1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/zfs_chksum.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/vdev_file.h>
46 #include <sys/vdev_raidz.h>
47 #include <sys/metaslab.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fm/util.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/arc.h>
60 #include <sys/brt.h>
61 #include <sys/ddt.h>
62 #include <sys/kstat.h>
63 #include "zfs_prop.h"
64 #include <sys/btree.h>
65 #include <sys/zfeature.h>
66 #include <sys/qat.h>
67 #include <sys/zstd/zstd.h>
68 
69 /*
70  * SPA locking
71  *
72  * There are three basic locks for managing spa_t structures:
73  *
74  * spa_namespace_lock (global mutex)
75  *
76  *	This lock must be acquired to do any of the following:
77  *
78  *		- Lookup a spa_t by name
79  *		- Add or remove a spa_t from the namespace
80  *		- Increase spa_refcount from non-zero
81  *		- Check if spa_refcount is zero
82  *		- Rename a spa_t
83  *		- add/remove/attach/detach devices
84  *		- Held for the duration of create/destroy/import/export
85  *
86  *	It does not need to handle recursion.  A create or destroy may
87  *	reference objects (files or zvols) in other pools, but by
88  *	definition they must have an existing reference, and will never need
89  *	to lookup a spa_t by name.
90  *
91  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
92  *
93  *	This reference count keep track of any active users of the spa_t.  The
94  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
95  *	the refcount is never really 'zero' - opening a pool implicitly keeps
96  *	some references in the DMU.  Internally we check against spa_minref, but
97  *	present the image of a zero/non-zero value to consumers.
98  *
99  * spa_config_lock[] (per-spa array of rwlocks)
100  *
101  *	This protects the spa_t from config changes, and must be held in
102  *	the following circumstances:
103  *
104  *		- RW_READER to perform I/O to the spa
105  *		- RW_WRITER to change the vdev config
106  *
107  * The locking order is fairly straightforward:
108  *
109  *		spa_namespace_lock	->	spa_refcount
110  *
111  *	The namespace lock must be acquired to increase the refcount from 0
112  *	or to check if it is zero.
113  *
114  *		spa_refcount		->	spa_config_lock[]
115  *
116  *	There must be at least one valid reference on the spa_t to acquire
117  *	the config lock.
118  *
119  *		spa_namespace_lock	->	spa_config_lock[]
120  *
121  *	The namespace lock must always be taken before the config lock.
122  *
123  *
124  * The spa_namespace_lock can be acquired directly and is globally visible.
125  *
126  * The namespace is manipulated using the following functions, all of which
127  * require the spa_namespace_lock to be held.
128  *
129  *	spa_lookup()		Lookup a spa_t by name.
130  *
131  *	spa_add()		Create a new spa_t in the namespace.
132  *
133  *	spa_remove()		Remove a spa_t from the namespace.  This also
134  *				frees up any memory associated with the spa_t.
135  *
136  *	spa_next()		Returns the next spa_t in the system, or the
137  *				first if NULL is passed.
138  *
139  *	spa_evict_all()		Shutdown and remove all spa_t structures in
140  *				the system.
141  *
142  *	spa_guid_exists()	Determine whether a pool/device guid exists.
143  *
144  * The spa_refcount is manipulated using the following functions:
145  *
146  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
147  *				called with spa_namespace_lock held if the
148  *				refcount is currently zero.
149  *
150  *	spa_close()		Remove a reference from the spa_t.  This will
151  *				not free the spa_t or remove it from the
152  *				namespace.  No locking is required.
153  *
154  *	spa_refcount_zero()	Returns true if the refcount is currently
155  *				zero.  Must be called with spa_namespace_lock
156  *				held.
157  *
158  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
159  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
160  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
161  *
162  * To read the configuration, it suffices to hold one of these locks as reader.
163  * To modify the configuration, you must hold all locks as writer.  To modify
164  * vdev state without altering the vdev tree's topology (e.g. online/offline),
165  * you must hold SCL_STATE and SCL_ZIO as writer.
166  *
167  * We use these distinct config locks to avoid recursive lock entry.
168  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
169  * block allocations (SCL_ALLOC), which may require reading space maps
170  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
171  *
172  * The spa config locks cannot be normal rwlocks because we need the
173  * ability to hand off ownership.  For example, SCL_ZIO is acquired
174  * by the issuing thread and later released by an interrupt thread.
175  * They do, however, obey the usual write-wanted semantics to prevent
176  * writer (i.e. system administrator) starvation.
177  *
178  * The lock acquisition rules are as follows:
179  *
180  * SCL_CONFIG
181  *	Protects changes to the vdev tree topology, such as vdev
182  *	add/remove/attach/detach.  Protects the dirty config list
183  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
184  *
185  * SCL_STATE
186  *	Protects changes to pool state and vdev state, such as vdev
187  *	online/offline/fault/degrade/clear.  Protects the dirty state list
188  *	(spa_state_dirty_list) and global pool state (spa_state).
189  *
190  * SCL_ALLOC
191  *	Protects changes to metaslab groups and classes.
192  *	Held as reader by metaslab_alloc() and metaslab_claim().
193  *
194  * SCL_ZIO
195  *	Held by bp-level zios (those which have no io_vd upon entry)
196  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
197  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
198  *
199  * SCL_FREE
200  *	Protects changes to metaslab groups and classes.
201  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
202  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
203  *	blocks in zio_done() while another i/o that holds either
204  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
205  *
206  * SCL_VDEV
207  *	Held as reader to prevent changes to the vdev tree during trivial
208  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
209  *	other locks, and lower than all of them, to ensure that it's safe
210  *	to acquire regardless of caller context.
211  *
212  * In addition, the following rules apply:
213  *
214  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
215  *	The lock ordering is SCL_CONFIG > spa_props_lock.
216  *
217  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
218  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
219  *	or zio_write_phys() -- the caller must ensure that the config cannot
220  *	cannot change in the interim, and that the vdev cannot be reopened.
221  *	SCL_STATE as reader suffices for both.
222  *
223  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
224  *
225  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
226  *				for writing.
227  *
228  *	spa_vdev_exit()		Release the config lock, wait for all I/O
229  *				to complete, sync the updated configs to the
230  *				cache, and release the namespace lock.
231  *
232  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
233  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
234  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
235  */
236 
237 static avl_tree_t spa_namespace_avl;
238 kmutex_t spa_namespace_lock;
239 static kcondvar_t spa_namespace_cv;
240 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
241 
242 static kmutex_t spa_spare_lock;
243 static avl_tree_t spa_spare_avl;
244 static kmutex_t spa_l2cache_lock;
245 static avl_tree_t spa_l2cache_avl;
246 
247 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
248 
249 #ifdef ZFS_DEBUG
250 /*
251  * Everything except dprintf, set_error, spa, and indirect_remap is on
252  * by default in debug builds.
253  */
254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
255     ZFS_DEBUG_INDIRECT_REMAP);
256 #else
257 int zfs_flags = 0;
258 #endif
259 
260 /*
261  * zfs_recover can be set to nonzero to attempt to recover from
262  * otherwise-fatal errors, typically caused by on-disk corruption.  When
263  * set, calls to zfs_panic_recover() will turn into warning messages.
264  * This should only be used as a last resort, as it typically results
265  * in leaked space, or worse.
266  */
267 int zfs_recover = B_FALSE;
268 
269 /*
270  * If destroy encounters an EIO while reading metadata (e.g. indirect
271  * blocks), space referenced by the missing metadata can not be freed.
272  * Normally this causes the background destroy to become "stalled", as
273  * it is unable to make forward progress.  While in this stalled state,
274  * all remaining space to free from the error-encountering filesystem is
275  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
276  * permanently leak the space from indirect blocks that can not be read,
277  * and continue to free everything else that it can.
278  *
279  * The default, "stalling" behavior is useful if the storage partially
280  * fails (i.e. some but not all i/os fail), and then later recovers.  In
281  * this case, we will be able to continue pool operations while it is
282  * partially failed, and when it recovers, we can continue to free the
283  * space, with no leaks.  However, note that this case is actually
284  * fairly rare.
285  *
286  * Typically pools either (a) fail completely (but perhaps temporarily,
287  * e.g. a top-level vdev going offline), or (b) have localized,
288  * permanent errors (e.g. disk returns the wrong data due to bit flip or
289  * firmware bug).  In case (a), this setting does not matter because the
290  * pool will be suspended and the sync thread will not be able to make
291  * forward progress regardless.  In case (b), because the error is
292  * permanent, the best we can do is leak the minimum amount of space,
293  * which is what setting this flag will do.  Therefore, it is reasonable
294  * for this flag to normally be set, but we chose the more conservative
295  * approach of not setting it, so that there is no possibility of
296  * leaking space in the "partial temporary" failure case.
297  */
298 int zfs_free_leak_on_eio = B_FALSE;
299 
300 /*
301  * Expiration time in milliseconds. This value has two meanings. First it is
302  * used to determine when the spa_deadman() logic should fire. By default the
303  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
304  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
305  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
306  * in one of three behaviors controlled by zfs_deadman_failmode.
307  */
308 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
309 
310 /*
311  * This value controls the maximum amount of time zio_wait() will block for an
312  * outstanding IO.  By default this is 300 seconds at which point the "hung"
313  * behavior will be applied as described for zfs_deadman_synctime_ms.
314  */
315 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
316 
317 /*
318  * Check time in milliseconds. This defines the frequency at which we check
319  * for hung I/O.
320  */
321 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
322 
323 /*
324  * By default the deadman is enabled.
325  */
326 int zfs_deadman_enabled = B_TRUE;
327 
328 /*
329  * Controls the behavior of the deadman when it detects a "hung" I/O.
330  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
331  *
332  * wait     - Wait for the "hung" I/O (default)
333  * continue - Attempt to recover from a "hung" I/O
334  * panic    - Panic the system
335  */
336 const char *zfs_deadman_failmode = "wait";
337 
338 /*
339  * The worst case is single-sector max-parity RAID-Z blocks, in which
340  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
341  * times the size; so just assume that.  Add to this the fact that
342  * we can have up to 3 DVAs per bp, and one more factor of 2 because
343  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
344  * the worst case is:
345  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
346  */
347 uint_t spa_asize_inflation = 24;
348 
349 /*
350  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
351  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
352  * don't run the pool completely out of space, due to unaccounted changes (e.g.
353  * to the MOS).  It also limits the worst-case time to allocate space.  If we
354  * have less than this amount of free space, most ZPL operations (e.g.  write,
355  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
356  * also part of this 3.2% of space which can't be consumed by normal writes;
357  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
358  * log space.
359  *
360  * Certain operations (e.g. file removal, most administrative actions) can
361  * use half the slop space.  They will only return ENOSPC if less than half
362  * the slop space is free.  Typically, once the pool has less than the slop
363  * space free, the user will use these operations to free up space in the pool.
364  * These are the operations that call dsl_pool_adjustedsize() with the netfree
365  * argument set to TRUE.
366  *
367  * Operations that are almost guaranteed to free up space in the absence of
368  * a pool checkpoint can use up to three quarters of the slop space
369  * (e.g zfs destroy).
