1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  * CDDL HEADER START
3eda14cbcSMatt Macy  *
4eda14cbcSMatt Macy  * The contents of this file are subject to the terms of the
5eda14cbcSMatt Macy  * Common Development and Distribution License (the "License").
6eda14cbcSMatt Macy  * You may not use this file except in compliance with the License.
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9271171e0SMartin Matuska  * or https://opensource.org/licenses/CDDL-1.0.
10eda14cbcSMatt Macy  * See the License for the specific language governing permissions
11eda14cbcSMatt Macy  * and limitations under the License.
12eda14cbcSMatt Macy  *
13eda14cbcSMatt Macy  * When distributing Covered Code, include this CDDL HEADER in each
14eda14cbcSMatt Macy  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15eda14cbcSMatt Macy  * If applicable, add the following below this CDDL HEADER, with the
16eda14cbcSMatt Macy  * fields enclosed by brackets "[]" replaced with your own identifying
17eda14cbcSMatt Macy  * information: Portions Copyright [yyyy] [name of copyright owner]
18eda14cbcSMatt Macy  *
19eda14cbcSMatt Macy  * CDDL HEADER END
20eda14cbcSMatt Macy  */
21eda14cbcSMatt Macy /*
22eda14cbcSMatt Macy  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23eda14cbcSMatt Macy  */
24eda14cbcSMatt Macy 
25eda14cbcSMatt Macy #ifndef _VDEV_RAIDZ_MATH_IMPL_H
26eda14cbcSMatt Macy #define	_VDEV_RAIDZ_MATH_IMPL_H
27eda14cbcSMatt Macy 
28eda14cbcSMatt Macy #include <sys/types.h>
297877fdebSMatt Macy #include <sys/vdev_raidz_impl.h>
30eda14cbcSMatt Macy 
31eda14cbcSMatt Macy #define	raidz_inline inline __attribute__((always_inline))
32eda14cbcSMatt Macy #ifndef noinline
33eda14cbcSMatt Macy #define	noinline __attribute__((noinline))
34eda14cbcSMatt Macy #endif
35eda14cbcSMatt Macy 
36eda14cbcSMatt Macy /*
37eda14cbcSMatt Macy  * Functions calculate multiplication constants for data reconstruction.
38eda14cbcSMatt Macy  * Coefficients depend on RAIDZ geometry, indexes of failed child vdevs, and
39eda14cbcSMatt Macy  * used parity columns for reconstruction.
407877fdebSMatt Macy  * @rr			RAIDZ row
41eda14cbcSMatt Macy  * @tgtidx		array of missing data indexes
42eda14cbcSMatt Macy  * @coeff		output array of coefficients. Array must be provided by
43eda14cbcSMatt Macy  *         		user and must hold minimum MUL_CNT values.
44eda14cbcSMatt Macy  */
45eda14cbcSMatt Macy static noinline void
raidz_rec_q_coeff(const raidz_row_t * rr,const int * tgtidx,unsigned * coeff)467877fdebSMatt Macy raidz_rec_q_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
47eda14cbcSMatt Macy {
487877fdebSMatt Macy 	const unsigned ncols = rr->rr_cols;
49eda14cbcSMatt Macy 	const unsigned x = tgtidx[TARGET_X];
50eda14cbcSMatt Macy 
51eda14cbcSMatt Macy 	coeff[MUL_Q_X] = gf_exp2(255 - (ncols - x - 1));
52eda14cbcSMatt Macy }
53eda14cbcSMatt Macy 
54eda14cbcSMatt Macy static noinline void
raidz_rec_r_coeff(const raidz_row_t * rr,const int * tgtidx,unsigned * coeff)557877fdebSMatt Macy raidz_rec_r_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
56eda14cbcSMatt Macy {
577877fdebSMatt Macy 	const unsigned ncols = rr->rr_cols;
58eda14cbcSMatt Macy 	const unsigned x = tgtidx[TARGET_X];
59eda14cbcSMatt Macy 
60eda14cbcSMatt Macy 	coeff[MUL_R_X] = gf_exp4(255 - (ncols - x - 1));
61eda14cbcSMatt Macy }
62eda14cbcSMatt Macy 
63eda14cbcSMatt Macy static noinline void
raidz_rec_pq_coeff(const raidz_row_t * rr,const int * tgtidx,unsigned * coeff)647877fdebSMatt Macy raidz_rec_pq_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
65eda14cbcSMatt Macy {
667877fdebSMatt Macy 	const unsigned ncols = rr->rr_cols;
67eda14cbcSMatt Macy 	const unsigned x = tgtidx[TARGET_X];
68eda14cbcSMatt Macy 	const unsigned y = tgtidx[TARGET_Y];
69eda14cbcSMatt Macy 	gf_t a, b, e;
70eda14cbcSMatt Macy 
71eda14cbcSMatt Macy 	a = gf_exp2(x + 255 - y);
72eda14cbcSMatt Macy 	b = gf_exp2(255 - (ncols - x - 1));
73eda14cbcSMatt Macy 	e = a ^ 0x01;
74eda14cbcSMatt Macy 
75eda14cbcSMatt Macy 	coeff[MUL_PQ_X] = gf_div(a, e);
76eda14cbcSMatt Macy 	coeff[MUL_PQ_Y] = gf_div(b, e);
77eda14cbcSMatt Macy }
78eda14cbcSMatt Macy 
79eda14cbcSMatt Macy static noinline void
raidz_rec_pr_coeff(const raidz_row_t * rr,const int * tgtidx,unsigned * coeff)807877fdebSMatt Macy raidz_rec_pr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
81eda14cbcSMatt Macy {
827877fdebSMatt Macy 	const unsigned ncols = rr->rr_cols;
83eda14cbcSMatt Macy 	const unsigned x = tgtidx[TARGET_X];
84eda14cbcSMatt Macy 	const unsigned y = tgtidx[TARGET_Y];
85eda14cbcSMatt Macy 
86eda14cbcSMatt Macy 	gf_t a, b, e;
87eda14cbcSMatt Macy 
88eda14cbcSMatt Macy 	a = gf_exp4(x + 255 - y);
89eda14cbcSMatt Macy 	b = gf_exp4(255 - (ncols - x - 1));
90eda14cbcSMatt Macy 	e = a ^ 0x01;
91eda14cbcSMatt Macy 
92eda14cbcSMatt Macy 	coeff[MUL_PR_X] = gf_div(a, e);
93eda14cbcSMatt Macy 	coeff[MUL_PR_Y] = gf_div(b, e);
94eda14cbcSMatt Macy }
95eda14cbcSMatt Macy 
96eda14cbcSMatt Macy static noinline void
raidz_rec_qr_coeff(const raidz_row_t * rr,const int * tgtidx,unsigned * coeff)977877fdebSMatt Macy raidz_rec_qr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
98eda14cbcSMatt Macy {
997877fdebSMatt Macy 	const unsigned ncols = rr->rr_cols;
100eda14cbcSMatt Macy 	const unsigned x = tgtidx[TARGET_X];
101eda14cbcSMatt Macy 	const unsigned y = tgtidx[TARGET_Y];
102eda14cbcSMatt Macy 
103eda14cbcSMatt Macy 	gf_t nx, ny, nxxy, nxyy, d;
104eda14cbcSMatt Macy 
105eda14cbcSMatt Macy 	nx = gf_exp2(ncols - x - 1);
106eda14cbcSMatt Macy 	ny = gf_exp2(ncols - y - 1);
107eda14cbcSMatt Macy 	nxxy = gf_mul(gf_mul(nx, nx), ny);
