1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/spa.h>
38 #include <sys/abd.h>
39 
40 /*
41  * ZFS I/O Scheduler
42  * ---------------
43  *
44  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45  * I/O scheduler determines when and in what order those operations are
46  * issued.  The I/O scheduler divides operations into five I/O classes
47  * prioritized in the following order: sync read, sync write, async read,
48  * async write, and scrub/resilver.  Each queue defines the minimum and
49  * maximum number of concurrent operations that may be issued to the device.
50  * In addition, the device has an aggregate maximum. Note that the sum of the
51  * per-queue minimums must not exceed the aggregate maximum. If the
52  * sum of the per-queue maximums exceeds the aggregate maximum, then the
53  * number of active i/os may reach zfs_vdev_max_active, in which case no
54  * further i/os will be issued regardless of whether all per-queue
55  * minimums have been met.
56  *
57  * For many physical devices, throughput increases with the number of
58  * concurrent operations, but latency typically suffers. Further, physical
59  * devices typically have a limit at which more concurrent operations have no
60  * effect on throughput or can actually cause it to decrease.
61  *
62  * The scheduler selects the next operation to issue by first looking for an
63  * I/O class whose minimum has not been satisfied. Once all are satisfied and
64  * the aggregate maximum has not been hit, the scheduler looks for classes
65  * whose maximum has not been satisfied. Iteration through the I/O classes is
66  * done in the order specified above. No further operations are issued if the
67  * aggregate maximum number of concurrent operations has been hit or if there
68  * are no operations queued for an I/O class that has not hit its maximum.
69  * Every time an i/o is queued or an operation completes, the I/O scheduler
70  * looks for new operations to issue.
71  *
72  * All I/O classes have a fixed maximum number of outstanding operations
73  * except for the async write class. Asynchronous writes represent the data
74  * that is committed to stable storage during the syncing stage for
75  * transaction groups (see txg.c). Transaction groups enter the syncing state
76  * periodically so the number of queued async writes will quickly burst up and
77  * then bleed down to zero. Rather than servicing them as quickly as possible,
78  * the I/O scheduler changes the maximum number of active async write i/os
79  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
80  * both throughput and latency typically increase with the number of
81  * concurrent operations issued to physical devices, reducing the burstiness
82  * in the number of concurrent operations also stabilizes the response time of
83  * operations from other -- and in particular synchronous -- queues. In broad
84  * strokes, the I/O scheduler will issue more concurrent operations from the
85  * async write queue as there's more dirty data in the pool.
86  *
87  * Async Writes
88  *
89  * The number of concurrent operations issued for the async write I/O class
90  * follows a piece-wise linear function defined by a few adjustable points.
91  *
92  *        |                   o---------| <-- zfs_vdev_async_write_max_active
93  *   ^    |                  /^         |
94  *   |    |                 / |         |
95  * active |                /  |         |
96  *  I/O   |               /   |         |
97  * count  |              /    |         |
98  *        |             /     |         |
99  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
100  *       0|____________^______|_________|
101  *        0%           |      |       100% of zfs_dirty_data_max
102  *                     |      |
103  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
104  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
105  *
106  * Until the amount of dirty data exceeds a minimum percentage of the dirty
107  * data allowed in the pool, the I/O scheduler will limit the number of
108  * concurrent operations to the minimum. As that threshold is crossed, the
109  * number of concurrent operations issued increases linearly to the maximum at
110  * the specified maximum percentage of the dirty data allowed in the pool.
111  *
112  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
113  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
114  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
115  * maximum percentage, this indicates that the rate of incoming data is
116  * greater than the rate that the backend storage can handle. In this case, we
117  * must further throttle incoming writes (see dmu_tx_delay() for details).
118  */
119 
120 /*
121  * The maximum number of i/os active to each device.  Ideally, this will be >=
122  * the sum of each queue's max_active.
123  */
124 uint_t zfs_vdev_max_active = 1000;
125 
126 /*
127  * Per-queue limits on the number of i/os active to each device.  If the
128  * number of active i/os is < zfs_vdev_max_active, then the min_active comes
129  * into play.  We will send min_active from each queue round-robin, and then
130  * send from queues in the order defined by zio_priority_t up to max_active.
131  * Some queues have additional mechanisms to limit number of active I/Os in
132  * addition to min_active and max_active, see below.
133  *
134  * In general, smaller max_active's will lead to lower latency of synchronous
135  * operations.  Larger max_active's may lead to higher overall throughput,
136  * depending on underlying storage.
137  *
138  * The ratio of the queues' max_actives determines the balance of performance
139  * between reads, writes, and scrubs.  E.g., increasing
140  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
141  * more quickly, but reads and writes to have higher latency and lower
142  * throughput.
