1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  */
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  *	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  *	3. Determine the uberblock for the pool.
41  *
42  *	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  *	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  *	1. For each vdev, update 'L1' to the new label
82  *	2. Update the uberblock
83  *	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  *	version		ZFS on-disk version
122  *	name		Pool name
123  *	state		Pool state
124  *	txg		Transaction group in which this label was written
125  *	pool_guid	Unique identifier for this pool
126  *	vdev_tree	An nvlist describing vdev tree.
127  *	features_for_read
128  *			An nvlist of the features necessary for reading the MOS.
129  *
130  * Each leaf device label also contains the following:
131  *
132  *	top_guid	Unique ID for top-level vdev in which this is contained
133  *	guid		Unique ID for the leaf vdev
134  *
135  * The 'vs' configuration follows the format described in 'spa_config.c'.
136  */
137 
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_draid.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 #include <sys/byteorder.h>
154 #include <sys/zfs_bootenv.h>
155 
156 /*
157  * Basic routines to read and write from a vdev label.
158  * Used throughout the rest of this file.
159  */
160 uint64_t
161 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
162 {
163 	ASSERT(offset < sizeof (vdev_label_t));
164 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
165 
166 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
168 }
169 
170 /*
171  * Returns back the vdev label associated with the passed in offset.
172  */
173 int
174 vdev_label_number(uint64_t psize, uint64_t offset)
175 {
176 	int l;
177 
178 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
179 		offset -= psize - VDEV_LABEL_END_SIZE;
180 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
181 	}
182 	l = offset / sizeof (vdev_label_t);
183 	return (l < VDEV_LABELS ? l : -1);
184 }
185 
186 static void
187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
188     uint64_t size, zio_done_func_t *done, void *private, int flags)
189 {
190 	ASSERT(
191 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
192 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
193 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
194 
195 	zio_nowait(zio_read_phys(zio, vd,
196 	    vdev_label_offset(vd->vdev_psize, l, offset),
197 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
198 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
199 }
200 
201 void
202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
203     uint64_t size, zio_done_func_t *done, void *private, int flags)
204 {
205 	ASSERT(
206 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
207 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
208 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
209 
210 	zio_nowait(zio_write_phys(zio, vd,
211 	    vdev_label_offset(vd->vdev_psize, l, offset),
212 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
213 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
214 }
215 
216 /*
217  * Generate the nvlist representing this vdev's stats
218  */
219 void
220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
221 {
222 	nvlist_t *nvx;
223 	vdev_stat_t *vs;
224 	vdev_stat_ex_t *vsx;
225 
226 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
227 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
228 
229 	vdev_get_stats_ex(vd, vs, vsx);
230 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
231 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
232 
233 	/*
234 	 * Add extended stats into a special extended stats nvlist.  This keeps
235 	 * all the extended stats nicely grouped together.  The extended stats
236 	 * nvlist is then added to the main nvlist.
237 	 */
238 	nvx = fnvlist_alloc();
239 
240 	/* ZIOs in flight to disk */
241 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243 
244 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246 
247 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249 
250 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252 
253 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255 
256 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
257 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
258 
259 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
260 	    vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
261 
262 	/* ZIOs pending */
263 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
264 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
265 
266 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
267 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
268 
269 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
270 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
271 
272 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
273 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
274 
275 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
276 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
277 
278 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
279 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
280 
281 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
282 	    vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
283 
284 	/* Histograms */
285 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
286 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
287 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
288 
289 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
290 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
291 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
292 
293 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
294 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
295 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
296 
297 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
298 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
299 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
300 
301 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
302 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
303 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
304 
305 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
306 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
307 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
308 
309 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
310 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
311 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
312 
313 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
314 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
315 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
316 
317 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
318 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
319 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
320 
321 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
322 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
323 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
324 
325 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
326 	    vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
327 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
328 
329 	/* Request sizes */
330 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
331 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
332 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
333 
334 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
335 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
336 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
337 
338 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
339 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
340 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
341 
342 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
343 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
344 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
345 
346 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
347 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
348 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
349 
350 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
351 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
352 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
353 
354 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
355 	    vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
356 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
357 
358 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
359 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
360 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
361 
362 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
363 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
364 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
365 
366 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
367 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
368 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
369 
370 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
371 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
372 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
373 
374 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
375 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
376 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
377 
378 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
379 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
380 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
381 
382 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
383 	    vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
384 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
385 
386 	/* IO delays */
387 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
388 
389 	/* Add extended stats nvlist to main nvlist */
390 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
391 
392 	fnvlist_free(nvx);
393 	kmem_free(vs, sizeof (*vs));
394 	kmem_free(vsx, sizeof (*vsx));
395 }
396 
397 static void
398 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
399 {
400 	spa_t *spa = vd->vdev_spa;
401 
402 	if (vd != spa->spa_root_vdev)
403 		return;
404 
405 	/* provide either current or previous scan information */
406 	pool_scan_stat_t ps;
407 	if (spa_scan_get_stats(spa, &ps) == 0) {
408 		fnvlist_add_uint64_array(nvl,
409 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
410 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
411 	}
412 
413 	pool_removal_stat_t prs;
414 	if (spa_removal_get_stats(spa, &prs) == 0) {
415 		fnvlist_add_uint64_array(nvl,
416 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
417 		    sizeof (prs) / sizeof (uint64_t));
418 	}
419 
420 	pool_checkpoint_stat_t pcs;
421 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
422 		fnvlist_add_uint64_array(nvl,
423 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
424 		    sizeof (pcs) / sizeof (uint64_t));
425 	}
426 }
427 
428 static void
429 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
430 {
431 	if (vd == vd->vdev_top) {
432 		vdev_rebuild_stat_t vrs;
433 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
434 			fnvlist_add_uint64_array(nvl,
435 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
436 			    sizeof (vrs) / sizeof (uint64_t));
437 		}
438 	}
439 }
440 
441 /*
442  * Generate the nvlist representing this vdev's config.
