1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  * Copyright (c) 2023, Klara Inc.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/brt.h>
62 #include <sys/ddt.h>
63 #include <sys/kstat.h>
64 #include "zfs_prop.h"
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
67 #include <sys/qat.h>
68 #include <sys/zstd/zstd.h>
69 
70 /*
71  * SPA locking
72  *
73  * There are three basic locks for managing spa_t structures:
74  *
75  * spa_namespace_lock (global mutex)
76  *
77  *	This lock must be acquired to do any of the following:
78  *
79  *		- Lookup a spa_t by name
80  *		- Add or remove a spa_t from the namespace
81  *		- Increase spa_refcount from non-zero
82  *		- Check if spa_refcount is zero
83  *		- Rename a spa_t
84  *		- add/remove/attach/detach devices
85  *		- Held for the duration of create/destroy/import/export
86  *
87  *	It does not need to handle recursion.  A create or destroy may
88  *	reference objects (files or zvols) in other pools, but by
89  *	definition they must have an existing reference, and will never need
90  *	to lookup a spa_t by name.
91  *
92  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
93  *
94  *	This reference count keep track of any active users of the spa_t.  The
95  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
96  *	the refcount is never really 'zero' - opening a pool implicitly keeps
97  *	some references in the DMU.  Internally we check against spa_minref, but
98  *	present the image of a zero/non-zero value to consumers.
99  *
100  * spa_config_lock[] (per-spa array of rwlocks)
101  *
102  *	This protects the spa_t from config changes, and must be held in
103  *	the following circumstances:
104  *
105  *		- RW_READER to perform I/O to the spa
106  *		- RW_WRITER to change the vdev config
107  *
108  * The locking order is fairly straightforward:
109  *
110  *		spa_namespace_lock	->	spa_refcount
111  *
112  *	The namespace lock must be acquired to increase the refcount from 0
113  *	or to check if it is zero.
114  *
115  *		spa_refcount		->	spa_config_lock[]
116  *
117  *	There must be at least one valid reference on the spa_t to acquire
118  *	the config lock.
119  *
120  *		spa_namespace_lock	->	spa_config_lock[]
121  *
122  *	The namespace lock must always be taken before the config lock.
123  *
124  *
125  * The spa_namespace_lock can be acquired directly and is globally visible.
126  *
127  * The namespace is manipulated using the following functions, all of which
128  * require the spa_namespace_lock to be held.
129  *
130  *	spa_lookup()		Lookup a spa_t by name.
131  *
132  *	spa_add()		Create a new spa_t in the namespace.
133  *
134  *	spa_remove()		Remove a spa_t from the namespace.  This also
135  *				frees up any memory associated with the spa_t.
136  *
137  *	spa_next()		Returns the next spa_t in the system, or the
138  *				first if NULL is passed.
139  *
140  *	spa_evict_all()		Shutdown and remove all spa_t structures in
141  *				the system.
142  *
143  *	spa_guid_exists()	Determine whether a pool/device guid exists.
144  *
145  * The spa_refcount is manipulated using the following functions:
146  *
147  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
148  *				called with spa_namespace_lock held if the
149  *				refcount is currently zero.
150  *
151  *	spa_close()		Remove a reference from the spa_t.  This will
152  *				not free the spa_t or remove it from the
153  *				namespace.  No locking is required.
154  *
155  *	spa_refcount_zero()	Returns true if the refcount is currently
156  *				zero.  Must be called with spa_namespace_lock
157  *				held.
158  *
159  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
160  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
161  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
162  *
163  * To read the configuration, it suffices to hold one of these locks as reader.
164  * To modify the configuration, you must hold all locks as writer.  To modify
165  * vdev state without altering the vdev tree's topology (e.g. online/offline),
166  * you must hold SCL_STATE and SCL_ZIO as writer.
167  *
168  * We use these distinct config locks to avoid recursive lock entry.
169  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
170  * block allocations (SCL_ALLOC), which may require reading space maps
171  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
172  *
173  * The spa config locks cannot be normal rwlocks because we need the
174  * ability to hand off ownership.  For example, SCL_ZIO is acquired
175  * by the issuing thread and later released by an interrupt thread.
176  * They do, however, obey the usual write-wanted semantics to prevent
177  * writer (i.e. system administrator) starvation.
178  *
179  * The lock acquisition rules are as follows:
180  *
181  * SCL_CONFIG
182  *	Protects changes to the vdev tree topology, such as vdev
183  *	add/remove/attach/detach.  Protects the dirty config list
184  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
185  *
186  * SCL_STATE
187  *	Protects changes to pool state and vdev state, such as vdev
188  *	online/offline/fault/degrade/clear.  Protects the dirty state list
189  *	(spa_state_dirty_list) and global pool state (spa_state).
190  *
191  * SCL_ALLOC
192  *	Protects changes to metaslab groups and classes.
193  *	Held as reader by metaslab_alloc() and metaslab_claim().
194  *
195  * SCL_ZIO
196  *	Held by bp-level zios (those which have no io_vd upon entry)
197  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
198  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
199  *
200  * SCL_FREE
201  *	Protects changes to metaslab groups and classes.
202  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
203  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
204  *	blocks in zio_done() while another i/o that holds either
205  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
206  *
207  * SCL_VDEV
208  *	Held as reader to prevent changes to the vdev tree during trivial
209  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
210  *	other locks, and lower than all of them, to ensure that it's safe
211  *	to acquire regardless of caller context.
212  *
213  * In addition, the following rules apply:
214  *
215  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
216  *	The lock ordering is SCL_CONFIG > spa_props_lock.
217  *
218  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
219  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
220  *	or zio_write_phys() -- the caller must ensure that the config cannot
221  *	cannot change in the interim, and that the vdev cannot be reopened.
222  *	SCL_STATE as reader suffices for both.
223  *
224  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
225  *
226  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
227  *				for writing.
228  *
229  *	spa_vdev_exit()		Release the config lock, wait for all I/O
230  *				to complete, sync the updated configs to the
231  *				cache, and release the namespace lock.
232  *
233  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
234  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
235  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
236  */
237 
238 static avl_tree_t spa_namespace_avl;
239 kmutex_t spa_namespace_lock;
240 static kcondvar_t spa_namespace_cv;
241 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
242 
243 static kmutex_t spa_spare_lock;
244 static avl_tree_t spa_spare_avl;
245 static kmutex_t spa_l2cache_lock;
246 static avl_tree_t spa_l2cache_avl;
247 
248 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
249 
250 #ifdef ZFS_DEBUG
251 /*
252  * Everything except dprintf, set_error, spa, and indirect_remap is on
253  * by default in debug builds.
254  */
255 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
256     ZFS_DEBUG_INDIRECT_REMAP);
257 #else
258 int zfs_flags = 0;
259 #endif
260 
261 /*
262  * zfs_recover can be set to nonzero to attempt to recover from
263  * otherwise-fatal errors, typically caused by on-disk corruption.  When
264  * set, calls to zfs_panic_recover() will turn into warning messages.
265  * This should only be used as a last resort, as it typically results
266  * in leaked space, or worse.
267  */
268 int zfs_recover = B_FALSE;
269 
270 /*
271  * If destroy encounters an EIO while reading metadata (e.g. indirect
272  * blocks), space referenced by the missing metadata can not be freed.
273  * Normally this causes the background destroy to become "stalled", as
274  * it is unable to make forward progress.  While in this stalled state,
275  * all remaining space to free from the error-encountering filesystem is
276  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
277  * permanently leak the space from indirect blocks that can not be read,
278  * and continue to free everything else that it can.
279  *
280  * The default, "stalling" behavior is useful if the storage partially
281  * fails (i.e. some but not all i/os fail), and then later recovers.  In
282  * this case, we will be able to continue pool operations while it is
283  * partially failed, and when it recovers, we can continue to free the
284  * space, with no leaks.  However, note that this case is actually
285  * fairly rare.
286  *
287  * Typically pools either (a) fail completely (but perhaps temporarily,
288  * e.g. a top-level vdev going offline), or (b) have localized,
289  * permanent errors (e.g. disk returns the wrong data due to bit flip or
290  * firmware bug).  In case (a), this setting does not matter because the
291  * pool will be suspended and the sync thread will not be able to make
292  * forward progress regardless.  In case (b), because the error is
293  * permanent, the best we can do is leak the minimum amount of space,
294  * which is what setting this flag will do.  Therefore, it is reasonable
295  * for this flag to normally be set, but we chose the more conservative
296  * approach of not setting it, so that there is no possibility of
297  * leaking space in the "partial temporary" failure case.
298  */
299 int zfs_free_leak_on_eio = B_FALSE;
300 
301 /*
302  * Expiration time in milliseconds. This value has two meanings. First it is
303  * used to determine when the spa_deadman() logic should fire. By default the
304  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
305  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
306  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
307  * in one of three behaviors controlled by zfs_deadman_failmode.
308  */
309 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
310 
311 /*
312  * This value controls the maximum amount of time zio_wait() will block for an
313  * outstanding IO.  By default this is 300 seconds at which point the "hung"
314  * behavior will be applied as described for zfs_deadman_synctime_ms.
315  */
316 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
317 
318 /*
319  * Check time in milliseconds. This defines the frequency at which we check
320  * for hung I/O.
321  */
322 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
323 
324 /*
325  * By default the deadman is enabled.
326  */
327 int zfs_deadman_enabled = B_TRUE;
328 
329 /*
330  * Controls the behavior of the deadman when it detects a "hung" I/O.
331  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
332  *
333  * wait     - Wait for the "hung" I/O (default)
334  * continue - Attempt to recover from a "hung" I/O
335  * panic    - Panic the system
336  */
337 const char *zfs_deadman_failmode = "wait";
338 
339 /*
340  * The worst case is single-sector max-parity RAID-Z blocks, in which
341  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
342  * times the size; so just assume that.  Add to this the fact that
343  * we can have up to 3 DVAs per bp, and one more factor of 2 because
344  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
345  * the worst case is:
346  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
347  */
348 uint_t spa_asize_inflation = 24;
349 
350 /*
351  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
352  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
353  * don't run the pool completely out of space, due to unaccounted changes (e.g.
354  * to the MOS).  It also limits the worst-case time to allocate space.  If we
355  * have less than this amount of free space, most ZPL operations (e.g.  write,
356  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
357  * also part of this 3.2% of space which can't be consumed by normal writes;
358  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
359  * log space.
360  *
361  * Certain operations (e.g. file removal, most administrative actions) can
362  * use half the slop space.  They will only return ENOSPC if less than half
363  * the slop space is free.  Typically, once the pool has less than the slop
364  * space free, the user will use these operations to free up space in the pool.
365  * These are the operations that call dsl_pool_adjustedsize() with the netfree
366  * argument set to TRUE.
367  *
368  * Operations that are almost guaranteed to free up space in the absence of
369  * a pool checkpoint can use up to three quarters of the slop space
370  * (e.g zfs destroy).
371  *
372  * A very restricted set of operations are always permitted, regardless of
373  * the amount of free space.  These are the operations that call
374  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
375  * increase in the amount of space used, it is possible to run the pool
376  * completely out of space, causing it to be permanently read-only.
377  *
378  * Note that on very small pools, the slop space will be larger than
379  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
380  * but we never allow it to be more than half the pool size.
381  *
382  * Further, on very large pools, the slop space will be smaller than
383  * 3.2%, to avoid reserving much more space than we actually need; bounded
384  * by spa_max_slop (128GB).