143  */
144 static uint_t zfs_vdev_sync_read_min_active = 10;
145 static uint_t zfs_vdev_sync_read_max_active = 10;
146 static uint_t zfs_vdev_sync_write_min_active = 10;
147 static uint_t zfs_vdev_sync_write_max_active = 10;
148 static uint_t zfs_vdev_async_read_min_active = 1;
149 /*  */ uint_t zfs_vdev_async_read_max_active = 3;
150 static uint_t zfs_vdev_async_write_min_active = 2;
151 /*  */ uint_t zfs_vdev_async_write_max_active = 10;
152 static uint_t zfs_vdev_scrub_min_active = 1;
153 static uint_t zfs_vdev_scrub_max_active = 3;
154 static uint_t zfs_vdev_removal_min_active = 1;
155 static uint_t zfs_vdev_removal_max_active = 2;
156 static uint_t zfs_vdev_initializing_min_active = 1;
157 static uint_t zfs_vdev_initializing_max_active = 1;
158 static uint_t zfs_vdev_trim_min_active = 1;
159 static uint_t zfs_vdev_trim_max_active = 2;
160 static uint_t zfs_vdev_rebuild_min_active = 1;
161 static uint_t zfs_vdev_rebuild_max_active = 3;
162 
163 /*
164  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
165  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
166  * zfs_vdev_async_write_active_max_dirty_percent, use
167  * zfs_vdev_async_write_max_active. The value is linearly interpolated
168  * between min and max.
169  */
170 uint_t zfs_vdev_async_write_active_min_dirty_percent = 30;
171 uint_t zfs_vdev_async_write_active_max_dirty_percent = 60;
172 
173 /*
174  * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
175  * the number of concurrently-active I/O's is limited to *_min_active, unless
176  * the vdev is "idle".  When there are no interactive I/Os active (sync or
177  * async), and zfs_vdev_nia_delay I/Os have completed since the last
178  * interactive I/O, then the vdev is considered to be "idle", and the number
179  * of concurrently-active non-interactive I/O's is increased to *_max_active.
180  */
181 static uint_t zfs_vdev_nia_delay = 5;
182 
183 /*
184  * Some HDDs tend to prioritize sequential I/O so high that concurrent
185  * random I/O latency reaches several seconds.  On some HDDs it happens
186  * even if sequential I/Os are submitted one at a time, and so setting
187  * *_max_active to 1 does not help.  To prevent non-interactive I/Os, like
188  * scrub, from monopolizing the device no more than zfs_vdev_nia_credit
189  * I/Os can be sent while there are outstanding incomplete interactive
190  * I/Os.  This enforced wait ensures the HDD services the interactive I/O
191  * within a reasonable amount of time.
192  */
193 static uint_t zfs_vdev_nia_credit = 5;
194 
195 /*
196  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
197  * For read I/Os, we also aggregate across small adjacency gaps; for writes
198  * we include spans of optional I/Os to aid aggregation at the disk even when
199  * they aren't able to help us aggregate at this level.
200  */
201 static uint_t zfs_vdev_aggregation_limit = 1 << 20;
202 static uint_t zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
203 static uint_t zfs_vdev_read_gap_limit = 32 << 10;
204 static uint_t zfs_vdev_write_gap_limit = 4 << 10;
205 
206 /*
207  * Define the queue depth percentage for each top-level. This percentage is
208  * used in conjunction with zfs_vdev_async_max_active to determine how many
209  * allocations a specific top-level vdev should handle. Once the queue depth
210  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
211  * then allocator will stop allocating blocks on that top-level device.
212  * The default kernel setting is 1000% which will yield 100 allocations per
213  * device. For userland testing, the default setting is 300% which equates
214  * to 30 allocations per device.
215  */
216 #ifdef _KERNEL
217 uint_t zfs_vdev_queue_depth_pct = 1000;
218 #else
219 uint_t zfs_vdev_queue_depth_pct = 300;
220 #endif
221 
222 /*
223  * When performing allocations for a given metaslab, we want to make sure that
224  * there are enough IOs to aggregate together to improve throughput. We want to
225  * ensure that there are at least 128k worth of IOs that can be aggregated, and
226  * we assume that the average allocation size is 4k, so we need the queue depth
227  * to be 32 per allocator to get good aggregation of sequential writes.
228  */
229 uint_t zfs_vdev_def_queue_depth = 32;
230 
231 static int
232 vdev_queue_offset_compare(const void *x1, const void *x2)
233 {
234 	const zio_t *z1 = (const zio_t *)x1;
235 	const zio_t *z2 = (const zio_t *)x2;
236 
237 	int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
238 
239 	if (likely(cmp))
240 		return (cmp);
241 
242 	return (TREE_PCMP(z1, z2));
243 }
244 
245 #define	VDQ_T_SHIFT 29
246 
247 static int
248 vdev_queue_to_compare(const void *x1, const void *x2)
249 {
250 	const zio_t *z1 = (const zio_t *)x1;
251 	const zio_t *z2 = (const zio_t *)x2;
252 
253 	int tcmp = TREE_CMP(z1->io_timestamp >> VDQ_T_SHIFT,
254 	    z2->io_timestamp >> VDQ_T_SHIFT);
255 	int ocmp = TREE_CMP(z1->io_offset, z2->io_offset);
256 	int cmp = tcmp ? tcmp : ocmp;
257 
258 	if (likely(cmp | (z1->io_queue_state == ZIO_QS_NONE)))
259 		return (cmp);
260 
261 	return (TREE_PCMP(z1, z2));
262 }
263 
264 static inline boolean_t
265 vdev_queue_class_fifo(zio_priority_t p)
266 {
267 	return (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE ||
268 	    p == ZIO_PRIORITY_TRIM);
269 }
270 
271 static void
272 vdev_queue_class_add(vdev_queue_t *vq, zio_t *zio)
273 {
274 	zio_priority_t p = zio->io_priority;
275 	vq->vq_cqueued |= 1U << p;