108eda14cbcSMatt Macy 	nxyy = gf_mul(gf_mul(nx, ny), ny);
109eda14cbcSMatt Macy 	d = nxxy ^ nxyy;
110eda14cbcSMatt Macy 
111eda14cbcSMatt Macy 	coeff[MUL_QR_XQ] = ny;
112eda14cbcSMatt Macy 	coeff[MUL_QR_X]	= gf_div(ny, d);
113eda14cbcSMatt Macy 	coeff[MUL_QR_YQ] = nx;
114eda14cbcSMatt Macy 	coeff[MUL_QR_Y]	= gf_div(nx, d);
115eda14cbcSMatt Macy }
116eda14cbcSMatt Macy 
117eda14cbcSMatt Macy static noinline void
raidz_rec_pqr_coeff(const raidz_row_t * rr,const int * tgtidx,unsigned * coeff)1187877fdebSMatt Macy raidz_rec_pqr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
119eda14cbcSMatt Macy {
1207877fdebSMatt Macy 	const unsigned ncols = rr->rr_cols;
121eda14cbcSMatt Macy 	const unsigned x = tgtidx[TARGET_X];
122eda14cbcSMatt Macy 	const unsigned y = tgtidx[TARGET_Y];
123eda14cbcSMatt Macy 	const unsigned z = tgtidx[TARGET_Z];
124eda14cbcSMatt Macy 
125eda14cbcSMatt Macy 	gf_t nx, ny, nz, nxx, nyy, nzz, nyyz, nyzz, xd, yd;
126eda14cbcSMatt Macy 
127eda14cbcSMatt Macy 	nx = gf_exp2(ncols - x - 1);
128eda14cbcSMatt Macy 	ny = gf_exp2(ncols - y - 1);
129eda14cbcSMatt Macy 	nz = gf_exp2(ncols - z - 1);
130eda14cbcSMatt Macy 
131eda14cbcSMatt Macy 	nxx = gf_exp4(ncols - x - 1);
132eda14cbcSMatt Macy 	nyy = gf_exp4(ncols - y - 1);
133eda14cbcSMatt Macy 	nzz = gf_exp4(ncols - z - 1);
134eda14cbcSMatt Macy 
135eda14cbcSMatt Macy 	nyyz = gf_mul(gf_mul(ny, nz), ny);
136eda14cbcSMatt Macy 	nyzz = gf_mul(nzz, ny);
137eda14cbcSMatt Macy 
138eda14cbcSMatt Macy 	xd = gf_mul(nxx, ny) ^ gf_mul(nx, nyy) ^ nyyz ^
139eda14cbcSMatt Macy 	    gf_mul(nxx, nz) ^ gf_mul(nzz, nx) ^  nyzz;
140eda14cbcSMatt Macy 
141eda14cbcSMatt Macy 	yd = gf_inv(ny ^ nz);
142eda14cbcSMatt Macy 
143eda14cbcSMatt Macy 	coeff[MUL_PQR_XP] = gf_div(nyyz ^ nyzz, xd);
144eda14cbcSMatt Macy 	coeff[MUL_PQR_XQ] = gf_div(nyy ^ nzz, xd);
145eda14cbcSMatt Macy 	coeff[MUL_PQR_XR] = gf_div(ny ^ nz, xd);
146eda14cbcSMatt Macy 	coeff[MUL_PQR_YU] = nx;
147eda14cbcSMatt Macy 	coeff[MUL_PQR_YP] = gf_mul(nz, yd);
148eda14cbcSMatt Macy 	coeff[MUL_PQR_YQ] = yd;
149eda14cbcSMatt Macy }
150eda14cbcSMatt Macy 
151eda14cbcSMatt Macy /*
152eda14cbcSMatt Macy  * Method for zeroing a buffer (can be implemented using SIMD).
153eda14cbcSMatt Macy  * This method is used by multiple for gen/rec functions.
154eda14cbcSMatt Macy  *
155eda14cbcSMatt Macy  * @dc		Destination buffer
156eda14cbcSMatt Macy  * @dsize	Destination buffer size
157eda14cbcSMatt Macy  * @private	Unused
158eda14cbcSMatt Macy  */
159eda14cbcSMatt Macy static int
raidz_zero_abd_cb(void * dc,size_t dsize,void * private)160eda14cbcSMatt Macy raidz_zero_abd_cb(void *dc, size_t dsize, void *private)
161eda14cbcSMatt Macy {
162eda14cbcSMatt Macy 	v_t *dst = (v_t *)dc;
163eda14cbcSMatt Macy 	size_t i;
164eda14cbcSMatt Macy 
165eda14cbcSMatt Macy 	ZERO_DEFINE();
166eda14cbcSMatt Macy 
167eda14cbcSMatt Macy 	(void) private; /* unused */
168eda14cbcSMatt Macy 
169eda14cbcSMatt Macy 	ZERO(ZERO_D);
170eda14cbcSMatt Macy 
171eda14cbcSMatt Macy 	for (i = 0; i < dsize / sizeof (v_t); i += (2 * ZERO_STRIDE)) {
172eda14cbcSMatt Macy 		STORE(dst + i, ZERO_D);
173eda14cbcSMatt Macy 		STORE(dst + i + ZERO_STRIDE, ZERO_D);
174eda14cbcSMatt Macy 	}
175eda14cbcSMatt Macy 
176eda14cbcSMatt Macy 	return (0);
177eda14cbcSMatt Macy }
178eda14cbcSMatt Macy 
179eda14cbcSMatt Macy #define	raidz_zero(dabd, size)						\
180eda14cbcSMatt Macy {									\
181eda14cbcSMatt Macy 	abd_iterate_func(dabd, 0, size, raidz_zero_abd_cb, NULL);	\
182eda14cbcSMatt Macy }
183eda14cbcSMatt Macy 
184eda14cbcSMatt Macy /*
185eda14cbcSMatt Macy  * Method for copying two buffers (can be implemented using SIMD).
186eda14cbcSMatt Macy  * This method is used by multiple for gen/rec functions.
187eda14cbcSMatt Macy  *
188eda14cbcSMatt Macy  * @dc		Destination buffer
189eda14cbcSMatt Macy  * @sc		Source buffer
190eda14cbcSMatt Macy  * @dsize	Destination buffer size
191eda14cbcSMatt Macy  * @ssize	Source buffer size
192eda14cbcSMatt Macy  * @private	Unused
193eda14cbcSMatt Macy  */
194eda14cbcSMatt Macy static int
raidz_copy_abd_cb(void * dc,void * sc,size_t size,void * private)195eda14cbcSMatt Macy raidz_copy_abd_cb(void *dc, void *sc, size_t size, void *private)
196eda14cbcSMatt Macy {
197eda14cbcSMatt Macy 	v_t *dst = (v_t *)dc;
198eda14cbcSMatt Macy 	const v_t *src = (v_t *)sc;
199eda14cbcSMatt Macy 	size_t i;
200eda14cbcSMatt Macy 
201eda14cbcSMatt Macy 	COPY_DEFINE();
202eda14cbcSMatt Macy 
203eda14cbcSMatt Macy 	(void) private; /* unused */
204eda14cbcSMatt Macy 
205eda14cbcSMatt Macy 	for (i = 0; i < size / sizeof (v_t); i += (2 * COPY_STRIDE)) {
206eda14cbcSMatt Macy 		LOAD(src + i, COPY_D);
207eda14cbcSMatt Macy 		STORE(dst + i, COPY_D);
208eda14cbcSMatt Macy 
209eda14cbcSMatt Macy 		LOAD(src + i + COPY_STRIDE, COPY_D);
210eda14cbcSMatt Macy 		STORE(dst + i + COPY_STRIDE, COPY_D);
211eda14cbcSMatt Macy 	}
212eda14cbcSMatt Macy 
213eda14cbcSMatt Macy 	return (0);
214eda14cbcSMatt Macy }
215eda14cbcSMatt Macy 
216eda14cbcSMatt Macy 
217f8b1db88SMartin Matuska #define	raidz_copy(dabd, sabd, off, size)				\
218eda14cbcSMatt Macy {									\
219f8b1db88SMartin Matuska 	abd_iterate_func2(dabd, sabd, off, off, size, raidz_copy_abd_cb, \
220f8b1db88SMartin Matuska 	    NULL);							\
221eda14cbcSMatt Macy }
222eda14cbcSMatt Macy 
223eda14cbcSMatt Macy /*
224eda14cbcSMatt Macy  * Method for adding (XORing) two buffers.
225eda14cbcSMatt Macy  * Source and destination are XORed together and result is stored in
226eda14cbcSMatt Macy  * destination buffer. This method is used by multiple for gen/rec functions.