385  *
386  * See also the comments in zfs_space_check_t.
387  */
388 uint_t spa_slop_shift = 5;
389 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
390 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
391 
392 /*
393  * Number of allocators to use, per spa instance
394  */
395 static int spa_num_allocators = 4;
396 
397 /*
398  * Spa active allocator.
399  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
400  */
401 const char *zfs_active_allocator = "dynamic";
402 
403 void
404 spa_load_failed(spa_t *spa, const char *fmt, ...)
405 {
406 	va_list adx;
407 	char buf[256];
408 
409 	va_start(adx, fmt);
410 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
411 	va_end(adx);
412 
413 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
414 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
415 }
416 
417 void
418 spa_load_note(spa_t *spa, const char *fmt, ...)
419 {
420 	va_list adx;
421 	char buf[256];
422 
423 	va_start(adx, fmt);
424 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
425 	va_end(adx);
426 
427 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
428 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
429 
430 	spa_import_progress_set_notes_nolog(spa, "%s", buf);
431 }
432 
433 /*
434  * By default dedup and user data indirects land in the special class
435  */
436 static int zfs_ddt_data_is_special = B_TRUE;
437 static int zfs_user_indirect_is_special = B_TRUE;
438 
439 /*
440  * The percentage of special class final space reserved for metadata only.
441  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
442  * let metadata into the class.
443  */
444 static uint_t zfs_special_class_metadata_reserve_pct = 25;
445 
446 /*
447  * ==========================================================================
448  * SPA config locking
449  * ==========================================================================
450  */
451 static void
452 spa_config_lock_init(spa_t *spa)
453 {
454 	for (int i = 0; i < SCL_LOCKS; i++) {
455 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
457 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
458 		scl->scl_writer = NULL;
459 		scl->scl_write_wanted = 0;
460 		scl->scl_count = 0;
461 	}
462 }
463 
464 static void
465 spa_config_lock_destroy(spa_t *spa)
466 {
467 	for (int i = 0; i < SCL_LOCKS; i++) {
468 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
469 		mutex_destroy(&scl->scl_lock);
470 		cv_destroy(&scl->scl_cv);
471 		ASSERT(scl->scl_writer == NULL);
472 		ASSERT(scl->scl_write_wanted == 0);
473 		ASSERT(scl->scl_count == 0);
474 	}
475 }
476 
477 int
478 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
479 {
480 	for (int i = 0; i < SCL_LOCKS; i++) {
481 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
482 		if (!(locks & (1 << i)))
483 			continue;
484 		mutex_enter(&scl->scl_lock);
485 		if (rw == RW_READER) {
486 			if (scl->scl_writer || scl->scl_write_wanted) {
487 				mutex_exit(&scl->scl_lock);
488 				spa_config_exit(spa, locks & ((1 << i) - 1),
489 				    tag);
490 				return (0);
491 			}
492 		} else {
493 			ASSERT(scl->scl_writer != curthread);
494 			if (scl->scl_count != 0) {
495 				mutex_exit(&scl->scl_lock);
496 				spa_config_exit(spa, locks & ((1 << i) - 1),
497 				    tag);
498 				return (0);
499 			}
500 			scl->scl_writer = curthread;
501 		}
502 		scl->scl_count++;
503 		mutex_exit(&scl->scl_lock);
504 	}
505 	return (1);
506 }
507 
508 static void
509 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
510     int mmp_flag)
511 {
512 	(void) tag;
513 	int wlocks_held = 0;
514 
515 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
516 
517 	for (int i = 0; i < SCL_LOCKS; i++) {
518 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
519 		if (scl->scl_writer == curthread)
520 			wlocks_held |= (1 << i);
521 		if (!(locks & (1 << i)))
522 			continue;
523 		mutex_enter(&scl->scl_lock);
524 		if (rw == RW_READER) {
525 			while (scl->scl_writer ||
526 			    (!mmp_flag && scl->scl_write_wanted)) {
527 				cv_wait(&scl->scl_cv, &scl->scl_lock);
528 			}
529 		} else {
530 			ASSERT(scl->scl_writer != curthread);
531 			while (scl->scl_count != 0) {
532 				scl->scl_write_wanted++;
533 				cv_wait(&scl->scl_cv, &scl->scl_lock);
534 				scl->scl_write_wanted--;
535 			}
536 			scl->scl_writer = curthread;
537 		}
538 		scl->scl_count++;
539 		mutex_exit(&scl->scl_lock);
540 	}
541 	ASSERT3U(wlocks_held, <=, locks);
542 }
543 
544 void
545 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
546 {
547 	spa_config_enter_impl(spa, locks, tag, rw, 0);
548 }
549 
550 /*
551  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
552  * outstanding write lock requests. This is needed since the mmp updates are
553  * time sensitive and failure to service them promptly will result in a
554  * suspended pool. This pool suspension has been seen in practice when there is
555  * a single disk in a pool that is responding slowly and presumably about to
556  * fail.
557  */
558 
559 void
560 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
561 {
562 	spa_config_enter_impl(spa, locks, tag, rw, 1);
563 }
564 
565 void
566 spa_config_exit(spa_t *spa, int locks, const void *tag)
567 {
568 	(void) tag;
569 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
570 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
571 		if (!(locks & (1 << i)))
572 			continue;
573 		mutex_enter(&scl->scl_lock);
574 		ASSERT(scl->scl_count > 0);
575 		if (--scl->scl_count == 0) {
576 			ASSERT(scl->scl_writer == NULL ||
577 			    scl->scl_writer == curthread);
578 			scl->scl_writer = NULL;	/* OK in either case */
579 			cv_broadcast(&scl->scl_cv);
580 		}
581 		mutex_exit(&scl->scl_lock);
582 	}
583 }
584 
585 int
586 spa_config_held(spa_t *spa, int locks, krw_t rw)
587 {
588 	int locks_held = 0;
589 
590 	for (int i = 0; i < SCL_LOCKS; i++) {
591 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
592 		if (!(locks & (1 << i)))
593 			continue;
594 		if ((rw == RW_READER && scl->scl_count != 0) ||
595 		    (rw == RW_WRITER && scl->scl_writer == curthread))
596 			locks_held |= 1 << i;
597 	}
598 
599 	return (locks_held);
600 }
601 
602 /*
603  * ==========================================================================
604  * SPA namespace functions
605  * ==========================================================================
606  */
607 
608 /*
609  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
610  * Returns NULL if no matching spa_t is found.
611  */
612 spa_t *
613 spa_lookup(const char *name)
614 {
615 	static spa_t search;	/* spa_t is large; don't allocate on stack */
616 	spa_t *spa;
617 	avl_index_t where;
618 	char *cp;
619 
620 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
621 
622 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
623 
624 	/*
625 	 * If it's a full dataset name, figure out the pool name and
626 	 * just use that.
627 	 */
628 	cp = strpbrk(search.spa_name, "/@#");
629 	if (cp != NULL)
630 		*cp = '\0';
631 
632 	spa = avl_find(&spa_namespace_avl, &search, &where);
633 
634 	return (spa);
635 }
636 
637 /*
638  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
639  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
640  * looking for potentially hung I/Os.
641  */
642 void
643 spa_deadman(void *arg)
644 {
645 	spa_t *spa = arg;
646 
647 	/* Disable the deadman if the pool is suspended. */
648 	if (spa_suspended(spa))
649 		return;
650 
651 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
652 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
653 	    (u_longlong_t)++spa->spa_deadman_calls);
654 	if (zfs_deadman_enabled)
655 		vdev_deadman(spa->spa_root_vdev, FTAG);
656 
657 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
658 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
659 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
660 }
661 
662 static int
663 spa_log_sm_sort_by_txg(const void *va, const void *vb)
664 {
665 	const spa_log_sm_t *a = va;
666 	const spa_log_sm_t *b = vb;
667 
668 	return (TREE_CMP(a->sls_txg, b->sls_txg));
669 }
670 
671 /*
672  * Create an uninitialized spa_t with the given name.  Requires
673  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
674  * exist by calling spa_lookup() first.
675  */
676 spa_t *
677 spa_add(const char *name, nvlist_t *config, const char *altroot)
678 {
679 	spa_t *spa;
680 	spa_config_dirent_t *dp;
681 
682 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
683 
684 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
685 
686 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
688 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
689 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
690 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
691 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
692 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
693 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
694 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
695 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
696 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
697 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
698 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
699 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
700 
701 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
702 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
703 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
704 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
705 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
706 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
707 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
708 
709 	for (int t = 0; t < TXG_SIZE; t++)
710 		bplist_create(&spa->spa_free_bplist[t]);
711 
712 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
713 	spa->spa_state = POOL_STATE_UNINITIALIZED;
714 	spa->spa_freeze_txg = UINT64_MAX;
715 	spa->spa_final_txg = UINT64_MAX;
716 	spa->spa_load_max_txg = UINT64_MAX;
717 	spa->spa_proc = &p0;
718 	spa->spa_proc_state = SPA_PROC_NONE;
719 	spa->spa_trust_config = B_TRUE;
720 	spa->spa_hostid = zone_get_hostid(NULL);
721 
722 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
723 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
724 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
725 	spa_set_allocator(spa, zfs_active_allocator);
726 
727 	zfs_refcount_create(&spa->spa_refcount);
728 	spa_config_lock_init(spa);
729 	spa_stats_init(spa);
730 
731 	avl_add(&spa_namespace_avl, spa);
732 
733 	/*
734 	 * Set the alternate root, if there is one.
735 	 */
736 	if (altroot)
737 		spa->spa_root = spa_strdup(altroot);
738 
739 	/* Do not allow more allocators than CPUs. */
740 	spa->spa_alloc_count = MIN(MAX(spa_num_allocators, 1), boot_ncpus);
741 
742 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
743 	    sizeof (spa_alloc_t), KM_SLEEP);
744 	for (int i = 0; i < spa->spa_alloc_count; i++) {
745 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
746 		    NULL);
747 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
748 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
749 	}
750 
751 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
752 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
753 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
754 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
755 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
756 	    offsetof(log_summary_entry_t, lse_node));
757 
758 	/*
759 	 * Every pool starts with the default cachefile
760 	 */
761 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
762 	    offsetof(spa_config_dirent_t, scd_link));
763 
764 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
765 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
766 	list_insert_head(&spa->spa_config_list, dp);
767 
768 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
769 	    KM_SLEEP) == 0);
770 
771 	if (config != NULL) {
772 		nvlist_t *features;
773 
774 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
775 		    &features) == 0) {
776 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
777 			    0) == 0);
778 		}
779 
780 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
781 	}
782 
783 	if (spa->spa_label_features == NULL) {
784 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
785 		    KM_SLEEP) == 0);
786 	}
787 
788 	spa->spa_min_ashift = INT_MAX;
789 	spa->spa_max_ashift = 0;
790 	spa->spa_min_alloc = INT_MAX;
791 	spa->spa_gcd_alloc = INT_MAX;
792 
793 	/* Reset cached value */
794 	spa->spa_dedup_dspace = ~0ULL;
795 
796 	/*
797 	 * As a pool is being created, treat all features as disabled by
798 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
799 	 * refcount cache.
800 	 */
801 	for (int i = 0; i < SPA_FEATURES; i++) {
802 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
803 	}
804 
805 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
806 	    offsetof(vdev_t, vdev_leaf_node));
807 
808 	return (spa);
809 }
810 
811 /*
812  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
813  * spa_namespace_lock.  This is called only after the spa_t has been closed and
814  * deactivated.