276 	if (vdev_queue_class_fifo(p))
277 		list_insert_tail(&vq->vq_class[p].vqc_list, zio);
278 	else
279 		avl_add(&vq->vq_class[p].vqc_tree, zio);
280 }
281 
282 static void
283 vdev_queue_class_remove(vdev_queue_t *vq, zio_t *zio)
284 {
285 	zio_priority_t p = zio->io_priority;
286 	uint32_t empty;
287 	if (vdev_queue_class_fifo(p)) {
288 		list_t *list = &vq->vq_class[p].vqc_list;
289 		list_remove(list, zio);
290 		empty = list_is_empty(list);
291 	} else {
292 		avl_tree_t *tree = &vq->vq_class[p].vqc_tree;
293 		avl_remove(tree, zio);
294 		empty = avl_is_empty(tree);
295 	}
296 	vq->vq_cqueued &= ~(empty << p);
297 }
298 
299 static uint_t
300 vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p)
301 {
302 	switch (p) {
303 	case ZIO_PRIORITY_SYNC_READ:
304 		return (zfs_vdev_sync_read_min_active);
305 	case ZIO_PRIORITY_SYNC_WRITE:
306 		return (zfs_vdev_sync_write_min_active);
307 	case ZIO_PRIORITY_ASYNC_READ:
308 		return (zfs_vdev_async_read_min_active);
309 	case ZIO_PRIORITY_ASYNC_WRITE:
310 		return (zfs_vdev_async_write_min_active);
311 	case ZIO_PRIORITY_SCRUB:
312 		return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active :
313 		    MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active));
314 	case ZIO_PRIORITY_REMOVAL:
315 		return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active :
316 		    MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active));
317 	case ZIO_PRIORITY_INITIALIZING:
318 		return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active:
319 		    MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active));
320 	case ZIO_PRIORITY_TRIM:
321 		return (zfs_vdev_trim_min_active);
322 	case ZIO_PRIORITY_REBUILD:
323 		return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active :
324 		    MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active));
325 	default:
326 		panic("invalid priority %u", p);
327 		return (0);
328 	}
329 }
330 
331 static uint_t
332 vdev_queue_max_async_writes(spa_t *spa)
333 {
334 	uint_t writes;
335 	uint64_t dirty = 0;
336 	dsl_pool_t *dp = spa_get_dsl(spa);
337 	uint64_t min_bytes = zfs_dirty_data_max *
338 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
339 	uint64_t max_bytes = zfs_dirty_data_max *
340 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
341 
342 	/*
343 	 * Async writes may occur before the assignment of the spa's
344 	 * dsl_pool_t if a self-healing zio is issued prior to the
345 	 * completion of dmu_objset_open_impl().
346 	 */
347 	if (dp == NULL)
348 		return (zfs_vdev_async_write_max_active);
349 
350 	/*
351 	 * Sync tasks correspond to interactive user actions. To reduce the
352 	 * execution time of those actions we push data out as fast as possible.
353 	 */
354 	dirty = dp->dp_dirty_total;
355 	if (dirty > max_bytes || spa_has_pending_synctask(spa))
356 		return (zfs_vdev_async_write_max_active);
357 
358 	if (dirty < min_bytes)
359 		return (zfs_vdev_async_write_min_active);
360 
361 	/*
362 	 * linear interpolation:
363 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
364 	 * move right by min_bytes
365 	 * move up by min_writes
366 	 */
367 	writes = (dirty - min_bytes) *
368 	    (zfs_vdev_async_write_max_active -
369 	    zfs_vdev_async_write_min_active) /
370 	    (max_bytes - min_bytes) +
371 	    zfs_vdev_async_write_min_active;
372 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
373 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
374 	return (writes);
375 }
376 
377 static uint_t
378 vdev_queue_class_max_active(vdev_queue_t *vq, zio_priority_t p)
379 {
380 	switch (p) {
381 	case ZIO_PRIORITY_SYNC_READ:
382 		return (zfs_vdev_sync_read_max_active);
383 	case ZIO_PRIORITY_SYNC_WRITE:
384 		return (zfs_vdev_sync_write_max_active);
385 	case ZIO_PRIORITY_ASYNC_READ:
386 		return (zfs_vdev_async_read_max_active);
387 	case ZIO_PRIORITY_ASYNC_WRITE:
388 		return (vdev_queue_max_async_writes(vq->vq_vdev->vdev_spa));
389 	case ZIO_PRIORITY_SCRUB:
390 		if (vq->vq_ia_active > 0) {
391 			return (MIN(vq->vq_nia_credit,
392 			    zfs_vdev_scrub_min_active));
393 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
394 			return (MAX(1, zfs_vdev_scrub_min_active));
395 		return (zfs_vdev_scrub_max_active);
396 	case ZIO_PRIORITY_REMOVAL:
397 		if (vq->vq_ia_active > 0) {
398 			return (MIN(vq->vq_nia_credit,
399 			    zfs_vdev_removal_min_active));
400 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
401 			return (MAX(1, zfs_vdev_removal_min_active));
402 		return (zfs_vdev_removal_max_active);
403 	case ZIO_PRIORITY_INITIALIZING:
404 		if (vq->vq_ia_active > 0) {
405 			return (MIN(vq->vq_nia_credit,
406 			    zfs_vdev_initializing_min_active));
407 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
408 			return (MAX(1, zfs_vdev_initializing_min_active));
409 		return (zfs_vdev_initializing_max_active);
410 	case ZIO_PRIORITY_TRIM:
411 		return (zfs_vdev_trim_max_active);
412 	case ZIO_PRIORITY_REBUILD:
413 		if (vq->vq_ia_active > 0) {
414 			return (MIN(vq->vq_nia_credit,
415 			    zfs_vdev_rebuild_min_active));
416 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
417 			return (MAX(1, zfs_vdev_rebuild_min_active));
418 		return (zfs_vdev_rebuild_max_active);
419 	default:
420 		panic("invalid priority %u", p);
421 		return (0);
422 	}
423 }
424 
425 /*
426  * Return the i/o class to issue from, or ZIO_PRIORITY_NUM_QUEUEABLE if
427  * there is no eligible class.