443  */
444 nvlist_t *
445 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
446     vdev_config_flag_t flags)
447 {
448 	nvlist_t *nv = NULL;
449 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
450 
451 	nv = fnvlist_alloc();
452 
453 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
454 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
455 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
456 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
457 
458 	if (vd->vdev_path != NULL)
459 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
460 
461 	if (vd->vdev_devid != NULL)
462 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
463 
464 	if (vd->vdev_physpath != NULL)
465 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
466 		    vd->vdev_physpath);
467 
468 	if (vd->vdev_enc_sysfs_path != NULL)
469 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
470 		    vd->vdev_enc_sysfs_path);
471 
472 	if (vd->vdev_fru != NULL)
473 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
474 
475 	if (vd->vdev_ops->vdev_op_config_generate != NULL)
476 		vd->vdev_ops->vdev_op_config_generate(vd, nv);
477 
478 	if (vd->vdev_wholedisk != -1ULL) {
479 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
480 		    vd->vdev_wholedisk);
481 	}
482 
483 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
484 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
485 
486 	if (vd->vdev_isspare)
487 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
488 
489 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
490 	    vd == vd->vdev_top) {
491 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
492 		    vd->vdev_ms_array);
493 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
494 		    vd->vdev_ms_shift);
495 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
496 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
497 		    vd->vdev_asize);
498 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
499 		if (vd->vdev_removing) {
500 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
501 			    vd->vdev_removing);
502 		}
503 
504 		/* zpool command expects alloc class data */
505 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
506 			const char *bias = NULL;
507 
508 			switch (vd->vdev_alloc_bias) {
509 			case VDEV_BIAS_LOG:
510 				bias = VDEV_ALLOC_BIAS_LOG;
511 				break;
512 			case VDEV_BIAS_SPECIAL:
513 				bias = VDEV_ALLOC_BIAS_SPECIAL;
514 				break;
515 			case VDEV_BIAS_DEDUP:
516 				bias = VDEV_ALLOC_BIAS_DEDUP;
517 				break;
518 			default:
519 				ASSERT3U(vd->vdev_alloc_bias, ==,
520 				    VDEV_BIAS_NONE);
521 			}
522 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
523 			    bias);
524 		}
525 	}
526 
527 	if (vd->vdev_dtl_sm != NULL) {
528 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
529 		    space_map_object(vd->vdev_dtl_sm));
530 	}
531 
532 	if (vic->vic_mapping_object != 0) {
533 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
534 		    vic->vic_mapping_object);
535 	}
536 
537 	if (vic->vic_births_object != 0) {
538 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
539 		    vic->vic_births_object);
540 	}
541 
542 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
543 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
544 		    vic->vic_prev_indirect_vdev);
545 	}
546 
547 	if (vd->vdev_crtxg)
548 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
549 
550 	if (vd->vdev_expansion_time)
551 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
552 		    vd->vdev_expansion_time);
553 
554 	if (flags & VDEV_CONFIG_MOS) {
555 		if (vd->vdev_leaf_zap != 0) {
556 			ASSERT(vd->vdev_ops->vdev_op_leaf);
557 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
558 			    vd->vdev_leaf_zap);
559 		}
560 
561 		if (vd->vdev_top_zap != 0) {
562 			ASSERT(vd == vd->vdev_top);
563 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
564 			    vd->vdev_top_zap);
565 		}
566 
567 		if (vd->vdev_resilver_deferred) {
568 			ASSERT(vd->vdev_ops->vdev_op_leaf);
569 			ASSERT(spa->spa_resilver_deferred);
570 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
571 		}
572 	}
573 
574 	if (getstats) {
575 		vdev_config_generate_stats(vd, nv);
576 
577 		root_vdev_actions_getprogress(vd, nv);
578 		top_vdev_actions_getprogress(vd, nv);
579 
580 		/*
581 		 * Note: this can be called from open context
582 		 * (spa_get_stats()), so we need the rwlock to prevent
583 		 * the mapping from being changed by condensing.
584 		 */
585 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
586 		if (vd->vdev_indirect_mapping != NULL) {
587 			ASSERT(vd->vdev_indirect_births != NULL);
588 			vdev_indirect_mapping_t *vim =
589 			    vd->vdev_indirect_mapping;
590 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
591 			    vdev_indirect_mapping_size(vim));
592 		}
593 		rw_exit(&vd->vdev_indirect_rwlock);
594 		if (vd->vdev_mg != NULL &&
595 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
596 			/*
597 			 * Compute approximately how much memory would be used
598 			 * for the indirect mapping if this device were to
599 			 * be removed.
600 			 *
601 			 * Note: If the frag metric is invalid, then not
602 			 * enough metaslabs have been converted to have
603 			 * histograms.
604 			 */
605 			uint64_t seg_count = 0;
606 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
607 
608 			/*
609 			 * There are the same number of allocated segments
610 			 * as free segments, so we will have at least one
611 			 * entry per free segment.  However, small free
612 			 * segments (smaller than vdev_removal_max_span)
613 			 * will be combined with adjacent allocated segments
614 			 * as a single mapping.
615 			 */
616 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
617 				if (i + 1 < highbit64(vdev_removal_max_span)
618 				    - 1) {
619 					to_alloc +=
620 					    vd->vdev_mg->mg_histogram[i] <<
621 					    (i + 1);
622 				} else {
623 					seg_count +=
624 					    vd->vdev_mg->mg_histogram[i];
625 				}
626 			}
627 
628 			/*
629 			 * The maximum length of a mapping is
630 			 * zfs_remove_max_segment, so we need at least one entry
631 			 * per zfs_remove_max_segment of allocated data.
632 			 */
633 			seg_count += to_alloc / spa_remove_max_segment(spa);
634 
635 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
636 			    seg_count *
637 			    sizeof (vdev_indirect_mapping_entry_phys_t));
638 		}
639 	}
640 
641 	if (!vd->vdev_ops->vdev_op_leaf) {
642 		nvlist_t **child;
643 		int c, idx;
644 
645 		ASSERT(!vd->vdev_ishole);
646 
647 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
648 		    KM_SLEEP);
649 
650 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
651 			vdev_t *cvd = vd->vdev_child[c];
652 
653 			/*
654 			 * If we're generating an nvlist of removing
655 			 * vdevs then skip over any device which is
656 			 * not being removed.
657 			 */
658 			if ((flags & VDEV_CONFIG_REMOVING) &&
659 			    !cvd->vdev_removing)
660 				continue;
661 
662 			child[idx++] = vdev_config_generate(spa, cvd,
663 			    getstats, flags);
664 		}
665 
666 		if (idx) {
667 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
668 			    child, idx);
669 		}
670 
671 		for (c = 0; c < idx; c++)
672 			nvlist_free(child[c]);
673 
674 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
675 
676 	} else {
677 		const char *aux = NULL;
678 
679 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
680 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
681 		if (vd->vdev_resilver_txg != 0)
682 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
683 			    vd->vdev_resilver_txg);
684 		if (vd->vdev_rebuild_txg != 0)
685 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
686 			    vd->vdev_rebuild_txg);
687 		if (vd->vdev_faulted)
688 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
689 		if (vd->vdev_degraded)
690 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
691 		if (vd->vdev_removed)
692 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
693 		if (vd->vdev_unspare)
694 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
695 		if (vd->vdev_ishole)
696 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
697 
698 		/* Set the reason why we're FAULTED/DEGRADED. */
699 		switch (vd->vdev_stat.vs_aux) {
700 		case VDEV_AUX_ERR_EXCEEDED:
701 			aux = "err_exceeded";
702 			break;
703 
704 		case VDEV_AUX_EXTERNAL:
705 			aux = "external";
706 			break;
707 		}
708 
709 		if (aux != NULL && !vd->vdev_tmpoffline) {
710 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
711 		} else {
712 			/*
713 			 * We're healthy - clear any previous AUX_STATE values.