815  */
816 void
817 spa_remove(spa_t *spa)
818 {
819 	spa_config_dirent_t *dp;
820 
821 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
822 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
823 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
824 	ASSERT0(spa->spa_waiters);
825 
826 	nvlist_free(spa->spa_config_splitting);
827 
828 	avl_remove(&spa_namespace_avl, spa);
829 	cv_broadcast(&spa_namespace_cv);
830 
831 	if (spa->spa_root)
832 		spa_strfree(spa->spa_root);
833 
834 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
835 		if (dp->scd_path != NULL)
836 			spa_strfree(dp->scd_path);
837 		kmem_free(dp, sizeof (spa_config_dirent_t));
838 	}
839 
840 	for (int i = 0; i < spa->spa_alloc_count; i++) {
841 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
842 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
843 	}
844 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
845 	    sizeof (spa_alloc_t));
846 
847 	avl_destroy(&spa->spa_metaslabs_by_flushed);
848 	avl_destroy(&spa->spa_sm_logs_by_txg);
849 	list_destroy(&spa->spa_log_summary);
850 	list_destroy(&spa->spa_config_list);
851 	list_destroy(&spa->spa_leaf_list);
852 
853 	nvlist_free(spa->spa_label_features);
854 	nvlist_free(spa->spa_load_info);
855 	nvlist_free(spa->spa_feat_stats);
856 	spa_config_set(spa, NULL);
857 
858 	zfs_refcount_destroy(&spa->spa_refcount);
859 
860 	spa_stats_destroy(spa);
861 	spa_config_lock_destroy(spa);
862 
863 	for (int t = 0; t < TXG_SIZE; t++)
864 		bplist_destroy(&spa->spa_free_bplist[t]);
865 
866 	zio_checksum_templates_free(spa);
867 
868 	cv_destroy(&spa->spa_async_cv);
869 	cv_destroy(&spa->spa_evicting_os_cv);
870 	cv_destroy(&spa->spa_proc_cv);
871 	cv_destroy(&spa->spa_scrub_io_cv);
872 	cv_destroy(&spa->spa_suspend_cv);
873 	cv_destroy(&spa->spa_activities_cv);
874 	cv_destroy(&spa->spa_waiters_cv);
875 
876 	mutex_destroy(&spa->spa_flushed_ms_lock);
877 	mutex_destroy(&spa->spa_async_lock);
878 	mutex_destroy(&spa->spa_errlist_lock);
879 	mutex_destroy(&spa->spa_errlog_lock);
880 	mutex_destroy(&spa->spa_evicting_os_lock);
881 	mutex_destroy(&spa->spa_history_lock);
882 	mutex_destroy(&spa->spa_proc_lock);
883 	mutex_destroy(&spa->spa_props_lock);
884 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
885 	mutex_destroy(&spa->spa_scrub_lock);
886 	mutex_destroy(&spa->spa_suspend_lock);
887 	mutex_destroy(&spa->spa_vdev_top_lock);
888 	mutex_destroy(&spa->spa_feat_stats_lock);
889 	mutex_destroy(&spa->spa_activities_lock);
890 
891 	kmem_free(spa, sizeof (spa_t));
892 }
893 
894 /*
895  * Given a pool, return the next pool in the namespace, or NULL if there is
896  * none.  If 'prev' is NULL, return the first pool.
897  */
898 spa_t *
899 spa_next(spa_t *prev)
900 {
901 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
902 
903 	if (prev)
904 		return (AVL_NEXT(&spa_namespace_avl, prev));
905 	else
906 		return (avl_first(&spa_namespace_avl));
907 }
908 
909 /*
910  * ==========================================================================
911  * SPA refcount functions
912  * ==========================================================================
913  */
914 
915 /*
916  * Add a reference to the given spa_t.  Must have at least one reference, or
917  * have the namespace lock held.
918  */
919 void
920 spa_open_ref(spa_t *spa, const void *tag)
921 {
922 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
923 	    MUTEX_HELD(&spa_namespace_lock));
924 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
925 }
926 
927 /*
928  * Remove a reference to the given spa_t.  Must have at least one reference, or
929  * have the namespace lock held.
930  */
931 void
932 spa_close(spa_t *spa, const void *tag)
933 {
934 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
935 	    MUTEX_HELD(&spa_namespace_lock));
936 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
937 }
938 
939 /*
940  * Remove a reference to the given spa_t held by a dsl dir that is
941  * being asynchronously released.  Async releases occur from a taskq
942  * performing eviction of dsl datasets and dirs.  The namespace lock
943  * isn't held and the hold by the object being evicted may contribute to
944  * spa_minref (e.g. dataset or directory released during pool export),
945  * so the asserts in spa_close() do not apply.
946  */
947 void
948 spa_async_close(spa_t *spa, const void *tag)
949 {
950 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
951 }
952 
953 /*
954  * Check to see if the spa refcount is zero.  Must be called with
955  * spa_namespace_lock held.  We really compare against spa_minref, which is the
956  * number of references acquired when opening a pool
957  */
958 boolean_t
959 spa_refcount_zero(spa_t *spa)
960 {
961 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
962 
963 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
964 }
965 
966 /*
967  * ==========================================================================
968  * SPA spare and l2cache tracking
969  * ==========================================================================
970  */
971 
972 /*
973  * Hot spares and cache devices are tracked using the same code below,
974  * for 'auxiliary' devices.
975  */
976 
977 typedef struct spa_aux {
978 	uint64_t	aux_guid;
979 	uint64_t	aux_pool;
980 	avl_node_t	aux_avl;
981 	int		aux_count;
982 } spa_aux_t;
983 
984 static inline int
985 spa_aux_compare(const void *a, const void *b)
986 {
987 	const spa_aux_t *sa = (const spa_aux_t *)a;
988 	const spa_aux_t *sb = (const spa_aux_t *)b;
989 
990 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
991 }
992 
993 static void
994 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
995 {
996 	avl_index_t where;
997 	spa_aux_t search;
998 	spa_aux_t *aux;
999 
1000 	search.aux_guid = vd->vdev_guid;
1001 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1002 		aux->aux_count++;
1003 	} else {
1004 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1005 		aux->aux_guid = vd->vdev_guid;
1006 		aux->aux_count = 1;
1007 		avl_insert(avl, aux, where);
1008 	}
1009 }
1010 
1011 static void
1012 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1013 {
1014 	spa_aux_t search;
1015 	spa_aux_t *aux;
1016 	avl_index_t where;
1017 
1018 	search.aux_guid = vd->vdev_guid;
1019 	aux = avl_find(avl, &search, &where);
1020 
1021 	ASSERT(aux != NULL);
1022 
1023 	if (--aux->aux_count == 0) {
1024 		avl_remove(avl, aux);
1025 		kmem_free(aux, sizeof (spa_aux_t));
1026 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1027 		aux->aux_pool = 0ULL;
1028 	}
1029 }
1030 
1031 static boolean_t
1032 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1033 {
1034 	spa_aux_t search, *found;
1035 
1036 	search.aux_guid = guid;
1037 	found = avl_find(avl, &search, NULL);
1038 
1039 	if (pool) {
1040 		if (found)
1041 			*pool = found->aux_pool;
1042 		else
1043 			*pool = 0ULL;
1044 	}
1045 
1046 	if (refcnt) {
1047 		if (found)
1048 			*refcnt = found->aux_count;
1049 		else
1050 			*refcnt = 0;
1051 	}
1052 
1053 	return (found != NULL);
1054 }
1055 
1056 static void
1057 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1058 {
1059 	spa_aux_t search, *found;
1060 	avl_index_t where;
1061 
1062 	search.aux_guid = vd->vdev_guid;
1063 	found = avl_find(avl, &search, &where);
1064 	ASSERT(found != NULL);
1065 	ASSERT(found->aux_pool == 0ULL);
1066 
1067 	found->aux_pool = spa_guid(vd->vdev_spa);
1068 }
1069 
1070 /*
1071  * Spares are tracked globally due to the following constraints:
1072  *
1073  *	- A spare may be part of multiple pools.
1074  *	- A spare may be added to a pool even if it's actively in use within
1075  *	  another pool.
1076  *	- A spare in use in any pool can only be the source of a replacement if
1077  *	  the target is a spare in the same pool.
1078  *
1079  * We keep track of all spares on the system through the use of a reference
1080  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1081  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1082  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1083  * inactive).  When a spare is made active (used to replace a device in the
1084  * pool), we also keep track of which pool its been made a part of.
1085  *
1086  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1087  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1088  * separate spare lock exists for the status query path, which does not need to
1089  * be completely consistent with respect to other vdev configuration changes.
1090  */
1091 
1092 static int
1093 spa_spare_compare(const void *a, const void *b)
1094 {
1095 	return (spa_aux_compare(a, b));
1096 }
1097 
1098 void
1099 spa_spare_add(vdev_t *vd)
1100 {
1101 	mutex_enter(&spa_spare_lock);
1102 	ASSERT(!vd->vdev_isspare);
1103 	spa_aux_add(vd, &spa_spare_avl);
1104 	vd->vdev_isspare = B_TRUE;
1105 	mutex_exit(&spa_spare_lock);
1106 }
1107 
1108 void
1109 spa_spare_remove(vdev_t *vd)
1110 {
1111 	mutex_enter(&spa_spare_lock);
1112 	ASSERT(vd->vdev_isspare);
1113 	spa_aux_remove(vd, &spa_spare_avl);
1114 	vd->vdev_isspare = B_FALSE;
1115 	mutex_exit(&spa_spare_lock);
1116 }
1117 
1118 boolean_t
1119 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1120 {
1121 	boolean_t found;
1122 
1123 	mutex_enter(&spa_spare_lock);
1124 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1125 	mutex_exit(&spa_spare_lock);
1126 
1127 	return (found);
1128 }
1129 
1130 void
1131 spa_spare_activate(vdev_t *vd)
1132 {
1133 	mutex_enter(&spa_spare_lock);
1134 	ASSERT(vd->vdev_isspare);
1135 	spa_aux_activate(vd, &spa_spare_avl);
1136 	mutex_exit(&spa_spare_lock);
1137 }
1138 
1139 /*
1140  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1141  * Cache devices currently only support one pool per cache device, and so
1142  * for these devices the aux reference count is currently unused beyond 1.
1143  */
1144 
1145 static int
1146 spa_l2cache_compare(const void *a, const void *b)
1147 {
1148 	return (spa_aux_compare(a, b));
1149 }
1150 
1151 void
1152 spa_l2cache_add(vdev_t *vd)
1153 {
1154 	mutex_enter(&spa_l2cache_lock);
1155 	ASSERT(!vd->vdev_isl2cache);
1156 	spa_aux_add(vd, &spa_l2cache_avl);
1157 	vd->vdev_isl2cache = B_TRUE;
1158 	mutex_exit(&spa_l2cache_lock);
1159 }
1160 
1161 void
1162 spa_l2cache_remove(vdev_t *vd)
1163 {
1164 	mutex_enter(&spa_l2cache_lock);
1165 	ASSERT(vd->vdev_isl2cache);
1166 	spa_aux_remove(vd, &spa_l2cache_avl);
1167 	vd->vdev_isl2cache = B_FALSE;
1168 	mutex_exit(&spa_l2cache_lock);
1169 }
1170 
1171 boolean_t
1172 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1173 {
1174 	boolean_t found;
1175 
1176 	mutex_enter(&spa_l2cache_lock);
1177 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1178 	mutex_exit(&spa_l2cache_lock);
1179 
1180 	return (found);
1181 }
1182 
1183 void
1184 spa_l2cache_activate(vdev_t *vd)
1185 {
1186 	mutex_enter(&spa_l2cache_lock);
1187 	ASSERT(vd->vdev_isl2cache);
1188 	spa_aux_activate(vd, &spa_l2cache_avl);
1189 	mutex_exit(&spa_l2cache_lock);
1190 }
1191 
1192 /*
1193  * ==========================================================================
1194  * SPA vdev locking
1195  * ==========================================================================
1196  */
1197 
1198 /*
1199  * Lock the given spa_t for the purpose of adding or removing a vdev.