428  */
429 static zio_priority_t
430 vdev_queue_class_to_issue(vdev_queue_t *vq)
431 {
432 	uint32_t cq = vq->vq_cqueued;
433 	zio_priority_t p, p1;
434 
435 	if (cq == 0 || vq->vq_active >= zfs_vdev_max_active)
436 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
437 
438 	/*
439 	 * Find a queue that has not reached its minimum # outstanding i/os.
440 	 * Do round-robin to reduce starvation due to zfs_vdev_max_active
441 	 * and vq_nia_credit limits.
442 	 */
443 	p1 = vq->vq_last_prio + 1;
444 	if (p1 >= ZIO_PRIORITY_NUM_QUEUEABLE)
445 		p1 = 0;
446 	for (p = p1; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
447 		if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
448 		    vdev_queue_class_min_active(vq, p))
449 			goto found;
450 	}
451 	for (p = 0; p < p1; p++) {
452 		if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
453 		    vdev_queue_class_min_active(vq, p))
454 			goto found;
455 	}
456 
457 	/*
458 	 * If we haven't found a queue, look for one that hasn't reached its
459 	 * maximum # outstanding i/os.
460 	 */
461 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
462 		if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
463 		    vdev_queue_class_max_active(vq, p))
464 			break;
465 	}
466 
467 found:
468 	vq->vq_last_prio = p;
469 	return (p);
470 }
471 
472 void
473 vdev_queue_init(vdev_t *vd)
474 {
475 	vdev_queue_t *vq = &vd->vdev_queue;
476 	zio_priority_t p;
477 
478 	vq->vq_vdev = vd;
479 
480 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
481 		if (vdev_queue_class_fifo(p)) {
482 			list_create(&vq->vq_class[p].vqc_list,
483 			    sizeof (zio_t),
484 			    offsetof(struct zio, io_queue_node.l));
485 		} else {
486 			avl_create(&vq->vq_class[p].vqc_tree,
487 			    vdev_queue_to_compare, sizeof (zio_t),
488 			    offsetof(struct zio, io_queue_node.a));
489 		}
490 	}
491 	avl_create(&vq->vq_read_offset_tree,
492 	    vdev_queue_offset_compare, sizeof (zio_t),
493 	    offsetof(struct zio, io_offset_node));
494 	avl_create(&vq->vq_write_offset_tree,
495 	    vdev_queue_offset_compare, sizeof (zio_t),
496 	    offsetof(struct zio, io_offset_node));
497 
498 	vq->vq_last_offset = 0;
499 	list_create(&vq->vq_active_list, sizeof (struct zio),
500 	    offsetof(struct zio, io_queue_node.l));
501 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
502 }
503 
504 void
505 vdev_queue_fini(vdev_t *vd)
506 {
507 	vdev_queue_t *vq = &vd->vdev_queue;
508 
509 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
510 		if (vdev_queue_class_fifo(p))
511 			list_destroy(&vq->vq_class[p].vqc_list);
512 		else
513 			avl_destroy(&vq->vq_class[p].vqc_tree);
514 	}
515 	avl_destroy(&vq->vq_read_offset_tree);
516 	avl_destroy(&vq->vq_write_offset_tree);
517 
518 	list_destroy(&vq->vq_active_list);
519 	mutex_destroy(&vq->vq_lock);
520 }
521 
522 static void
523 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
524 {
525 	zio->io_queue_state = ZIO_QS_QUEUED;
526 	vdev_queue_class_add(vq, zio);
527 	if (zio->io_type == ZIO_TYPE_READ)
528 		avl_add(&vq->vq_read_offset_tree, zio);
529 	else if (zio->io_type == ZIO_TYPE_WRITE)
530 		avl_add(&vq->vq_write_offset_tree, zio);
531 }
532 
533 static void
534 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
535 {
536 	vdev_queue_class_remove(vq, zio);
537 	if (zio->io_type == ZIO_TYPE_READ)
538 		avl_remove(&vq->vq_read_offset_tree, zio);
539 	else if (zio->io_type == ZIO_TYPE_WRITE)
540 		avl_remove(&vq->vq_write_offset_tree, zio);
541 	zio->io_queue_state = ZIO_QS_NONE;
542 }
543 
544 static boolean_t
545 vdev_queue_is_interactive(zio_priority_t p)
546 {
547 	switch (p) {
548 	case ZIO_PRIORITY_SCRUB:
549 	case ZIO_PRIORITY_REMOVAL:
550 	case ZIO_PRIORITY_INITIALIZING:
551 	case ZIO_PRIORITY_REBUILD:
552 		return (B_FALSE);
553 	default:
554 		return (B_TRUE);
555 	}
556 }
557 
558 static void
559 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
560 {
561 	ASSERT(MUTEX_HELD(&vq->vq_lock));
562 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
563 	vq->vq_cactive[zio->io_priority]++;
564 	vq->vq_active++;
565 	if (vdev_queue_is_interactive(zio->io_priority)) {
566 		if (++vq->vq_ia_active == 1)
567 			vq->vq_nia_credit = 1;
568 	} else if (vq->vq_ia_active > 0) {
569 		vq->vq_nia_credit--;
570 	}
571 	zio->io_queue_state = ZIO_QS_ACTIVE;
572 	list_insert_tail(&vq->vq_active_list, zio);
573 }
574 
575 static void