714 			 */
715 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
716 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
717 		}
718 
719 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
720 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
721 			    vd->vdev_orig_guid);
722 		}
723 	}
724 
725 	return (nv);
726 }
727 
728 /*
729  * Generate a view of the top-level vdevs.  If we currently have holes
730  * in the namespace, then generate an array which contains a list of holey
731  * vdevs.  Additionally, add the number of top-level children that currently
732  * exist.
733  */
734 void
735 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
736 {
737 	vdev_t *rvd = spa->spa_root_vdev;
738 	uint64_t *array;
739 	uint_t c, idx;
740 
741 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
742 
743 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
744 		vdev_t *tvd = rvd->vdev_child[c];
745 
746 		if (tvd->vdev_ishole) {
747 			array[idx++] = c;
748 		}
749 	}
750 
751 	if (idx) {
752 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
753 		    array, idx) == 0);
754 	}
755 
756 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
757 	    rvd->vdev_children) == 0);
758 
759 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
760 }
761 
762 /*
763  * Returns the configuration from the label of the given vdev. For vdevs
764  * which don't have a txg value stored on their label (i.e. spares/cache)
765  * or have not been completely initialized (txg = 0) just return
766  * the configuration from the first valid label we find. Otherwise,
767  * find the most up-to-date label that does not exceed the specified
768  * 'txg' value.
769  */
770 nvlist_t *
771 vdev_label_read_config(vdev_t *vd, uint64_t txg)
772 {
773 	spa_t *spa = vd->vdev_spa;
774 	nvlist_t *config = NULL;
775 	vdev_phys_t *vp[VDEV_LABELS];
776 	abd_t *vp_abd[VDEV_LABELS];
777 	zio_t *zio[VDEV_LABELS];
778 	uint64_t best_txg = 0;
779 	uint64_t label_txg = 0;
780 	int error = 0;
781 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
782 	    ZIO_FLAG_SPECULATIVE;
783 
784 	ASSERT(vd->vdev_validate_thread == curthread ||
785 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
786 
787 	if (!vdev_readable(vd))
788 		return (NULL);
789 
790 	/*
791 	 * The label for a dRAID distributed spare is not stored on disk.
792 	 * Instead it is generated when needed which allows us to bypass
793 	 * the pipeline when reading the config from the label.
794 	 */
795 	if (vd->vdev_ops == &vdev_draid_spare_ops)
796 		return (vdev_draid_read_config_spare(vd));
797 
798 	for (int l = 0; l < VDEV_LABELS; l++) {
799 		vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
800 		vp[l] = abd_to_buf(vp_abd[l]);
801 	}
802 
803 retry:
804 	for (int l = 0; l < VDEV_LABELS; l++) {
805 		zio[l] = zio_root(spa, NULL, NULL, flags);
806 
807 		vdev_label_read(zio[l], vd, l, vp_abd[l],
808 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
809 		    NULL, NULL, flags);
810 	}
811 	for (int l = 0; l < VDEV_LABELS; l++) {
812 		nvlist_t *label = NULL;
813 
814 		if (zio_wait(zio[l]) == 0 &&
815 		    nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
816 		    &label, 0) == 0) {
817 			/*
818 			 * Auxiliary vdevs won't have txg values in their
819 			 * labels and newly added vdevs may not have been
820 			 * completely initialized so just return the
821 			 * configuration from the first valid label we
822 			 * encounter.
823 			 */
824 			error = nvlist_lookup_uint64(label,
825 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
826 			if ((error || label_txg == 0) && !config) {
827 				config = label;
828 				for (l++; l < VDEV_LABELS; l++)
829 					zio_wait(zio[l]);
830 				break;
831 			} else if (label_txg <= txg && label_txg > best_txg) {
832 				best_txg = label_txg;
833 				nvlist_free(config);
834 				config = fnvlist_dup(label);
835 			}
836 		}
837 
838 		if (label != NULL) {
839 			nvlist_free(label);
840 			label = NULL;
841 		}
842 	}
843 
844 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
845 		flags |= ZIO_FLAG_TRYHARD;
846 		goto retry;
847 	}
848 
849 	/*
850 	 * We found a valid label but it didn't pass txg restrictions.
851 	 */
852 	if (config == NULL && label_txg != 0) {
853 		vdev_dbgmsg(vd, "label discarded as txg is too large "
854 		    "(%llu > %llu)", (u_longlong_t)label_txg,
855 		    (u_longlong_t)txg);
856 	}
857 
858 	for (int l = 0; l < VDEV_LABELS; l++) {
859 		abd_free(vp_abd[l]);
860 	}
861 
862 	return (config);
863 }
864 
865 /*
866  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
867  * in with the device guid if this spare is active elsewhere on the system.
868  */
869 static boolean_t
870 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
871     uint64_t *spare_guid, uint64_t *l2cache_guid)
872 {
873 	spa_t *spa = vd->vdev_spa;
874 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
875 	uint64_t vdtxg = 0;
876 	nvlist_t *label;
877 
878 	if (spare_guid)
879 		*spare_guid = 0ULL;
880 	if (l2cache_guid)
881 		*l2cache_guid = 0ULL;
882 
883 	/*
884 	 * Read the label, if any, and perform some basic sanity checks.
885 	 */
886 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
887 		return (B_FALSE);
888 
889 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
890 	    &vdtxg);
891 
892 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
893 	    &state) != 0 ||
894 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
895 	    &device_guid) != 0) {
896 		nvlist_free(label);
897 		return (B_FALSE);
898 	}
899 
900 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
901 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
902 	    &pool_guid) != 0 ||
903 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
904 	    &txg) != 0)) {
905 		nvlist_free(label);
906 		return (B_FALSE);
907 	}
908 
909 	nvlist_free(label);
910 
911 	/*
912 	 * Check to see if this device indeed belongs to the pool it claims to
913 	 * be a part of.  The only way this is allowed is if the device is a hot
914 	 * spare (which we check for later on).