1200  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1201  * It returns the next transaction group for the spa_t.
1202  */
1203 uint64_t
1204 spa_vdev_enter(spa_t *spa)
1205 {
1206 	mutex_enter(&spa->spa_vdev_top_lock);
1207 	mutex_enter(&spa_namespace_lock);
1208 
1209 	vdev_autotrim_stop_all(spa);
1210 
1211 	return (spa_vdev_config_enter(spa));
1212 }
1213 
1214 /*
1215  * The same as spa_vdev_enter() above but additionally takes the guid of
1216  * the vdev being detached.  When there is a rebuild in process it will be
1217  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1218  * The rebuild is canceled if only a single child remains after the detach.
1219  */
1220 uint64_t
1221 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1222 {
1223 	mutex_enter(&spa->spa_vdev_top_lock);
1224 	mutex_enter(&spa_namespace_lock);
1225 
1226 	vdev_autotrim_stop_all(spa);
1227 
1228 	if (guid != 0) {
1229 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1230 		if (vd) {
1231 			vdev_rebuild_stop_wait(vd->vdev_top);
1232 		}
1233 	}
1234 
1235 	return (spa_vdev_config_enter(spa));
1236 }
1237 
1238 /*
1239  * Internal implementation for spa_vdev_enter().  Used when a vdev
1240  * operation requires multiple syncs (i.e. removing a device) while
1241  * keeping the spa_namespace_lock held.
1242  */
1243 uint64_t
1244 spa_vdev_config_enter(spa_t *spa)
1245 {
1246 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1247 
1248 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1249 
1250 	return (spa_last_synced_txg(spa) + 1);
1251 }
1252 
1253 /*
1254  * Used in combination with spa_vdev_config_enter() to allow the syncing
1255  * of multiple transactions without releasing the spa_namespace_lock.
1256  */
1257 void
1258 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1259     const char *tag)
1260 {
1261 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1262 
1263 	int config_changed = B_FALSE;
1264 
1265 	ASSERT(txg > spa_last_synced_txg(spa));
1266 
1267 	spa->spa_pending_vdev = NULL;
1268 
1269 	/*
1270 	 * Reassess the DTLs.
1271 	 */
1272 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1273 
1274 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1275 		config_changed = B_TRUE;
1276 		spa->spa_config_generation++;
1277 	}
1278 
1279 	/*
1280 	 * Verify the metaslab classes.
1281 	 */
1282 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1283 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1284 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1285 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1286 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1287 
1288 	spa_config_exit(spa, SCL_ALL, spa);
1289 
1290 	/*
1291 	 * Panic the system if the specified tag requires it.  This
1292 	 * is useful for ensuring that configurations are updated
1293 	 * transactionally.
1294 	 */
1295 	if (zio_injection_enabled)
1296 		zio_handle_panic_injection(spa, tag, 0);
1297 
1298 	/*
1299 	 * Note: this txg_wait_synced() is important because it ensures
1300 	 * that there won't be more than one config change per txg.
1301 	 * This allows us to use the txg as the generation number.
1302 	 */
1303 	if (error == 0)
1304 		txg_wait_synced(spa->spa_dsl_pool, txg);
1305 
1306 	if (vd != NULL) {
1307 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1308 		if (vd->vdev_ops->vdev_op_leaf) {
1309 			mutex_enter(&vd->vdev_initialize_lock);
1310 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1311 			    NULL);
1312 			mutex_exit(&vd->vdev_initialize_lock);
1313 
1314 			mutex_enter(&vd->vdev_trim_lock);
1315 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1316 			mutex_exit(&vd->vdev_trim_lock);
1317 		}
1318 
1319 		/*
1320 		 * The vdev may be both a leaf and top-level device.
1321 		 */
1322 		vdev_autotrim_stop_wait(vd);
1323 
1324 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1325 		vdev_free(vd);
1326 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1327 	}
1328 
1329 	/*
1330 	 * If the config changed, update the config cache.
1331 	 */
1332 	if (config_changed)
1333 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1334 }
1335 
1336 /*
1337  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1338  * locking of spa_vdev_enter(), we also want make sure the transactions have
1339  * synced to disk, and then update the global configuration cache with the new
1340  * information.
1341  */
1342 int
1343 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1344 {
1345 	vdev_autotrim_restart(spa);
1346 	vdev_rebuild_restart(spa);
1347 
1348 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1349 	mutex_exit(&spa_namespace_lock);
1350 	mutex_exit(&spa->spa_vdev_top_lock);
1351 
1352 	return (error);
1353 }
1354 
1355 /*
1356  * Lock the given spa_t for the purpose of changing vdev state.
1357  */
1358 void
1359 spa_vdev_state_enter(spa_t *spa, int oplocks)
1360 {
1361 	int locks = SCL_STATE_ALL | oplocks;
1362 
1363 	/*
1364 	 * Root pools may need to read of the underlying devfs filesystem
1365 	 * when opening up a vdev.  Unfortunately if we're holding the
1366 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1367 	 * the read from the root filesystem.  Instead we "prefetch"
1368 	 * the associated vnodes that we need prior to opening the
1369 	 * underlying devices and cache them so that we can prevent
1370 	 * any I/O when we are doing the actual open.
1371 	 */
1372 	if (spa_is_root(spa)) {
1373 		int low = locks & ~(SCL_ZIO - 1);
1374 		int high = locks & ~low;
1375 
1376 		spa_config_enter(spa, high, spa, RW_WRITER);
1377 		vdev_hold(spa->spa_root_vdev);
1378 		spa_config_enter(spa, low, spa, RW_WRITER);
1379 	} else {
1380 		spa_config_enter(spa, locks, spa, RW_WRITER);
1381 	}
1382 	spa->spa_vdev_locks = locks;
1383 }
1384 
1385 int
1386 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1387 {
1388 	boolean_t config_changed = B_FALSE;
1389 	vdev_t *vdev_top;
1390 
1391 	if (vd == NULL || vd == spa->spa_root_vdev) {
1392 		vdev_top = spa->spa_root_vdev;
1393 	} else {
1394 		vdev_top = vd->vdev_top;
1395 	}
1396 
1397 	if (vd != NULL || error == 0)
1398 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1399 
1400 	if (vd != NULL) {
1401 		if (vd != spa->spa_root_vdev)
1402 			vdev_state_dirty(vdev_top);
1403 
1404 		config_changed = B_TRUE;
1405 		spa->spa_config_generation++;
1406 	}
1407 
1408 	if (spa_is_root(spa))
1409 		vdev_rele(spa->spa_root_vdev);
1410 
1411 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1412 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1413 
1414 	/*
1415 	 * If anything changed, wait for it to sync.  This ensures that,
1416 	 * from the system administrator's perspective, zpool(8) commands
1417 	 * are synchronous.  This is important for things like zpool offline:
1418 	 * when the command completes, you expect no further I/O from ZFS.
1419 	 */
1420 	if (vd != NULL)
1421 		txg_wait_synced(spa->spa_dsl_pool, 0);
1422 
1423 	/*
1424 	 * If the config changed, update the config cache.
1425 	 */
1426 	if (config_changed) {
1427 		mutex_enter(&spa_namespace_lock);
1428 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1429 		mutex_exit(&spa_namespace_lock);
1430 	}
1431 
1432 	return (error);
1433 }
1434 
1435 /*
1436  * ==========================================================================
1437  * Miscellaneous functions
1438  * ==========================================================================
1439  */
1440 
1441 void
1442 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1443 {
1444 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1445 		fnvlist_add_boolean(spa->spa_label_features, feature);
1446 		/*
1447 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1448 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1449 		 * Thankfully, in this case we don't need to dirty the config
1450 		 * because it will be written out anyway when we finish
1451 		 * creating the pool.
1452 		 */
1453 		if (tx->tx_txg != TXG_INITIAL)
1454 			vdev_config_dirty(spa->spa_root_vdev);
1455 	}
1456 }
1457 
1458 void
1459 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1460 {
1461 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1462 		vdev_config_dirty(spa->spa_root_vdev);
1463 }
1464 
1465 /*
1466  * Return the spa_t associated with given pool_guid, if it exists.  If
1467  * device_guid is non-zero, determine whether the pool exists *and* contains
1468  * a device with the specified device_guid.
1469  */
1470 spa_t *
1471 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1472 {
1473 	spa_t *spa;
1474 	avl_tree_t *t = &spa_namespace_avl;
1475 
1476 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1477 
1478 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1479 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1480 			continue;
1481 		if (spa->spa_root_vdev == NULL)
1482 			continue;
1483 		if (spa_guid(spa) == pool_guid) {
1484 			if (device_guid == 0)
1485 				break;
1486 
1487 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1488 			    device_guid) != NULL)
1489 				break;
1490 
1491 			/*
1492 			 * Check any devices we may be in the process of adding.
1493 			 */
1494 			if (spa->spa_pending_vdev) {
1495 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1496 				    device_guid) != NULL)
1497 					break;
1498 			}
1499 		}
1500 	}
1501 
1502 	return (spa);
1503 }
1504 
1505 /*
1506  * Determine whether a pool with the given pool_guid exists.
1507  */
1508 boolean_t
1509 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1510 {
1511 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1512 }
1513 
1514 char *
1515 spa_strdup(const char *s)
1516 {
1517 	size_t len;
1518 	char *new;
1519 
1520 	len = strlen(s);
1521 	new = kmem_alloc(len + 1, KM_SLEEP);
1522 	memcpy(new, s, len + 1);
1523 
1524 	return (new);
1525 }
1526 
1527 void
1528 spa_strfree(char *s)
1529 {
1530 	kmem_free(s, strlen(s) + 1);
1531 }
1532 
1533 uint64_t
1534 spa_generate_guid(spa_t *spa)
1535 {
1536 	uint64_t guid;
1537 
1538 	if (spa != NULL) {
1539 		do {
1540 			(void) random_get_pseudo_bytes((void *)&guid,
1541 			    sizeof (guid));
1542 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1543 	} else {
1544 		do {
1545 			(void) random_get_pseudo_bytes((void *)&guid,
1546 			    sizeof (guid));
1547 		} while (guid == 0 || spa_guid_exists(guid, 0));
1548 	}
1549 
1550 	return (guid);
1551 }
1552 
1553 void
1554 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1555 {
1556 	char type[256];
1557 	const char *checksum = NULL;
1558 	const char *compress = NULL;
1559 
1560 	if (bp != NULL) {
1561 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1562 			dmu_object_byteswap_t bswap =
1563 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1564 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1565 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1566 			    "metadata" : "data",
1567 			    dmu_ot_byteswap[bswap].ob_name);
1568 		} else {
1569 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1570 			    sizeof (type));
1571 		}
1572 		if (!BP_IS_EMBEDDED(bp)) {
1573 			checksum =
1574 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1575 		}
1576 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1577 	}
1578 
1579 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1580 	    compress);
1581 }
1582 
1583 void
1584 spa_freeze(spa_t *spa)
1585 {
1586 	uint64_t freeze_txg = 0;
1587 
1588 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1589 	if (spa->spa_freeze_txg == UINT64_MAX) {
1590 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1591 		spa->spa_freeze_txg = freeze_txg;
1592 	}
1593 	spa_config_exit(spa, SCL_ALL, FTAG);
1594 	if (freeze_txg != 0)
1595 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1596 }
1597 
1598 void
1599 zfs_panic_recover(const char *fmt, ...)