576 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
577 {
578 	ASSERT(MUTEX_HELD(&vq->vq_lock));
579 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
580 	vq->vq_cactive[zio->io_priority]--;
581 	vq->vq_active--;
582 	if (vdev_queue_is_interactive(zio->io_priority)) {
583 		if (--vq->vq_ia_active == 0)
584 			vq->vq_nia_credit = 0;
585 		else
586 			vq->vq_nia_credit = zfs_vdev_nia_credit;
587 	} else if (vq->vq_ia_active == 0)
588 		vq->vq_nia_credit++;
589 	list_remove(&vq->vq_active_list, zio);
590 	zio->io_queue_state = ZIO_QS_NONE;
591 }
592 
593 static void
594 vdev_queue_agg_io_done(zio_t *aio)
595 {
596 	abd_free(aio->io_abd);
597 }
598 
599 /*
600  * Compute the range spanned by two i/os, which is the endpoint of the last
601  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
602  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
603  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
604  */
605 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
606 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
607 
608 /*
609  * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
610  * by creating a gang ABD from the adjacent ZIOs io_abd's. By using
611  * a gang ABD we avoid doing memory copies to and from the parent,
612  * child ZIOs. The gang ABD also accounts for gaps between adjacent
613  * io_offsets by simply getting the zero ABD for writes or allocating
614  * a new ABD for reads and placing them in the gang ABD as well.
615  */
616 static zio_t *
617 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
618 {
619 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
620 	uint64_t maxgap = 0;
621 	uint64_t size;
622 	uint64_t limit;
623 	boolean_t stretch = B_FALSE;
624 	uint64_t next_offset;
625 	abd_t *abd;
626 	avl_tree_t *t;
627 
628 	/*
629 	 * TRIM aggregation should not be needed since code in zfs_trim.c can
630 	 * submit TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M).
631 	 */
632 	if (zio->io_type == ZIO_TYPE_TRIM)
633 		return (NULL);
634 
635 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
636 		return (NULL);
637 
638 	if (vq->vq_vdev->vdev_nonrot)
639 		limit = zfs_vdev_aggregation_limit_non_rotating;
640 	else
641 		limit = zfs_vdev_aggregation_limit;
642 	if (limit == 0)
643 		return (NULL);
644 	limit = MIN(limit, SPA_MAXBLOCKSIZE);
645 
646 	/*
647 	 * I/Os to distributed spares are directly dispatched to the dRAID
648 	 * leaf vdevs for aggregation.  See the comment at the end of the
649 	 * zio_vdev_io_start() function.
650 	 */
651 	ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
652 
653 	first = last = zio;
654 
655 	if (zio->io_type == ZIO_TYPE_READ) {
656 		maxgap = zfs_vdev_read_gap_limit;
657 		t = &vq->vq_read_offset_tree;
658 	} else {
659 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
660 		t = &vq->vq_write_offset_tree;
661 	}
662 
663 	/*
664 	 * We can aggregate I/Os that are sufficiently adjacent and of
665 	 * the same flavor, as expressed by the AGG_INHERIT flags.
666 	 * The latter requirement is necessary so that certain
667 	 * attributes of the I/O, such as whether it's a normal I/O
668 	 * or a scrub/resilver, can be preserved in the aggregate.
669 	 * We can include optional I/Os, but don't allow them
670 	 * to begin a range as they add no benefit in that situation.
671 	 */
672 
673 	/*
674 	 * We keep track of the last non-optional I/O.
675 	 */
676 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
677 
678 	/*
679 	 * Walk backwards through sufficiently contiguous I/Os
680 	 * recording the last non-optional I/O.
681 	 */
682 	zio_flag_t flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
683 	while ((dio = AVL_PREV(t, first)) != NULL &&
684 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
685 	    IO_SPAN(dio, last) <= limit &&
686 	    IO_GAP(dio, first) <= maxgap &&
687 	    dio->io_type == zio->io_type) {
688 		first = dio;
689 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
690 			mandatory = first;
691 	}
692 
693 	/*
694 	 * Skip any initial optional I/Os.
695 	 */
696 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
697 		first = AVL_NEXT(t, first);
698 		ASSERT(first != NULL);
699 	}
700 
701 
702 	/*
703 	 * Walk forward through sufficiently contiguous I/Os.
704 	 * The aggregation limit does not apply to optional i/os, so that
705 	 * we can issue contiguous writes even if they are larger than the
706 	 * aggregation limit.
