(spa, tx);
9135 
9136 		spa_flush_metaslabs(spa, tx);
9137 
9138 		vdev_t *vd = NULL;
9139 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9140 		    != NULL)
9141 			vdev_sync(vd, txg);
9142 
9143 		/*
9144 		 * Note: We need to check if the MOS is dirty because we could
9145 		 * have marked the MOS dirty without updating the uberblock
9146 		 * (e.g. if we have sync tasks but no dirty user data). We need
9147 		 * to check the uberblock's rootbp because it is updated if we
9148 		 * have synced out dirty data (though in this case the MOS will
9149 		 * most likely also be dirty due to second order effects, we
9150 		 * don't want to rely on that here).
9151 		 */
9152 		if (pass == 1 &&
9153 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9154 		    !dmu_objset_is_dirty(mos, txg)) {
9155 			/*
9156 			 * Nothing changed on the first pass, therefore this
9157 			 * TXG is a no-op. Avoid syncing deferred frees, so
9158 			 * that we can keep this TXG as a no-op.
9159 			 */
9160 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9161 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9162 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9163 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9164 			break;
9165 		}
9166 
9167 		spa_sync_deferred_frees(spa, tx);
9168 	} while (dmu_objset_is_dirty(mos, txg));
9169 }
9170 
9171 /*
9172  * Rewrite the vdev configuration (which includes the uberblock) to
9173  * commit the transaction group.
9174  *
9175  * If there are no dirty vdevs, we sync the uberblock to a few random
9176  * top-level vdevs that are known to be visible in the config cache
9177  * (see spa_vdev_add() for a complete description). If there *are* dirty
9178  * vdevs, sync the uberblock to all vdevs.
9179  */
9180 static void
9181 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9182 {
9183 	vdev_t *rvd = spa->spa_root_vdev;
9184 	uint64_t txg = tx->tx_txg;
9185 
9186 	for (;;) {
9187 		int error = 0;
9188 
9189 		/*
9190 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9191 		 * while we're attempting to write the vdev labels.
9192 		 */
9193 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9194 
9195 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9196 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9197 			int svdcount = 0;
9198 			int children = rvd->vdev_children;
9199 			int c0 = random_in_range(children);
9200 
9201 			for (int c = 0; c < children; c++) {
9202 				vdev_t *vd =
9203 				    rvd->vdev_child[(c0 + c) % children];
9204 
9205 				/* Stop when revisiting the first vdev */
9206 				if (c > 0 && svd[0] == vd)
9207 					break;
9208 
9209 				if (vd->vdev_ms_array == 0 ||
9210 				    vd->vdev_islog ||
9211 				    !vdev_is_concrete(vd))
9212 					continue;
9213 
9214 				svd[svdcount++] = vd;
9215 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9216 					break;
9217 			}
9218 			error = vdev_config_sync(svd, svdcount, txg);
9219 		} else {
9220 			error = vdev_config_sync(rvd->vdev_child,
9221 			    rvd->vdev_children, txg);
9222 		}
9223 
9224 		if (error == 0)
9225 			spa->spa_last_synced_guid = rvd->vdev_guid;
9226 
9227 		spa_config_exit(spa, SCL_STATE, FTAG);
9228 
9229 		if (error == 0)
9230 			break;
9231 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9232 		zio_resume_wait(spa);
9233 	}
9234 }
9235 
9236 /*
9237  * Sync the specified transaction group.  New blocks may be dirtied as
9238  * part of the process, so we iterate until it converges.
9239  */
9240 void
9241 spa_sync(spa_t *spa, uint64_t txg)
9242 {
9243 	vdev_t *vd = NULL;
9244 
9245 	VERIFY(spa_writeable(spa));
9246 
9247 	/*
9248 	 * Wait for i/os issued in open context that need to complete
9249 	 * before this txg syncs.
9250 	 */
9251 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9252 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9253 	    ZIO_FLAG_CANFAIL);
9254 
9255 	/*
9256 	 * Lock out configuration changes.