1600 {
1601 	va_list adx;
1602 
1603 	va_start(adx, fmt);
1604 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1605 	va_end(adx);
1606 }
1607 
1608 /*
1609  * This is a stripped-down version of strtoull, suitable only for converting
1610  * lowercase hexadecimal numbers that don't overflow.
1611  */
1612 uint64_t
1613 zfs_strtonum(const char *str, char **nptr)
1614 {
1615 	uint64_t val = 0;
1616 	char c;
1617 	int digit;
1618 
1619 	while ((c = *str) != '\0') {
1620 		if (c >= '0' && c <= '9')
1621 			digit = c - '0';
1622 		else if (c >= 'a' && c <= 'f')
1623 			digit = 10 + c - 'a';
1624 		else
1625 			break;
1626 
1627 		val *= 16;
1628 		val += digit;
1629 
1630 		str++;
1631 	}
1632 
1633 	if (nptr)
1634 		*nptr = (char *)str;
1635 
1636 	return (val);
1637 }
1638 
1639 void
1640 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1641 {
1642 	/*
1643 	 * We bump the feature refcount for each special vdev added to the pool
1644 	 */
1645 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1646 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1647 }
1648 
1649 /*
1650  * ==========================================================================
1651  * Accessor functions
1652  * ==========================================================================
1653  */
1654 
1655 boolean_t
1656 spa_shutting_down(spa_t *spa)
1657 {
1658 	return (spa->spa_async_suspended);
1659 }
1660 
1661 dsl_pool_t *
1662 spa_get_dsl(spa_t *spa)
1663 {
1664 	return (spa->spa_dsl_pool);
1665 }
1666 
1667 boolean_t
1668 spa_is_initializing(spa_t *spa)
1669 {
1670 	return (spa->spa_is_initializing);
1671 }
1672 
1673 boolean_t
1674 spa_indirect_vdevs_loaded(spa_t *spa)
1675 {
1676 	return (spa->spa_indirect_vdevs_loaded);
1677 }
1678 
1679 blkptr_t *
1680 spa_get_rootblkptr(spa_t *spa)
1681 {
1682 	return (&spa->spa_ubsync.ub_rootbp);
1683 }
1684 
1685 void
1686 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1687 {
1688 	spa->spa_uberblock.ub_rootbp = *bp;
1689 }
1690 
1691 void
1692 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1693 {
1694 	if (spa->spa_root == NULL)
1695 		buf[0] = '\0';
1696 	else
1697 		(void) strlcpy(buf, spa->spa_root, buflen);
1698 }
1699 
1700 uint32_t
1701 spa_sync_pass(spa_t *spa)
1702 {
1703 	return (spa->spa_sync_pass);
1704 }
1705 
1706 char *
1707 spa_name(spa_t *spa)
1708 {
1709 	return (spa->spa_name);
1710 }
1711 
1712 uint64_t
1713 spa_guid(spa_t *spa)
1714 {
1715 	dsl_pool_t *dp = spa_get_dsl(spa);
1716 	uint64_t guid;
1717 
1718 	/*
1719 	 * If we fail to parse the config during spa_load(), we can go through
1720 	 * the error path (which posts an ereport) and end up here with no root
1721 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1722 	 * this case.
1723 	 */
1724 	if (spa->spa_root_vdev == NULL)
1725 		return (spa->spa_config_guid);
1726 
1727 	guid = spa->spa_last_synced_guid != 0 ?
1728 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1729 
1730 	/*
1731 	 * Return the most recently synced out guid unless we're
1732 	 * in syncing context.
1733 	 */
1734 	if (dp && dsl_pool_sync_context(dp))
1735 		return (spa->spa_root_vdev->vdev_guid);
1736 	else
1737 		return (guid);
1738 }
1739 
1740 uint64_t
1741 spa_load_guid(spa_t *spa)
1742 {
1743 	/*
1744 	 * This is a GUID that exists solely as a reference for the
1745 	 * purposes of the arc.  It is generated at load time, and
1746 	 * is never written to persistent storage.
1747 	 */
1748 	return (spa->spa_load_guid);
1749 }
1750 
1751 uint64_t
1752 spa_last_synced_txg(spa_t *spa)
1753 {
1754 	return (spa->spa_ubsync.ub_txg);
1755 }
1756 
1757 uint64_t
1758 spa_first_txg(spa_t *spa)
1759 {
1760 	return (spa->spa_first_txg);
1761 }
1762 
1763 uint64_t
1764 spa_syncing_txg(spa_t *spa)
1765 {
1766 	return (spa->spa_syncing_txg);
1767 }
1768 
1769 /*
1770  * Return the last txg where data can be dirtied. The final txgs
1771  * will be used to just clear out any deferred frees that remain.
1772  */
1773 uint64_t
1774 spa_final_dirty_txg(spa_t *spa)
1775 {
1776 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1777 }
1778 
1779 pool_state_t
1780 spa_state(spa_t *spa)
1781 {
1782 	return (spa->spa_state);
1783 }
1784 
1785 spa_load_state_t
1786 spa_load_state(spa_t *spa)
1787 {
1788 	return (spa->spa_load_state);
1789 }
1790 
1791 uint64_t
1792 spa_freeze_txg(spa_t *spa)
1793 {
1794 	return (spa->spa_freeze_txg);
1795 }
1796 
1797 /*
1798  * Return the inflated asize for a logical write in bytes. This is used by the
1799  * DMU to calculate the space a logical write will require on disk.
1800  * If lsize is smaller than the largest physical block size allocatable on this
1801  * pool we use its value instead, since the write will end up using the whole
1802  * block anyway.
1803  */
1804 uint64_t
1805 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1806 {
1807 	if (lsize == 0)
1808 		return (0);	/* No inflation needed */
1809 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1810 }
1811 
1812 /*
1813  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1814  * (3.2%), minus the embedded log space.  On very small pools, it may be
1815  * slightly larger than this.  On very large pools, it will be capped to
1816  * the value of spa_max_slop.  The embedded log space is not included in
1817  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1818  * constant 97% of the total space, regardless of metaslab size (assuming the
1819  * default spa_slop_shift=5 and a non-tiny pool).
1820  *
1821  * See the comment above spa_slop_shift for more details.
1822  */
1823 uint64_t
1824 spa_get_slop_space(spa_t *spa)
1825 {
1826 	uint64_t space = 0;
1827 	uint64_t slop = 0;
1828 
1829 	/*
1830 	 * Make sure spa_dedup_dspace has been set.
1831 	 */
1832 	if (spa->spa_dedup_dspace == ~0ULL)
1833 		spa_update_dspace(spa);
1834 
1835 	/*
1836 	 * spa_get_dspace() includes the space only logically "used" by
1837 	 * deduplicated data, so since it's not useful to reserve more
1838 	 * space with more deduplicated data, we subtract that out here.
1839 	 */
1840 	space =
1841 	    spa_get_dspace(spa) - spa->spa_dedup_dspace - brt_get_dspace(spa);
1842 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1843 
1844 	/*
1845 	 * Subtract the embedded log space, but no more than half the (3.2%)
1846 	 * unusable space.  Note, the "no more than half" is only relevant if
1847 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1848 	 * default.
1849 	 */
1850 	uint64_t embedded_log =
1851 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1852 	slop -= MIN(embedded_log, slop >> 1);
1853 
1854 	/*
1855 	 * Slop space should be at least spa_min_slop, but no more than half
1856 	 * the entire pool.
1857 	 */
1858 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1859 	return (slop);
1860 }
1861 
1862 uint64_t
1863 spa_get_dspace(spa_t *spa)
1864 {
1865 	return (spa->spa_dspace);
1866 }
1867 
1868 uint64_t
1869 spa_get_checkpoint_space(spa_t *spa)
1870 {
1871 	return (spa->spa_checkpoint_info.sci_dspace);
1872 }
1873 
1874 void
1875 spa_update_dspace(spa_t *spa)
1876 {
1877 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1878 	    ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1879 	if (spa->spa_nonallocating_dspace > 0) {
1880 		/*
1881 		 * Subtract the space provided by all non-allocating vdevs that
1882 		 * contribute to dspace.  If a file is overwritten, its old
1883 		 * blocks are freed and new blocks are allocated.  If there are
1884 		 * no snapshots of the file, the available space should remain
1885 		 * the same.  The old blocks could be freed from the
1886 		 * non-allocating vdev, but the new blocks must be allocated on
1887 		 * other (allocating) vdevs.  By reserving the entire size of
1888 		 * the non-allocating vdevs (including allocated space), we
1889 		 * ensure that there will be enough space on the allocating
1890 		 * vdevs for this file overwrite to succeed.
1891 		 *
1892 		 * Note that the DMU/DSL doesn't actually know or care
1893 		 * how much space is allocated (it does its own tracking
1894 		 * of how much space has been logically used).  So it
1895 		 * doesn't matter that the data we are moving may be
1896 		 * allocated twice (on the old device and the new device).
1897 		 */
1898 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1899 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1900 	}
1901 }
1902 
1903 /*
1904  * Return the failure mode that has been set to this pool. The default
1905  * behavior will be to block all I/Os when a complete failure occurs.
1906  */
1907 uint64_t
1908 spa_get_failmode(spa_t *spa)
1909 {
1910 	return (spa->spa_failmode);
1911 }
1912 
1913 boolean_t
1914 spa_suspended(spa_t *spa)
1915 {
1916 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1917 }
1918 
1919 uint64_t
1920 spa_version(spa_t *spa)
1921 {
1922 	return (spa->spa_ubsync.ub_version);
1923 }
1924 
1925 boolean_t
1926 spa_deflate(spa_t *spa)
1927 {
1928 	return (spa->spa_deflate);
1929 }
1930 
1931 metaslab_class_t *
1932 spa_normal_class(spa_t *spa)
1933 {
1934 	return (spa->spa_normal_class);
1935 }
1936 
1937 metaslab_class_t *
1938 spa_log_class(spa_t *spa)
1939 {
1940 	return (spa->spa_log_class);
1941 }
1942 
1943 metaslab_class_t *
1944 spa_embedded_log_class(spa_t *spa)
1945 {
1946 	return (spa->spa_embedded_log_class);
1947 }
1948 
1949 metaslab_class_t *
1950 spa_special_class(spa_t *spa)
1951 {
1952 	return (spa->spa_special_class);
1953 }
1954 
1955 metaslab_class_t *
1956 spa_dedup_class(spa_t *spa)
1957 {
1958 	return (spa->spa_dedup_class);
1959 }
1960 
1961 /*
1962  * Locate an appropriate allocation class
1963  */
1964 metaslab_class_t *
1965 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1966     uint_t level, uint_t special_smallblk)
1967 {
1968 	/*
1969 	 * ZIL allocations determine their class in zio_alloc_zil().