370  *
371  * A very restricted set of operations are always permitted, regardless of
372  * the amount of free space.  These are the operations that call
373  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
374  * increase in the amount of space used, it is possible to run the pool
375  * completely out of space, causing it to be permanently read-only.
376  *
377  * Note that on very small pools, the slop space will be larger than
378  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
379  * but we never allow it to be more than half the pool size.
380  *
381  * Further, on very large pools, the slop space will be smaller than
382  * 3.2%, to avoid reserving much more space than we actually need; bounded
383  * by spa_max_slop (128GB).
384  *
385  * See also the comments in zfs_space_check_t.
386  */
387 uint_t spa_slop_shift = 5;
388 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
389 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
390 static const int spa_allocators = 4;
391 
392 
393 void
394 spa_load_failed(spa_t *spa, const char *fmt, ...)
395 {
396 	va_list adx;
397 	char buf[256];
398 
399 	va_start(adx, fmt);
400 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
401 	va_end(adx);
402 
403 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
404 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
405 }
406 
407 void
408 spa_load_note(spa_t *spa, const char *fmt, ...)
409 {
410 	va_list adx;
411 	char buf[256];
412 
413 	va_start(adx, fmt);
414 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
415 	va_end(adx);
416 
417 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
418 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
419 }
420 
421 /*
422  * By default dedup and user data indirects land in the special class
423  */
424 static int zfs_ddt_data_is_special = B_TRUE;
425 static int zfs_user_indirect_is_special = B_TRUE;
426 
427 /*
428  * The percentage of special class final space reserved for metadata only.
429  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
430  * let metadata into the class.
431  */
432 static uint_t zfs_special_class_metadata_reserve_pct = 25;
433 
434 /*
435  * ==========================================================================
436  * SPA config locking
437  * ==========================================================================
438  */
439 static void
440 spa_config_lock_init(spa_t *spa)
441 {
442 	for (int i = 0; i < SCL_LOCKS; i++) {
443 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
444 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
445 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
446 		scl->scl_writer = NULL;
447 		scl->scl_write_wanted = 0;
448 		scl->scl_count = 0;
449 	}
450 }
451 
452 static void
453 spa_config_lock_destroy(spa_t *spa)
454 {
455 	for (int i = 0; i < SCL_LOCKS; i++) {
456 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
457 		mutex_destroy(&scl->scl_lock);
458 		cv_destroy(&scl->scl_cv);
459 		ASSERT(scl->scl_writer == NULL);
460 		ASSERT(scl->scl_write_wanted == 0);
461 		ASSERT(scl->scl_count == 0);
462 	}
463 }
464 
465 int
466 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
467 {
468 	for (int i = 0; i < SCL_LOCKS; i++) {
469 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
470 		if (!(locks & (1 << i)))
471 			continue;
472 		mutex_enter(&scl->scl_lock);
473 		if (rw == RW_READER) {
474 			if (scl->scl_writer || scl->scl_write_wanted) {
475 				mutex_exit(&scl->scl_lock);
476 				spa_config_exit(spa, locks & ((1 << i) - 1),
477 				    tag);
478 				return (0);
479 			}
480 		} else {
481 			ASSERT(scl->scl_writer != curthread);
482 			if (scl->scl_count != 0) {
483 				mutex_exit(&scl->scl_lock);
484 				spa_config_exit(spa, locks & ((1 << i) - 1),
485 				    tag);
486 				return (0);
487 			}
488 			scl->scl_writer = curthread;
489 		}
490 		scl->scl_count++;
491 		mutex_exit(&scl->scl_lock);
492 	}
493 	return (1);
494 }
495 
496 static void
497 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
498     int mmp_flag)
499 {
500 	(void) tag;
501 	int wlocks_held = 0;
502 
503 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
504 
505 	for (int i = 0; i < SCL_LOCKS; i++) {
506 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
507 		if (scl->scl_writer == curthread)
508 			wlocks_held |= (1 << i);
509 		if (!(locks & (1 << i)))
510 			continue;
511 		mutex_enter(&scl->scl_lock);
512 		if (rw == RW_READER) {
513 			while (scl->scl_writer ||
514 			    (!mmp_flag && scl->scl_write_wanted)) {
515 				cv_wait(&scl->scl_cv, &scl->scl_lock);
516 			}
517 		} else {
518 			ASSERT(scl->scl_writer != curthread);
519 			while (scl->scl_count != 0) {
520 				scl->scl_write_wanted++;
521 				cv_wait(&scl->scl_cv, &scl->scl_lock);
522 				scl->scl_write_wanted--;
523 			}
524 			scl->scl_writer = curthread;
525 		}
526 		scl->scl_count++;
527 		mutex_exit(&scl->scl_lock);
528 	}
529 	ASSERT3U(wlocks_held, <=, locks);
530 }
531 
532 void
533 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
534 {
535 	spa_config_enter_impl(spa, locks, tag, rw, 0);
536 }
537 
538 /*
539  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
540  * outstanding write lock requests. This is needed since the mmp updates are
541  * time sensitive and failure to service them promptly will result in a
542  * suspended pool. This pool suspension has been seen in practice when there is
543  * a single disk in a pool that is responding slowly and presumably about to
544  * fail.
545  */
546 
547 void
548 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
549 {
550 	spa_config_enter_impl(spa, locks, tag, rw, 1);
551 }
552 
553 void
554 spa_config_exit(spa_t *spa, int locks, const void *tag)
555 {
556 	(void) tag;
557 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
558 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
559 		if (!(locks & (1 << i)))
560 			continue;
561 		mutex_enter(&scl->scl_lock);
562 		ASSERT(scl->scl_count > 0);
563 		if (--scl->scl_count == 0) {
564 			ASSERT(scl->scl_writer == NULL ||
565 			    scl->scl_writer == curthread);
566 			scl->scl_writer = NULL;	/* OK in either case */
567 			cv_broadcast(&scl->scl_cv);
568 		}
569 		mutex_exit(&scl->scl_lock);
570 	}
571 }
572 
573 int
574 spa_config_held(spa_t *spa, int locks, krw_t rw)
575 {
576 	int locks_held = 0;
577 
578 	for (int i = 0; i < SCL_LOCKS; i++) {
579 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
580 		if (!(locks & (1 << i)))
581 			continue;
582 		if ((rw == RW_READER && scl->scl_count != 0) ||
583 		    (rw == RW_WRITER && scl->scl_writer == curthread))
584 			locks_held |= 1 << i;
585 	}
586 
587 	return (locks_held);
588 }
589 
590 /*
591  * ==========================================================================
592  * SPA namespace functions
593  * ==========================================================================
594  */
595 
596 /*
597  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
598  * Returns NULL if no matching spa_t is found.
599  */
600 spa_t *
601 spa_lookup(const char *name)
602 {
603 	static spa_t search;	/* spa_t is large; don't allocate on stack */
604 	spa_t *spa;
605 	avl_index_t where;
606 	char *cp;
607 
608 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
609 
610 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
611 
612 	/*
613 	 * If it's a full dataset name, figure out the pool name and
614 	 * just use that.
615 	 */
616 	cp = strpbrk(search.spa_name, "/@#");
617 	if (cp != NULL)
618 		*cp = '\0';
619 
620 	spa = avl_find(&spa_namespace_avl, &search, &where);
621 
622 	return (spa);
623 }
624 
625 /*
626  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
627  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
628  * looking for potentially hung I/Os.
629  */
630 void
631 spa_deadman(void *arg)
632 {
633 	spa_t *spa = arg;
634 
635 	/* Disable the deadman if the pool is suspended. */
636 	if (spa_suspended(spa))
637 		return;
638 
639 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
640 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
641 	    (u_longlong_t)++spa->spa_deadman_calls);
642 	if (zfs_deadman_enabled)
643 		vdev_deadman(spa->spa_root_vdev, FTAG);
644 
645 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
646 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
647 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
648 }
649 
650 static int
651 spa_log_sm_sort_by_txg(const void *va, const void *vb)
652 {
653 	const spa_log_sm_t *a = va;
654 	const spa_log_sm_t *b = vb;
655 
656 	return (TREE_CMP(a->sls_txg, b->sls_txg));
657 }
658 
659 /*
660  * Create an uninitialized spa_t with the given name.  Requires
661  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
662  * exist by calling spa_lookup() first.
663  */
664 spa_t *
665 spa_add(const char *name, nvlist_t *config, const char *altroot)
666 {
667 	spa_t *spa;
668 	spa_config_dirent_t *dp;
669 
670 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
671 
672 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
673 
674 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
675 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
676 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
677 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
678 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
679 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
680 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
681 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
682 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
683 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
684 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
685 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
686 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
688 
689 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
690 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
691 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
692 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
693 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
694 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
695 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
696 
697 	for (int t = 0; t < TXG_SIZE; t++)
698 		bplist_create(&spa->spa_free_bplist[t]);
699 
700 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
701 	spa->spa_state = POOL_STATE_UNINITIALIZED;
702 	spa->spa_freeze_txg = UINT64_MAX;
703 	spa->spa_final_txg = UINT64_MAX;
704 	spa->spa_load_max_txg = UINT64_MAX;
705 	spa->spa_proc = &p0;
706 	spa->spa_proc_state = SPA_PROC_NONE;
707 	spa->spa_trust_config = B_TRUE;
708 	spa->spa_hostid = zone_get_hostid(NULL);
709 
710 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
711 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
712 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
713 
714 	zfs_refcount_create(&spa->spa_refcount);
715 	spa_config_lock_init(spa);
716 	spa_stats_init(spa);
717 
718 	avl_add(&spa_namespace_avl, spa);
719 
720 	/*
721 	 * Set the alternate root, if there is one.
722 	 */
723 	if (altroot)
724 		spa->spa_root = spa_strdup(altroot);
725 
726 	spa->spa_alloc_count = spa_allocators;
727 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
728 	    sizeof (spa_alloc_t), KM_SLEEP);
729 	for (int i = 0; i < spa->spa_alloc_count; i++) {
730 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
731 		    NULL);
732 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
733 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
734 	}
735 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
736 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
737 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
738 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
739 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
740 	    offsetof(log_summary_entry_t, lse_node));
741 
742 	/*
743 	 * Every pool starts with the default cachefile
744 	 */
745 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
746 	    offsetof(spa_config_dirent_t, scd_link));
747 
748 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
749 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
750 	list_insert_head(&spa->spa_config_list, dp);
751 
752 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
753 	    KM_SLEEP) == 0);
754 
755 	if (config != NULL) {
756 		nvlist_t *features;
757 
758 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
759 		    &features) == 0) {
760 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
761 			    0) == 0);
762 		}
763 
764 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
765 	}
766 
767 	if (spa->spa_label_features == NULL) {
768 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
769 		    KM_SLEEP) == 0);
770 	}
771 
772 	spa->spa_min_ashift = INT_MAX;
773 	spa->spa_max_ashift = 0;
774 	spa->spa_min_alloc = INT_MAX;
775 
776 	/* Reset cached value */
777 	spa->spa_dedup_dspace = ~0ULL;
778 
779 	/*
780 	 * As a pool is being created, treat all features as disabled by
781 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
782 	 * refcount cache.