707 	 */
708 	while ((dio = AVL_NEXT(t, last)) != NULL &&
709 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
710 	    (IO_SPAN(first, dio) <= limit ||
711 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
712 	    IO_SPAN(first, dio) <= SPA_MAXBLOCKSIZE &&
713 	    IO_GAP(last, dio) <= maxgap &&
714 	    dio->io_type == zio->io_type) {
715 		last = dio;
716 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
717 			mandatory = last;
718 	}
719 
720 	/*
721 	 * Now that we've established the range of the I/O aggregation
722 	 * we must decide what to do with trailing optional I/Os.
723 	 * For reads, there's nothing to do. While we are unable to
724 	 * aggregate further, it's possible that a trailing optional
725 	 * I/O would allow the underlying device to aggregate with
726 	 * subsequent I/Os. We must therefore determine if the next
727 	 * non-optional I/O is close enough to make aggregation
728 	 * worthwhile.
729 	 */
730 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
731 		zio_t *nio = last;
732 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
733 		    IO_GAP(nio, dio) == 0 &&
734 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
735 			nio = dio;
736 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
737 				stretch = B_TRUE;
738 				break;
739 			}
740 		}
741 	}
742 
743 	if (stretch) {
744 		/*
745 		 * We are going to include an optional io in our aggregated
746 		 * span, thus closing the write gap.  Only mandatory i/os can
747 		 * start aggregated spans, so make sure that the next i/o
748 		 * after our span is mandatory.
749 		 */
750 		dio = AVL_NEXT(t, last);
751 		ASSERT3P(dio, !=, NULL);
752 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
753 	} else {
754 		/* do not include the optional i/o */
755 		while (last != mandatory && last != first) {
756 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
757 			last = AVL_PREV(t, last);
758 			ASSERT(last != NULL);
759 		}
760 	}
761 
762 	if (first == last)
763 		return (NULL);
764 
765 	size = IO_SPAN(first, last);
766 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
767 
768 	abd = abd_alloc_gang();
769 	if (abd == NULL)
770 		return (NULL);
771 
772 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
773 	    abd, size, first->io_type, zio->io_priority,
774 	    flags | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL);
775 	aio->io_timestamp = first->io_timestamp;
776 
777 	nio = first;
778 	next_offset = first->io_offset;
779 	do {
780 		dio = nio;
781 		nio = AVL_NEXT(t, dio);
782 		ASSERT3P(dio, !=, NULL);
783 		zio_add_child(dio, aio);
784 		vdev_queue_io_remove(vq, dio);
785 
786 		if (dio->io_offset != next_offset) {
787 			/* allocate a buffer for a read gap */
788 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
789 			ASSERT3U(dio->io_offset, >, next_offset);
790 			abd = abd_alloc_for_io(
791 			    dio->io_offset - next_offset, B_TRUE);
792 			abd_gang_add(aio->io_abd, abd, B_TRUE);
793 		}
794 		if (dio->io_abd &&
795 		    (dio->io_size != abd_get_size(dio->io_abd))) {
796 			/* abd size not the same as IO size */
797 			ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
798 			abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
799 			abd_gang_add(aio->io_abd, abd, B_TRUE);
800 		} else {
801 			if (dio->io_flags & ZIO_FLAG_NODATA) {
802 				/* allocate a buffer for a write gap */
803 				ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
804 				ASSERT3P(dio->io_abd, ==, NULL);
805 				abd_gang_add(aio->io_abd,
806 				    abd_get_zeros(dio->io_size), B_TRUE);
807 			} else {
808 				/*
809 				 * We pass B_FALSE to abd_gang_add()
810 				 * because we did not allocate a new
811 				 * ABD, so it is assumed the caller
812 				 * will free this ABD.
813 				 */
814 				abd_gang_add(aio->io_abd, dio->io_abd,
815 				    B_FALSE);
816 			}
817 		}
818 		next_offset = dio->io_offset + dio->io_size;
819 	} while (dio != last);
820 	ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
821 
822 	/*
823 	 * Callers must call zio_vdev_io_bypass() and zio_execute() for
824 	 * aggregated (parent) I/Os so that we could avoid dropping the
825 	 * queue's lock here to avoid a deadlock that we could encounter
826 	 * due to lock order reversal between vq_lock and io_lock in
827 	 * zio_change_priority().
828 	 */
829 	return (aio);
830 }
831 
832 static zio_t *
833 vdev_queue_io_to_issue(vdev_queue_t *vq)
834 {
835 	zio_t *zio, *aio;
836 	zio_priority_t p;
837 	avl_index_t idx;
838 	avl_tree_t *tree;
839 
840 again:
841 	ASSERT(MUTEX_HELD(&vq->vq_lock));
842 
843 	p = vdev_queue_class_to_issue(vq);
844 
845 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
846 		/* No eligible queued i/os */
847 		return (NULL);
848 	}
849 
850 	if (vdev_queue_class_fifo(p)) {
851 		zio = list_head(&vq->vq_class[p].vqc_list);
852 	} else {
853 		/*
854 		 * For LBA-ordered queues (async / scrub / initializing),
855 		 * issue the I/O which follows the most recently issued I/O
856 		 * in LBA (offset) order, but to avoid starvation only within
857 		 * the same 0.5 second interval as the first I/O.