1970 	 */
1971 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1972 
1973 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1974 
1975 	if (DMU_OT_IS_DDT(objtype)) {
1976 		if (spa->spa_dedup_class->mc_groups != 0)
1977 			return (spa_dedup_class(spa));
1978 		else if (has_special_class && zfs_ddt_data_is_special)
1979 			return (spa_special_class(spa));
1980 		else
1981 			return (spa_normal_class(spa));
1982 	}
1983 
1984 	/* Indirect blocks for user data can land in special if allowed */
1985 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1986 		if (has_special_class && zfs_user_indirect_is_special)
1987 			return (spa_special_class(spa));
1988 		else
1989 			return (spa_normal_class(spa));
1990 	}
1991 
1992 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1993 		if (has_special_class)
1994 			return (spa_special_class(spa));
1995 		else
1996 			return (spa_normal_class(spa));
1997 	}
1998 
1999 	/*
2000 	 * Allow small file blocks in special class in some cases (like
2001 	 * for the dRAID vdev feature). But always leave a reserve of
2002 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2003 	 */
2004 	if (DMU_OT_IS_FILE(objtype) &&
2005 	    has_special_class && size <= special_smallblk) {
2006 		metaslab_class_t *special = spa_special_class(spa);
2007 		uint64_t alloc = metaslab_class_get_alloc(special);
2008 		uint64_t space = metaslab_class_get_space(special);
2009 		uint64_t limit =
2010 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2011 		    / 100;
2012 
2013 		if (alloc < limit)
2014 			return (special);
2015 	}
2016 
2017 	return (spa_normal_class(spa));
2018 }
2019 
2020 void
2021 spa_evicting_os_register(spa_t *spa, objset_t *os)
2022 {
2023 	mutex_enter(&spa->spa_evicting_os_lock);
2024 	list_insert_head(&spa->spa_evicting_os_list, os);
2025 	mutex_exit(&spa->spa_evicting_os_lock);
2026 }
2027 
2028 void
2029 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2030 {
2031 	mutex_enter(&spa->spa_evicting_os_lock);
2032 	list_remove(&spa->spa_evicting_os_list, os);
2033 	cv_broadcast(&spa->spa_evicting_os_cv);
2034 	mutex_exit(&spa->spa_evicting_os_lock);
2035 }
2036 
2037 void
2038 spa_evicting_os_wait(spa_t *spa)
2039 {
2040 	mutex_enter(&spa->spa_evicting_os_lock);
2041 	while (!list_is_empty(&spa->spa_evicting_os_list))
2042 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2043 	mutex_exit(&spa->spa_evicting_os_lock);
2044 
2045 	dmu_buf_user_evict_wait();
2046 }
2047 
2048 int
2049 spa_max_replication(spa_t *spa)
2050 {
2051 	/*
2052 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2053 	 * handle BPs with more than one DVA allocated.  Set our max
2054 	 * replication level accordingly.
2055 	 */
2056 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2057 		return (1);
2058 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2059 }
2060 
2061 int
2062 spa_prev_software_version(spa_t *spa)
2063 {
2064 	return (spa->spa_prev_software_version);
2065 }
2066 
2067 uint64_t
2068 spa_deadman_synctime(spa_t *spa)
2069 {
2070 	return (spa->spa_deadman_synctime);
2071 }
2072 
2073 spa_autotrim_t
2074 spa_get_autotrim(spa_t *spa)
2075 {
2076 	return (spa->spa_autotrim);
2077 }
2078 
2079 uint64_t
2080 spa_deadman_ziotime(spa_t *spa)
2081 {
2082 	return (spa->spa_deadman_ziotime);
2083 }
2084 
2085 uint64_t
2086 spa_get_deadman_failmode(spa_t *spa)
2087 {
2088 	return (spa->spa_deadman_failmode);
2089 }
2090 
2091 void
2092 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2093 {
2094 	if (strcmp(failmode, "wait") == 0)
2095 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2096 	else if (strcmp(failmode, "continue") == 0)
2097 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2098 	else if (strcmp(failmode, "panic") == 0)
2099 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2100 	else
2101 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2102 }
2103 
2104 void
2105 spa_set_deadman_ziotime(hrtime_t ns)
2106 {
2107 	spa_t *spa = NULL;
2108 
2109 	if (spa_mode_global != SPA_MODE_UNINIT) {
2110 		mutex_enter(&spa_namespace_lock);
2111 		while ((spa = spa_next(spa)) != NULL)
2112 			spa->spa_deadman_ziotime = ns;
2113 		mutex_exit(&spa_namespace_lock);
2114 	}
2115 }
2116 
2117 void
2118 spa_set_deadman_synctime(hrtime_t ns)
2119 {
2120 	spa_t *spa = NULL;
2121 
2122 	if (spa_mode_global != SPA_MODE_UNINIT) {
2123 		mutex_enter(&spa_namespace_lock);
2124 		while ((spa = spa_next(spa)) != NULL)
2125 			spa->spa_deadman_synctime = ns;
2126 		mutex_exit(&spa_namespace_lock);
2127 	}
2128 }
2129 
2130 uint64_t
2131 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2132 {
2133 	uint64_t asize = DVA_GET_ASIZE(dva);
2134 	uint64_t dsize = asize;
2135 
2136 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2137 
2138 	if (asize != 0 && spa->spa_deflate) {
2139 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2140 		if (vd != NULL)
2141 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2142 			    vd->vdev_deflate_ratio;
2143 	}
2144 
2145 	return (dsize);
2146 }
2147 
2148 uint64_t
2149 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2150 {
2151 	uint64_t dsize = 0;
2152 
2153 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2154 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2155 
2156 	return (dsize);
2157 }
2158 
2159 uint64_t
2160 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2161 {
2162 	uint64_t dsize = 0;
2163 
2164 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2165 
2166 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2167 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2168 
2169 	spa_config_exit(spa, SCL_VDEV, FTAG);
2170 
2171 	return (dsize);
2172 }
2173 
2174 uint64_t
2175 spa_dirty_data(spa_t *spa)
2176 {
2177 	return (spa->spa_dsl_pool->dp_dirty_total);
2178 }
2179 
2180 /*
2181  * ==========================================================================
2182  * SPA Import Progress Routines
2183  * ==========================================================================
2184  */
2185 
2186 typedef struct spa_import_progress {
2187 	uint64_t		pool_guid;	/* unique id for updates */
2188 	char			*pool_name;
2189 	spa_load_state_t	spa_load_state;
2190 	char			*spa_load_notes;
2191 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2192 	uint64_t		spa_load_max_txg;	/* rewind txg */
2193 	procfs_list_node_t	smh_node;
2194 } spa_import_progress_t;
2195 
2196 spa_history_list_t *spa_import_progress_list = NULL;
2197 
2198 static int
2199 spa_import_progress_show_header(struct seq_file *f)
2200 {
2201 	seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2202 	    "load_state", "multihost_secs", "max_txg",
2203 	    "pool_name", "notes");
2204 	return (0);
2205 }
2206 
2207 static int
2208 spa_import_progress_show(struct seq_file *f, void *data)
2209 {
2210 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2211 
2212 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2213 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2214 	    (u_longlong_t)sip->mmp_sec_remaining,
2215 	    (u_longlong_t)sip->spa_load_max_txg,
2216 	    (sip->pool_name ? sip->pool_name : "-"),
2217 	    (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2218 
2219 	return (0);
2220 }
2221 
2222 /* Remove oldest elements from list until there are no more than 'size' left */
2223 static void
2224 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2225 {
2226 	spa_import_progress_t *sip;
2227 	while (shl->size > size) {
2228 		sip = list_remove_head(&shl->procfs_list.pl_list);
2229 		if (sip->pool_name)
2230 			spa_strfree(sip->pool_name);
2231 		if (sip->spa_load_notes)
2232 			kmem_strfree(sip->spa_load_notes);
2233 		kmem_free(sip, sizeof (spa_import_progress_t));
2234 		shl->size--;
2235 	}
2236 
2237 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2238 }
2239 
2240 static void
2241 spa_import_progress_init(void)
2242 {
2243 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2244 	    KM_SLEEP);
2245 
2246 	spa_import_progress_list->size = 0;
2247 
2248 	spa_import_progress_list->procfs_list.pl_private =
2249 	    spa_import_progress_list;
2250 
2251 	procfs_list_install("zfs",
2252 	    NULL,
2253 	    "import_progress",
2254 	    0644,
2255 	    &spa_import_progress_list->procfs_list,
2256 	    spa_import_progress_show,
2257 	    spa_import_progress_show_header,
2258 	    NULL,
2259 	    offsetof(spa_import_progress_t, smh_node));
2260 }
2261 
2262 static void
2263 spa_import_progress_destroy(void)
2264 {
2265 	spa_history_list_t *shl = spa_import_progress_list;
2266 	procfs_list_uninstall(&shl->procfs_list);
2267 	spa_import_progress_truncate(shl, 0);
2268 	procfs_list_destroy(&shl->procfs_list);
2269 	kmem_free(shl, sizeof (spa_history_list_t));
2270 }
2271 
2272 int
2273 spa_import_progress_set_state(uint64_t pool_guid,
2274     spa_load_state_t load_state)
2275 {
2276 	spa_history_list_t *shl = spa_import_progress_list;
2277 	spa_import_progress_t *sip;
2278 	int error = ENOENT;
2279 
2280 	if (shl->size == 0)
2281 		return (0);
2282 
2283 	mutex_enter(&shl->procfs_list.pl_lock);
2284 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2285 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2286 		if (sip->pool_guid == pool_guid) {
2287 			sip->spa_load_state = load_state;
2288 			if (sip->spa_load_notes != NULL) {
2289 				kmem_strfree(sip->spa_load_notes);
2290 				sip->spa_load_notes = NULL;
2291 			}
2292 			error = 0;
2293 			break;
2294 		}
2295 	}
2296 	mutex_exit(&shl->procfs_list.pl_lock);
2297 
2298 	return (error);
2299 }
2300 
2301 static void
2302 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2303     const char *fmt, va_list adx)
2304 {
2305 	spa_history_list_t *shl = spa_import_progress_list;
2306 	spa_import_progress_t *sip;
2307 	uint64_t pool_guid = spa_guid(spa);
2308 
2309 	if (shl->size == 0)
2310 		return;
2311 
2312 	char *notes = kmem_vasprintf(fmt, adx);
2313 
2314 	mutex_enter(&shl->procfs_list.pl_lock);
2315 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2316 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2317 		if (sip->pool_guid == pool_guid) {
2318 			if (sip->spa_load_notes != NULL) {
2319 				kmem_strfree(sip->spa_load_notes);
2320 				sip->spa_load_notes = NULL;
2321 			}
2322 			sip->spa_load_notes = notes;
2323 			if (log_dbgmsg)
2324 				zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2325 			notes = NULL;
2326 			break;
2327 		}
2328 	}
2329 	mutex_exit(&shl->procfs_list.pl_lock);
2330 	if (notes != NULL)
2331 		kmem_strfree(notes);
2332 }
2333 
2334 void
2335 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2336 {
2337 	va_list adx;
2338 
2339 	va_start(adx, fmt);
2340 	spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2341 	va_end(adx);
2342 }
2343 
2344 void
2345 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2346 {
2347 	va_list adx;
2348 
2349 	va_start(adx, fmt);
2350 	spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2351 	va_end(adx);
2352 }
2353 
2354 int
2355 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2356 {
2357 	spa_history_list_t *shl = spa_import_progress_list;
2358 	spa_import_progress_t *sip;
2359 	int error = ENOENT;
2360 
2361 	if (shl->size == 0)
2362 		return (0);
2363 
2364 	mutex_enter(&shl->procfs_list.pl_lock);
2365 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2366 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2367 		if (sip->pool_guid == pool_guid) {
2368 			sip->spa_load_max_txg = load_max_txg;
2369 			error = 0;
2370 			break;
2371 		}
2372 	}
2373 	mutex_exit(&shl->procfs_list.pl_lock);
2374 
2375 	return (error);
2376 }
2377 
2378 int
2379 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2380     uint64_t mmp_sec_remaining)
2381 {
2382 	spa_history_list_t *shl = spa_import_progress_list;
2383 	spa_import_progress_t *sip;
2384 	int error = ENOENT;
2385 
2386 	if (shl->size == 0)
2387 		return (0);
2388 
2389 	mutex_enter(&shl->procfs_list.pl_lock);
2390 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2391 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2392 		if (sip->pool_guid == pool_guid) {
2393 			sip->mmp_sec_remaining = mmp_sec_remaining;
2394 			error = 0;
2395 			break;
2396 		}
2397 	}
2398 	mutex_exit(&shl->procfs_list.pl_lock);
2399 
2400 	return (error);
2401 }
2402 
2403 /*
2404  * A new import is in progress, add an entry.