783 	 */
784 	for (int i = 0; i < SPA_FEATURES; i++) {
785 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
786 	}
787 
788 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
789 	    offsetof(vdev_t, vdev_leaf_node));
790 
791 	return (spa);
792 }
793 
794 /*
795  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
796  * spa_namespace_lock.  This is called only after the spa_t has been closed and
797  * deactivated.
798  */
799 void
800 spa_remove(spa_t *spa)
801 {
802 	spa_config_dirent_t *dp;
803 
804 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
805 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
806 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
807 	ASSERT0(spa->spa_waiters);
808 
809 	nvlist_free(spa->spa_config_splitting);
810 
811 	avl_remove(&spa_namespace_avl, spa);
812 	cv_broadcast(&spa_namespace_cv);
813 
814 	if (spa->spa_root)
815 		spa_strfree(spa->spa_root);
816 
817 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
818 		if (dp->scd_path != NULL)
819 			spa_strfree(dp->scd_path);
820 		kmem_free(dp, sizeof (spa_config_dirent_t));
821 	}
822 
823 	for (int i = 0; i < spa->spa_alloc_count; i++) {
824 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
825 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
826 	}
827 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
828 	    sizeof (spa_alloc_t));
829 
830 	avl_destroy(&spa->spa_metaslabs_by_flushed);
831 	avl_destroy(&spa->spa_sm_logs_by_txg);
832 	list_destroy(&spa->spa_log_summary);
833 	list_destroy(&spa->spa_config_list);
834 	list_destroy(&spa->spa_leaf_list);
835 
836 	nvlist_free(spa->spa_label_features);
837 	nvlist_free(spa->spa_load_info);
838 	nvlist_free(spa->spa_feat_stats);
839 	spa_config_set(spa, NULL);
840 
841 	zfs_refcount_destroy(&spa->spa_refcount);
842 
843 	spa_stats_destroy(spa);
844 	spa_config_lock_destroy(spa);
845 
846 	for (int t = 0; t < TXG_SIZE; t++)
847 		bplist_destroy(&spa->spa_free_bplist[t]);
848 
849 	zio_checksum_templates_free(spa);
850 
851 	cv_destroy(&spa->spa_async_cv);
852 	cv_destroy(&spa->spa_evicting_os_cv);
853 	cv_destroy(&spa->spa_proc_cv);
854 	cv_destroy(&spa->spa_scrub_io_cv);
855 	cv_destroy(&spa->spa_suspend_cv);
856 	cv_destroy(&spa->spa_activities_cv);
857 	cv_destroy(&spa->spa_waiters_cv);
858 
859 	mutex_destroy(&spa->spa_flushed_ms_lock);
860 	mutex_destroy(&spa->spa_async_lock);
861 	mutex_destroy(&spa->spa_errlist_lock);
862 	mutex_destroy(&spa->spa_errlog_lock);
863 	mutex_destroy(&spa->spa_evicting_os_lock);
864 	mutex_destroy(&spa->spa_history_lock);
865 	mutex_destroy(&spa->spa_proc_lock);
866 	mutex_destroy(&spa->spa_props_lock);
867 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
868 	mutex_destroy(&spa->spa_scrub_lock);
869 	mutex_destroy(&spa->spa_suspend_lock);
870 	mutex_destroy(&spa->spa_vdev_top_lock);
871 	mutex_destroy(&spa->spa_feat_stats_lock);
872 	mutex_destroy(&spa->spa_activities_lock);
873 
874 	kmem_free(spa, sizeof (spa_t));
875 }
876 
877 /*
878  * Given a pool, return the next pool in the namespace, or NULL if there is
879  * none.  If 'prev' is NULL, return the first pool.
880  */
881 spa_t *
882 spa_next(spa_t *prev)
883 {
884 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
885 
886 	if (prev)
887 		return (AVL_NEXT(&spa_namespace_avl, prev));
888 	else
889 		return (avl_first(&spa_namespace_avl));
890 }
891 
892 /*
893  * ==========================================================================
894  * SPA refcount functions
895  * ==========================================================================
896  */
897 
898 /*
899  * Add a reference to the given spa_t.  Must have at least one reference, or
900  * have the namespace lock held.
901  */
902 void
903 spa_open_ref(spa_t *spa, const void *tag)
904 {
905 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
906 	    MUTEX_HELD(&spa_namespace_lock));
907 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
908 }
909 
910 /*
911  * Remove a reference to the given spa_t.  Must have at least one reference, or
912  * have the namespace lock held.
913  */
914 void
915 spa_close(spa_t *spa, const void *tag)
916 {
917 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
918 	    MUTEX_HELD(&spa_namespace_lock));
919 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
920 }
921 
922 /*
923  * Remove a reference to the given spa_t held by a dsl dir that is
924  * being asynchronously released.  Async releases occur from a taskq
925  * performing eviction of dsl datasets and dirs.  The namespace lock
926  * isn't held and the hold by the object being evicted may contribute to
927  * spa_minref (e.g. dataset or directory released during pool export),
928  * so the asserts in spa_close() do not apply.
929  */
930 void
931 spa_async_close(spa_t *spa, const void *tag)
932 {
933 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
934 }
935 
936 /*
937  * Check to see if the spa refcount is zero.  Must be called with
938  * spa_namespace_lock held.  We really compare against spa_minref, which is the
939  * number of references acquired when opening a pool
940  */
941 boolean_t
942 spa_refcount_zero(spa_t *spa)
943 {
944 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
945 
946 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
947 }
948 
949 /*
950  * ==========================================================================
951  * SPA spare and l2cache tracking
952  * ==========================================================================
953  */
954 
955 /*
956  * Hot spares and cache devices are tracked using the same code below,
957  * for 'auxiliary' devices.
958  */
959 
960 typedef struct spa_aux {
961 	uint64_t	aux_guid;
962 	uint64_t	aux_pool;
963 	avl_node_t	aux_avl;
964 	int		aux_count;
965 } spa_aux_t;
966 
967 static inline int
968 spa_aux_compare(const void *a, const void *b)
969 {
970 	const spa_aux_t *sa = (const spa_aux_t *)a;
971 	const spa_aux_t *sb = (const spa_aux_t *)b;
972 
973 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
974 }
975 
976 static void
977 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
978 {
979 	avl_index_t where;
980 	spa_aux_t search;
981 	spa_aux_t *aux;
982 
983 	search.aux_guid = vd->vdev_guid;
984 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
985 		aux->aux_count++;
986 	} else {
987 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
988 		aux->aux_guid = vd->vdev_guid;
989 		aux->aux_count = 1;
990 		avl_insert(avl, aux, where);
991 	}
992 }
993 
994 static void
995 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
996 {
997 	spa_aux_t search;
998 	spa_aux_t *aux;
999 	avl_index_t where;
1000 
1001 	search.aux_guid = vd->vdev_guid;
1002 	aux = avl_find(avl, &search, &where);
1003 
1004 	ASSERT(aux != NULL);
1005 
1006 	if (--aux->aux_count == 0) {
1007 		avl_remove(avl, aux);
1008 		kmem_free(aux, sizeof (spa_aux_t));
1009 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1010 		aux->aux_pool = 0ULL;
1011 	}
1012 }
1013 
1014 static boolean_t
1015 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1016 {
1017 	spa_aux_t search, *found;
1018 
1019 	search.aux_guid = guid;
1020 	found = avl_find(avl, &search, NULL);
1021 
1022 	if (pool) {
1023 		if (found)
1024 			*pool = found->aux_pool;
1025 		else
1026 			*pool = 0ULL;
1027 	}
1028 
1029 	if (refcnt) {
1030 		if (found)
1031 			*refcnt = found->aux_count;
1032 		else
1033 			*refcnt = 0;
1034 	}
1035 
1036 	return (found != NULL);
1037 }
1038 
1039 static void
1040 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1041 {
1042 	spa_aux_t search, *found;
1043 	avl_index_t where;
1044 
1045 	search.aux_guid = vd->vdev_guid;
1046 	found = avl_find(avl, &search, &where);
1047 	ASSERT(found != NULL);
1048 	ASSERT(found->aux_pool == 0ULL);
1049 
1050 	found->aux_pool = spa_guid(vd->vdev_spa);
1051 }
1052 
1053 /*
1054  * Spares are tracked globally due to the following constraints:
1055  *
1056  *	- A spare may be part of multiple pools.
1057  *	- A spare may be added to a pool even if it's actively in use within
1058  *	  another pool.
1059  *	- A spare in use in any pool can only be the source of a replacement if
1060  *	  the target is a spare in the same pool.
1061  *
1062  * We keep track of all spares on the system through the use of a reference
1063  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1064  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1065  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1066  * inactive).  When a spare is made active (used to replace a device in the
1067  * pool), we also keep track of which pool its been made a part of.
1068  *
1069  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1070  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1071  * separate spare lock exists for the status query path, which does not need to
1072  * be completely consistent with respect to other vdev configuration changes.
1073  */
1074 
1075 static int
1076 spa_spare_compare(const void *a, const void *b)
1077 {
1078 	return (spa_aux_compare(a, b));
1079 }
1080 
1081 void
1082 spa_spare_add(vdev_t *vd)
1083 {
1084 	mutex_enter(&spa_spare_lock);
1085 	ASSERT(!vd->vdev_isspare);
1086 	spa_aux_add(vd, &spa_spare_avl);
1087 	vd->vdev_isspare = B_TRUE;
1088 	mutex_exit(&spa_spare_lock);
1089 }
1090 
1091 void
1092 spa_spare_remove(vdev_t *vd)
1093 {
1094 	mutex_enter(&spa_spare_lock);
1095 	ASSERT(vd->vdev_isspare);
1096 	spa_aux_remove(vd, &spa_spare_avl);
1097 	vd->vdev_isspare = B_FALSE;
1098 	mutex_exit(&spa_spare_lock);
1099 }
1100 
1101 boolean_t
1102 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1103 {
1104 	boolean_t found;
1105 
1106 	mutex_enter(&spa_spare_lock);
1107 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1108 	mutex_exit(&spa_spare_lock);
1109 
1110 	return (found);
1111 }
1112 
1113 void
1114 spa_spare_activate(vdev_t *vd)
1115 {
1116 	mutex_enter(&spa_spare_lock);
1117 	ASSERT(vd->vdev_isspare);
1118 	spa_aux_activate(vd, &spa_spare_avl);
1119 	mutex_exit(&spa_spare_lock);
1120 }
1121 
1122 /*
1123  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1124  * Cache devices currently only support one pool per cache device, and so
1125  * for these devices the aux reference count is currently unused beyond 1.