9257 	 */
9258 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9259 
9260 	spa->spa_syncing_txg = txg;
9261 	spa->spa_sync_pass = 0;
9262 
9263 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9264 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9265 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9266 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9267 	}
9268 
9269 	/*
9270 	 * If there are any pending vdev state changes, convert them
9271 	 * into config changes that go out with this transaction group.
9272 	 */
9273 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9274 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9275 		/*
9276 		 * We need the write lock here because, for aux vdevs,
9277 		 * calling vdev_config_dirty() modifies sav_config.
9278 		 * This is ugly and will become unnecessary when we
9279 		 * eliminate the aux vdev wart by integrating all vdevs
9280 		 * into the root vdev tree.
9281 		 */
9282 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9283 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9284 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9285 			vdev_state_clean(vd);
9286 			vdev_config_dirty(vd);
9287 		}
9288 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9289 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9290 	}
9291 	spa_config_exit(spa, SCL_STATE, FTAG);
9292 
9293 	dsl_pool_t *dp = spa->spa_dsl_pool;
9294 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9295 
9296 	spa->spa_sync_starttime = gethrtime();
9297 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9298 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9299 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9300 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9301 
9302 	/*
9303 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9304 	 * set spa_deflate if we have no raid-z vdevs.
9305 	 */
9306 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9307 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9308 		vdev_t *rvd = spa->spa_root_vdev;
9309 
9310 		int i;
9311 		for (i = 0; i < rvd->vdev_children; i++) {
9312 			vd = rvd->vdev_child[i];
9313 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9314 				break;
9315 		}
9316 		if (i == rvd->vdev_children) {
9317 			spa->spa_deflate = TRUE;
9318 			VERIFY0(zap_add(spa->spa_meta_objset,
9319 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9320 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9321 		}
9322 	}
9323 
9324 	spa_sync_adjust_vdev_max_queue_depth(spa);
9325 
9326 	spa_sync_condense_indirect(spa, tx);
9327 
9328 	spa_sync_iterate_to_convergence(spa, tx);
9329 
9330 #ifdef ZFS_DEBUG
9331 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9332 	/*
9333 	 * Make sure that the number of ZAPs for all the vdevs matches
9334 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9335 	 * called if the config is dirty; otherwise there may be
9336 	 * outstanding AVZ operations that weren't completed in
9337 	 * spa_sync_config_object.
9338 	 */
9339 		uint64_t all_vdev_zap_entry_count;
9340 		ASSERT0(zap_count(spa->spa_meta_objset,
9341 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9342 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9343 		    all_vdev_zap_entry_count);
9344 	}
9345 #endif
9346 
9347 	if (spa->spa_vdev_removal != NULL) {
9348 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9349 	}
9350 
9351 	spa_sync_rewrite_vdev_config(spa, tx);
9352 	dmu_tx_commit(tx);
9353 
9354 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9355 	spa->spa_deadman_tqid = 0;
9356 
9357 	/*
9358 	 * Clear the dirty config list.
9359 	 */
9360 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9361 		vdev_config_clean(vd);
9362 
9363 	/*
9364 	 * Now that the new config has synced transactionally,
9365 	 * let it become visible to the config cache.
9366 	 */
9367 	if (spa->spa_config_syncing != NULL) {
9368 		spa_config_set(spa, spa->spa_config_syncing);
9369 		spa->spa_config_txg = txg;
9370 		spa->spa_config_syncing = NULL;
9371 	}
9372 
9373 	dsl_pool_sync_done(dp, txg);
9374 
9375 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9376 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9377 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9378 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9379 	}
9380 
9381 	/*
9382 	 * Update usable space statistics.
9383 	 */
9384 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9385 	    != NULL)
9386 		vdev_sync_done(vd, txg);
9387 
9388 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9389 	metaslab_class_evict_old(spa->spa_log_class, txg);
9390 
9391 	spa_sync_close_syncing_log_sm(spa);
9392 
9393 	spa_update_dspace(spa);
9394 
9395 	/*
9396 	 * It had better be the case that we didn't dirty anything
9397 	 * since vdev_config_sync().