227eda14cbcSMatt Macy  *
228eda14cbcSMatt Macy  * @dc		Destination buffer
229eda14cbcSMatt Macy  * @sc		Source buffer
230eda14cbcSMatt Macy  * @dsize	Destination buffer size
231eda14cbcSMatt Macy  * @ssize	Source buffer size
232eda14cbcSMatt Macy  * @private	Unused
233eda14cbcSMatt Macy  */
234eda14cbcSMatt Macy static int
raidz_add_abd_cb(void * dc,void * sc,size_t size,void * private)235eda14cbcSMatt Macy raidz_add_abd_cb(void *dc, void *sc, size_t size, void *private)
236eda14cbcSMatt Macy {
237eda14cbcSMatt Macy 	v_t *dst = (v_t *)dc;
238eda14cbcSMatt Macy 	const v_t *src = (v_t *)sc;
239eda14cbcSMatt Macy 	size_t i;
240eda14cbcSMatt Macy 
241eda14cbcSMatt Macy 	ADD_DEFINE();
242eda14cbcSMatt Macy 
243eda14cbcSMatt Macy 	(void) private; /* unused */
244eda14cbcSMatt Macy 
245eda14cbcSMatt Macy 	for (i = 0; i < size / sizeof (v_t); i += (2 * ADD_STRIDE)) {
246eda14cbcSMatt Macy 		LOAD(dst + i, ADD_D);
247eda14cbcSMatt Macy 		XOR_ACC(src + i, ADD_D);
248eda14cbcSMatt Macy 		STORE(dst + i, ADD_D);
249eda14cbcSMatt Macy 
250eda14cbcSMatt Macy 		LOAD(dst + i + ADD_STRIDE, ADD_D);
251eda14cbcSMatt Macy 		XOR_ACC(src + i + ADD_STRIDE, ADD_D);
252eda14cbcSMatt Macy 		STORE(dst + i + ADD_STRIDE, ADD_D);
253eda14cbcSMatt Macy 	}
254eda14cbcSMatt Macy 
255eda14cbcSMatt Macy 	return (0);
256eda14cbcSMatt Macy }
257eda14cbcSMatt Macy 
258f8b1db88SMartin Matuska #define	raidz_add(dabd, sabd, off, size)				\
259eda14cbcSMatt Macy {									\
260f8b1db88SMartin Matuska 	abd_iterate_func2(dabd, sabd, off, off, size, raidz_add_abd_cb, \
261f8b1db88SMartin Matuska 	    NULL);							\
262eda14cbcSMatt Macy }
263eda14cbcSMatt Macy 
264eda14cbcSMatt Macy /*
265eda14cbcSMatt Macy  * Method for multiplying a buffer with a constant in GF(2^8).
266eda14cbcSMatt Macy  * Symbols from buffer are multiplied by a constant and result is stored
267eda14cbcSMatt Macy  * back in the same buffer.
268eda14cbcSMatt Macy  *
269eda14cbcSMatt Macy  * @dc		In/Out data buffer.
270eda14cbcSMatt Macy  * @size	Size of the buffer
271eda14cbcSMatt Macy  * @private	pointer to the multiplication constant (unsigned)
272eda14cbcSMatt Macy  */
273eda14cbcSMatt Macy static int
raidz_mul_abd_cb(void * dc,size_t size,void * private)274eda14cbcSMatt Macy raidz_mul_abd_cb(void *dc, size_t size, void *private)
275eda14cbcSMatt Macy {
276eda14cbcSMatt Macy 	const unsigned mul = *((unsigned *)private);
277eda14cbcSMatt Macy 	v_t *d = (v_t *)dc;
278eda14cbcSMatt Macy 	size_t i;
279eda14cbcSMatt Macy 
280eda14cbcSMatt Macy 	MUL_DEFINE();
281eda14cbcSMatt Macy 
282eda14cbcSMatt Macy 	for (i = 0; i < size / sizeof (v_t); i += (2 * MUL_STRIDE)) {
283eda14cbcSMatt Macy 		LOAD(d + i, MUL_D);
284eda14cbcSMatt Macy 		MUL(mul, MUL_D);
285eda14cbcSMatt Macy 		STORE(d + i, MUL_D);
286eda14cbcSMatt Macy 
287eda14cbcSMatt Macy 		LOAD(d + i + MUL_STRIDE, MUL_D);
288eda14cbcSMatt Macy 		MUL(mul, MUL_D);
289eda14cbcSMatt Macy 		STORE(d + i + MUL_STRIDE, MUL_D);
290eda14cbcSMatt Macy 	}
291eda14cbcSMatt Macy 
292eda14cbcSMatt Macy 	return (0);
293eda14cbcSMatt Macy }
294eda14cbcSMatt Macy 
295eda14cbcSMatt Macy 
296eda14cbcSMatt Macy /*
297eda14cbcSMatt Macy  * Syndrome generation/update macros
298eda14cbcSMatt Macy  *
299eda14cbcSMatt Macy  * Require LOAD(), XOR(), STORE(), MUL2(), and MUL4() macros
300eda14cbcSMatt Macy  */
301eda14cbcSMatt Macy #define	P_D_SYNDROME(D, T, t)		\
302eda14cbcSMatt Macy {					\
303eda14cbcSMatt Macy 	LOAD((t), T);			\
304eda14cbcSMatt Macy 	XOR(D, T);			\
305eda14cbcSMatt Macy 	STORE((t), T);			\
306eda14cbcSMatt Macy }
307eda14cbcSMatt Macy 
308eda14cbcSMatt Macy #define	Q_D_SYNDROME(D, T, t)		\
309eda14cbcSMatt Macy {					\
310eda14cbcSMatt Macy 	LOAD((t), T);			\
311eda14cbcSMatt Macy 	MUL2(T);			\
312eda14cbcSMatt Macy 	XOR(D, T);			\
313eda14cbcSMatt Macy 	STORE((t), T);			\
314eda14cbcSMatt Macy }
315eda14cbcSMatt Macy 
316eda14cbcSMatt Macy #define	Q_SYNDROME(T, t)		\
317eda14cbcSMatt Macy {					\
318eda14cbcSMatt Macy 	LOAD((t), T);			\
319eda14cbcSMatt Macy 	MUL2(T);			\
320eda14cbcSMatt Macy 	STORE((t), T);			\
321eda14cbcSMatt Macy }
322eda14cbcSMatt Macy 
323eda14cbcSMatt Macy #define	R_D_SYNDROME(D, T, t)		\
324eda14cbcSMatt Macy {					\
325eda14cbcSMatt Macy 	LOAD((t), T);			\
326eda14cbcSMatt Macy 	MUL4(T);			\
327eda14cbcSMatt Macy 	XOR(D, T);			\
328eda14cbcSMatt Macy 	STORE((t), T);			\
329eda14cbcSMatt Macy }
330eda14cbcSMatt Macy 
331eda14cbcSMatt Macy #define	R_SYNDROME(T, t)		\
332eda14cbcSMatt Macy {					\
333eda14cbcSMatt Macy 	LOAD((t), T);			\
334eda14cbcSMatt Macy 	MUL4(T);			\
335eda14cbcSMatt Macy 	STORE((t), T);			\
336eda14cbcSMatt Macy }
337eda14cbcSMatt Macy 
338eda14cbcSMatt Macy 
339eda14cbcSMatt Macy /*
340eda14cbcSMatt Macy  * PARITY CALCULATION
341eda14cbcSMatt Macy  *
342eda14cbcSMatt Macy  * Macros *_SYNDROME are used for parity/syndrome calculation.
343eda14cbcSMatt Macy  * *_D_SYNDROME() macros are used to calculate syndrome between 0 and
344eda14cbcSMatt Macy  * length of data column, and *_SYNDROME() macros are only for updating
345eda14cbcSMatt Macy  * the parity/syndrome if data column is shorter.
346eda14cbcSMatt Macy  *
347eda14cbcSMatt Macy  * P parity is calculated using raidz_add_abd().
348f8b1db88SMartin Matuska  *
349f8b1db88SMartin Matuska  * For CPU L2 cache blocking we process 64KB at a time.
350eda14cbcSMatt Macy  */
351f8b1db88SMartin Matuska #define	CHUNK		65536
352eda14cbcSMatt Macy 
353eda14cbcSMatt Macy /*
354eda14cbcSMatt Macy  * Generate P parity (RAIDZ1)
355eda14cbcSMatt Macy  *
3567877fdebSMatt Macy  * @rr	RAIDZ row
357eda14cbcSMatt Macy  */
358eda14cbcSMatt Macy static raidz_inline void
raidz_generate_p_impl(raidz_row_t * const rr)3597877fdebSMatt Macy raidz_generate_p_impl(raidz_row_t * const rr)
360eda14cbcSMatt Macy {
361eda14cbcSMatt Macy 	size_t c;
3627877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
3637877fdebSMatt Macy 	const size_t psize = rr->rr_col[CODE_P].rc_size;
3647877fdebSMatt Macy 	abd_t *pabd = rr->rr_col[CODE_P].rc_abd;
365f8b1db88SMartin Matuska 	size_t off, size;
366eda14cbcSMatt Macy 
367eda14cbcSMatt Macy 	raidz_math_begin();
368eda14cbcSMatt Macy 
369f8b1db88SMartin Matuska 	for (off = 0; off < psize; off += CHUNK) {
370f8b1db88SMartin Matuska 
371eda14cbcSMatt Macy 		/* start with first data column */
372f8b1db88SMartin Matuska 		size = MIN(CHUNK, psize - off);
373f8b1db88SMartin Matuska 		raidz_copy(pabd, rr->rr_col[1].rc_abd, off, size);
374eda14cbcSMatt Macy 
375eda14cbcSMatt Macy 		for (c = 2; c < ncols; c++) {
3767877fdebSMatt Macy 			size = rr->rr_col[c].rc_size;
377f8b1db88SMartin Matuska 			if (size <= off)
378f8b1db88SMartin Matuska 				continue;
379eda14cbcSMatt Macy 
380eda14cbcSMatt Macy 			/* add data column */
381f8b1db88SMartin Matuska 			size = MIN(CHUNK, size - off);
382f8b1db88SMartin Matuska 			abd_t *dabd = rr->rr_col[c].rc_abd;
383f8b1db88SMartin Matuska 			raidz_add(pabd, dabd, off, size);
384f8b1db88SMartin Matuska 		}
385eda14cbcSMatt Macy 	}
386eda14cbcSMatt Macy 
387eda14cbcSMatt Macy 	raidz_math_end();
388eda14cbcSMatt Macy }
389eda14cbcSMatt Macy 
390eda14cbcSMatt Macy 
391eda14cbcSMatt Macy /*
392eda14cbcSMatt Macy  * Generate PQ parity (RAIDZ2)
393eda14cbcSMatt Macy  * The function is called per data column.