1126  */
1127 
1128 static int
1129 spa_l2cache_compare(const void *a, const void *b)
1130 {
1131 	return (spa_aux_compare(a, b));
1132 }
1133 
1134 void
1135 spa_l2cache_add(vdev_t *vd)
1136 {
1137 	mutex_enter(&spa_l2cache_lock);
1138 	ASSERT(!vd->vdev_isl2cache);
1139 	spa_aux_add(vd, &spa_l2cache_avl);
1140 	vd->vdev_isl2cache = B_TRUE;
1141 	mutex_exit(&spa_l2cache_lock);
1142 }
1143 
1144 void
1145 spa_l2cache_remove(vdev_t *vd)
1146 {
1147 	mutex_enter(&spa_l2cache_lock);
1148 	ASSERT(vd->vdev_isl2cache);
1149 	spa_aux_remove(vd, &spa_l2cache_avl);
1150 	vd->vdev_isl2cache = B_FALSE;
1151 	mutex_exit(&spa_l2cache_lock);
1152 }
1153 
1154 boolean_t
1155 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1156 {
1157 	boolean_t found;
1158 
1159 	mutex_enter(&spa_l2cache_lock);
1160 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1161 	mutex_exit(&spa_l2cache_lock);
1162 
1163 	return (found);
1164 }
1165 
1166 void
1167 spa_l2cache_activate(vdev_t *vd)
1168 {
1169 	mutex_enter(&spa_l2cache_lock);
1170 	ASSERT(vd->vdev_isl2cache);
1171 	spa_aux_activate(vd, &spa_l2cache_avl);
1172 	mutex_exit(&spa_l2cache_lock);
1173 }
1174 
1175 /*
1176  * ==========================================================================
1177  * SPA vdev locking
1178  * ==========================================================================
1179  */
1180 
1181 /*
1182  * Lock the given spa_t for the purpose of adding or removing a vdev.
1183  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1184  * It returns the next transaction group for the spa_t.
1185  */
1186 uint64_t
1187 spa_vdev_enter(spa_t *spa)
1188 {
1189 	mutex_enter(&spa->spa_vdev_top_lock);
1190 	mutex_enter(&spa_namespace_lock);
1191 
1192 	vdev_autotrim_stop_all(spa);
1193 
1194 	return (spa_vdev_config_enter(spa));
1195 }
1196 
1197 /*
1198  * The same as spa_vdev_enter() above but additionally takes the guid of
1199  * the vdev being detached.  When there is a rebuild in process it will be
1200  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1201  * The rebuild is canceled if only a single child remains after the detach.
1202  */
1203 uint64_t
1204 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1205 {
1206 	mutex_enter(&spa->spa_vdev_top_lock);
1207 	mutex_enter(&spa_namespace_lock);
1208 
1209 	vdev_autotrim_stop_all(spa);
1210 
1211 	if (guid != 0) {
1212 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1213 		if (vd) {
1214 			vdev_rebuild_stop_wait(vd->vdev_top);
1215 		}
1216 	}
1217 
1218 	return (spa_vdev_config_enter(spa));
1219 }
1220 
1221 /*
1222  * Internal implementation for spa_vdev_enter().  Used when a vdev
1223  * operation requires multiple syncs (i.e. removing a device) while
1224  * keeping the spa_namespace_lock held.
1225  */
1226 uint64_t
1227 spa_vdev_config_enter(spa_t *spa)
1228 {
1229 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1230 
1231 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1232 
1233 	return (spa_last_synced_txg(spa) + 1);
1234 }
1235 
1236 /*
1237  * Used in combination with spa_vdev_config_enter() to allow the syncing
1238  * of multiple transactions without releasing the spa_namespace_lock.
1239  */
1240 void
1241 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1242     const char *tag)
1243 {
1244 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1245 
1246 	int config_changed = B_FALSE;
1247 
1248 	ASSERT(txg > spa_last_synced_txg(spa));
1249 
1250 	spa->spa_pending_vdev = NULL;
1251 
1252 	/*
1253 	 * Reassess the DTLs.
1254 	 */
1255 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1256 
1257 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1258 		config_changed = B_TRUE;
1259 		spa->spa_config_generation++;
1260 	}
1261 
1262 	/*
1263 	 * Verify the metaslab classes.
1264 	 */
1265 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1266 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1267 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1268 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1269 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1270 
1271 	spa_config_exit(spa, SCL_ALL, spa);
1272 
1273 	/*
1274 	 * Panic the system if the specified tag requires it.  This
1275 	 * is useful for ensuring that configurations are updated
1276 	 * transactionally.
1277 	 */
1278 	if (zio_injection_enabled)
1279 		zio_handle_panic_injection(spa, tag, 0);
1280 
1281 	/*
1282 	 * Note: this txg_wait_synced() is important because it ensures
1283 	 * that there won't be more than one config change per txg.
1284 	 * This allows us to use the txg as the generation number.
1285 	 */
1286 	if (error == 0)
1287 		txg_wait_synced(spa->spa_dsl_pool, txg);
1288 
1289 	if (vd != NULL) {
1290 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1291 		if (vd->vdev_ops->vdev_op_leaf) {
1292 			mutex_enter(&vd->vdev_initialize_lock);
1293 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1294 			    NULL);
1295 			mutex_exit(&vd->vdev_initialize_lock);
1296 
1297 			mutex_enter(&vd->vdev_trim_lock);
1298 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1299 			mutex_exit(&vd->vdev_trim_lock);
1300 		}
1301 
1302 		/*
1303 		 * The vdev may be both a leaf and top-level device.
1304 		 */
1305 		vdev_autotrim_stop_wait(vd);
1306 
1307 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1308 		vdev_free(vd);
1309 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1310 	}
1311 
1312 	/*
1313 	 * If the config changed, update the config cache.
1314 	 */
1315 	if (config_changed)
1316 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1317 }
1318 
1319 /*
1320  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1321  * locking of spa_vdev_enter(), we also want make sure the transactions have
1322  * synced to disk, and then update the global configuration cache with the new
1323  * information.
1324  */
1325 int
1326 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1327 {
1328 	vdev_autotrim_restart(spa);
1329 	vdev_rebuild_restart(spa);
1330 
1331 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1332 	mutex_exit(&spa_namespace_lock);
1333 	mutex_exit(&spa->spa_vdev_top_lock);
1334 
1335 	return (error);
1336 }
1337 
1338 /*
1339  * Lock the given spa_t for the purpose of changing vdev state.
1340  */
1341 void
1342 spa_vdev_state_enter(spa_t *spa, int oplocks)
1343 {
1344 	int locks = SCL_STATE_ALL | oplocks;
1345 
1346 	/*
1347 	 * Root pools may need to read of the underlying devfs filesystem
1348 	 * when opening up a vdev.  Unfortunately if we're holding the
1349 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1350 	 * the read from the root filesystem.  Instead we "prefetch"
1351 	 * the associated vnodes that we need prior to opening the
1352 	 * underlying devices and cache them so that we can prevent
1353 	 * any I/O when we are doing the actual open.
1354 	 */
1355 	if (spa_is_root(spa)) {
1356 		int low = locks & ~(SCL_ZIO - 1);
1357 		int high = locks & ~low;
1358 
1359 		spa_config_enter(spa, high, spa, RW_WRITER);
1360 		vdev_hold(spa->spa_root_vdev);
1361 		spa_config_enter(spa, low, spa, RW_WRITER);
1362 	} else {
1363 		spa_config_enter(spa, locks, spa, RW_WRITER);
1364 	}
1365 	spa->spa_vdev_locks = locks;
1366 }
1367 
1368 int
1369 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1370 {
1371 	boolean_t config_changed = B_FALSE;
1372 	vdev_t *vdev_top;
1373 
1374 	if (vd == NULL || vd == spa->spa_root_vdev) {
1375 		vdev_top = spa->spa_root_vdev;
1376 	} else {
1377 		vdev_top = vd->vdev_top;
1378 	}
1379 
1380 	if (vd != NULL || error == 0)
1381 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1382 
1383 	if (vd != NULL) {
1384 		if (vd != spa->spa_root_vdev)
1385 			vdev_state_dirty(vdev_top);
1386 
1387 		config_changed = B_TRUE;
1388 		spa->spa_config_generation++;
1389 	}
1390 
1391 	if (spa_is_root(spa))
1392 		vdev_rele(spa->spa_root_vdev);
1393 
1394 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1395 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1396 
1397 	/*
1398 	 * If anything changed, wait for it to sync.  This ensures that,
1399 	 * from the system administrator's perspective, zpool(8) commands
1400 	 * are synchronous.  This is important for things like zpool offline:
1401 	 * when the command completes, you expect no further I/O from ZFS.
1402 	 */
1403 	if (vd != NULL)
1404 		txg_wait_synced(spa->spa_dsl_pool, 0);
1405 
1406 	/*
1407 	 * If the config changed, update the config cache.
1408 	 */
1409 	if (config_changed) {
1410 		mutex_enter(&spa_namespace_lock);
1411 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1412 		mutex_exit(&spa_namespace_lock);
1413 	}
1414 
1415 	return (error);
1416 }
1417 
1418 /*
1419  * ==========================================================================
1420  * Miscellaneous functions
1421  * ==========================================================================
1422  */
1423 
1424 void
1425 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1426 {
1427 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1428 		fnvlist_add_boolean(spa->spa_label_features, feature);
1429 		/*
1430 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1431 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1432 		 * Thankfully, in this case we don't need to dirty the config
1433 		 * because it will be written out anyway when we finish
1434 		 * creating the pool.
1435 		 */
1436 		if (tx->tx_txg != TXG_INITIAL)
1437 			vdev_config_dirty(spa->spa_root_vdev);
1438 	}
1439 }
1440 
1441 void
1442 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1443 {
1444 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1445 		vdev_config_dirty(spa->spa_root_vdev);
1446 }
1447 
1448 /*
1449  * Return the spa_t associated with given pool_guid, if it exists.  If
1450  * device_guid is non-zero, determine whether the pool exists *and* contains
1451  * a device with the specified device_guid.
1452  */
1453 spa_t *
1454 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1455 {
1456 	spa_t *spa;
1457 	avl_tree_t *t = &spa_namespace_avl;
1458 
1459 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1460 
1461 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1462 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1463 			continue;
1464 		if (spa->spa_root_vdev == NULL)
1465 			continue;
1466 		if (spa_guid(spa) == pool_guid) {
1467 			if (device_guid == 0)
1468 				break;
1469 
1470 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1471 			    device_guid) != NULL)
1472 				break;
1473 
1474 			/*
1475 			 * Check any devices we may be in the process of adding.
1476 			 */
1477 			if (spa->spa_pending_vdev) {
1478 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1479 				    device_guid) != NULL)
1480 					break;
1481 			}
1482 		}
1483 	}
1484 
1485 	return (spa);
1486 }
1487 
1488 /*
1489  * Determine whether a pool with the given pool_guid exists.