9398 	 */
9399 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9400 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9401 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9402 
9403 	while (zfs_pause_spa_sync)
9404 		delay(1);
9405 
9406 	spa->spa_sync_pass = 0;
9407 
9408 	/*
9409 	 * Update the last synced uberblock here. We want to do this at
9410 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9411 	 * will be guaranteed that all the processing associated with
9412 	 * that txg has been completed.
9413 	 */
9414 	spa->spa_ubsync = spa->spa_uberblock;
9415 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9416 
9417 	spa_handle_ignored_writes(spa);
9418 
9419 	/*
9420 	 * If any async tasks have been requested, kick them off.
9421 	 */
9422 	spa_async_dispatch(spa);
9423 }
9424 
9425 /*
9426  * Sync all pools.  We don't want to hold the namespace lock across these
9427  * operations, so we take a reference on the spa_t and drop the lock during the
9428  * sync.
9429  */
9430 void
9431 spa_sync_allpools(void)
9432 {
9433 	spa_t *spa = NULL;
9434 	mutex_enter(&spa_namespace_lock);
9435 	while ((spa = spa_next(spa)) != NULL) {
9436 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9437 		    !spa_writeable(spa) || spa_suspended(spa))
9438 			continue;
9439 		spa_open_ref(spa, FTAG);
9440 		mutex_exit(&spa_namespace_lock);
9441 		txg_wait_synced(spa_get_dsl(spa), 0);
9442 		mutex_enter(&spa_namespace_lock);
9443 		spa_close(spa, FTAG);
9444 	}
9445 	mutex_exit(&spa_namespace_lock);
9446 }
9447 
9448 /*
9449  * ==========================================================================
9450  * Miscellaneous routines
9451  * ==========================================================================
9452  */
9453 
9454 /*
9455  * Remove all pools in the system.
9456  */
9457 void
9458 spa_evict_all(void)
9459 {
9460 	spa_t *spa;
9461 
9462 	/*
9463 	 * Remove all cached state.  All pools should be closed now,
9464 	 * so every spa in the AVL tree should be unreferenced.
9465 	 */
9466 	mutex_enter(&spa_namespace_lock);
9467 	while ((spa = spa_next(NULL)) != NULL) {
9468 		/*
9469 		 * Stop async tasks.  The async thread may need to detach
9470 		 * a device that's been replaced, which requires grabbing
9471 		 * spa_namespace_lock, so we must drop it here.
9472 		 */
9473 		spa_open_ref(spa, FTAG);
9474 		mutex_exit(&spa_namespace_lock);
9475 		spa_async_suspend(spa);
9476 		mutex_enter(&spa_namespace_lock);
9477 		spa_close(spa, FTAG);
9478 
9479 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9480 			spa_unload(spa);
9481 			spa_deactivate(spa);
9482 		}
9483 		spa_remove(spa);
9484 	}
9485 	mutex_exit(&spa_namespace_lock);
9486 }
9487 
9488 vdev_t *
9489 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9490 {
9491 	vdev_t *vd;
9492 	int i;
9493 
9494 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9495 		return (vd);
9496 
9497 	if (aux) {
9498 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9499 			vd = spa->spa_l2cache.sav_vdevs[i];
9500 			if (vd->vdev_guid == guid)
9501 				return (vd);
9502 		}
9503 
9504 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9505 			vd = spa->spa_spares.sav_vdevs[i];
9506 			if (vd->vdev_guid == guid)
9507 				return (vd);
9508 		}
9509 	}
9510 
9511 	return (NULL);
9512 }
9513 
9514 void
9515 spa_upgrade(spa_t *spa, uint64_t version)
9516 {
9517 	ASSERT(spa_writeable(spa));
9518 
9519 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9520 
9521 	/*
9522 	 * This should only be called for a non-faulted pool, and since a
9523 	 * future version would result in an unopenable pool, this shouldn't be
9524 	 * possible.