2405  */
2406 void
2407 spa_import_progress_add(spa_t *spa)
2408 {
2409 	spa_history_list_t *shl = spa_import_progress_list;
2410 	spa_import_progress_t *sip;
2411 	const char *poolname = NULL;
2412 
2413 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2414 	sip->pool_guid = spa_guid(spa);
2415 
2416 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2417 	    &poolname);
2418 	if (poolname == NULL)
2419 		poolname = spa_name(spa);
2420 	sip->pool_name = spa_strdup(poolname);
2421 	sip->spa_load_state = spa_load_state(spa);
2422 	sip->spa_load_notes = NULL;
2423 
2424 	mutex_enter(&shl->procfs_list.pl_lock);
2425 	procfs_list_add(&shl->procfs_list, sip);
2426 	shl->size++;
2427 	mutex_exit(&shl->procfs_list.pl_lock);
2428 }
2429 
2430 void
2431 spa_import_progress_remove(uint64_t pool_guid)
2432 {
2433 	spa_history_list_t *shl = spa_import_progress_list;
2434 	spa_import_progress_t *sip;
2435 
2436 	mutex_enter(&shl->procfs_list.pl_lock);
2437 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2438 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2439 		if (sip->pool_guid == pool_guid) {
2440 			if (sip->pool_name)
2441 				spa_strfree(sip->pool_name);
2442 			if (sip->spa_load_notes)
2443 				spa_strfree(sip->spa_load_notes);
2444 			list_remove(&shl->procfs_list.pl_list, sip);
2445 			shl->size--;
2446 			kmem_free(sip, sizeof (spa_import_progress_t));
2447 			break;
2448 		}
2449 	}
2450 	mutex_exit(&shl->procfs_list.pl_lock);
2451 }
2452 
2453 /*
2454  * ==========================================================================
2455  * Initialization and Termination
2456  * ==========================================================================
2457  */
2458 
2459 static int
2460 spa_name_compare(const void *a1, const void *a2)
2461 {
2462 	const spa_t *s1 = a1;
2463 	const spa_t *s2 = a2;
2464 	int s;
2465 
2466 	s = strcmp(s1->spa_name, s2->spa_name);
2467 
2468 	return (TREE_ISIGN(s));
2469 }
2470 
2471 void
2472 spa_boot_init(void)
2473 {
2474 	spa_config_load();
2475 }
2476 
2477 void
2478 spa_init(spa_mode_t mode)
2479 {
2480 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2481 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2482 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2483 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2484 
2485 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2486 	    offsetof(spa_t, spa_avl));
2487 
2488 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2489 	    offsetof(spa_aux_t, aux_avl));
2490 
2491 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2492 	    offsetof(spa_aux_t, aux_avl));
2493 
2494 	spa_mode_global = mode;
2495 
2496 #ifndef _KERNEL
2497 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2498 		struct sigaction sa;
2499 
2500 		sa.sa_flags = SA_SIGINFO;
2501 		sigemptyset(&sa.sa_mask);
2502 		sa.sa_sigaction = arc_buf_sigsegv;
2503 
2504 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2505 			perror("could not enable watchpoints: "
2506 			    "sigaction(SIGSEGV, ...) = ");
2507 		} else {
2508 			arc_watch = B_TRUE;
2509 		}
2510 	}
2511 #endif
2512 
2513 	fm_init();
2514 	zfs_refcount_init();
2515 	unique_init();
2516 	zfs_btree_init();
2517 	metaslab_stat_init();
2518 	brt_init();
2519 	ddt_init();
2520 	zio_init();
2521 	dmu_init();
2522 	zil_init();
2523 	vdev_mirror_stat_init();
2524 	vdev_raidz_math_init();
2525 	vdev_file_init();
2526 	zfs_prop_init();
2527 	chksum_init();
2528 	zpool_prop_init();
2529 	zpool_feature_init();
2530 	spa_config_load();
2531 	vdev_prop_init();
2532 	l2arc_start();
2533 	scan_init();
2534 	qat_init();
2535 	spa_import_progress_init();
2536 }
2537 
2538 void
2539 spa_fini(void)
2540 {
2541 	l2arc_stop();
2542 
2543 	spa_evict_all();
2544 
2545 	vdev_file_fini();
2546 	vdev_mirror_stat_fini();
2547 	vdev_raidz_math_fini();
2548 	chksum_fini();
2549 	zil_fini();
2550 	dmu_fini();
2551 	zio_fini();
2552 	ddt_fini();
2553 	brt_fini();
2554 	metaslab_stat_fini();
2555 	zfs_btree_fini();
2556 	unique_fini();
2557 	zfs_refcount_fini();
2558 	fm_fini();
2559 	scan_fini();
2560 	qat_fini();
2561 	spa_import_progress_destroy();
2562 
2563 	avl_destroy(&spa_namespace_avl);
2564 	avl_destroy(&spa_spare_avl);
2565 	avl_destroy(&spa_l2cache_avl);
2566 
2567 	cv_destroy(&spa_namespace_cv);
2568 	mutex_destroy(&spa_namespace_lock);
2569 	mutex_destroy(&spa_spare_lock);
2570 	mutex_destroy(&spa_l2cache_lock);
2571 }
2572 
2573 /*
2574  * Return whether this pool has a dedicated slog device. No locking needed.
2575  * It's not a problem if the wrong answer is returned as it's only for
2576  * performance and not correctness.
2577  */
2578 boolean_t
2579 spa_has_slogs(spa_t *spa)
2580 {
2581 	return (spa->spa_log_class->mc_groups != 0);
2582 }
2583 
2584 spa_log_state_t
2585 spa_get_log_state(spa_t *spa)
2586 {
2587 	return (spa->spa_log_state);
2588 }
2589 
2590 void
2591 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2592 {
2593 	spa->spa_log_state = state;
2594 }
2595 
2596 boolean_t
2597 spa_is_root(spa_t *spa)
2598 {
2599 	return (spa->spa_is_root);
2600 }
2601 
2602 boolean_t
2603 spa_writeable(spa_t *spa)
2604 {
2605 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2606 }
2607 
2608 /*
2609  * Returns true if there is a pending sync task in any of the current
2610  * syncing txg, the current quiescing txg, or the current open txg.
2611  */
2612 boolean_t
2613 spa_has_pending_synctask(spa_t *spa)
2614 {
2615 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2616 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2617 }
2618 
2619 spa_mode_t
2620 spa_mode(spa_t *spa)
2621 {
2622 	return (spa->spa_mode);
2623 }
2624 
2625 uint64_t
2626 spa_bootfs(spa_t *spa)
2627 {
2628 	return (spa->spa_bootfs);
2629 }
2630 
2631 uint64_t
2632 spa_delegation(spa_t *spa)
2633 {
2634 	return (spa->spa_delegation);
2635 }
2636 
2637 objset_t *
2638 spa_meta_objset(spa_t *spa)
2639 {
2640 	return (spa->spa_meta_objset);
2641 }
2642 
2643 enum zio_checksum
2644 spa_dedup_checksum(spa_t *spa)
2645 {
2646 	return (spa->spa_dedup_checksum);
2647 }
2648 
2649 /*
2650  * Reset pool scan stat per scan pass (or reboot).
2651  */
2652 void
2653 spa_scan_stat_init(spa_t *spa)
2654 {
2655 	/* data not stored on disk */
2656 	spa->spa_scan_pass_start = gethrestime_sec();
2657 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2658 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2659 	else
2660 		spa->spa_scan_pass_scrub_pause = 0;
2661 
2662 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2663 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2664 	else
2665 		spa->spa_scan_pass_errorscrub_pause = 0;
2666 
2667 	spa->spa_scan_pass_scrub_spent_paused = 0;
2668 	spa->spa_scan_pass_exam = 0;
2669 	spa->spa_scan_pass_issued = 0;
2670 
2671 	// error scrub stats
2672 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2673 }
2674 
2675 /*
2676  * Get scan stats for zpool status reports
2677  */
2678 int
2679 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2680 {
2681 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2682 
2683 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2684 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2685 		return (SET_ERROR(ENOENT));
2686 
2687 	memset(ps, 0, sizeof (pool_scan_stat_t));
2688 
2689 	/* data stored on disk */
2690 	ps->pss_func = scn->scn_phys.scn_func;
2691 	ps->pss_state = scn->scn_phys.scn_state;
2692 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2693 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2694 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2695 	ps->pss_examined = scn->scn_phys.scn_examined;
2696 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2697 	ps->pss_processed = scn->scn_phys.scn_processed;
2698 	ps->pss_errors = scn->scn_phys.scn_errors;
2699 
2700 	/* data not stored on disk */
2701 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2702 	ps->pss_pass_start = spa->spa_scan_pass_start;
2703 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2704 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2705 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2706 	ps->pss_issued =
2707 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2708 
2709 	/* error scrub data stored on disk */
2710 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2711 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2712 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2713 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2714 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2715 	ps->pss_error_scrub_to_be_examined =
2716 	    scn->errorscrub_phys.dep_to_examine;
2717 
2718 	/* error scrub data not stored on disk */
2719 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2720 
2721 	return (0);
2722 }
2723 
2724 int
2725 spa_maxblocksize(spa_t *spa)
2726 {
2727 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2728 		return (SPA_MAXBLOCKSIZE);
2729 	else
2730 		return (SPA_OLD_MAXBLOCKSIZE);
2731 }
2732 
2733 
2734 /*
2735  * Returns the txg that the last device removal completed. No indirect mappings
2736  * have been added since this txg.
2737  */
2738 uint64_t
2739 spa_get_last_removal_txg(spa_t *spa)
2740 {
2741 	uint64_t vdevid;
2742 	uint64_t ret = -1ULL;
2743 
2744 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2745 	/*
2746 	 * sr_prev_indirect_vdev is only modified while holding all the
2747 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2748 	 * examining it.
2749 	 */
2750 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2751 
2752 	while (vdevid != -1ULL) {
2753 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2754 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2755 
2756 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2757 
2758 		/*
2759 		 * If the removal did not remap any data, we don't care.