1490  */
1491 boolean_t
1492 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1493 {
1494 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1495 }
1496 
1497 char *
1498 spa_strdup(const char *s)
1499 {
1500 	size_t len;
1501 	char *new;
1502 
1503 	len = strlen(s);
1504 	new = kmem_alloc(len + 1, KM_SLEEP);
1505 	memcpy(new, s, len + 1);
1506 
1507 	return (new);
1508 }
1509 
1510 void
1511 spa_strfree(char *s)
1512 {
1513 	kmem_free(s, strlen(s) + 1);
1514 }
1515 
1516 uint64_t
1517 spa_generate_guid(spa_t *spa)
1518 {
1519 	uint64_t guid;
1520 
1521 	if (spa != NULL) {
1522 		do {
1523 			(void) random_get_pseudo_bytes((void *)&guid,
1524 			    sizeof (guid));
1525 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1526 	} else {
1527 		do {
1528 			(void) random_get_pseudo_bytes((void *)&guid,
1529 			    sizeof (guid));
1530 		} while (guid == 0 || spa_guid_exists(guid, 0));
1531 	}
1532 
1533 	return (guid);
1534 }
1535 
1536 void
1537 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1538 {
1539 	char type[256];
1540 	const char *checksum = NULL;
1541 	const char *compress = NULL;
1542 
1543 	if (bp != NULL) {
1544 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1545 			dmu_object_byteswap_t bswap =
1546 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1547 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1548 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1549 			    "metadata" : "data",
1550 			    dmu_ot_byteswap[bswap].ob_name);
1551 		} else {
1552 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1553 			    sizeof (type));
1554 		}
1555 		if (!BP_IS_EMBEDDED(bp)) {
1556 			checksum =
1557 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1558 		}
1559 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1560 	}
1561 
1562 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1563 	    compress);
1564 }
1565 
1566 void
1567 spa_freeze(spa_t *spa)
1568 {
1569 	uint64_t freeze_txg = 0;
1570 
1571 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1572 	if (spa->spa_freeze_txg == UINT64_MAX) {
1573 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1574 		spa->spa_freeze_txg = freeze_txg;
1575 	}
1576 	spa_config_exit(spa, SCL_ALL, FTAG);
1577 	if (freeze_txg != 0)
1578 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1579 }
1580 
1581 void
1582 zfs_panic_recover(const char *fmt, ...)
1583 {
1584 	va_list adx;
1585 
1586 	va_start(adx, fmt);
1587 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1588 	va_end(adx);
1589 }
1590 
1591 /*
1592  * This is a stripped-down version of strtoull, suitable only for converting
1593  * lowercase hexadecimal numbers that don't overflow.
1594  */
1595 uint64_t
1596 zfs_strtonum(const char *str, char **nptr)
1597 {
1598 	uint64_t val = 0;
1599 	char c;
1600 	int digit;
1601 
1602 	while ((c = *str) != '\0') {
1603 		if (c >= '0' && c <= '9')
1604 			digit = c - '0';
1605 		else if (c >= 'a' && c <= 'f')
1606 			digit = 10 + c - 'a';
1607 		else
1608 			break;
1609 
1610 		val *= 16;
1611 		val += digit;
1612 
1613 		str++;
1614 	}
1615 
1616 	if (nptr)
1617 		*nptr = (char *)str;
1618 
1619 	return (val);
1620 }
1621 
1622 void
1623 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1624 {
1625 	/*
1626 	 * We bump the feature refcount for each special vdev added to the pool
1627 	 */
1628 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1629 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1630 }
1631 
1632 /*
1633  * ==========================================================================
1634  * Accessor functions
1635  * ==========================================================================
1636  */
1637 
1638 boolean_t
1639 spa_shutting_down(spa_t *spa)
1640 {
1641 	return (spa->spa_async_suspended);
1642 }
1643 
1644 dsl_pool_t *
1645 spa_get_dsl(spa_t *spa)
1646 {
1647 	return (spa->spa_dsl_pool);
1648 }
1649 
1650 boolean_t
1651 spa_is_initializing(spa_t *spa)
1652 {
1653 	return (spa->spa_is_initializing);
1654 }
1655 
1656 boolean_t
1657 spa_indirect_vdevs_loaded(spa_t *spa)
1658 {
1659 	return (spa->spa_indirect_vdevs_loaded);
1660 }
1661 
1662 blkptr_t *
1663 spa_get_rootblkptr(spa_t *spa)
1664 {
1665 	return (&spa->spa_ubsync.ub_rootbp);
1666 }
1667 
1668 void
1669 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1670 {
1671 	spa->spa_uberblock.ub_rootbp = *bp;
1672 }
1673 
1674 void
1675 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1676 {
1677 	if (spa->spa_root == NULL)
1678 		buf[0] = '\0';
1679 	else
1680 		(void) strlcpy(buf, spa->spa_root, buflen);
1681 }
1682 
1683 uint32_t
1684 spa_sync_pass(spa_t *spa)
1685 {
1686 	return (spa->spa_sync_pass);
1687 }
1688 
1689 char *
1690 spa_name(spa_t *spa)
1691 {
1692 	return (spa->spa_name);
1693 }
1694 
1695 uint64_t
1696 spa_guid(spa_t *spa)
1697 {
1698 	dsl_pool_t *dp = spa_get_dsl(spa);
1699 	uint64_t guid;
1700 
1701 	/*
1702 	 * If we fail to parse the config during spa_load(), we can go through
1703 	 * the error path (which posts an ereport) and end up here with no root
1704 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1705 	 * this case.
1706 	 */
1707 	if (spa->spa_root_vdev == NULL)
1708 		return (spa->spa_config_guid);
1709 
1710 	guid = spa->spa_last_synced_guid != 0 ?
1711 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1712 
1713 	/*
1714 	 * Return the most recently synced out guid unless we're
1715 	 * in syncing context.
1716 	 */
1717 	if (dp && dsl_pool_sync_context(dp))
1718 		return (spa->spa_root_vdev->vdev_guid);
1719 	else
1720 		return (guid);
1721 }
1722 
1723 uint64_t
1724 spa_load_guid(spa_t *spa)
1725 {
1726 	/*
1727 	 * This is a GUID that exists solely as a reference for the
1728 	 * purposes of the arc.  It is generated at load time, and
1729 	 * is never written to persistent storage.
1730 	 */
1731 	return (spa->spa_load_guid);
1732 }
1733 
1734 uint64_t
1735 spa_last_synced_txg(spa_t *spa)
1736 {
1737 	return (spa->spa_ubsync.ub_txg);
1738 }
1739 
1740 uint64_t
1741 spa_first_txg(spa_t *spa)
1742 {
1743 	return (spa->spa_first_txg);
1744 }
1745 
1746 uint64_t
1747 spa_syncing_txg(spa_t *spa)
1748 {
1749 	return (spa->spa_syncing_txg);
1750 }
1751 
1752 /*
1753  * Return the last txg where data can be dirtied. The final txgs
1754  * will be used to just clear out any deferred frees that remain.
1755  */
1756 uint64_t
1757 spa_final_dirty_txg(spa_t *spa)
1758 {
1759 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1760 }
1761 
1762 pool_state_t
1763 spa_state(spa_t *spa)
1764 {
1765 	return (spa->spa_state);
1766 }
1767 
1768 spa_load_state_t
1769 spa_load_state(spa_t *spa)
1770 {
1771 	return (spa->spa_load_state);
1772 }
1773 
1774 uint64_t
1775 spa_freeze_txg(spa_t *spa)
1776 {
1777 	return (spa->spa_freeze_txg);
1778 }
1779 
1780 /*
1781  * Return the inflated asize for a logical write in bytes. This is used by the
1782  * DMU to calculate the space a logical write will require on disk.
1783  * If lsize is smaller than the largest physical block size allocatable on this
1784  * pool we use its value instead, since the write will end up using the whole
1785  * block anyway.
1786  */
1787 uint64_t
1788 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1789 {
1790 	if (lsize == 0)
1791 		return (0);	/* No inflation needed */
1792 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1793 }
1794 
1795 /*
1796  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1797  * (3.2%), minus the embedded log space.  On very small pools, it may be
1798  * slightly larger than this.  On very large pools, it will be capped to
1799  * the value of spa_max_slop.  The embedded log space is not included in
1800  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1801  * constant 97% of the total space, regardless of metaslab size (assuming the
1802  * default spa_slop_shift=5 and a non-tiny pool).
1803  *
1804  * See the comment above spa_slop_shift for more details.
1805  */
1806 uint64_t
1807 spa_get_slop_space(spa_t *spa)
1808 {
1809 	uint64_t space = 0;
1810 	uint64_t slop = 0;
1811 
1812 	/*
1813 	 * Make sure spa_dedup_dspace has been set.
1814 	 */
1815 	if (spa->spa_dedup_dspace == ~0ULL)
1816 		spa_update_dspace(spa);
1817 
1818 	/*
1819 	 * spa_get_dspace() includes the space only logically "used" by
1820 	 * deduplicated data, so since it's not useful to reserve more
1821 	 * space with more deduplicated data, we subtract that out here.
1822 	 */
1823 	space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1824 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1825 
1826 	/*
1827 	 * Subtract the embedded log space, but no more than half the (3.2%)
1828 	 * unusable space.  Note, the "no more than half" is only relevant if
1829 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1830 	 * default.
1831 	 */
1832 	uint64_t embedded_log =
1833 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1834 	slop -= MIN(embedded_log, slop >> 1);
1835 
1836 	/*
1837 	 * Slop space should be at least spa_min_slop, but no more than half
1838 	 * the entire pool.
1839 	 */
1840 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1841 	return (slop);
1842 }
1843 
1844 uint64_t
1845 spa_get_dspace(spa_t *spa)
1846 {
1847 	return (spa->spa_dspace);
1848 }
1849 
1850 uint64_t
1851 spa_get_checkpoint_space(spa_t *spa)
1852 {
1853 	return (spa->spa_checkpoint_info.sci_dspace);
1854 }
1855 
1856 void
1857 spa_update_dspace(spa_t *spa)
1858 {
1859 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1860 	    ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1861 	if (spa->spa_nonallocating_dspace > 0) {
1862 		/*
1863 		 * Subtract the space provided by all non-allocating vdevs that
1864 		 * contribute to dspace.  If a file is overwritten, its old
1865 		 * blocks are freed and new blocks are allocated.  If there are
1866 		 * no snapshots of the file, the available space should remain
1867 		 * the same.  The old blocks could be freed from the
1868 		 * non-allocating vdev, but the new blocks must be allocated on
1869 		 * other (allocating) vdevs.  By reserving the entire size of
1870 		 * the non-allocating vdevs (including allocated space), we
1871 		 * ensure that there will be enough space on the allocating
1872 		 * vdevs for this file overwrite to succeed.
1873 		 *
1874 		 * Note that the DMU/DSL doesn't actually know or care
1875 		 * how much space is allocated (it does its own tracking
1876 		 * of how much space has been logically used).  So it
1877 		 * doesn't matter that the data we are moving may be
1878 		 * allocated twice (on the old device and the new device).
1879 		 */
1880 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1881 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1882 	}
1883 }
1884 
1885 /*
1886  * Return the failure mode that has been set to this pool. The default
1887  * behavior will be to block all I/Os when a complete failure occurs.