9525 	 */
9526 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9527 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9528 
9529 	spa->spa_uberblock.ub_version = version;
9530 	vdev_config_dirty(spa->spa_root_vdev);
9531 
9532 	spa_config_exit(spa, SCL_ALL, FTAG);
9533 
9534 	txg_wait_synced(spa_get_dsl(spa), 0);
9535 }
9536 
9537 static boolean_t
9538 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9539 {
9540 	(void) spa;
9541 	int i;
9542 	uint64_t vdev_guid;
9543 
9544 	for (i = 0; i < sav->sav_count; i++)
9545 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9546 			return (B_TRUE);
9547 
9548 	for (i = 0; i < sav->sav_npending; i++) {
9549 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9550 		    &vdev_guid) == 0 && vdev_guid == guid)
9551 			return (B_TRUE);
9552 	}
9553 
9554 	return (B_FALSE);
9555 }
9556 
9557 boolean_t
9558 spa_has_l2cache(spa_t *spa, uint64_t guid)
9559 {
9560 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9561 }
9562 
9563 boolean_t
9564 spa_has_spare(spa_t *spa, uint64_t guid)
9565 {
9566 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9567 }
9568 
9569 /*
9570  * Check if a pool has an active shared spare device.
9571  * Note: reference count of an active spare is 2, as a spare and as a replace
9572  */
9573 static boolean_t
9574 spa_has_active_shared_spare(spa_t *spa)
9575 {
9576 	int i, refcnt;
9577 	uint64_t pool;
9578 	spa_aux_vdev_t *sav = &spa->spa_spares;
9579 
9580 	for (i = 0; i < sav->sav_count; i++) {
9581 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9582 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9583 		    refcnt > 2)
9584 			return (B_TRUE);
9585 	}
9586 
9587 	return (B_FALSE);
9588 }
9589 
9590 uint64_t
9591 spa_total_metaslabs(spa_t *spa)
9592 {
9593 	vdev_t *rvd = spa->spa_root_vdev;
9594 
9595 	uint64_t m = 0;
9596 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9597 		vdev_t *vd = rvd->vdev_child[c];
9598 		if (!vdev_is_concrete(vd))
9599 			continue;
9600 		m += vd->vdev_ms_count;
9601 	}
9602 	return (m);
9603 }
9604 
9605 /*
9606  * Notify any waiting threads that some activity has switched from being in-
9607  * progress to not-in-progress so that the thread can wake up and determine
9608  * whether it is finished waiting.
9609  */
9610 void
9611 spa_notify_waiters(spa_t *spa)
9612 {
9613 	/*
9614 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9615 	 * happening between the waiting thread's check and cv_wait.
9616 	 */
9617 	mutex_enter(&spa->spa_activities_lock);
9618 	cv_broadcast(&spa->spa_activities_cv);
9619 	mutex_exit(&spa->spa_activities_lock);
9620 }
9621 
9622 /*
9623  * Notify any waiting threads that the pool is exporting, and then block until
9624  * they are finished using the spa_t.
9625  */
9626 void
9627 spa_wake_waiters(spa_t *spa)
9628 {
9629 	mutex_enter(&spa->spa_activities_lock);
9630 	spa->spa_waiters_cancel = B_TRUE;
9631 	cv_broadcast(&spa->spa_activities_cv);
9632 	while (spa->spa_waiters != 0)
9633 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9634 	spa->spa_waiters_cancel = B_FALSE;
9635 	mutex_exit(&spa->spa_activities_lock);
9636 }
9637 
9638 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9639 static boolean_t
9640 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9641 {
9642 	spa_t *spa = vd->vdev_spa;
9643 
9644 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9645 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9646 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9647 	    activity == ZPOOL_WAIT_TRIM);
9648 
9649 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9650 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9651 
9652 	mutex_exit(&spa->spa_activities_lock);
9653 	mutex_enter(lock);
9654 	mutex_enter(&spa->spa_activities_lock);
9655 
9656 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9657 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9658 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9659 	mutex_exit(lock);
9660 
9661 	if (in_progress)
9662 		return (B_TRUE);
9663 
9664 	for (int i = 0; i < vd->vdev_children; i++) {
9665 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9666 		    activity))
9667 			return (B_TRUE);
9668 	}
9669 
9670 	return (B_FALSE);
9671 }
9672 
9673 /*
9674  * If use_guid is true, this checks whether the vdev specified by guid is
9675  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9676  * is being initialized/trimmed. The caller must hold the config lock and
9677  * spa_activities_lock.