915 	 */
916 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
917 	    !spa_guid_exists(pool_guid, device_guid) &&
918 	    !spa_spare_exists(device_guid, NULL, NULL) &&
919 	    !spa_l2cache_exists(device_guid, NULL))
920 		return (B_FALSE);
921 
922 	/*
923 	 * If the transaction group is zero, then this an initialized (but
924 	 * unused) label.  This is only an error if the create transaction
925 	 * on-disk is the same as the one we're using now, in which case the
926 	 * user has attempted to add the same vdev multiple times in the same
927 	 * transaction.
928 	 */
929 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
930 	    txg == 0 && vdtxg == crtxg)
931 		return (B_TRUE);
932 
933 	/*
934 	 * Check to see if this is a spare device.  We do an explicit check for
935 	 * spa_has_spare() here because it may be on our pending list of spares
936 	 * to add.  We also check if it is an l2cache device.
937 	 */
938 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
939 	    spa_has_spare(spa, device_guid)) {
940 		if (spare_guid)
941 			*spare_guid = device_guid;
942 
943 		switch (reason) {
944 		case VDEV_LABEL_CREATE:
945 		case VDEV_LABEL_L2CACHE:
946 			return (B_TRUE);
947 
948 		case VDEV_LABEL_REPLACE:
949 			return (!spa_has_spare(spa, device_guid) ||
950 			    spare_pool != 0ULL);
951 
952 		case VDEV_LABEL_SPARE:
953 			return (spa_has_spare(spa, device_guid));
954 		default:
955 			break;
956 		}
957 	}
958 
959 	/*
960 	 * Check to see if this is an l2cache device.
961 	 */
962 	if (spa_l2cache_exists(device_guid, NULL))
963 		return (B_TRUE);
964 
965 	/*
966 	 * We can't rely on a pool's state if it's been imported
967 	 * read-only.  Instead we look to see if the pools is marked
968 	 * read-only in the namespace and set the state to active.
969 	 */
970 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
971 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
972 	    spa_mode(spa) == SPA_MODE_READ)
973 		state = POOL_STATE_ACTIVE;
974 
975 	/*
976 	 * If the device is marked ACTIVE, then this device is in use by another
977 	 * pool on the system.
978 	 */
979 	return (state == POOL_STATE_ACTIVE);
980 }
981 
982 /*
983  * Initialize a vdev label.  We check to make sure each leaf device is not in
984  * use, and writable.  We put down an initial label which we will later
985  * overwrite with a complete label.  Note that it's important to do this
986  * sequentially, not in parallel, so that we catch cases of multiple use of the
987  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
988  * itself.
989  */
990 int
991 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
992 {
993 	spa_t *spa = vd->vdev_spa;
994 	nvlist_t *label;
995 	vdev_phys_t *vp;
996 	abd_t *vp_abd;
997 	abd_t *bootenv;
998 	uberblock_t *ub;
999 	abd_t *ub_abd;
1000 	zio_t *zio;
1001 	char *buf;
1002 	size_t buflen;
1003 	int error;
1004 	uint64_t spare_guid = 0, l2cache_guid = 0;
1005 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1006 
1007 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1008 
1009 	for (int c = 0; c < vd->vdev_children; c++)
1010 		if ((error = vdev_label_init(vd->vdev_child[c],
1011 		    crtxg, reason)) != 0)
1012 			return (error);
1013 
1014 	/* Track the creation time for this vdev */
1015 	vd->vdev_crtxg = crtxg;
1016 
1017 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1018 		return (0);
1019 
1020 	/*
1021 	 * Dead vdevs cannot be initialized.
1022 	 */
1023 	if (vdev_is_dead(vd))
1024 		return (SET_ERROR(EIO));
1025 
1026 	/*
1027 	 * Determine if the vdev is in use.
1028 	 */
1029 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1030 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1031 		return (SET_ERROR(EBUSY));
1032 
1033 	/*
1034 	 * If this is a request to add or replace a spare or l2cache device
1035 	 * that is in use elsewhere on the system, then we must update the
1036 	 * guid (which was initialized to a random value) to reflect the
1037 	 * actual GUID (which is shared between multiple pools).
1038 	 */
1039 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1040 	    spare_guid != 0ULL) {
1041 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1042 
1043 		vd->vdev_guid += guid_delta;
1044 
1045 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1046 			pvd->vdev_guid_sum += guid_delta;
1047 
1048 		/*
1049 		 * If this is a replacement, then we want to fallthrough to the
1050 		 * rest of the code.  If we're adding a spare, then it's already
1051 		 * labeled appropriately and we can just return.
1052 		 */
1053 		if (reason == VDEV_LABEL_SPARE)
1054 			return (0);
1055 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1056 		    reason == VDEV_LABEL_SPLIT);
1057 	}
1058 
1059 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1060 	    l2cache_guid != 0ULL) {
1061 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1062 
1063 		vd->vdev_guid += guid_delta;
1064 
1065 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1066 			pvd->vdev_guid_sum += guid_delta;
1067 
1068 		/*
1069 		 * If this is a replacement, then we want to fallthrough to the
1070 		 * rest of the code.  If we're adding an l2cache, then it's
1071 		 * already labeled appropriately and we can just return.
1072 		 */
1073 		if (reason == VDEV_LABEL_L2CACHE)
1074 			return (0);
1075 		ASSERT(reason == VDEV_LABEL_REPLACE);
1076 	}
1077 
1078 	/*
1079 	 * Initialize its label.
1080 	 */
1081 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1082 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1083 	vp = abd_to_buf(vp_abd);
1084 
1085 	/*
1086 	 * Generate a label describing the pool and our top-level vdev.
1087 	 * We mark it as being from txg 0 to indicate that it's not
1088 	 * really part of an active pool just yet.  The labels will
1089 	 * be written again with a meaningful txg by spa_sync().
1090 	 */
1091 	if (reason == VDEV_LABEL_SPARE ||
1092 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1093 		/*
1094 		 * For inactive hot spares, we generate a special label that
1095 		 * identifies as a mutually shared hot spare.  We write the
1096 		 * label if we are adding a hot spare, or if we are removing an
1097 		 * active hot spare (in which case we want to revert the
1098 		 * labels).
1099 		 */
1100 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1101 
1102 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1103 		    spa_version(spa)) == 0);
1104 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1105 		    POOL_STATE_SPARE) == 0);
1106 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1107 		    vd->vdev_guid) == 0);
1108 	} else if (reason == VDEV_LABEL_L2CACHE ||
1109 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1110 		/*
1111 		 * For level 2 ARC devices, add a special label.
1112 		 */
1113 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1114 
1115 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1116 		    spa_version(spa)) == 0);
1117 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1118 		    POOL_STATE_L2CACHE) == 0);
1119 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1120 		    vd->vdev_guid) == 0);
1121 	} else {
1122 		uint64_t txg = 0ULL;
1123 
1124 		if (reason == VDEV_LABEL_SPLIT)
1125 			txg = spa->spa_uberblock.ub_txg;
1126 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1127 
1128 		/*
1129 		 * Add our creation time.  This allows us to detect multiple
1130 		 * vdev uses as described above, and automatically expires if we
1131 		 * fail.