1888  */
1889 uint64_t
1890 spa_get_failmode(spa_t *spa)
1891 {
1892 	return (spa->spa_failmode);
1893 }
1894 
1895 boolean_t
1896 spa_suspended(spa_t *spa)
1897 {
1898 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1899 }
1900 
1901 uint64_t
1902 spa_version(spa_t *spa)
1903 {
1904 	return (spa->spa_ubsync.ub_version);
1905 }
1906 
1907 boolean_t
1908 spa_deflate(spa_t *spa)
1909 {
1910 	return (spa->spa_deflate);
1911 }
1912 
1913 metaslab_class_t *
1914 spa_normal_class(spa_t *spa)
1915 {
1916 	return (spa->spa_normal_class);
1917 }
1918 
1919 metaslab_class_t *
1920 spa_log_class(spa_t *spa)
1921 {
1922 	return (spa->spa_log_class);
1923 }
1924 
1925 metaslab_class_t *
1926 spa_embedded_log_class(spa_t *spa)
1927 {
1928 	return (spa->spa_embedded_log_class);
1929 }
1930 
1931 metaslab_class_t *
1932 spa_special_class(spa_t *spa)
1933 {
1934 	return (spa->spa_special_class);
1935 }
1936 
1937 metaslab_class_t *
1938 spa_dedup_class(spa_t *spa)
1939 {
1940 	return (spa->spa_dedup_class);
1941 }
1942 
1943 /*
1944  * Locate an appropriate allocation class
1945  */
1946 metaslab_class_t *
1947 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1948     uint_t level, uint_t special_smallblk)
1949 {
1950 	/*
1951 	 * ZIL allocations determine their class in zio_alloc_zil().
1952 	 */
1953 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1954 
1955 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1956 
1957 	if (DMU_OT_IS_DDT(objtype)) {
1958 		if (spa->spa_dedup_class->mc_groups != 0)
1959 			return (spa_dedup_class(spa));
1960 		else if (has_special_class && zfs_ddt_data_is_special)
1961 			return (spa_special_class(spa));
1962 		else
1963 			return (spa_normal_class(spa));
1964 	}
1965 
1966 	/* Indirect blocks for user data can land in special if allowed */
1967 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1968 		if (has_special_class && zfs_user_indirect_is_special)
1969 			return (spa_special_class(spa));
1970 		else
1971 			return (spa_normal_class(spa));
1972 	}
1973 
1974 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1975 		if (has_special_class)
1976 			return (spa_special_class(spa));
1977 		else
1978 			return (spa_normal_class(spa));
1979 	}
1980 
1981 	/*
1982 	 * Allow small file blocks in special class in some cases (like
1983 	 * for the dRAID vdev feature). But always leave a reserve of
1984 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1985 	 */
1986 	if (DMU_OT_IS_FILE(objtype) &&
1987 	    has_special_class && size <= special_smallblk) {
1988 		metaslab_class_t *special = spa_special_class(spa);
1989 		uint64_t alloc = metaslab_class_get_alloc(special);
1990 		uint64_t space = metaslab_class_get_space(special);
1991 		uint64_t limit =
1992 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1993 		    / 100;
1994 
1995 		if (alloc < limit)
1996 			return (special);
1997 	}
1998 
1999 	return (spa_normal_class(spa));
2000 }
2001 
2002 void
2003 spa_evicting_os_register(spa_t *spa, objset_t *os)
2004 {
2005 	mutex_enter(&spa->spa_evicting_os_lock);
2006 	list_insert_head(&spa->spa_evicting_os_list, os);
2007 	mutex_exit(&spa->spa_evicting_os_lock);
2008 }
2009 
2010 void
2011 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2012 {
2013 	mutex_enter(&spa->spa_evicting_os_lock);
2014 	list_remove(&spa->spa_evicting_os_list, os);
2015 	cv_broadcast(&spa->spa_evicting_os_cv);
2016 	mutex_exit(&spa->spa_evicting_os_lock);
2017 }
2018 
2019 void
2020 spa_evicting_os_wait(spa_t *spa)
2021 {
2022 	mutex_enter(&spa->spa_evicting_os_lock);
2023 	while (!list_is_empty(&spa->spa_evicting_os_list))
2024 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2025 	mutex_exit(&spa->spa_evicting_os_lock);
2026 
2027 	dmu_buf_user_evict_wait();
2028 }
2029 
2030 int
2031 spa_max_replication(spa_t *spa)
2032 {
2033 	/*
2034 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2035 	 * handle BPs with more than one DVA allocated.  Set our max
2036 	 * replication level accordingly.
2037 	 */
2038 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2039 		return (1);
2040 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2041 }
2042 
2043 int
2044 spa_prev_software_version(spa_t *spa)
2045 {
2046 	return (spa->spa_prev_software_version);
2047 }
2048 
2049 uint64_t
2050 spa_deadman_synctime(spa_t *spa)
2051 {
2052 	return (spa->spa_deadman_synctime);
2053 }
2054 
2055 spa_autotrim_t
2056 spa_get_autotrim(spa_t *spa)
2057 {
2058 	return (spa->spa_autotrim);
2059 }
2060 
2061 uint64_t
2062 spa_deadman_ziotime(spa_t *spa)
2063 {
2064 	return (spa->spa_deadman_ziotime);
2065 }
2066 
2067 uint64_t
2068 spa_get_deadman_failmode(spa_t *spa)
2069 {
2070 	return (spa->spa_deadman_failmode);
2071 }
2072 
2073 void
2074 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2075 {
2076 	if (strcmp(failmode, "wait") == 0)
2077 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2078 	else if (strcmp(failmode, "continue") == 0)
2079 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2080 	else if (strcmp(failmode, "panic") == 0)
2081 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2082 	else
2083 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2084 }
2085 
2086 void
2087 spa_set_deadman_ziotime(hrtime_t ns)
2088 {
2089 	spa_t *spa = NULL;
2090 
2091 	if (spa_mode_global != SPA_MODE_UNINIT) {
2092 		mutex_enter(&spa_namespace_lock);
2093 		while ((spa = spa_next(spa)) != NULL)
2094 			spa->spa_deadman_ziotime = ns;
2095 		mutex_exit(&spa_namespace_lock);
2096 	}
2097 }
2098 
2099 void
2100 spa_set_deadman_synctime(hrtime_t ns)
2101 {
2102 	spa_t *spa = NULL;
2103 
2104 	if (spa_mode_global != SPA_MODE_UNINIT) {
2105 		mutex_enter(&spa_namespace_lock);
2106 		while ((spa = spa_next(spa)) != NULL)
2107 			spa->spa_deadman_synctime = ns;
2108 		mutex_exit(&spa_namespace_lock);
2109 	}
2110 }
2111 
2112 uint64_t
2113 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2114 {
2115 	uint64_t asize = DVA_GET_ASIZE(dva);
2116 	uint64_t dsize = asize;
2117 
2118 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2119 
2120 	if (asize != 0 && spa->spa_deflate) {
2121 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2122 		if (vd != NULL)
2123 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2124 			    vd->vdev_deflate_ratio;
2125 	}
2126 
2127 	return (dsize);
2128 }
2129 
2130 uint64_t
2131 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2132 {
2133 	uint64_t dsize = 0;
2134 
2135 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2136 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2137 
2138 	return (dsize);
2139 }
2140 
2141 uint64_t
2142 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2143 {
2144 	uint64_t dsize = 0;
2145 
2146 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2147 
2148 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2149 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2150 
2151 	spa_config_exit(spa, SCL_VDEV, FTAG);
2152 
2153 	return (dsize);
2154 }
2155 
2156 uint64_t
2157 spa_dirty_data(spa_t *spa)
2158 {
2159 	return (spa->spa_dsl_pool->dp_dirty_total);
2160 }
2161 
2162 /*
2163  * ==========================================================================
2164  * SPA Import Progress Routines
2165  * ==========================================================================
2166  */
2167 
2168 typedef struct spa_import_progress {
2169 	uint64_t		pool_guid;	/* unique id for updates */
2170 	char			*pool_name;
2171 	spa_load_state_t	spa_load_state;
2172 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2173 	uint64_t		spa_load_max_txg;	/* rewind txg */
2174 	procfs_list_node_t	smh_node;
2175 } spa_import_progress_t;
2176 
2177 spa_history_list_t *spa_import_progress_list = NULL;
2178 
2179 static int
2180 spa_import_progress_show_header(struct seq_file *f)
2181 {
2182 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2183 	    "load_state", "multihost_secs", "max_txg",
2184 	    "pool_name");
2185 	return (0);
2186 }
2187 
2188 static int
2189 spa_import_progress_show(struct seq_file *f, void *data)
2190 {
2191 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2192 
2193 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2194 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2195 	    (u_longlong_t)sip->mmp_sec_remaining,
2196 	    (u_longlong_t)sip->spa_load_max_txg,
2197 	    (sip->pool_name ? sip->pool_name : "-"));
2198 
2199 	return (0);
2200 }
2201 
2202 /* Remove oldest elements from list until there are no more than 'size' left */
2203 static void
2204 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2205 {
2206 	spa_import_progress_t *sip;
2207 	while (shl->size > size) {
2208 		sip = list_remove_head(&shl->procfs_list.pl_list);
2209 		if (sip->pool_name)
2210 			spa_strfree(sip->pool_name);
2211 		kmem_free(sip, sizeof (spa_import_progress_t));
2212 		shl->size--;
2213 	}
2214 
2215 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2216 }
2217 
2218 static void
2219 spa_import_progress_init(void)
2220 {
2221 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2222 	    KM_SLEEP);
2223 
2224 	spa_import_progress_list->size = 0;
2225 
2226 	spa_import_progress_list->procfs_list.pl_private =
2227 	    spa_import_progress_list;
2228 
2229 	procfs_list_install("zfs",
2230 	    NULL,
2231 	    "import_progress",
2232 	    0644,
2233 	    &spa_import_progress_list->procfs_list,
2234 	    spa_import_progress_show,
2235 	    spa_import_progress_show_header,
2236 	    NULL,
2237 	    offsetof(spa_import_progress_t, smh_node));
2238 }
2239 
2240 static void
2241 spa_import_progress_destroy(void)
2242 {
2243 	spa_history_list_t *shl = spa_import_progress_list;
2244 	procfs_list_uninstall(&shl->procfs_list);
2245 	spa_import_progress_truncate(shl, 0);
2246 	procfs_list_destroy(&shl->procfs_list);
2247 	kmem_free(shl, sizeof (spa_history_list_t));
2248 }
2249 
2250 int
2251 spa_import_progress_set_state(uint64_t pool_guid,
2252     spa_load_state_t load_state)
2253 {
2254 	spa_history_list_t *shl = spa_import_progress_list;
2255 	spa_import_progress_t *sip;
2256 	int error = ENOENT;
2257 
2258 	if (shl->size == 0)
2259 		return (0);
2260 
2261 	mutex_enter(&shl->procfs_list.pl_lock);
2262 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2263 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2264 		if (sip->pool_guid == pool_guid) {
2265 			sip->spa_load_state = load_state;
2266 			error = 0;
2267 			break;
2268 		}
2269 	}
2270 	mutex_exit(&shl->procfs_list.pl_lock);
2271 
2272 	return (error);
2273 }
2274 
2275 int
2276 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2277 {
2278 	spa_history_list_t *shl = spa_import_progress_list;
2279 	spa_import_progress_t *sip;
2280 	int error = ENOENT;
2281 
2282 	if (shl->size == 0)
2283 		return (0);
2284 
2285 	mutex_enter(&shl->procfs_list.pl_lock);
2286 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2287 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2288 		if (sip->pool_guid == pool_guid) {
2289 			sip->spa_load_max_txg = load_max_txg;
2290 			error = 0;
2291 			break;
2292 		}
2293 	}
2294 	mutex_exit(&shl->procfs_list.pl_lock);
2295 
2296 	return (error);
2297 }
2298 
2299 int
2300 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2301     uint64_t mmp_sec_remaining)
2302 {
2303 	spa_history_list_t *shl = spa_import_progress_list;
2304 	spa_import_progress_t *sip;
2305 	int error = ENOENT;
2306 
2307 	if (shl->size == 0)
2308 		return (0);
2309 
2310 	mutex_enter(&shl->procfs_list.pl_lock);
2311 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2312 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2313 		if (sip->pool_guid == pool_guid) {
2314 			sip->mmp_sec_remaining = mmp_sec_remaining;
2315 			error = 0;
2316 			break;
2317 		}
2318 	}
2319 	mutex_exit(&shl->procfs_list.pl_lock);
2320 
2321 	return (error);
2322 }
2323 
2324 /*
2325  * A new import is in progress, add an entry.