2760 		 */
2761 		if (vdev_indirect_births_count(vib) != 0) {
2762 			ret = vdev_indirect_births_last_entry_txg(vib);
2763 			break;
2764 		}
2765 
2766 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2767 	}
2768 	spa_config_exit(spa, SCL_VDEV, FTAG);
2769 
2770 	IMPLY(ret != -1ULL,
2771 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2772 
2773 	return (ret);
2774 }
2775 
2776 int
2777 spa_maxdnodesize(spa_t *spa)
2778 {
2779 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2780 		return (DNODE_MAX_SIZE);
2781 	else
2782 		return (DNODE_MIN_SIZE);
2783 }
2784 
2785 boolean_t
2786 spa_multihost(spa_t *spa)
2787 {
2788 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2789 }
2790 
2791 uint32_t
2792 spa_get_hostid(spa_t *spa)
2793 {
2794 	return (spa->spa_hostid);
2795 }
2796 
2797 boolean_t
2798 spa_trust_config(spa_t *spa)
2799 {
2800 	return (spa->spa_trust_config);
2801 }
2802 
2803 uint64_t
2804 spa_missing_tvds_allowed(spa_t *spa)
2805 {
2806 	return (spa->spa_missing_tvds_allowed);
2807 }
2808 
2809 space_map_t *
2810 spa_syncing_log_sm(spa_t *spa)
2811 {
2812 	return (spa->spa_syncing_log_sm);
2813 }
2814 
2815 void
2816 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2817 {
2818 	spa->spa_missing_tvds = missing;
2819 }
2820 
2821 /*
2822  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2823  */
2824 const char *
2825 spa_state_to_name(spa_t *spa)
2826 {
2827 	ASSERT3P(spa, !=, NULL);
2828 
2829 	/*
2830 	 * it is possible for the spa to exist, without root vdev
2831 	 * as the spa transitions during import/export
2832 	 */
2833 	vdev_t *rvd = spa->spa_root_vdev;
2834 	if (rvd == NULL) {
2835 		return ("TRANSITIONING");
2836 	}
2837 	vdev_state_t state = rvd->vdev_state;
2838 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2839 
2840 	if (spa_suspended(spa))
2841 		return ("SUSPENDED");
2842 
2843 	switch (state) {
2844 	case VDEV_STATE_CLOSED:
2845 	case VDEV_STATE_OFFLINE:
2846 		return ("OFFLINE");
2847 	case VDEV_STATE_REMOVED:
2848 		return ("REMOVED");
2849 	case VDEV_STATE_CANT_OPEN:
2850 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2851 			return ("FAULTED");
2852 		else if (aux == VDEV_AUX_SPLIT_POOL)
2853 			return ("SPLIT");
2854 		else
2855 			return ("UNAVAIL");
2856 	case VDEV_STATE_FAULTED:
2857 		return ("FAULTED");
2858 	case VDEV_STATE_DEGRADED:
2859 		return ("DEGRADED");
2860 	case VDEV_STATE_HEALTHY:
2861 		return ("ONLINE");
2862 	default:
2863 		break;
2864 	}
2865 
2866 	return ("UNKNOWN");
2867 }
2868 
2869 boolean_t
2870 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2871 {
2872 	vdev_t *rvd = spa->spa_root_vdev;
2873 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2874 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2875 			return (B_FALSE);
2876 	}
2877 	return (B_TRUE);
2878 }
2879 
2880 boolean_t
2881 spa_has_checkpoint(spa_t *spa)
2882 {
2883 	return (spa->spa_checkpoint_txg != 0);
2884 }
2885 
2886 boolean_t
2887 spa_importing_readonly_checkpoint(spa_t *spa)
2888 {
2889 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2890 	    spa->spa_mode == SPA_MODE_READ);
2891 }
2892 
2893 uint64_t
2894 spa_min_claim_txg(spa_t *spa)
2895 {
2896 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2897 
2898 	if (checkpoint_txg != 0)
2899 		return (checkpoint_txg + 1);
2900 
2901 	return (spa->spa_first_txg);
2902 }
2903 
2904 /*
2905  * If there is a checkpoint, async destroys may consume more space from
2906  * the pool instead of freeing it. In an attempt to save the pool from
2907  * getting suspended when it is about to run out of space, we stop
2908  * processing async destroys.
2909  */
2910 boolean_t
2911 spa_suspend_async_destroy(spa_t *spa)
2912 {
2913 	dsl_pool_t *dp = spa_get_dsl(spa);
2914 
2915 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2916 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2917 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2918 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2919 
2920 	if (spa_has_checkpoint(spa) && avail == 0)
2921 		return (B_TRUE);
2922 
2923 	return (B_FALSE);
2924 }
2925 
2926 #if defined(_KERNEL)
2927 
2928 int
2929 param_set_deadman_failmode_common(const char *val)
2930 {
2931 	spa_t *spa = NULL;
2932 	char *p;
2933 
2934 	if (val == NULL)
2935 		return (SET_ERROR(EINVAL));
2936 
2937 	if ((p = strchr(val, '\n')) != NULL)
2938 		*p = '\0';
2939 
2940 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2941 	    strcmp(val, "panic"))
2942 		return (SET_ERROR(EINVAL));
2943 
2944 	if (spa_mode_global != SPA_MODE_UNINIT) {
2945 		mutex_enter(&spa_namespace_lock);
2946 		while ((spa = spa_next(spa)) != NULL)
2947 			spa_set_deadman_failmode(spa, val);
2948 		mutex_exit(&spa_namespace_lock);
2949 	}
2950 
2951 	return (0);
2952 }
2953 #endif
2954 
2955 /* Namespace manipulation */
2956 EXPORT_SYMBOL(spa_lookup);
2957 EXPORT_SYMBOL(spa_add);
2958 EXPORT_SYMBOL(spa_remove);
2959 EXPORT_SYMBOL(spa_next);
2960 
2961 /* Refcount functions */
2962 EXPORT_SYMBOL(spa_open_ref);
2963 EXPORT_SYMBOL(spa_close);
2964 EXPORT_SYMBOL(spa_refcount_zero);
2965 
2966 /* Pool configuration lock */
2967 EXPORT_SYMBOL(spa_config_tryenter);
2968 EXPORT_SYMBOL(spa_config_enter);
2969 EXPORT_SYMBOL(spa_config_exit);
2970 EXPORT_SYMBOL(spa_config_held);
2971 
2972 /* Pool vdev add/remove lock */
2973 EXPORT_SYMBOL(spa_vdev_enter);
2974 EXPORT_SYMBOL(spa_vdev_exit);
2975 
2976 /* Pool vdev state change lock */
2977 EXPORT_SYMBOL(spa_vdev_state_enter);
2978 EXPORT_SYMBOL(spa_vdev_state_exit);
2979 
2980 /* Accessor functions */
2981 EXPORT_SYMBOL(spa_shutting_down);
2982 EXPORT_SYMBOL(spa_get_dsl);
2983 EXPORT_SYMBOL(spa_get_rootblkptr);
2984 EXPORT_SYMBOL(spa_set_rootblkptr);
2985 EXPORT_SYMBOL(spa_altroot);
2986 EXPORT_SYMBOL(spa_sync_pass);
2987 EXPORT_SYMBOL(spa_name);
2988 EXPORT_SYMBOL(spa_guid);
2989 EXPORT_SYMBOL(spa_last_synced_txg);
2990 EXPORT_SYMBOL(spa_first_txg);
2991 EXPORT_SYMBOL(spa_syncing_txg);
2992 EXPORT_SYMBOL(spa_version);
2993 EXPORT_SYMBOL(spa_state);
2994 EXPORT_SYMBOL(spa_load_state);
2995 EXPORT_SYMBOL(spa_freeze_txg);
2996 EXPORT_SYMBOL(spa_get_dspace);
2997 EXPORT_SYMBOL(spa_update_dspace);
2998 EXPORT_SYMBOL(spa_deflate);
2999 EXPORT_SYMBOL(spa_normal_class);
3000 EXPORT_SYMBOL(spa_log_class);
3001 EXPORT_SYMBOL(spa_special_class);
3002 EXPORT_SYMBOL(spa_preferred_class);
3003 EXPORT_SYMBOL(spa_max_replication);
3004 EXPORT_SYMBOL(spa_prev_software_version);
3005 EXPORT_SYMBOL(spa_get_failmode);
3006 EXPORT_SYMBOL(spa_suspended);
3007 EXPORT_SYMBOL(spa_bootfs);
3008 EXPORT_SYMBOL(spa_delegation);
3009 EXPORT_SYMBOL(spa_meta_objset);
3010 EXPORT_SYMBOL(spa_maxblocksize);
3011 EXPORT_SYMBOL(spa_maxdnodesize);
3012 
3013 /* Miscellaneous support routines */
3014 EXPORT_SYMBOL(spa_guid_exists);
3015 EXPORT_SYMBOL(spa_strdup);
3016 EXPORT_SYMBOL(spa_strfree);
3017 EXPORT_SYMBOL(spa_generate_guid);
3018 EXPORT_SYMBOL(snprintf_blkptr);
3019 EXPORT_SYMBOL(spa_freeze);
3020 EXPORT_SYMBOL(spa_upgrade);
3021 EXPORT_SYMBOL(spa_evict_all);
3022 EXPORT_SYMBOL(spa_lookup_by_guid);
3023 EXPORT_SYMBOL(spa_has_spare);
3024 EXPORT_SYMBOL(dva_get_dsize_sync);
3025 EXPORT_SYMBOL(bp_get_dsize_sync);
3026 EXPORT_SYMBOL(bp_get_dsize);
3027 EXPORT_SYMBOL(spa_has_slogs);
3028 EXPORT_SYMBOL(spa_is_root);
3029 EXPORT_SYMBOL(spa_writeable);
3030 EXPORT_SYMBOL(spa_mode);
3031 EXPORT_SYMBOL(spa_namespace_lock);
3032 EXPORT_SYMBOL(spa_trust_config);
3033 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3034 EXPORT_SYMBOL(spa_set_missing_tvds);
3035 EXPORT_SYMBOL(spa_state_to_name);
3036 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3037 EXPORT_SYMBOL(spa_min_claim_txg);
3038 EXPORT_SYMBOL(spa_suspend_async_destroy);
3039 EXPORT_SYMBOL(spa_has_checkpoint);
3040 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3041 
3042 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3043 	"Set additional debugging flags");
3044 
3045 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3046 	"Set to attempt to recover from fatal errors");
3047 
3048 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3049 	"Set to ignore IO errors during free and permanently leak the space");
3050 
3051 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3052 	"Dead I/O check interval in milliseconds");
3053 
3054 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3055 	"Enable deadman timer");
3056 
3057 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3058 	"SPA size estimate multiplication factor");
3059 
3060 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3061 	"Place DDT data into the special class");
3062 
3063 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3064 	"Place user data indirect blocks into the special class");
3065 
3066 /* BEGIN CSTYLED */
3067 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3068 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3069 	"Failmode for deadman timer");
3070 
3071 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3072 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3073 	"Pool sync expiration time in milliseconds");
3074 
3075 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3076 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3077 	"IO expiration time in milliseconds");
3078 
3079 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3080 	"Small file blocks in special vdevs depends on this much "
3081 	"free space available");
3082 /* END CSTYLED */
3083 
3084 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3085 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3086 
3087 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3088 	"Number of allocators per spa, capped by ncpus");
3089