394eda14cbcSMatt Macy  *
395eda14cbcSMatt Macy  * @c		array of pointers to parity (code) columns
396eda14cbcSMatt Macy  * @dc		pointer to data column
397eda14cbcSMatt Macy  * @csize	size of parity columns
398eda14cbcSMatt Macy  * @dsize	size of data column
399eda14cbcSMatt Macy  */
400eda14cbcSMatt Macy static void
raidz_gen_pq_add(void ** c,const void * dc,const size_t csize,const size_t dsize)401eda14cbcSMatt Macy raidz_gen_pq_add(void **c, const void *dc, const size_t csize,
402eda14cbcSMatt Macy     const size_t dsize)
403eda14cbcSMatt Macy {
404eda14cbcSMatt Macy 	v_t *p = (v_t *)c[0];
405eda14cbcSMatt Macy 	v_t *q = (v_t *)c[1];
406eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
407eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
408eda14cbcSMatt Macy 	const v_t * const qend = q + (csize / sizeof (v_t));
409eda14cbcSMatt Macy 
410eda14cbcSMatt Macy 	GEN_PQ_DEFINE();
411eda14cbcSMatt Macy 
412eda14cbcSMatt Macy 	MUL2_SETUP();
413eda14cbcSMatt Macy 
414eda14cbcSMatt Macy 	for (; d < dend; d += GEN_PQ_STRIDE, p += GEN_PQ_STRIDE,
415eda14cbcSMatt Macy 	    q += GEN_PQ_STRIDE) {
416eda14cbcSMatt Macy 		LOAD(d, GEN_PQ_D);
417eda14cbcSMatt Macy 		P_D_SYNDROME(GEN_PQ_D, GEN_PQ_C, p);
418eda14cbcSMatt Macy 		Q_D_SYNDROME(GEN_PQ_D, GEN_PQ_C, q);
419eda14cbcSMatt Macy 	}
420eda14cbcSMatt Macy 	for (; q < qend; q += GEN_PQ_STRIDE) {
421eda14cbcSMatt Macy 		Q_SYNDROME(GEN_PQ_C, q);
422eda14cbcSMatt Macy 	}
423eda14cbcSMatt Macy }
424eda14cbcSMatt Macy 
425eda14cbcSMatt Macy 
426eda14cbcSMatt Macy /*
427eda14cbcSMatt Macy  * Generate PQ parity (RAIDZ2)
428eda14cbcSMatt Macy  *
4297877fdebSMatt Macy  * @rr	RAIDZ row
430eda14cbcSMatt Macy  */
431eda14cbcSMatt Macy static raidz_inline void
raidz_generate_pq_impl(raidz_row_t * const rr)4327877fdebSMatt Macy raidz_generate_pq_impl(raidz_row_t * const rr)
433eda14cbcSMatt Macy {
434eda14cbcSMatt Macy 	size_t c;
4357877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
4367877fdebSMatt Macy 	const size_t csize = rr->rr_col[CODE_P].rc_size;
437f8b1db88SMartin Matuska 	size_t off, size, dsize;
438eda14cbcSMatt Macy 	abd_t *dabd;
439eda14cbcSMatt Macy 	abd_t *cabds[] = {
4407877fdebSMatt Macy 		rr->rr_col[CODE_P].rc_abd,
4417877fdebSMatt Macy 		rr->rr_col[CODE_Q].rc_abd
442eda14cbcSMatt Macy 	};
443eda14cbcSMatt Macy 
444eda14cbcSMatt Macy 	raidz_math_begin();
445eda14cbcSMatt Macy 
446f8b1db88SMartin Matuska 	for (off = 0; off < csize; off += CHUNK) {
447f8b1db88SMartin Matuska 
448f8b1db88SMartin Matuska 		size = MIN(CHUNK, csize - off);
449f8b1db88SMartin Matuska 		raidz_copy(cabds[CODE_P], rr->rr_col[2].rc_abd, off, size);
450f8b1db88SMartin Matuska 		raidz_copy(cabds[CODE_Q], rr->rr_col[2].rc_abd, off, size);
451eda14cbcSMatt Macy 
452eda14cbcSMatt Macy 		for (c = 3; c < ncols; c++) {
4537877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
4547877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
455f8b1db88SMartin Matuska 			dsize = (dsize > off) ? MIN(CHUNK, dsize - off) : 0;
456eda14cbcSMatt Macy 
457f8b1db88SMartin Matuska 			abd_raidz_gen_iterate(cabds, dabd, off, size, dsize, 2,
458eda14cbcSMatt Macy 			    raidz_gen_pq_add);
459eda14cbcSMatt Macy 		}
460f8b1db88SMartin Matuska 	}
461eda14cbcSMatt Macy 
462eda14cbcSMatt Macy 	raidz_math_end();
463eda14cbcSMatt Macy }
464eda14cbcSMatt Macy 
465eda14cbcSMatt Macy 
466eda14cbcSMatt Macy /*
467eda14cbcSMatt Macy  * Generate PQR parity (RAIDZ3)
468eda14cbcSMatt Macy  * The function is called per data column.