2326  */
2327 void
2328 spa_import_progress_add(spa_t *spa)
2329 {
2330 	spa_history_list_t *shl = spa_import_progress_list;
2331 	spa_import_progress_t *sip;
2332 	const char *poolname = NULL;
2333 
2334 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2335 	sip->pool_guid = spa_guid(spa);
2336 
2337 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2338 	    &poolname);
2339 	if (poolname == NULL)
2340 		poolname = spa_name(spa);
2341 	sip->pool_name = spa_strdup(poolname);
2342 	sip->spa_load_state = spa_load_state(spa);
2343 
2344 	mutex_enter(&shl->procfs_list.pl_lock);
2345 	procfs_list_add(&shl->procfs_list, sip);
2346 	shl->size++;
2347 	mutex_exit(&shl->procfs_list.pl_lock);
2348 }
2349 
2350 void
2351 spa_import_progress_remove(uint64_t pool_guid)
2352 {
2353 	spa_history_list_t *shl = spa_import_progress_list;
2354 	spa_import_progress_t *sip;
2355 
2356 	mutex_enter(&shl->procfs_list.pl_lock);
2357 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2358 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2359 		if (sip->pool_guid == pool_guid) {
2360 			if (sip->pool_name)
2361 				spa_strfree(sip->pool_name);
2362 			list_remove(&shl->procfs_list.pl_list, sip);
2363 			shl->size--;
2364 			kmem_free(sip, sizeof (spa_import_progress_t));
2365 			break;
2366 		}
2367 	}
2368 	mutex_exit(&shl->procfs_list.pl_lock);
2369 }
2370 
2371 /*
2372  * ==========================================================================
2373  * Initialization and Termination
2374  * ==========================================================================
2375  */
2376 
2377 static int
2378 spa_name_compare(const void *a1, const void *a2)
2379 {
2380 	const spa_t *s1 = a1;
2381 	const spa_t *s2 = a2;
2382 	int s;
2383 
2384 	s = strcmp(s1->spa_name, s2->spa_name);
2385 
2386 	return (TREE_ISIGN(s));
2387 }
2388 
2389 void
2390 spa_boot_init(void)
2391 {
2392 	spa_config_load();
2393 }
2394 
2395 void
2396 spa_init(spa_mode_t mode)
2397 {
2398 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2399 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2400 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2401 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2402 
2403 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2404 	    offsetof(spa_t, spa_avl));
2405 
2406 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2407 	    offsetof(spa_aux_t, aux_avl));
2408 
2409 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2410 	    offsetof(spa_aux_t, aux_avl));
2411 
2412 	spa_mode_global = mode;
2413 
2414 #ifndef _KERNEL
2415 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2416 		struct sigaction sa;
2417 
2418 		sa.sa_flags = SA_SIGINFO;
2419 		sigemptyset(&sa.sa_mask);
2420 		sa.sa_sigaction = arc_buf_sigsegv;
2421 
2422 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2423 			perror("could not enable watchpoints: "
2424 			    "sigaction(SIGSEGV, ...) = ");
2425 		} else {
2426 			arc_watch = B_TRUE;
2427 		}
2428 	}
2429 #endif
2430 
2431 	fm_init();
2432 	zfs_refcount_init();
2433 	unique_init();
2434 	zfs_btree_init();
2435 	metaslab_stat_init();
2436 	brt_init();
2437 	ddt_init();
2438 	zio_init();
2439 	dmu_init();
2440 	zil_init();
2441 	vdev_mirror_stat_init();
2442 	vdev_raidz_math_init();
2443 	vdev_file_init();
2444 	zfs_prop_init();
2445 	chksum_init();
2446 	zpool_prop_init();
2447 	zpool_feature_init();
2448 	spa_config_load();
2449 	vdev_prop_init();
2450 	l2arc_start();
2451 	scan_init();
2452 	qat_init();
2453 	spa_import_progress_init();
2454 }
2455 
2456 void
2457 spa_fini(void)
2458 {
2459 	l2arc_stop();
2460 
2461 	spa_evict_all();
2462 
2463 	vdev_file_fini();
2464 	vdev_mirror_stat_fini();
2465 	vdev_raidz_math_fini();
2466 	chksum_fini();
2467 	zil_fini();
2468 	dmu_fini();
2469 	zio_fini();
2470 	ddt_fini();
2471 	brt_fini();
2472 	metaslab_stat_fini();
2473 	zfs_btree_fini();
2474 	unique_fini();
2475 	zfs_refcount_fini();
2476 	fm_fini();
2477 	scan_fini();
2478 	qat_fini();
2479 	spa_import_progress_destroy();
2480 
2481 	avl_destroy(&spa_namespace_avl);
2482 	avl_destroy(&spa_spare_avl);
2483 	avl_destroy(&spa_l2cache_avl);
2484 
2485 	cv_destroy(&spa_namespace_cv);
2486 	mutex_destroy(&spa_namespace_lock);
2487 	mutex_destroy(&spa_spare_lock);
2488 	mutex_destroy(&spa_l2cache_lock);
2489 }
2490 
2491 /*
2492  * Return whether this pool has a dedicated slog device. No locking needed.
2493  * It's not a problem if the wrong answer is returned as it's only for
2494  * performance and not correctness.
2495  */
2496 boolean_t
2497 spa_has_slogs(spa_t *spa)
2498 {
2499 	return (spa->spa_log_class->mc_groups != 0);
2500 }
2501 
2502 spa_log_state_t
2503 spa_get_log_state(spa_t *spa)
2504 {
2505 	return (spa->spa_log_state);
2506 }
2507 
2508 void
2509 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2510 {
2511 	spa->spa_log_state = state;
2512 }
2513 
2514 boolean_t
2515 spa_is_root(spa_t *spa)
2516 {
2517 	return (spa->spa_is_root);
2518 }
2519 
2520 boolean_t
2521 spa_writeable(spa_t *spa)
2522 {
2523 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2524 }
2525 
2526 /*
2527  * Returns true if there is a pending sync task in any of the current
2528  * syncing txg, the current quiescing txg, or the current open txg.
2529  */
2530 boolean_t
2531 spa_has_pending_synctask(spa_t *spa)
2532 {
2533 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2534 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2535 }
2536 
2537 spa_mode_t
2538 spa_mode(spa_t *spa)
2539 {
2540 	return (spa->spa_mode);
2541 }
2542 
2543 uint64_t
2544 spa_bootfs(spa_t *spa)
2545 {
2546 	return (spa->spa_bootfs);
2547 }
2548 
2549 uint64_t
2550 spa_delegation(spa_t *spa)
2551 {
2552 	return (spa->spa_delegation);
2553 }
2554 
2555 objset_t *
2556 spa_meta_objset(spa_t *spa)
2557 {
2558 	return (spa->spa_meta_objset);
2559 }
2560 
2561 enum zio_checksum
2562 spa_dedup_checksum(spa_t *spa)
2563 {
2564 	return (spa->spa_dedup_checksum);
2565 }
2566 
2567 /*
2568  * Reset pool scan stat per scan pass (or reboot).
2569  */
2570 void
2571 spa_scan_stat_init(spa_t *spa)
2572 {
2573 	/* data not stored on disk */
2574 	spa->spa_scan_pass_start = gethrestime_sec();
2575 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2576 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2577 	else
2578 		spa->spa_scan_pass_scrub_pause = 0;
2579 
2580 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2581 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2582 	else
2583 		spa->spa_scan_pass_errorscrub_pause = 0;
2584 
2585 	spa->spa_scan_pass_scrub_spent_paused = 0;
2586 	spa->spa_scan_pass_exam = 0;
2587 	spa->spa_scan_pass_issued = 0;
2588 
2589 	// error scrub stats
2590 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2591 }
2592 
2593 /*
2594  * Get scan stats for zpool status reports
2595  */
2596 int
2597 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2598 {
2599 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2600 
2601 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2602 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2603 		return (SET_ERROR(ENOENT));
2604 
2605 	memset(ps, 0, sizeof (pool_scan_stat_t));
2606 
2607 	/* data stored on disk */
2608 	ps->pss_func = scn->scn_phys.scn_func;
2609 	ps->pss_state = scn->scn_phys.scn_state;
2610 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2611 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2612 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2613 	ps->pss_examined = scn->scn_phys.scn_examined;
2614 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2615 	ps->pss_processed = scn->scn_phys.scn_processed;
2616 	ps->pss_errors = scn->scn_phys.scn_errors;
2617 
2618 	/* data not stored on disk */
2619 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2620 	ps->pss_pass_start = spa->spa_scan_pass_start;
2621 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2622 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2623 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2624 	ps->pss_issued =
2625 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2626 
2627 	/* error scrub data stored on disk */
2628 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2629 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2630 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2631 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2632 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2633 	ps->pss_error_scrub_to_be_examined =
2634 	    scn->errorscrub_phys.dep_to_examine;
2635 
2636 	/* error scrub data not stored on disk */
2637 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2638 
2639 	return (0);
2640 }
2641 
2642 int
2643 spa_maxblocksize(spa_t *spa)
2644 {
2645 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2646 		return (SPA_MAXBLOCKSIZE);
2647 	else
2648 		return (SPA_OLD_MAXBLOCKSIZE);
2649 }
2650 
2651 
2652 /*
2653  * Returns the txg that the last device removal completed. No indirect mappings
2654  * have been added since this txg.
2655  */
2656 uint64_t
2657 spa_get_last_removal_txg(spa_t *spa)
2658 {
2659 	uint64_t vdevid;
2660 	uint64_t ret = -1ULL;
2661 
2662 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2663 	/*
2664 	 * sr_prev_indirect_vdev is only modified while holding all the
2665 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2666 	 * examining it.
2667 	 */
2668 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2669 
2670 	while (vdevid != -1ULL) {
2671 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2672 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2673 
2674 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2675 
2676 		/*
2677 		 * If the removal did not remap any data, we don't care.