1132 		 */
1133 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1134 		    crtxg) == 0);
1135 	}
1136 
1137 	buf = vp->vp_nvlist;
1138 	buflen = sizeof (vp->vp_nvlist);
1139 
1140 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1141 	if (error != 0) {
1142 		nvlist_free(label);
1143 		abd_free(vp_abd);
1144 		/* EFAULT means nvlist_pack ran out of room */
1145 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1146 	}
1147 
1148 	/*
1149 	 * Initialize uberblock template.
1150 	 */
1151 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1152 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1153 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1154 	ub = abd_to_buf(ub_abd);
1155 	ub->ub_txg = 0;
1156 
1157 	/* Initialize the 2nd padding area. */
1158 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1159 	abd_zero(bootenv, VDEV_PAD_SIZE);
1160 
1161 	/*
1162 	 * Write everything in parallel.
1163 	 */
1164 retry:
1165 	zio = zio_root(spa, NULL, NULL, flags);
1166 
1167 	for (int l = 0; l < VDEV_LABELS; l++) {
1168 
1169 		vdev_label_write(zio, vd, l, vp_abd,
1170 		    offsetof(vdev_label_t, vl_vdev_phys),
1171 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1172 
1173 		/*
1174 		 * Skip the 1st padding area.
1175 		 * Zero out the 2nd padding area where it might have
1176 		 * left over data from previous filesystem format.
1177 		 */
1178 		vdev_label_write(zio, vd, l, bootenv,
1179 		    offsetof(vdev_label_t, vl_be),
1180 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1181 
1182 		vdev_label_write(zio, vd, l, ub_abd,
1183 		    offsetof(vdev_label_t, vl_uberblock),
1184 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1185 	}
1186 
1187 	error = zio_wait(zio);
1188 
1189 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1190 		flags |= ZIO_FLAG_TRYHARD;
1191 		goto retry;
1192 	}
1193 
1194 	nvlist_free(label);
1195 	abd_free(bootenv);
1196 	abd_free(ub_abd);
1197 	abd_free(vp_abd);
1198 
1199 	/*
1200 	 * If this vdev hasn't been previously identified as a spare, then we
1201 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1202 	 * exists as a spare elsewhere in the system.  Do the same for
1203 	 * level 2 ARC devices.
1204 	 */
1205 	if (error == 0 && !vd->vdev_isspare &&
1206 	    (reason == VDEV_LABEL_SPARE ||
1207 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1208 		spa_spare_add(vd);
1209 
1210 	if (error == 0 && !vd->vdev_isl2cache &&
1211 	    (reason == VDEV_LABEL_L2CACHE ||
1212 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1213 		spa_l2cache_add(vd);
1214 
1215 	return (error);
1216 }
1217 
1218 /*
1219  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1220  * callback to finish, store our abd in the callback pointer. Otherwise, we
1221  * just free our abd and return.
1222  */
1223 static void
1224 vdev_label_read_bootenv_done(zio_t *zio)
1225 {
1226 	zio_t *rio = zio->io_private;
1227 	abd_t **cbp = rio->io_private;
1228 
1229 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1230 
1231 	if (zio->io_error == 0) {
1232 		mutex_enter(&rio->io_lock);
1233 		if (*cbp == NULL) {
1234 			/* Will free this buffer in vdev_label_read_bootenv. */
1235 			*cbp = zio->io_abd;
1236 		} else {
1237 			abd_free(zio->io_abd);
1238 		}
1239 		mutex_exit(&rio->io_lock);
1240 	} else {
1241 		abd_free(zio->io_abd);
1242 	}
1243 }
1244 
1245 static void
1246 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1247 {
1248 	for (int c = 0; c < vd->vdev_children; c++)
1249 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1250 
1251 	/*
1252 	 * We just use the first label that has a correct checksum; the
1253 	 * bootloader should have rewritten them all to be the same on boot,
1254 	 * and any changes we made since boot have been the same across all
1255 	 * labels.
1256 	 */
1257 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1258 		for (int l = 0; l < VDEV_LABELS; l++) {
1259 			vdev_label_read(zio, vd, l,
1260 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1261 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1262 			    vdev_label_read_bootenv_done, zio, flags);
1263 		}
1264 	}
1265 }
1266 
1267 int
1268 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1269 {
1270 	nvlist_t *config;
1271 	spa_t *spa = rvd->vdev_spa;
1272 	abd_t *abd = NULL;
1273 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1274 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1275 
1276 	ASSERT(bootenv);
1277 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1278 
1279 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1280 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1281 	int err = zio_wait(zio);
1282 
1283 	if (abd != NULL) {
1284 		char *buf;
1285 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1286 
1287 		vbe->vbe_version = ntohll(vbe->vbe_version);
1288 		switch (vbe->vbe_version) {
1289 		case VB_RAW:
1290 			/*
1291 			 * if we have textual data in vbe_bootenv, create nvlist
1292 			 * with key "envmap".
1293 			 */
1294 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1295 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1296 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1297 			    vbe->vbe_bootenv);
1298 			break;
1299 
1300 		case VB_NVLIST:
1301 			err = nvlist_unpack(vbe->vbe_bootenv,
1302 			    sizeof (vbe->vbe_bootenv), &config, 0);
1303 			if (err == 0) {
1304 				fnvlist_merge(bootenv, config);
1305 				nvlist_free(config);
1306 				break;
1307 			}
1308 			fallthrough;
1309 		default:
1310 			/* Check for FreeBSD zfs bootonce command string */
1311 			buf = abd_to_buf(abd);
1312 			if (*buf == '\0') {
1313 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1314 				    VB_NVLIST);
1315 				break;
1316 			}
1317 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1318 		}
1319 
1320 		/*
1321 		 * abd was allocated in vdev_label_read_bootenv_impl()
1322 		 */
1323 		abd_free(abd);
1324 		/*
1325 		 * If we managed to read any successfully,
1326 		 * return success.
1327 		 */
1328 		return (0);
1329 	}
1330 	return (err);
1331 }
1332 
1333 int
1334 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1335 {
1336 	zio_t *zio;
1337 	spa_t *spa = vd->vdev_spa;
1338 	vdev_boot_envblock_t *bootenv;
1339 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1340 	int error;
1341 	size_t nvsize;
1342 	char *nvbuf;
1343 
1344 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1345 	if (error != 0)
1346 		return (SET_ERROR(error));
1347 
1348 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1349 		return (SET_ERROR(E2BIG));
1350 	}
1351 
1352 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1353 
1354 	error = ENXIO;
1355 	for (int c = 0; c < vd->vdev_children; c++) {
1356 		int child_err;
1357 
1358 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1359 		/*
1360 		 * As long as any of the disks managed to write all of their
1361 		 * labels successfully, return success.