469eda14cbcSMatt Macy  *
470eda14cbcSMatt Macy  * @c		array of pointers to parity (code) columns
471eda14cbcSMatt Macy  * @dc		pointer to data column
472eda14cbcSMatt Macy  * @csize	size of parity columns
473eda14cbcSMatt Macy  * @dsize	size of data column
474eda14cbcSMatt Macy  */
475eda14cbcSMatt Macy static void
raidz_gen_pqr_add(void ** c,const void * dc,const size_t csize,const size_t dsize)476eda14cbcSMatt Macy raidz_gen_pqr_add(void **c, const void *dc, const size_t csize,
477eda14cbcSMatt Macy     const size_t dsize)
478eda14cbcSMatt Macy {
479c7046f76SMartin Matuska 	v_t *p = (v_t *)c[CODE_P];
480c7046f76SMartin Matuska 	v_t *q = (v_t *)c[CODE_Q];
481eda14cbcSMatt Macy 	v_t *r = (v_t *)c[CODE_R];
482eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
483eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
484eda14cbcSMatt Macy 	const v_t * const qend = q + (csize / sizeof (v_t));
485eda14cbcSMatt Macy 
486eda14cbcSMatt Macy 	GEN_PQR_DEFINE();
487eda14cbcSMatt Macy 
488eda14cbcSMatt Macy 	MUL2_SETUP();
489eda14cbcSMatt Macy 
490eda14cbcSMatt Macy 	for (; d < dend; d += GEN_PQR_STRIDE, p += GEN_PQR_STRIDE,
491eda14cbcSMatt Macy 	    q += GEN_PQR_STRIDE, r += GEN_PQR_STRIDE) {
492eda14cbcSMatt Macy 		LOAD(d, GEN_PQR_D);
493eda14cbcSMatt Macy 		P_D_SYNDROME(GEN_PQR_D, GEN_PQR_C, p);
494eda14cbcSMatt Macy 		Q_D_SYNDROME(GEN_PQR_D, GEN_PQR_C, q);
495eda14cbcSMatt Macy 		R_D_SYNDROME(GEN_PQR_D, GEN_PQR_C, r);
496eda14cbcSMatt Macy 	}
497eda14cbcSMatt Macy 	for (; q < qend; q += GEN_PQR_STRIDE, r += GEN_PQR_STRIDE) {
498eda14cbcSMatt Macy 		Q_SYNDROME(GEN_PQR_C, q);
499eda14cbcSMatt Macy 		R_SYNDROME(GEN_PQR_C, r);
500eda14cbcSMatt Macy 	}
501eda14cbcSMatt Macy }
502eda14cbcSMatt Macy 
503eda14cbcSMatt Macy 
504eda14cbcSMatt Macy /*
505c7046f76SMartin Matuska  * Generate PQR parity (RAIDZ3)
506eda14cbcSMatt Macy  *
5077877fdebSMatt Macy  * @rr	RAIDZ row
508eda14cbcSMatt Macy  */
509eda14cbcSMatt Macy static raidz_inline void
raidz_generate_pqr_impl(raidz_row_t * const rr)5107877fdebSMatt Macy raidz_generate_pqr_impl(raidz_row_t * const rr)
511eda14cbcSMatt Macy {
512eda14cbcSMatt Macy 	size_t c;
5137877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
5147877fdebSMatt Macy 	const size_t csize = rr->rr_col[CODE_P].rc_size;
515f8b1db88SMartin Matuska 	size_t off, size, dsize;
516eda14cbcSMatt Macy 	abd_t *dabd;
517eda14cbcSMatt Macy 	abd_t *cabds[] = {
5187877fdebSMatt Macy 		rr->rr_col[CODE_P].rc_abd,
5197877fdebSMatt Macy 		rr->rr_col[CODE_Q].rc_abd,
5207877fdebSMatt Macy 		rr->rr_col[CODE_R].rc_abd
521eda14cbcSMatt Macy 	};
522eda14cbcSMatt Macy 
523eda14cbcSMatt Macy 	raidz_math_begin();
524eda14cbcSMatt Macy 
525f8b1db88SMartin Matuska 	for (off = 0; off < csize; off += CHUNK) {
526f8b1db88SMartin Matuska 
527f8b1db88SMartin Matuska 		size = MIN(CHUNK, csize - off);
528f8b1db88SMartin Matuska 		raidz_copy(cabds[CODE_P], rr->rr_col[3].rc_abd, off, size);
529f8b1db88SMartin Matuska 		raidz_copy(cabds[CODE_Q], rr->rr_col[3].rc_abd, off, size);
530f8b1db88SMartin Matuska 		raidz_copy(cabds[CODE_R], rr->rr_col[3].rc_abd, off, size);
531eda14cbcSMatt Macy 
532eda14cbcSMatt Macy 		for (c = 4; c < ncols; c++) {
5337877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
5347877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
535f8b1db88SMartin Matuska 			dsize = (dsize > off) ? MIN(CHUNK, dsize - off) : 0;
536eda14cbcSMatt Macy 
537f8b1db88SMartin Matuska 			abd_raidz_gen_iterate(cabds, dabd, off, size, dsize, 3,
538eda14cbcSMatt Macy 			    raidz_gen_pqr_add);
539eda14cbcSMatt Macy 		}
540f8b1db88SMartin Matuska 	}
541eda14cbcSMatt Macy 
542eda14cbcSMatt Macy 	raidz_math_end();
543eda14cbcSMatt Macy }
544eda14cbcSMatt Macy 
545eda14cbcSMatt Macy 
546eda14cbcSMatt Macy /*
547eda14cbcSMatt Macy  * DATA RECONSTRUCTION
548eda14cbcSMatt Macy  *
549eda14cbcSMatt Macy  * Data reconstruction process consists of two phases:
550eda14cbcSMatt Macy  * 	- Syndrome calculation
551eda14cbcSMatt Macy  * 	- Data reconstruction
552eda14cbcSMatt Macy  *
553eda14cbcSMatt Macy  * Syndrome is calculated by generating parity using available data columns
554eda14cbcSMatt Macy  * and zeros in places of erasure. Existing parity is added to corresponding
555eda14cbcSMatt Macy  * syndrome value to obtain the [P|Q|R]syn values from equation:
556eda14cbcSMatt Macy  * 	P = Psyn + Dx + Dy + Dz
557eda14cbcSMatt Macy  * 	Q = Qsyn + 2^x * Dx + 2^y * Dy + 2^z * Dz
558eda14cbcSMatt Macy  * 	R = Rsyn + 4^x * Dx + 4^y * Dy + 4^z * Dz
559eda14cbcSMatt Macy  *
560eda14cbcSMatt Macy  * For data reconstruction phase, the corresponding equations are solved
561eda14cbcSMatt Macy  * for missing data (Dx, Dy, Dz). This generally involves multiplying known
562eda14cbcSMatt Macy  * symbols by an coefficient and adding them together. The multiplication
563eda14cbcSMatt Macy  * constant coefficients are calculated ahead of the operation in
564eda14cbcSMatt Macy  * raidz_rec_[q|r|pq|pq|qr|pqr]_coeff() functions.
565eda14cbcSMatt Macy  *
566eda14cbcSMatt Macy  * IMPLEMENTATION NOTE: RAID-Z block can have complex geometry, with "big"
567eda14cbcSMatt Macy  * and "short" columns.
568eda14cbcSMatt Macy  * For this reason, reconstruction is performed in minimum of
569eda14cbcSMatt Macy  * two steps. First, from offset 0 to short_size, then from short_size to
570eda14cbcSMatt Macy  * short_size. Calculation functions REC_[*]_BLOCK() are implemented to work
571eda14cbcSMatt Macy  * over both ranges. The split also enables removal of conditional expressions
572eda14cbcSMatt Macy  * from loop bodies, improving throughput of SIMD implementations.
573eda14cbcSMatt Macy  * For the best performance, all functions marked with raidz_inline attribute
574eda14cbcSMatt Macy  * must be inlined by compiler.
575eda14cbcSMatt Macy  *
576eda14cbcSMatt Macy  *    parity          data
577eda14cbcSMatt Macy  *    columns         columns
578eda14cbcSMatt Macy  * <----------> <------------------>
579eda14cbcSMatt Macy  *                   x       y  <----+ missing columns (x, y)
580eda14cbcSMatt Macy  *                   |       |
581eda14cbcSMatt Macy  * +---+---+---+---+-v-+---+-v-+---+   ^ 0
582eda14cbcSMatt Macy  * |   |   |   |   |   |   |   |   |   |
583eda14cbcSMatt Macy  * |   |   |   |   |   |   |   |   |   |
584eda14cbcSMatt Macy  * | P | Q | R | D | D | D | D | D |   |
585eda14cbcSMatt Macy  * |   |   |   | 0 | 1 | 2 | 3 | 4 |   |
586eda14cbcSMatt Macy  * |   |   |   |   |   |   |   |   |   v
587eda14cbcSMatt Macy  * |   |   |   |   |   +---+---+---+   ^ short_size
588eda14cbcSMatt Macy  * |   |   |   |   |   |               |
589eda14cbcSMatt Macy  * +---+---+---+---+---+               v big_size
590eda14cbcSMatt Macy  * <------------------> <---------->