2678 		 */
2679 		if (vdev_indirect_births_count(vib) != 0) {
2680 			ret = vdev_indirect_births_last_entry_txg(vib);
2681 			break;
2682 		}
2683 
2684 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2685 	}
2686 	spa_config_exit(spa, SCL_VDEV, FTAG);
2687 
2688 	IMPLY(ret != -1ULL,
2689 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2690 
2691 	return (ret);
2692 }
2693 
2694 int
2695 spa_maxdnodesize(spa_t *spa)
2696 {
2697 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2698 		return (DNODE_MAX_SIZE);
2699 	else
2700 		return (DNODE_MIN_SIZE);
2701 }
2702 
2703 boolean_t
2704 spa_multihost(spa_t *spa)
2705 {
2706 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2707 }
2708 
2709 uint32_t
2710 spa_get_hostid(spa_t *spa)
2711 {
2712 	return (spa->spa_hostid);
2713 }
2714 
2715 boolean_t
2716 spa_trust_config(spa_t *spa)
2717 {
2718 	return (spa->spa_trust_config);
2719 }
2720 
2721 uint64_t
2722 spa_missing_tvds_allowed(spa_t *spa)
2723 {
2724 	return (spa->spa_missing_tvds_allowed);
2725 }
2726 
2727 space_map_t *
2728 spa_syncing_log_sm(spa_t *spa)
2729 {
2730 	return (spa->spa_syncing_log_sm);
2731 }
2732 
2733 void
2734 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2735 {
2736 	spa->spa_missing_tvds = missing;
2737 }
2738 
2739 /*
2740  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2741  */
2742 const char *
2743 spa_state_to_name(spa_t *spa)
2744 {
2745 	ASSERT3P(spa, !=, NULL);
2746 
2747 	/*
2748 	 * it is possible for the spa to exist, without root vdev
2749 	 * as the spa transitions during import/export
2750 	 */
2751 	vdev_t *rvd = spa->spa_root_vdev;
2752 	if (rvd == NULL) {
2753 		return ("TRANSITIONING");
2754 	}
2755 	vdev_state_t state = rvd->vdev_state;
2756 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2757 
2758 	if (spa_suspended(spa) &&
2759 	    (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2760 		return ("SUSPENDED");
2761 
2762 	switch (state) {
2763 	case VDEV_STATE_CLOSED:
2764 	case VDEV_STATE_OFFLINE:
2765 		return ("OFFLINE");
2766 	case VDEV_STATE_REMOVED:
2767 		return ("REMOVED");
2768 	case VDEV_STATE_CANT_OPEN:
2769 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2770 			return ("FAULTED");
2771 		else if (aux == VDEV_AUX_SPLIT_POOL)
2772 			return ("SPLIT");
2773 		else
2774 			return ("UNAVAIL");
2775 	case VDEV_STATE_FAULTED:
2776 		return ("FAULTED");
2777 	case VDEV_STATE_DEGRADED:
2778 		return ("DEGRADED");
2779 	case VDEV_STATE_HEALTHY:
2780 		return ("ONLINE");
2781 	default:
2782 		break;
2783 	}
2784 
2785 	return ("UNKNOWN");
2786 }
2787 
2788 boolean_t
2789 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2790 {
2791 	vdev_t *rvd = spa->spa_root_vdev;
2792 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2793 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2794 			return (B_FALSE);
2795 	}
2796 	return (B_TRUE);
2797 }
2798 
2799 boolean_t
2800 spa_has_checkpoint(spa_t *spa)
2801 {
2802 	return (spa->spa_checkpoint_txg != 0);
2803 }
2804 
2805 boolean_t
2806 spa_importing_readonly_checkpoint(spa_t *spa)
2807 {
2808 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2809 	    spa->spa_mode == SPA_MODE_READ);
2810 }
2811 
2812 uint64_t
2813 spa_min_claim_txg(spa_t *spa)
2814 {
2815 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2816 
2817 	if (checkpoint_txg != 0)
2818 		return (checkpoint_txg + 1);
2819 
2820 	return (spa->spa_first_txg);
2821 }
2822 
2823 /*
2824  * If there is a checkpoint, async destroys may consume more space from
2825  * the pool instead of freeing it. In an attempt to save the pool from
2826  * getting suspended when it is about to run out of space, we stop
2827  * processing async destroys.
2828  */
2829 boolean_t
2830 spa_suspend_async_destroy(spa_t *spa)
2831 {
2832 	dsl_pool_t *dp = spa_get_dsl(spa);
2833 
2834 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2835 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2836 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2837 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2838 
2839 	if (spa_has_checkpoint(spa) && avail == 0)
2840 		return (B_TRUE);
2841 
2842 	return (B_FALSE);
2843 }
2844 
2845 #if defined(_KERNEL)
2846 
2847 int
2848 param_set_deadman_failmode_common(const char *val)
2849 {
2850 	spa_t *spa = NULL;
2851 	char *p;
2852 
2853 	if (val == NULL)
2854 		return (SET_ERROR(EINVAL));
2855 
2856 	if ((p = strchr(val, '\n')) != NULL)
2857 		*p = '\0';
2858 
2859 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2860 	    strcmp(val, "panic"))
2861 		return (SET_ERROR(EINVAL));
2862 
2863 	if (spa_mode_global != SPA_MODE_UNINIT) {
2864 		mutex_enter(&spa_namespace_lock);
2865 		while ((spa = spa_next(spa)) != NULL)
2866 			spa_set_deadman_failmode(spa, val);
2867 		mutex_exit(&spa_namespace_lock);
2868 	}
2869 
2870 	return (0);
2871 }
2872 #endif
2873 
2874 /* Namespace manipulation */
2875 EXPORT_SYMBOL(spa_lookup);
2876 EXPORT_SYMBOL(spa_add);
2877 EXPORT_SYMBOL(spa_remove);
2878 EXPORT_SYMBOL(spa_next);
2879 
2880 /* Refcount functions */
2881 EXPORT_SYMBOL(spa_open_ref);
2882 EXPORT_SYMBOL(spa_close);
2883 EXPORT_SYMBOL(spa_refcount_zero);
2884 
2885 /* Pool configuration lock */
2886 EXPORT_SYMBOL(spa_config_tryenter);
2887 EXPORT_SYMBOL(spa_config_enter);
2888 EXPORT_SYMBOL(spa_config_exit);
2889 EXPORT_SYMBOL(spa_config_held);
2890 
2891 /* Pool vdev add/remove lock */
2892 EXPORT_SYMBOL(spa_vdev_enter);
2893 EXPORT_SYMBOL(spa_vdev_exit);
2894 
2895 /* Pool vdev state change lock */
2896 EXPORT_SYMBOL(spa_vdev_state_enter);
2897 EXPORT_SYMBOL(spa_vdev_state_exit);
2898 
2899 /* Accessor functions */
2900 EXPORT_SYMBOL(spa_shutting_down);
2901 EXPORT_SYMBOL(spa_get_dsl);
2902 EXPORT_SYMBOL(spa_get_rootblkptr);
2903 EXPORT_SYMBOL(spa_set_rootblkptr);
2904 EXPORT_SYMBOL(spa_altroot);
2905 EXPORT_SYMBOL(spa_sync_pass);
2906 EXPORT_SYMBOL(spa_name);
2907 EXPORT_SYMBOL(spa_guid);
2908 EXPORT_SYMBOL(spa_last_synced_txg);
2909 EXPORT_SYMBOL(spa_first_txg);
2910 EXPORT_SYMBOL(spa_syncing_txg);
2911 EXPORT_SYMBOL(spa_version);
2912 EXPORT_SYMBOL(spa_state);
2913 EXPORT_SYMBOL(spa_load_state);
2914 EXPORT_SYMBOL(spa_freeze_txg);
2915 EXPORT_SYMBOL(spa_get_dspace);
2916 EXPORT_SYMBOL(spa_update_dspace);
2917 EXPORT_SYMBOL(spa_deflate);
2918 EXPORT_SYMBOL(spa_normal_class);
2919 EXPORT_SYMBOL(spa_log_class);
2920 EXPORT_SYMBOL(spa_special_class);
2921 EXPORT_SYMBOL(spa_preferred_class);
2922 EXPORT_SYMBOL(spa_max_replication);
2923 EXPORT_SYMBOL(spa_prev_software_version);
2924 EXPORT_SYMBOL(spa_get_failmode);
2925 EXPORT_SYMBOL(spa_suspended);
2926 EXPORT_SYMBOL(spa_bootfs);
2927 EXPORT_SYMBOL(spa_delegation);
2928 EXPORT_SYMBOL(spa_meta_objset);
2929 EXPORT_SYMBOL(spa_maxblocksize);
2930 EXPORT_SYMBOL(spa_maxdnodesize);
2931 
2932 /* Miscellaneous support routines */
2933 EXPORT_SYMBOL(spa_guid_exists);
2934 EXPORT_SYMBOL(spa_strdup);
2935 EXPORT_SYMBOL(spa_strfree);
2936 EXPORT_SYMBOL(spa_generate_guid);
2937 EXPORT_SYMBOL(snprintf_blkptr);
2938 EXPORT_SYMBOL(spa_freeze);
2939 EXPORT_SYMBOL(spa_upgrade);
2940 EXPORT_SYMBOL(spa_evict_all);
2941 EXPORT_SYMBOL(spa_lookup_by_guid);
2942 EXPORT_SYMBOL(spa_has_spare);
2943 EXPORT_SYMBOL(dva_get_dsize_sync);
2944 EXPORT_SYMBOL(bp_get_dsize_sync);
2945 EXPORT_SYMBOL(bp_get_dsize);
2946 EXPORT_SYMBOL(spa_has_slogs);
2947 EXPORT_SYMBOL(spa_is_root);
2948 EXPORT_SYMBOL(spa_writeable);
2949 EXPORT_SYMBOL(spa_mode);
2950 EXPORT_SYMBOL(spa_namespace_lock);
2951 EXPORT_SYMBOL(spa_trust_config);
2952 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2953 EXPORT_SYMBOL(spa_set_missing_tvds);
2954 EXPORT_SYMBOL(spa_state_to_name);
2955 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2956 EXPORT_SYMBOL(spa_min_claim_txg);
2957 EXPORT_SYMBOL(spa_suspend_async_destroy);
2958 EXPORT_SYMBOL(spa_has_checkpoint);
2959 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2960 
2961 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2962 	"Set additional debugging flags");
2963 
2964 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2965 	"Set to attempt to recover from fatal errors");
2966 
2967 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2968 	"Set to ignore IO errors during free and permanently leak the space");
2969 
2970 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
2971 	"Dead I/O check interval in milliseconds");
2972 
2973 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2974 	"Enable deadman timer");
2975 
2976 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
2977 	"SPA size estimate multiplication factor");
2978 
2979 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2980 	"Place DDT data into the special class");
2981 
2982 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2983 	"Place user data indirect blocks into the special class");
2984 
2985 /* BEGIN CSTYLED */
2986 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2987 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2988 	"Failmode for deadman timer");
2989 
2990 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2991 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
2992 	"Pool sync expiration time in milliseconds");
2993 
2994 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2995 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
2996 	"IO expiration time in milliseconds");
2997 
2998 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
2999 	"Small file blocks in special vdevs depends on this much "
3000 	"free space available");
3001 /* END CSTYLED */
3002 
3003 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3004 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3005