1362 		 */
1363 		if (child_err == 0)
1364 			error = child_err;
1365 	}
1366 
1367 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1368 	    !vdev_writeable(vd)) {
1369 		return (error);
1370 	}
1371 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1372 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1373 	abd_zero(abd, VDEV_PAD_SIZE);
1374 
1375 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1376 	nvbuf = bootenv->vbe_bootenv;
1377 	nvsize = sizeof (bootenv->vbe_bootenv);
1378 
1379 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1380 	switch (bootenv->vbe_version) {
1381 	case VB_RAW:
1382 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1383 			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1384 		}
1385 		error = 0;
1386 		break;
1387 
1388 	case VB_NVLIST:
1389 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1390 		    KM_SLEEP);
1391 		break;
1392 
1393 	default:
1394 		error = EINVAL;
1395 		break;
1396 	}
1397 
1398 	if (error == 0) {
1399 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1400 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1401 	} else {
1402 		abd_free(abd);
1403 		return (SET_ERROR(error));
1404 	}
1405 
1406 retry:
1407 	zio = zio_root(spa, NULL, NULL, flags);
1408 	for (int l = 0; l < VDEV_LABELS; l++) {
1409 		vdev_label_write(zio, vd, l, abd,
1410 		    offsetof(vdev_label_t, vl_be),
1411 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1412 	}
1413 
1414 	error = zio_wait(zio);
1415 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1416 		flags |= ZIO_FLAG_TRYHARD;
1417 		goto retry;
1418 	}
1419 
1420 	abd_free(abd);
1421 	return (error);
1422 }
1423 
1424 /*
1425  * ==========================================================================
1426  * uberblock load/sync
1427  * ==========================================================================
1428  */
1429 
1430 /*
1431  * Consider the following situation: txg is safely synced to disk.  We've
1432  * written the first uberblock for txg + 1, and then we lose power.  When we
1433  * come back up, we fail to see the uberblock for txg + 1 because, say,
1434  * it was on a mirrored device and the replica to which we wrote txg + 1
1435  * is now offline.  If we then make some changes and sync txg + 1, and then
1436  * the missing replica comes back, then for a few seconds we'll have two
1437  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1438  * among uberblocks with equal txg, choose the one with the latest timestamp.
1439  */
1440 static int
1441 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1442 {
1443 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1444 
1445 	if (likely(cmp))
1446 		return (cmp);
1447 
1448 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1449 	if (likely(cmp))
1450 		return (cmp);
1451 
1452 	/*
1453 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1454 	 * ZFS, e.g. OpenZFS >= 0.7.
1455 	 *
1456 	 * If one ub has MMP and the other does not, they were written by
1457 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1458 	 * a 0 value.
1459 	 *
1460 	 * Since timestamp and txg are the same if we get this far, either is
1461 	 * acceptable for importing the pool.
1462 	 */
1463 	unsigned int seq1 = 0;
1464 	unsigned int seq2 = 0;
1465 
1466 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1467 		seq1 = MMP_SEQ(ub1);
1468 
1469 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1470 		seq2 = MMP_SEQ(ub2);
1471 
1472 	return (TREE_CMP(seq1, seq2));
1473 }
1474 
1475 struct ubl_cbdata {
1476 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1477 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1478 };
1479 
1480 static void
1481 vdev_uberblock_load_done(zio_t *zio)
1482 {
1483 	vdev_t *vd = zio->io_vd;
1484 	spa_t *spa = zio->io_spa;
1485 	zio_t *rio = zio->io_private;
1486 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1487 	struct ubl_cbdata *cbp = rio->io_private;
1488 
1489 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1490 
1491 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1492 		mutex_enter(&rio->io_lock);
1493 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1494 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1495 			/*
1496 			 * Keep track of the vdev in which this uberblock
1497 			 * was found. We will use this information later
1498 			 * to obtain the config nvlist associated with
1499 			 * this uberblock.
1500 			 */
1501 			*cbp->ubl_ubbest = *ub;
1502 			cbp->ubl_vd = vd;
1503 		}
1504 		mutex_exit(&rio->io_lock);
1505 	}
1506 
1507 	abd_free(zio->io_abd);
1508 }
1509 
1510 static void
1511 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1512     struct ubl_cbdata *cbp)
1513 {
1514 	for (int c = 0; c < vd->vdev_children; c++)
1515 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1516 
1517 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1518 	    vd->vdev_ops != &vdev_draid_spare_ops) {
1519 		for (int l = 0; l < VDEV_LABELS; l++) {
1520 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1521 				vdev_label_read(zio, vd, l,
1522 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1523 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1524 				    VDEV_UBERBLOCK_SIZE(vd),
1525 				    vdev_uberblock_load_done, zio, flags);
1526 			}
1527 		}
1528 	}
1529 }
1530 
1531 /*
1532  * Reads the 'best' uberblock from disk along with its associated
1533  * configuration. First, we read the uberblock array of each label of each
1534  * vdev, keeping track of the uberblock with the highest txg in each array.
1535  * Then, we read the configuration from the same vdev as the best uberblock.
1536  */
1537 void
1538 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1539 {
1540 	zio_t *zio;
1541 	spa_t *spa = rvd->vdev_spa;
1542 	struct ubl_cbdata cb;
1543 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1544 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1545 
1546 	ASSERT(ub);
1547 	ASSERT(config);
1548 
1549 	bzero(ub, sizeof (uberblock_t));
1550 	*config = NULL;
1551 
1552 	cb.ubl_ubbest = ub;
1553 	cb.ubl_vd = NULL;
1554 
1555 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1556 	zio = zio_root(spa, NULL, &cb, flags);
1557 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1558 	(void) zio_wait(zio);
1559 
1560 	/*
1561 	 * It's possible that the best uberblock was discovered on a label
1562 	 * that has a configuration which was written in a future txg.
1563 	 * Search all labels on this vdev to find the configuration that
1564 	 * matches the txg for our uberblock.
1565 	 */
1566 	if (cb.ubl_vd != NULL) {
1567 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1568 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1569 
1570 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1571 		if (*config == NULL && spa->spa_extreme_rewind) {
1572 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1573 			    "Trying again without txg restrictions.");
1574 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1575 		}
1576 		if (*config == NULL) {
1577 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1578 		}
1579 	}
1580 	spa_config_exit(spa, SCL_ALL, FTAG);
1581 }
1582 
1583 /*
1584  * For use when a leaf vdev is expanded.