9678  */
9679 static int
9680 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9681     zpool_wait_activity_t activity, boolean_t *in_progress)
9682 {
9683 	mutex_exit(&spa->spa_activities_lock);
9684 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9685 	mutex_enter(&spa->spa_activities_lock);
9686 
9687 	vdev_t *vd;
9688 	if (use_guid) {
9689 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9690 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9691 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9692 			return (EINVAL);
9693 		}
9694 	} else {
9695 		vd = spa->spa_root_vdev;
9696 	}
9697 
9698 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9699 
9700 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9701 	return (0);
9702 }
9703 
9704 /*
9705  * Locking for waiting threads
9706  * ---------------------------
9707  *
9708  * Waiting threads need a way to check whether a given activity is in progress,
9709  * and then, if it is, wait for it to complete. Each activity will have some
9710  * in-memory representation of the relevant on-disk state which can be used to
9711  * determine whether or not the activity is in progress. The in-memory state and
9712  * the locking used to protect it will be different for each activity, and may
9713  * not be suitable for use with a cvar (e.g., some state is protected by the
9714  * config lock). To allow waiting threads to wait without any races, another
9715  * lock, spa_activities_lock, is used.
9716  *
9717  * When the state is checked, both the activity-specific lock (if there is one)
9718  * and spa_activities_lock are held. In some cases, the activity-specific lock
9719  * is acquired explicitly (e.g. the config lock). In others, the locking is
9720  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9721  * thread releases the activity-specific lock and, if the activity is in
9722  * progress, then cv_waits using spa_activities_lock.
9723  *
9724  * The waiting thread is woken when another thread, one completing some
9725  * activity, updates the state of the activity and then calls
9726  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9727  * needs to hold its activity-specific lock when updating the state, and this
9728  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9729  *
9730  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9731  * and because it is held when the waiting thread checks the state of the
9732  * activity, it can never be the case that the completing thread both updates
9733  * the activity state and cv_broadcasts in between the waiting thread's check
9734  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9735  *
9736  * In order to prevent deadlock, when the waiting thread does its check, in some
9737  * cases it will temporarily drop spa_activities_lock in order to acquire the
9738  * activity-specific lock. The order in which spa_activities_lock and the
9739  * activity specific lock are acquired in the waiting thread is determined by
9740  * the order in which they are acquired in the completing thread; if the
9741  * completing thread calls spa_notify_waiters with the activity-specific lock
9742  * held, then the waiting thread must also acquire the activity-specific lock
9743  * first.
9744  */
9745 
9746 static int
9747 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9748     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9749 {
9750 	int error = 0;
9751 
9752 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9753 
9754 	switch (activity) {
9755 	case ZPOOL_WAIT_CKPT_DISCARD:
9756 		*in_progress =
9757 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9758 		    zap_contains(spa_meta_objset(spa),
9759 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9760 		    ENOENT);
9761 		break;
9762 	case ZPOOL_WAIT_FREE:
9763 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9764 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9765 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9766 		    spa_livelist_delete_check(spa));
9767 		break;
9768 	case ZPOOL_WAIT_INITIALIZE:
9769 	case ZPOOL_WAIT_TRIM:
9770 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9771 		    activity, in_progress);
9772 		break;
9773 	case ZPOOL_WAIT_REPLACE:
9774 		mutex_exit(&spa->spa_activities_lock);
9775 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9776 		mutex_enter(&spa->spa_activities_lock);
9777 
9778 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9779 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9780 		break;
9781 	case ZPOOL_WAIT_REMOVE:
9782 		*in_progress = (spa->spa_removing_phys.sr_state ==
9783 		    DSS_SCANNING);
9784 		break;
9785 	case ZPOOL_WAIT_RESILVER:
9786 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9787 			break;
9788 		zfs_fallthrough;
9789 	case ZPOOL_WAIT_SCRUB:
9790 	{
9791 		boolean_t scanning, paused, is_scrub;
9792 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9793 
9794 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9795 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9796 		paused = dsl_scan_is_paused_scrub(scn);
9797 		*in_progress = (scanning && !paused &&
9798 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9799 		break;
9800 	}
9801 	default:
9802 		panic("unrecognized value for activity %d", activity);
9803 	}
9804 
9805 	return (error);
9806 }
9807 
9808 static int
9809 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9810     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9811 {
9812 	/*
9813 	 * The tag is used to distinguish between instances of an activity.