858 		 */
859 		tree = &vq->vq_class[p].vqc_tree;
860 		zio = aio = avl_first(tree);
861 		if (zio->io_offset < vq->vq_last_offset) {
862 			vq->vq_io_search.io_timestamp = zio->io_timestamp;
863 			vq->vq_io_search.io_offset = vq->vq_last_offset;
864 			zio = avl_find(tree, &vq->vq_io_search, &idx);
865 			if (zio == NULL) {
866 				zio = avl_nearest(tree, idx, AVL_AFTER);
867 				if (zio == NULL ||
868 				    (zio->io_timestamp >> VDQ_T_SHIFT) !=
869 				    (aio->io_timestamp >> VDQ_T_SHIFT))
870 					zio = aio;
871 			}
872 		}
873 	}
874 	ASSERT3U(zio->io_priority, ==, p);
875 
876 	aio = vdev_queue_aggregate(vq, zio);
877 	if (aio != NULL) {
878 		zio = aio;
879 	} else {
880 		vdev_queue_io_remove(vq, zio);
881 
882 		/*
883 		 * If the I/O is or was optional and therefore has no data, we
884 		 * need to simply discard it. We need to drop the vdev queue's
885 		 * lock to avoid a deadlock that we could encounter since this
886 		 * I/O will complete immediately.
887 		 */
888 		if (zio->io_flags & ZIO_FLAG_NODATA) {
889 			mutex_exit(&vq->vq_lock);
890 			zio_vdev_io_bypass(zio);
891 			zio_execute(zio);
892 			mutex_enter(&vq->vq_lock);
893 			goto again;
894 		}
895 	}
896 
897 	vdev_queue_pending_add(vq, zio);
898 	vq->vq_last_offset = zio->io_offset + zio->io_size;
899 
900 	return (zio);
901 }
902 
903 zio_t *
904 vdev_queue_io(zio_t *zio)
905 {
906 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
907 	zio_t *dio, *nio;
908 	zio_link_t *zl = NULL;
909 
910 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
911 		return (zio);
912 
913 	/*
914 	 * Children i/os inherent their parent's priority, which might
915 	 * not match the child's i/o type.  Fix it up here.
916 	 */
917 	if (zio->io_type == ZIO_TYPE_READ) {
918 		ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
919 
920 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
921 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
922 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
923 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
924 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
925 		    zio->io_priority != ZIO_PRIORITY_REBUILD) {
926 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
927 		}
928 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
929 		ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
930 
931 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
932 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
933 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
934 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
935 		    zio->io_priority != ZIO_PRIORITY_REBUILD) {
936 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
937 		}
938 	} else {
939 		ASSERT(zio->io_type == ZIO_TYPE_TRIM);
940 		ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
941 	}
942 
943 	zio->io_flags |= ZIO_FLAG_DONT_QUEUE;
944 	zio->io_timestamp = gethrtime();
945 
946 	mutex_enter(&vq->vq_lock);
947 	vdev_queue_io_add(vq, zio);
948 	nio = vdev_queue_io_to_issue(vq);
949 	mutex_exit(&vq->vq_lock);
950 
951 	if (nio == NULL)
952 		return (NULL);
953 
954 	if (nio->io_done == vdev_queue_agg_io_done) {
955 		while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
956 			ASSERT3U(dio->io_type, ==, nio->io_type);
957 			zio_vdev_io_bypass(dio);
958 			zio_execute(dio);
959 		}
960 		zio_nowait(nio);
961 		return (NULL);
962 	}
963 
964 	return (nio);
965 }
966 
967 void
968 vdev_queue_io_done(zio_t *zio)
969 {
970 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
971 	zio_t *dio, *nio;
972 	zio_link_t *zl = NULL;
973 
974 	hrtime_t now = gethrtime();
975 	vq->vq_io_complete_ts = now;
976 	vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp;
977 
978 	mutex_enter(&vq->vq_lock);
979 	vdev_queue_pending_remove(vq, zio);
980 
981 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
982 		mutex_exit(&vq->vq_lock);
983 		if (nio->io_done == vdev_queue_agg_io_done) {
984 			while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
985 				ASSERT3U(dio->io_type, ==, nio->io_type);
986 				zio_vdev_io_bypass(dio);
987 				zio_execute(dio);
988 			}
989 			zio_nowait(nio);
990 		} else {
991 			zio_vdev_io_reissue(nio);
992 			zio_execute(nio);
993 		}
994 		mutex_enter(&vq->vq_lock);
995 	}
996 
997 	mutex_exit(&vq->vq_lock);
998 }
999 
1000 void
1001 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
1002 {
1003 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
1004 
1005 	/*
1006 	 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
1007 	 * code to issue IOs without adding them to the vdev queue. In this
1008 	 * case, the zio is already going to be issued as quickly as possible
1009 	 * and so it doesn't need any reprioritization to help.
1010 	 */
1011 	if (zio->io_priority == ZIO_PRIORITY_NOW)
1012 		return;
1013 
1014 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
1015 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
1016 
1017 	if (zio->io_type == ZIO_TYPE_READ) {
1018 		if (priority != ZIO_PRIORITY_SYNC_READ &&
1019 		    priority != ZIO_PRIORITY_ASYNC_READ &&
1020 		    priority != ZIO_PRIORITY_SCRUB)
1021 			priority = ZIO_PRIORITY_ASYNC_READ;
1022 	} else {
1023 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1024 		if (priority != ZIO_PRIORITY_SYNC_WRITE &&
1025 		    priority != ZIO_PRIORITY_ASYNC_WRITE)
1026 			priority = ZIO_PRIORITY_ASYNC_WRITE;
1027 	}
1028 
1029 	mutex_enter(&vq->vq_lock);
1030 
1031 	/*
1032 	 * If the zio is in none of the queues we can simply change
1033 	 * the priority. If the zio is waiting to be submitted we must
1034 	 * remove it from the queue and re-insert it with the new priority.