1585  * The location of labels 2 and 3 changed, and at the new location the
1586  * uberblock rings are either empty or contain garbage.  The sync will write
1587  * new configs there because the vdev is dirty, but expansion also needs the
1588  * uberblock rings copied.  Read them from label 0 which did not move.
1589  *
1590  * Since the point is to populate labels {2,3} with valid uberblocks,
1591  * we zero uberblocks we fail to read or which are not valid.
1592  */
1593 
1594 static void
1595 vdev_copy_uberblocks(vdev_t *vd)
1596 {
1597 	abd_t *ub_abd;
1598 	zio_t *write_zio;
1599 	int locks = (SCL_L2ARC | SCL_ZIO);
1600 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1601 	    ZIO_FLAG_SPECULATIVE;
1602 
1603 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1604 	    SCL_STATE);
1605 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1606 
1607 	/*
1608 	 * No uberblocks are stored on distributed spares, they may be
1609 	 * safely skipped when expanding a leaf vdev.
1610 	 */
1611 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1612 		return;
1613 
1614 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1615 
1616 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1617 
1618 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1619 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1620 		const int src_label = 0;
1621 		zio_t *zio;
1622 
1623 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1624 		vdev_label_read(zio, vd, src_label, ub_abd,
1625 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1626 		    NULL, NULL, flags);
1627 
1628 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1629 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1630 
1631 		for (int l = 2; l < VDEV_LABELS; l++)
1632 			vdev_label_write(write_zio, vd, l, ub_abd,
1633 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1634 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1635 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1636 	}
1637 	(void) zio_wait(write_zio);
1638 
1639 	spa_config_exit(vd->vdev_spa, locks, FTAG);
1640 
1641 	abd_free(ub_abd);
1642 }
1643 
1644 /*
1645  * On success, increment root zio's count of good writes.
1646  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1647  */
1648 static void
1649 vdev_uberblock_sync_done(zio_t *zio)
1650 {
1651 	uint64_t *good_writes = zio->io_private;
1652 
1653 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1654 		atomic_inc_64(good_writes);
1655 }
1656 
1657 /*
1658  * Write the uberblock to all labels of all leaves of the specified vdev.
1659  */
1660 static void
1661 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1662     uberblock_t *ub, vdev_t *vd, int flags)
1663 {
1664 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1665 		vdev_uberblock_sync(zio, good_writes,
1666 		    ub, vd->vdev_child[c], flags);
1667 	}
1668 
1669 	if (!vd->vdev_ops->vdev_op_leaf)
1670 		return;
1671 
1672 	if (!vdev_writeable(vd))
1673 		return;
1674 
1675 	/*
1676 	 * There's no need to write uberblocks to a distributed spare, they
1677 	 * are already stored on all the leaves of the parent dRAID.  For
1678 	 * this same reason vdev_uberblock_load_impl() skips distributed
1679 	 * spares when reading uberblocks.
1680 	 */
1681 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1682 		return;
1683 
1684 	/* If the vdev was expanded, need to copy uberblock rings. */
1685 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1686 	    vd->vdev_copy_uberblocks == B_TRUE) {
1687 		vdev_copy_uberblocks(vd);
1688 		vd->vdev_copy_uberblocks = B_FALSE;
1689 	}
1690 
1691 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1692 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1693 
1694 	/* Copy the uberblock_t into the ABD */
1695 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1696 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1697 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1698 
1699 	for (int l = 0; l < VDEV_LABELS; l++)
1700 		vdev_label_write(zio, vd, l, ub_abd,
1701 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1702 		    vdev_uberblock_sync_done, good_writes,
1703 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1704 
1705 	abd_free(ub_abd);
1706 }
1707 
1708 /* Sync the uberblocks to all vdevs in svd[] */
1709 static int
1710 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1711 {
1712 	spa_t *spa = svd[0]->vdev_spa;
1713 	zio_t *zio;
1714 	uint64_t good_writes = 0;
1715 
1716 	zio = zio_root(spa, NULL, NULL, flags);
1717 
1718 	for (int v = 0; v < svdcount; v++)
1719 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1720 
1721 	(void) zio_wait(zio);
1722 
1723 	/*
1724 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1725 	 * are no longer needed (because the new uberblocks and the even
1726 	 * labels are safely on disk), so it is safe to overwrite them.
1727 	 */
1728 	zio = zio_root(spa, NULL, NULL, flags);
1729 
1730 	for (int v = 0; v < svdcount; v++) {
1731 		if (vdev_writeable(svd[v])) {
1732 			zio_flush(zio, svd[v]);
1733 		}
1734 	}
1735 
1736 	(void) zio_wait(zio);
1737 
1738 	return (good_writes >= 1 ? 0 : EIO);
1739 }
1740 
1741 /*
1742  * On success, increment the count of good writes for our top-level vdev.
1743  */
1744 static void
1745 vdev_label_sync_done(zio_t *zio)
1746 {
1747 	uint64_t *good_writes = zio->io_private;
1748 
1749 	if (zio->io_error == 0)
1750 		atomic_inc_64(good_writes);
1751 }
1752 
1753 /*
1754  * If there weren't enough good writes, indicate failure to the parent.
1755  */
1756 static void
1757 vdev_label_sync_top_done(zio_t *zio)
1758 {
1759 	uint64_t *good_writes = zio->io_private;
1760 
1761 	if (*good_writes == 0)
1762 		zio->io_error = SET_ERROR(EIO);
1763 
1764 	kmem_free(good_writes, sizeof (uint64_t));
1765 }
1766 
1767 /*
1768  * We ignore errors for log and cache devices, simply free the private data.
1769  */
1770 static void
1771 vdev_label_sync_ignore_done(zio_t *zio)
1772 {
1773 	kmem_free(zio->io_private, sizeof (uint64_t));
1774 }
1775 
1776 /*
1777  * Write all even or odd labels to all leaves of the specified vdev.
1778  */
1779 static void
1780 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1781     vdev_t *vd, int l, uint64_t txg, int flags)
1782 {
1783 	nvlist_t *label;
1784 	vdev_phys_t *vp;
1785 	abd_t *vp_abd;
1786 	char *buf;
1787 	size_t buflen;
1788 
1789 	for (int c = 0; c < vd->vdev_children; c++) {
1790 		vdev_label_sync(zio, good_writes,
1791 		    vd->vdev_child[c], l, txg, flags);
1792 	}
1793 
1794 	if (!vd->vdev_ops->vdev_op_leaf)
1795 		return;
1796 
1797 	if (!vdev_writeable(vd))
1798 		return;
1799 
1800 	/*
1801 	 * The top-level config never needs to be written to a distributed
1802 	 * spare.  When read vdev_dspare_label_read_config() will generate
1803 	 * the config for the vdev_label_read_config().