9814 	 * 'initialize' and 'trim' are the only activities that we use this for.
9815 	 * The other activities can only have a single instance in progress in a
9816 	 * pool at one time, making the tag unnecessary.
9817 	 *
9818 	 * There can be multiple devices being replaced at once, but since they
9819 	 * all finish once resilvering finishes, we don't bother keeping track
9820 	 * of them individually, we just wait for them all to finish.
9821 	 */
9822 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9823 	    activity != ZPOOL_WAIT_TRIM)
9824 		return (EINVAL);
9825 
9826 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9827 		return (EINVAL);
9828 
9829 	spa_t *spa;
9830 	int error = spa_open(pool, &spa, FTAG);
9831 	if (error != 0)
9832 		return (error);
9833 
9834 	/*
9835 	 * Increment the spa's waiter count so that we can call spa_close and
9836 	 * still ensure that the spa_t doesn't get freed before this thread is
9837 	 * finished with it when the pool is exported. We want to call spa_close
9838 	 * before we start waiting because otherwise the additional ref would
9839 	 * prevent the pool from being exported or destroyed throughout the
9840 	 * potentially long wait.
9841 	 */
9842 	mutex_enter(&spa->spa_activities_lock);
9843 	spa->spa_waiters++;
9844 	spa_close(spa, FTAG);
9845 
9846 	*waited = B_FALSE;
9847 	for (;;) {
9848 		boolean_t in_progress;
9849 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9850 		    &in_progress);
9851 
9852 		if (error || !in_progress || spa->spa_waiters_cancel)
9853 			break;
9854 
9855 		*waited = B_TRUE;
9856 
9857 		if (cv_wait_sig(&spa->spa_activities_cv,
9858 		    &spa->spa_activities_lock) == 0) {
9859 			error = EINTR;
9860 			break;
9861 		}
9862 	}
9863 
9864 	spa->spa_waiters--;
9865 	cv_signal(&spa->spa_waiters_cv);
9866 	mutex_exit(&spa->spa_activities_lock);
9867 
9868 	return (error);
9869 }
9870 
9871 /*
9872  * Wait for a particular instance of the specified activity to complete, where
9873  * the instance is identified by 'tag'
9874  */
9875 int
9876 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9877     boolean_t *waited)
9878 {
9879 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9880 }
9881 
9882 /*
9883  * Wait for all instances of the specified activity complete
9884  */
9885 int
9886 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9887 {
9888 
9889 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9890 }
9891 
9892 sysevent_t *
9893 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9894 {
9895 	sysevent_t *ev = NULL;
9896 #ifdef _KERNEL
9897 	nvlist_t *resource;
9898 
9899 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9900 	if (resource) {
9901 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9902 		ev->resource = resource;
9903 	}
9904 #else
9905 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
9906 #endif
9907 	return (ev);
9908 }
9909 
9910 void
9911 spa_event_post(sysevent_t *ev)
9912 {
9913 #ifdef _KERNEL
9914 	if (ev) {
9915 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9916 		kmem_free(ev, sizeof (*ev));
9917 	}
9918 #else
9919 	(void) ev;
9920 #endif
9921 }
9922 
9923 /*
9924  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9925  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9926  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9927  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9928  * or zdb as real changes.