1035 	 * Otherwise, the zio is currently active and we cannot change its
1036 	 * priority.
1037 	 */
1038 	if (zio->io_queue_state == ZIO_QS_QUEUED) {
1039 		vdev_queue_class_remove(vq, zio);
1040 		zio->io_priority = priority;
1041 		vdev_queue_class_add(vq, zio);
1042 	} else if (zio->io_queue_state == ZIO_QS_NONE) {
1043 		zio->io_priority = priority;
1044 	}
1045 
1046 	mutex_exit(&vq->vq_lock);
1047 }
1048 
1049 /*
1050  * As these two methods are only used for load calculations we're not
1051  * concerned if we get an incorrect value on 32bit platforms due to lack of
1052  * vq_lock mutex use here, instead we prefer to keep it lock free for
1053  * performance.
1054  */
1055 uint32_t
1056 vdev_queue_length(vdev_t *vd)
1057 {
1058 	return (vd->vdev_queue.vq_active);
1059 }
1060 
1061 uint64_t
1062 vdev_queue_last_offset(vdev_t *vd)
1063 {
1064 	return (vd->vdev_queue.vq_last_offset);
1065 }
1066 
1067 uint64_t
1068 vdev_queue_class_length(vdev_t *vd, zio_priority_t p)
1069 {
1070 	vdev_queue_t *vq = &vd->vdev_queue;
1071 	if (vdev_queue_class_fifo(p))
1072 		return (list_is_empty(&vq->vq_class[p].vqc_list) == 0);
1073 	else
1074 		return (avl_numnodes(&vq->vq_class[p].vqc_tree));
1075 }
1076 
1077 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, UINT, ZMOD_RW,
1078 	"Max vdev I/O aggregation size");
1079 
1080 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, UINT,
1081 	ZMOD_RW, "Max vdev I/O aggregation size for non-rotating media");
1082 
1083 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, UINT, ZMOD_RW,
1084 	"Aggregate read I/O over gap");
1085 
1086 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, UINT, ZMOD_RW,
1087 	"Aggregate write I/O over gap");
1088 
1089 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, UINT, ZMOD_RW,
1090 	"Maximum number of active I/Os per vdev");
1091 
1092 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent,
1093 	UINT, ZMOD_RW, "Async write concurrency max threshold");
1094 
1095 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent,
1096 	UINT, ZMOD_RW, "Async write concurrency min threshold");
1097 
1098 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, UINT, ZMOD_RW,
1099 	"Max active async read I/Os per vdev");
1100 
1101 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, UINT, ZMOD_RW,
1102 	"Min active async read I/Os per vdev");
1103 
1104 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, UINT, ZMOD_RW,
1105 	"Max active async write I/Os per vdev");
1106 
1107 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, UINT, ZMOD_RW,
1108 	"Min active async write I/Os per vdev");
1109 
1110 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, UINT, ZMOD_RW,
1111 	"Max active initializing I/Os per vdev");
1112 
1113 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, UINT, ZMOD_RW,
1114 	"Min active initializing I/Os per vdev");
1115 
1116 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, UINT, ZMOD_RW,
1117 	"Max active removal I/Os per vdev");
1118 
1119 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, UINT, ZMOD_RW,
1120 	"Min active removal I/Os per vdev");
1121 
1122 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, UINT, ZMOD_RW,
1123 	"Max active scrub I/Os per vdev");
1124 
1125 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, UINT, ZMOD_RW,
1126 	"Min active scrub I/Os per vdev");
1127 
1128 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, UINT, ZMOD_RW,
1129 	"Max active sync read I/Os per vdev");
1130 
1131 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, UINT, ZMOD_RW,
1132 	"Min active sync read I/Os per vdev");
1133 
1134 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, UINT, ZMOD_RW,
1135 	"Max active sync write I/Os per vdev");
1136 
1137 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, UINT, ZMOD_RW,
1138 	"Min active sync write I/Os per vdev");
1139 
1140 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, UINT, ZMOD_RW,
1141 	"Max active trim/discard I/Os per vdev");
1142 
1143 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, UINT, ZMOD_RW,
1144 	"Min active trim/discard I/Os per vdev");
1145 
1146 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, UINT, ZMOD_RW,
1147 	"Max active rebuild I/Os per vdev");
1148 
1149 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, UINT, ZMOD_RW,
1150 	"Min active rebuild I/Os per vdev");
1151 
1152 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, UINT, ZMOD_RW,
1153 	"Number of non-interactive I/Os to allow in sequence");
1154 
1155 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, UINT, ZMOD_RW,
1156 	"Number of non-interactive I/Os before _max_active");
1157 
1158 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, UINT, ZMOD_RW,
1159 	"Queue depth percentage for each top-level vdev");
1160 
1161 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, def_queue_depth, UINT, ZMOD_RW,
1162 	"Default queue depth for each allocator");
1163