1804 	 */
1805 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1806 		return;
1807 
1808 	/*
1809 	 * Generate a label describing the top-level config to which we belong.
1810 	 */
1811 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1812 
1813 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1814 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1815 	vp = abd_to_buf(vp_abd);
1816 
1817 	buf = vp->vp_nvlist;
1818 	buflen = sizeof (vp->vp_nvlist);
1819 
1820 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1821 		for (; l < VDEV_LABELS; l += 2) {
1822 			vdev_label_write(zio, vd, l, vp_abd,
1823 			    offsetof(vdev_label_t, vl_vdev_phys),
1824 			    sizeof (vdev_phys_t),
1825 			    vdev_label_sync_done, good_writes,
1826 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1827 		}
1828 	}
1829 
1830 	abd_free(vp_abd);
1831 	nvlist_free(label);
1832 }
1833 
1834 static int
1835 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1836 {
1837 	list_t *dl = &spa->spa_config_dirty_list;
1838 	vdev_t *vd;
1839 	zio_t *zio;
1840 	int error;
1841 
1842 	/*
1843 	 * Write the new labels to disk.
1844 	 */
1845 	zio = zio_root(spa, NULL, NULL, flags);
1846 
1847 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1848 		uint64_t *good_writes;
1849 
1850 		ASSERT(!vd->vdev_ishole);
1851 
1852 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1853 		zio_t *vio = zio_null(zio, spa, NULL,
1854 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1855 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1856 		    good_writes, flags);
1857 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1858 		zio_nowait(vio);
1859 	}
1860 
1861 	error = zio_wait(zio);
1862 
1863 	/*
1864 	 * Flush the new labels to disk.
1865 	 */
1866 	zio = zio_root(spa, NULL, NULL, flags);
1867 
1868 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1869 		zio_flush(zio, vd);
1870 
1871 	(void) zio_wait(zio);
1872 
1873 	return (error);
1874 }
1875 
1876 /*
1877  * Sync the uberblock and any changes to the vdev configuration.
1878  *
1879  * The order of operations is carefully crafted to ensure that
1880  * if the system panics or loses power at any time, the state on disk
1881  * is still transactionally consistent.  The in-line comments below
1882  * describe the failure semantics at each stage.
1883  *
1884  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1885  * at any time, you can just call it again, and it will resume its work.
1886  */
1887 int
1888 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1889 {
1890 	spa_t *spa = svd[0]->vdev_spa;
1891 	uberblock_t *ub = &spa->spa_uberblock;
1892 	int error = 0;
1893 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1894 
1895 	ASSERT(svdcount != 0);
1896 retry:
1897 	/*
1898 	 * Normally, we don't want to try too hard to write every label and
1899 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1900 	 * sync process to block while we retry.  But if we can't write a
1901 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1902 	 * bailing out and declaring the pool faulted.
1903 	 */
1904 	if (error != 0) {
1905 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1906 			return (error);
1907 		flags |= ZIO_FLAG_TRYHARD;
1908 	}
1909 
1910 	ASSERT(ub->ub_txg <= txg);
1911 
1912 	/*
1913 	 * If this isn't a resync due to I/O errors,
1914 	 * and nothing changed in this transaction group,
1915 	 * and the vdev configuration hasn't changed,
1916 	 * then there's nothing to do.
1917 	 */
1918 	if (ub->ub_txg < txg) {
1919 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1920 		    txg, spa->spa_mmp.mmp_delay);
1921 
1922 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1923 			return (0);
1924 	}
1925 
1926 	if (txg > spa_freeze_txg(spa))
1927 		return (0);
1928 
1929 	ASSERT(txg <= spa->spa_final_txg);
1930 
1931 	/*
1932 	 * Flush the write cache of every disk that's been written to
1933 	 * in this transaction group.  This ensures that all blocks
1934 	 * written in this txg will be committed to stable storage
1935 	 * before any uberblock that references them.
1936 	 */
1937 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1938 
1939 	for (vdev_t *vd =
1940 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1941 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1942 		zio_flush(zio, vd);
1943 
1944 	(void) zio_wait(zio);
1945 
1946 	/*
1947 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1948 	 * system dies in the middle of this process, that's OK: all of the
1949 	 * even labels that made it to disk will be newer than any uberblock,
1950 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1951 	 * which have not yet been touched, will still be valid.  We flush
1952 	 * the new labels to disk to ensure that all even-label updates
1953 	 * are committed to stable storage before the uberblock update.
1954 	 */
1955 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1956 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1957 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1958 			    "for pool '%s' when syncing out the even labels "
1959 			    "of dirty vdevs", error, spa_name(spa));
1960 		}
1961 		goto retry;
1962 	}
1963 
1964 	/*
1965 	 * Sync the uberblocks to all vdevs in svd[].
1966 	 * If the system dies in the middle of this step, there are two cases
1967 	 * to consider, and the on-disk state is consistent either way:
1968 	 *
1969 	 * (1)	If none of the new uberblocks made it to disk, then the
1970 	 *	previous uberblock will be the newest, and the odd labels
1971 	 *	(which had not yet been touched) will be valid with respect
1972 	 *	to that uberblock.
1973 	 *
1974 	 * (2)	If one or more new uberblocks made it to disk, then they
1975 	 *	will be the newest, and the even labels (which had all
1976 	 *	been successfully committed) will be valid with respect
1977 	 *	to the new uberblocks.
1978 	 */
1979 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1980 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1981 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1982 			    "%d for pool '%s'", error, spa_name(spa));
1983 		}
1984 		goto retry;
1985 	}
1986 
1987 	if (spa_multihost(spa))
1988 		mmp_update_uberblock(spa, ub);
1989 
1990 	/*
1991 	 * Sync out odd labels for every dirty vdev.  If the system dies
1992 	 * in the middle of this process, the even labels and the new
1993 	 * uberblocks will suffice to open the pool.  The next time
1994 	 * the pool is opened, the first thing we'll do -- before any
1995 	 * user data is modified -- is mark every vdev dirty so that
1996 	 * all labels will be brought up to date.  We flush the new labels
1997 	 * to disk to ensure that all odd-label updates are committed to
1998 	 * stable storage before the next transaction group begins.
1999 	 */
2000 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
2001 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2002 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2003 			    "for pool '%s' when syncing out the odd labels of "
2004 			    "dirty vdevs", error, spa_name(spa));
2005 		}
2006 		goto retry;
2007 	}
2008 
2009 	return (0);
2010 }
2011