591eda14cbcSMatt Macy  *      big columns     short columns
592eda14cbcSMatt Macy  *
593eda14cbcSMatt Macy  */
594eda14cbcSMatt Macy 
595eda14cbcSMatt Macy 
596eda14cbcSMatt Macy 
597eda14cbcSMatt Macy 
598eda14cbcSMatt Macy /*
599eda14cbcSMatt Macy  * Reconstruct single data column using P parity
600eda14cbcSMatt Macy  *
601eda14cbcSMatt Macy  * @syn_method	raidz_add_abd()
602eda14cbcSMatt Macy  * @rec_method	not applicable
603eda14cbcSMatt Macy  *
6047877fdebSMatt Macy  * @rr		RAIDZ row
605eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
606eda14cbcSMatt Macy  */
607eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_p_impl(raidz_row_t * rr,const int * tgtidx)6087877fdebSMatt Macy raidz_reconstruct_p_impl(raidz_row_t *rr, const int *tgtidx)
609eda14cbcSMatt Macy {
610eda14cbcSMatt Macy 	size_t c;
6117877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
6127877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
613eda14cbcSMatt Macy 	const size_t x = tgtidx[TARGET_X];
6147877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
6157877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
616f8b1db88SMartin Matuska 	size_t off, size;
617eda14cbcSMatt Macy 
6187877fdebSMatt Macy 	if (xabd == NULL)
6197877fdebSMatt Macy 		return (1 << CODE_P);
6207877fdebSMatt Macy 
621eda14cbcSMatt Macy 	raidz_math_begin();
622eda14cbcSMatt Macy 
623f8b1db88SMartin Matuska 	for (off = 0; off < xsize; off += CHUNK) {
624f8b1db88SMartin Matuska 
625eda14cbcSMatt Macy 		/* copy P into target */
626f8b1db88SMartin Matuska 		size = MIN(CHUNK, xsize - off);
627f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[CODE_P].rc_abd, off, size);
628eda14cbcSMatt Macy 
629eda14cbcSMatt Macy 		/* generate p_syndrome */
630eda14cbcSMatt Macy 		for (c = firstdc; c < ncols; c++) {
631eda14cbcSMatt Macy 			if (c == x)
632eda14cbcSMatt Macy 				continue;
633f8b1db88SMartin Matuska 			size = rr->rr_col[c].rc_size;
634f8b1db88SMartin Matuska 			if (size <= off)
635f8b1db88SMartin Matuska 				continue;
636eda14cbcSMatt Macy 
637f8b1db88SMartin Matuska 			size = MIN(CHUNK, MIN(size, xsize) - off);
638f8b1db88SMartin Matuska 			abd_t *dabd = rr->rr_col[c].rc_abd;
639f8b1db88SMartin Matuska 			raidz_add(xabd, dabd, off, size);
640f8b1db88SMartin Matuska 		}
641eda14cbcSMatt Macy 	}
642eda14cbcSMatt Macy 
643eda14cbcSMatt Macy 	raidz_math_end();
644eda14cbcSMatt Macy 
645eda14cbcSMatt Macy 	return (1 << CODE_P);
646eda14cbcSMatt Macy }
647eda14cbcSMatt Macy 
648eda14cbcSMatt Macy 
649eda14cbcSMatt Macy /*
650eda14cbcSMatt Macy  * Generate Q syndrome (Qsyn)
651eda14cbcSMatt Macy  *
652eda14cbcSMatt Macy  * @xc		array of pointers to syndrome columns
653eda14cbcSMatt Macy  * @dc		data column (NULL if missing)
654eda14cbcSMatt Macy  * @xsize	size of syndrome columns
655eda14cbcSMatt Macy  * @dsize	size of data column (0 if missing)
656eda14cbcSMatt Macy  */
657eda14cbcSMatt Macy static void
raidz_syn_q_abd(void ** xc,const void * dc,const size_t xsize,const size_t dsize)658eda14cbcSMatt Macy raidz_syn_q_abd(void **xc, const void *dc, const size_t xsize,
659eda14cbcSMatt Macy     const size_t dsize)
660eda14cbcSMatt Macy {
661eda14cbcSMatt Macy 	v_t *x = (v_t *)xc[TARGET_X];
662eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
663eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
664eda14cbcSMatt Macy 	const v_t * const xend = x + (xsize / sizeof (v_t));
665eda14cbcSMatt Macy 
666eda14cbcSMatt Macy 	SYN_Q_DEFINE();
667eda14cbcSMatt Macy 
668eda14cbcSMatt Macy 	MUL2_SETUP();
669eda14cbcSMatt Macy 
670eda14cbcSMatt Macy 	for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE) {
671eda14cbcSMatt Macy 		LOAD(d, SYN_Q_D);
672eda14cbcSMatt Macy 		Q_D_SYNDROME(SYN_Q_D, SYN_Q_X, x);
673eda14cbcSMatt Macy 	}
674eda14cbcSMatt Macy 	for (; x < xend; x += SYN_STRIDE) {
675eda14cbcSMatt Macy 		Q_SYNDROME(SYN_Q_X, x);
676eda14cbcSMatt Macy 	}
677eda14cbcSMatt Macy }
678eda14cbcSMatt Macy 
679eda14cbcSMatt Macy 
680eda14cbcSMatt Macy /*
681eda14cbcSMatt Macy  * Reconstruct single data column using Q parity
682eda14cbcSMatt Macy  *
683eda14cbcSMatt Macy  * @syn_method	raidz_add_abd()
684eda14cbcSMatt Macy  * @rec_method	raidz_mul_abd_cb()
685eda14cbcSMatt Macy  *
6867877fdebSMatt Macy  * @rr		RAIDZ row
687eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
688eda14cbcSMatt Macy  */
689eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_q_impl(raidz_row_t * rr,const int * tgtidx)6907877fdebSMatt Macy raidz_reconstruct_q_impl(raidz_row_t *rr, const int *tgtidx)
691eda14cbcSMatt Macy {
692eda14cbcSMatt Macy 	size_t c;
693eda14cbcSMatt Macy 	size_t dsize;
694eda14cbcSMatt Macy 	abd_t *dabd;
6957877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
6967877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
697eda14cbcSMatt Macy 	const size_t x = tgtidx[TARGET_X];
6987877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
6997877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
700eda14cbcSMatt Macy 	abd_t *tabds[] = { xabd };
701eda14cbcSMatt Macy 
7027877fdebSMatt Macy 	if (xabd == NULL)
7037877fdebSMatt Macy 		return (1 << CODE_Q);
7047877fdebSMatt Macy 
705eda14cbcSMatt Macy 	unsigned coeff[MUL_CNT];
7067877fdebSMatt Macy 	raidz_rec_q_coeff(rr, tgtidx, coeff);
707eda14cbcSMatt Macy 
708eda14cbcSMatt Macy 	raidz_math_begin();
709eda14cbcSMatt Macy 
710eda14cbcSMatt Macy 	/* Start with first data column if present */
711eda14cbcSMatt Macy 	if (firstdc != x) {
712f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
713eda14cbcSMatt Macy 	} else {
714eda14cbcSMatt Macy 		raidz_zero(xabd, xsize);
715eda14cbcSMatt Macy 	}
716eda14cbcSMatt Macy 
717eda14cbcSMatt Macy 	/* generate q_syndrome */
718eda14cbcSMatt Macy 	for (c = firstdc+1; c < ncols; c++) {
719eda14cbcSMatt Macy 		if (c == x) {
720eda14cbcSMatt Macy 			dabd = NULL;
721eda14cbcSMatt Macy 			dsize = 0;
722eda14cbcSMatt Macy 		} else {
7237877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
7247877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
725eda14cbcSMatt Macy 		}
726eda14cbcSMatt Macy 
727f8b1db88SMartin Matuska 		abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 1,
728eda14cbcSMatt Macy 		    raidz_syn_q_abd);
729eda14cbcSMatt Macy 	}
730eda14cbcSMatt Macy 
731eda14cbcSMatt Macy 	/* add Q to the syndrome */
732f8b1db88SMartin Matuska 	raidz_add(xabd, rr->rr_col[CODE_Q].rc_abd, 0, xsize);
733eda14cbcSMatt Macy 
734eda14cbcSMatt Macy 	/* transform the syndrome */
735eda14cbcSMatt Macy 	abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void*) coeff);
736eda14cbcSMatt Macy 
737eda14cbcSMatt Macy 	raidz_math_end();
738eda14cbcSMatt Macy 
739eda14cbcSMatt Macy 	return (1 << CODE_Q);
740eda14cbcSMatt Macy }
741eda14cbcSMatt Macy 
742eda14cbcSMatt Macy 