9929  */
9930 void
9931 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9932 {
9933 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9934 }
9935 
9936 /* state manipulation functions */
9937 EXPORT_SYMBOL(spa_open);
9938 EXPORT_SYMBOL(spa_open_rewind);
9939 EXPORT_SYMBOL(spa_get_stats);
9940 EXPORT_SYMBOL(spa_create);
9941 EXPORT_SYMBOL(spa_import);
9942 EXPORT_SYMBOL(spa_tryimport);
9943 EXPORT_SYMBOL(spa_destroy);
9944 EXPORT_SYMBOL(spa_export);
9945 EXPORT_SYMBOL(spa_reset);
9946 EXPORT_SYMBOL(spa_async_request);
9947 EXPORT_SYMBOL(spa_async_suspend);
9948 EXPORT_SYMBOL(spa_async_resume);
9949 EXPORT_SYMBOL(spa_inject_addref);
9950 EXPORT_SYMBOL(spa_inject_delref);
9951 EXPORT_SYMBOL(spa_scan_stat_init);
9952 EXPORT_SYMBOL(spa_scan_get_stats);
9953 
9954 /* device manipulation */
9955 EXPORT_SYMBOL(spa_vdev_add);
9956 EXPORT_SYMBOL(spa_vdev_attach);
9957 EXPORT_SYMBOL(spa_vdev_detach);
9958 EXPORT_SYMBOL(spa_vdev_setpath);
9959 EXPORT_SYMBOL(spa_vdev_setfru);
9960 EXPORT_SYMBOL(spa_vdev_split_mirror);
9961 
9962 /* spare statech is global across all pools) */
9963 EXPORT_SYMBOL(spa_spare_add);
9964 EXPORT_SYMBOL(spa_spare_remove);
9965 EXPORT_SYMBOL(spa_spare_exists);
9966 EXPORT_SYMBOL(spa_spare_activate);
9967 
9968 /* L2ARC statech is global across all pools) */
9969 EXPORT_SYMBOL(spa_l2cache_add);
9970 EXPORT_SYMBOL(spa_l2cache_remove);
9971 EXPORT_SYMBOL(spa_l2cache_exists);
9972 EXPORT_SYMBOL(spa_l2cache_activate);
9973 EXPORT_SYMBOL(spa_l2cache_drop);
9974 
9975 /* scanning */
9976 EXPORT_SYMBOL(spa_scan);
9977 EXPORT_SYMBOL(spa_scan_stop);
9978 
9979 /* spa syncing */
9980 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9981 EXPORT_SYMBOL(spa_sync_allpools);
9982 
9983 /* properties */
9984 EXPORT_SYMBOL(spa_prop_set);
9985 EXPORT_SYMBOL(spa_prop_get);
9986 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9987 
9988 /* asynchronous event notification */
9989 EXPORT_SYMBOL(spa_event_notify);
9990 
9991 /* BEGIN CSTYLED */
9992 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9993 	"log2 fraction of arc that can be used by inflight I/Os when "
9994 	"verifying pool during import");
9995 /* END CSTYLED */
9996 
9997 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9998 	"Set to traverse metadata on pool import");
9999 
10000 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10001 	"Set to traverse data on pool import");
10002 
10003 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10004 	"Print vdev tree to zfs_dbgmsg during pool import");
10005 
10006 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10007 	"Percentage of CPUs to run an IO worker thread");
10008 
10009 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10010 	"Number of threads per IO worker taskqueue");
10011 
10012 /* BEGIN CSTYLED */
10013 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
10014 	"Allow importing pool with up to this number of missing top-level "
10015 	"vdevs (in read-only mode)");
10016 /* END CSTYLED */
10017 
10018 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10019 	ZMOD_RW, "Set the livelist condense zthr to pause");
10020 
10021 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10022 	ZMOD_RW, "Set the livelist condense synctask to pause");
10023 
10024 /* BEGIN CSTYLED */
10025 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10026 	INT, ZMOD_RW,
10027 	"Whether livelist condensing was canceled in the synctask");
10028 
10029 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10030 	INT, ZMOD_RW,
10031 	"Whether livelist condensing was canceled in the zthr function");
10032 
10033 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10034 	ZMOD_RW,
10035 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10036 	"was being condensed");
10037 /* END CSTYLED */
10038