743eda14cbcSMatt Macy /*
744eda14cbcSMatt Macy  * Generate R syndrome (Rsyn)
745eda14cbcSMatt Macy  *
746eda14cbcSMatt Macy  * @xc		array of pointers to syndrome columns
747eda14cbcSMatt Macy  * @dc		data column (NULL if missing)
748eda14cbcSMatt Macy  * @tsize	size of syndrome columns
749eda14cbcSMatt Macy  * @dsize	size of data column (0 if missing)
750eda14cbcSMatt Macy  */
751eda14cbcSMatt Macy static void
raidz_syn_r_abd(void ** xc,const void * dc,const size_t tsize,const size_t dsize)752eda14cbcSMatt Macy raidz_syn_r_abd(void **xc, const void *dc, const size_t tsize,
753eda14cbcSMatt Macy     const size_t dsize)
754eda14cbcSMatt Macy {
755eda14cbcSMatt Macy 	v_t *x = (v_t *)xc[TARGET_X];
756eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
757eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
758eda14cbcSMatt Macy 	const v_t * const xend = x + (tsize / sizeof (v_t));
759eda14cbcSMatt Macy 
760eda14cbcSMatt Macy 	SYN_R_DEFINE();
761eda14cbcSMatt Macy 
762eda14cbcSMatt Macy 	MUL2_SETUP();
763eda14cbcSMatt Macy 
764eda14cbcSMatt Macy 	for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE) {
765eda14cbcSMatt Macy 		LOAD(d, SYN_R_D);
766eda14cbcSMatt Macy 		R_D_SYNDROME(SYN_R_D, SYN_R_X, x);
767eda14cbcSMatt Macy 	}
768eda14cbcSMatt Macy 	for (; x < xend; x += SYN_STRIDE) {
769eda14cbcSMatt Macy 		R_SYNDROME(SYN_R_X, x);
770eda14cbcSMatt Macy 	}
771eda14cbcSMatt Macy }
772eda14cbcSMatt Macy 
773eda14cbcSMatt Macy 
774eda14cbcSMatt Macy /*
775eda14cbcSMatt Macy  * Reconstruct single data column using R parity
776eda14cbcSMatt Macy  *
777eda14cbcSMatt Macy  * @syn_method	raidz_add_abd()
778eda14cbcSMatt Macy  * @rec_method	raidz_mul_abd_cb()
779eda14cbcSMatt Macy  *
7807877fdebSMatt Macy  * @rr		RAIDZ rr
781eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
782eda14cbcSMatt Macy  */
783eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_r_impl(raidz_row_t * rr,const int * tgtidx)7847877fdebSMatt Macy raidz_reconstruct_r_impl(raidz_row_t *rr, const int *tgtidx)
785eda14cbcSMatt Macy {
786eda14cbcSMatt Macy 	size_t c;
787eda14cbcSMatt Macy 	size_t dsize;
788eda14cbcSMatt Macy 	abd_t *dabd;
7897877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
7907877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
791eda14cbcSMatt Macy 	const size_t x = tgtidx[TARGET_X];
7927877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
7937877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
794eda14cbcSMatt Macy 	abd_t *tabds[] = { xabd };
795eda14cbcSMatt Macy 
7967877fdebSMatt Macy 	if (xabd == NULL)
7977877fdebSMatt Macy 		return (1 << CODE_R);
7987877fdebSMatt Macy 
799eda14cbcSMatt Macy 	unsigned coeff[MUL_CNT];
8007877fdebSMatt Macy 	raidz_rec_r_coeff(rr, tgtidx, coeff);
801eda14cbcSMatt Macy 
802eda14cbcSMatt Macy 	raidz_math_begin();
803eda14cbcSMatt Macy 
804eda14cbcSMatt Macy 	/* Start with first data column if present */
805eda14cbcSMatt Macy 	if (firstdc != x) {
806f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
807eda14cbcSMatt Macy 	} else {
808eda14cbcSMatt Macy 		raidz_zero(xabd, xsize);
809eda14cbcSMatt Macy 	}
810eda14cbcSMatt Macy 
811eda14cbcSMatt Macy 
812eda14cbcSMatt Macy 	/* generate q_syndrome */
813eda14cbcSMatt Macy 	for (c = firstdc+1; c < ncols; c++) {
814eda14cbcSMatt Macy 		if (c == x) {
815eda14cbcSMatt Macy 			dabd = NULL;
816eda14cbcSMatt Macy 			dsize = 0;
817eda14cbcSMatt Macy 		} else {
8187877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
8197877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
820eda14cbcSMatt Macy 		}
821eda14cbcSMatt Macy 
822f8b1db88SMartin Matuska 		abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 1,
823eda14cbcSMatt Macy 		    raidz_syn_r_abd);
824eda14cbcSMatt Macy 	}
825eda14cbcSMatt Macy 
826eda14cbcSMatt Macy 	/* add R to the syndrome */
827f8b1db88SMartin Matuska 	raidz_add(xabd, rr->rr_col[CODE_R].rc_abd, 0, xsize);
828eda14cbcSMatt Macy 
829eda14cbcSMatt Macy 	/* transform the syndrome */
830eda14cbcSMatt Macy 	abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void *)coeff);
831eda14cbcSMatt Macy 
832eda14cbcSMatt Macy 	raidz_math_end();
833eda14cbcSMatt Macy 
834eda14cbcSMatt Macy 	return (1 << CODE_R);
835eda14cbcSMatt Macy }
836eda14cbcSMatt Macy 
837eda14cbcSMatt Macy 
838eda14cbcSMatt Macy /*
839eda14cbcSMatt Macy  * Generate P and Q syndromes
840eda14cbcSMatt Macy  *
841eda14cbcSMatt Macy  * @xc		array of pointers to syndrome columns
842eda14cbcSMatt Macy  * @dc		data column (NULL if missing)
843eda14cbcSMatt Macy  * @tsize	size of syndrome columns
844eda14cbcSMatt Macy  * @dsize	size of data column (0 if missing)
845eda14cbcSMatt Macy  */
846eda14cbcSMatt Macy static void
raidz_syn_pq_abd(void ** tc,const void * dc,const size_t tsize,const size_t dsize)847eda14cbcSMatt Macy raidz_syn_pq_abd(void **tc, const void *dc, const size_t tsize,
848eda14cbcSMatt Macy     const size_t dsize)
849eda14cbcSMatt Macy {
850eda14cbcSMatt Macy 	v_t *x = (v_t *)tc[TARGET_X];
851eda14cbcSMatt Macy 	v_t *y = (v_t *)tc[TARGET_Y];
852eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
853eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
854eda14cbcSMatt Macy 	const v_t * const yend = y + (tsize / sizeof (v_t));
855eda14cbcSMatt Macy 
856eda14cbcSMatt Macy 	SYN_PQ_DEFINE();
857eda14cbcSMatt Macy 
858eda14cbcSMatt Macy 	MUL2_SETUP();
859eda14cbcSMatt Macy 
860eda14cbcSMatt Macy 	for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE) {
861eda14cbcSMatt Macy 		LOAD(d, SYN_PQ_D);
862eda14cbcSMatt Macy 		P_D_SYNDROME(SYN_PQ_D, SYN_PQ_X, x);
863eda14cbcSMatt Macy 		Q_D_SYNDROME(SYN_PQ_D, SYN_PQ_X, y);
864eda14cbcSMatt Macy 	}
865eda14cbcSMatt Macy 	for (; y < yend; y += SYN_STRIDE) {
866eda14cbcSMatt Macy 		Q_SYNDROME(SYN_PQ_X, y);
867eda14cbcSMatt Macy 	}
868eda14cbcSMatt Macy }
869eda14cbcSMatt Macy 
870eda14cbcSMatt Macy /*
871eda14cbcSMatt Macy  * Reconstruct data using PQ parity and PQ syndromes
872eda14cbcSMatt Macy  *
873eda14cbcSMatt Macy  * @tc		syndrome/result columns
874eda14cbcSMatt Macy  * @tsize	size of syndrome/result columns
875eda14cbcSMatt Macy  * @c		parity columns
876eda14cbcSMatt Macy  * @mul		array of multiplication constants
877eda14cbcSMatt Macy  */
878eda14cbcSMatt Macy static void
raidz_rec_pq_abd(void ** tc,const size_t tsize,void ** c,const unsigned * mul)879eda14cbcSMatt Macy raidz_rec_pq_abd(void **tc, const size_t tsize, void **c,
880eda14cbcSMatt Macy     const unsigned *mul)
881eda14cbcSMatt Macy {
882eda14cbcSMatt Macy 	v_t *x = (v_t *)tc[TARGET_X];
883eda14cbcSMatt Macy 	v_t *y = (v_t *)tc[TARGET_Y];
884eda14cbcSMatt Macy 	const v_t * const xend = x + (tsize / sizeof (v_t));
885eda14cbcSMatt Macy 	const v_t *p = (v_t *)c[CODE_P];
886eda14cbcSMatt Macy 	const v_t *q = (v_t *)c[CODE_Q];
887eda14cbcSMatt Macy 
888eda14cbcSMatt Macy 	REC_PQ_DEFINE();
889eda14cbcSMatt Macy 
890eda14cbcSMatt Macy 	for (; x < xend; x += REC_PQ_STRIDE, y += REC_PQ_STRIDE,
891eda14cbcSMatt Macy 	    p += REC_PQ_STRIDE, q += REC_PQ_STRIDE) {
892eda14cbcSMatt Macy 		LOAD(x, REC_PQ_X);
893eda14cbcSMatt Macy 		LOAD(y, REC_PQ_Y);
894eda14cbcSMatt Macy 
895eda14cbcSMatt Macy 		XOR_ACC(p, REC_PQ_X);
896eda14cbcSMatt Macy 		XOR_ACC(q, REC_PQ_Y);
897eda14cbcSMatt Macy 
898eda14cbcSMatt Macy 		/* Save Pxy */
899eda14cbcSMatt Macy 		COPY(REC_PQ_X,  REC_PQ_T);
900eda14cbcSMatt Macy 
901eda14cbcSMatt Macy 		/* Calc X */
902eda14cbcSMatt Macy 		MUL(mul[MUL_PQ_X], REC_PQ_X);
903eda14cbcSMatt Macy 		MUL(mul[MUL_PQ_Y], REC_PQ_Y);
904eda14cbcSMatt Macy 		XOR(REC_PQ_Y,  REC_PQ_X);
905eda14cbcSMatt Macy 		STORE(x, REC_PQ_X);
906eda14cbcSMatt Macy 
907eda14cbcSMatt Macy 		/* Calc Y */
908eda14cbcSMatt Macy 		XOR(REC_PQ_T,  REC_PQ_X);
909eda14cbcSMatt Macy 		STORE(y, REC_PQ_X);
910eda14cbcSMatt Macy 	}
911eda14cbcSMatt Macy }
912eda14cbcSMatt Macy 
913eda14cbcSMatt Macy 
914eda14cbcSMatt Macy /*
915eda14cbcSMatt Macy  * Reconstruct two data columns using PQ parity
916eda14cbcSMatt Macy  *
917eda14cbcSMatt Macy  * @syn_method	raidz_syn_pq_abd()
918eda14cbcSMatt Macy  * @rec_method	raidz_rec_pq_abd()
919eda14cbcSMatt Macy  *
9207877fdebSMatt Macy  * @rr		RAIDZ row
921eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
922eda14cbcSMatt Macy  */
923eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_pq_impl(raidz_row_t * rr,const int * tgtidx)9247877fdebSMatt Macy raidz_reconstruct_pq_impl(raidz_row_t *rr, const int *tgtidx)
925eda14cbcSMatt Macy {
926eda14cbcSMatt Macy 	size_t c;
927eda14cbcSMatt Macy 	size_t dsize;
928eda14cbcSMatt Macy 	abd_t *dabd;
9297877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
9307877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
931eda14cbcSMatt Macy 	const size_t x = tgtidx[TARGET_X];
932eda14cbcSMatt Macy 	const size_t y = tgtidx[TARGET_Y];
9337877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
9347877fdebSMatt Macy 	const size_t ysize = rr->rr_col[y].rc_size;
9357877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
9367877fdebSMatt Macy 	abd_t *yabd = rr->rr_col[y].rc_abd;
937eda14cbcSMatt Macy 	abd_t *tabds[2] = { xabd, yabd };
938eda14cbcSMatt Macy 	abd_t *cabds[] = {
9397877fdebSMatt Macy 		rr->rr_col[CODE_P].rc_abd,
9407877fdebSMatt Macy 		rr->rr_col[CODE_Q].rc_abd
941eda14cbcSMatt Macy 	};
942eda14cbcSMatt Macy 
9437877fdebSMatt Macy 	if (xabd == NULL)
9447877fdebSMatt Macy 		return ((1 << CODE_P) | (1 << CODE_Q));
9457877fdebSMatt Macy 
946eda14cbcSMatt Macy 	unsigned coeff[MUL_CNT];
9477877fdebSMatt Macy 	raidz_rec_pq_coeff(rr, tgtidx, coeff);
948eda14cbcSMatt Macy 
949eda14cbcSMatt Macy 	/*
950eda14cbcSMatt Macy 	 * Check if some of targets is shorter then others
951eda14cbcSMatt Macy 	 * In this case, shorter target needs to be replaced with
952eda14cbcSMatt Macy 	 * new buffer so that syndrome can be calculated.
953eda14cbcSMatt Macy 	 */
954eda14cbcSMatt Macy 	if (ysize < xsize) {
955eda14cbcSMatt Macy 		yabd = abd_alloc(xsize, B_FALSE);
956eda14cbcSMatt Macy 		tabds[1] = yabd;
957eda14cbcSMatt Macy 	}
958eda14cbcSMatt Macy 
959eda14cbcSMatt Macy 	raidz_math_begin();
960eda14cbcSMatt Macy 
961eda14cbcSMatt Macy 	/* Start with first data column if present */
962eda14cbcSMatt Macy 	if (firstdc != x) {
963f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
964f8b1db88SMartin Matuska 		raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
965eda14cbcSMatt Macy 	} else {
966eda14cbcSMatt Macy 		raidz_zero(xabd, xsize);
967eda14cbcSMatt Macy 		raidz_zero(yabd, xsize);
968eda14cbcSMatt Macy 	}
969eda14cbcSMatt Macy 
970eda14cbcSMatt Macy 	/* generate q_syndrome */
971eda14cbcSMatt Macy 	for (c = firstdc+1; c < ncols; c++) {
972eda14cbcSMatt Macy 		if (c == x || c == y) {
973eda14cbcSMatt Macy 			dabd = NULL;
974eda14cbcSMatt Macy 			dsize = 0;
975eda14cbcSMatt Macy 		} else {
9767877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
9777877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
978eda14cbcSMatt Macy 		}
979eda14cbcSMatt Macy 
980f8b1db88SMartin Matuska 		abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 2,
981eda14cbcSMatt Macy 		    raidz_syn_pq_abd);
982eda14cbcSMatt Macy 	}
983eda14cbcSMatt Macy 
984eda14cbcSMatt Macy 	abd_raidz_rec_iterate(cabds, tabds, xsize, 2, raidz_rec_pq_abd, coeff);
985eda14cbcSMatt Macy 
986eda14cbcSMatt Macy 	/* Copy shorter targets back to the original abd buffer */
987eda14cbcSMatt Macy 	if (ysize < xsize)
988f8b1db88SMartin Matuska 		raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
989eda14cbcSMatt Macy 
990eda14cbcSMatt Macy 	raidz_math_end();
991eda14cbcSMatt Macy 
992eda14cbcSMatt Macy 	if (ysize < xsize)
993eda14cbcSMatt Macy 		abd_free(yabd);
994eda14cbcSMatt Macy 
995eda14cbcSMatt Macy 	return ((1 << CODE_P) | (1 << CODE_Q));
996eda14cbcSMatt Macy }
997eda14cbcSMatt Macy 
998eda14cbcSMatt Macy 
999eda14cbcSMatt Macy /*
1000eda14cbcSMatt Macy  * Generate P and R syndromes
1001eda14cbcSMatt Macy  *
1002eda14cbcSMatt Macy  * @xc		array of pointers to syndrome columns
1003eda14cbcSMatt Macy  * @dc		data column (NULL if missing)
1004eda14cbcSMatt Macy  * @tsize	size of syndrome columns
1005eda14cbcSMatt Macy  * @dsize	size of data column (0 if missing)
1006eda14cbcSMatt Macy  */
1007eda14cbcSMatt Macy static void
raidz_syn_pr_abd(void ** c,const void * dc,const size_t tsize,const size_t dsize)1008eda14cbcSMatt Macy raidz_syn_pr_abd(void **c, const void *dc, const size_t tsize,
1009eda14cbcSMatt Macy     const size_t dsize)
1010eda14cbcSMatt Macy {
1011eda14cbcSMatt Macy 	v_t *x = (v_t *)c[TARGET_X];
1012eda14cbcSMatt Macy 	v_t *y = (v_t *)c[TARGET_Y];
1013eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
1014eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
1015eda14cbcSMatt Macy 	const v_t * const yend = y + (tsize / sizeof (v_t));
1016eda14cbcSMatt Macy 
1017eda14cbcSMatt Macy 	SYN_PR_DEFINE();
1018eda14cbcSMatt Macy 
1019eda14cbcSMatt Macy 	MUL2_SETUP();
1020eda14cbcSMatt Macy 
1021eda14cbcSMatt Macy 	for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE) {
1022eda14cbcSMatt Macy 		LOAD(d, SYN_PR_D);
1023eda14cbcSMatt Macy 		P_D_SYNDROME(SYN_PR_D, SYN_PR_X, x);
1024eda14cbcSMatt Macy 		R_D_SYNDROME(SYN_PR_D, SYN_PR_X, y);
1025eda14cbcSMatt Macy 	}
1026eda14cbcSMatt Macy 	for (; y < yend; y += SYN_STRIDE) {
1027eda14cbcSMatt Macy 		R_SYNDROME(SYN_PR_X, y);
1028eda14cbcSMatt Macy 	}
1029eda14cbcSMatt Macy }
1030eda14cbcSMatt Macy 
1031eda14cbcSMatt Macy /*
1032eda14cbcSMatt Macy  * Reconstruct data using PR parity and PR syndromes
1033eda14cbcSMatt Macy  *
1034eda14cbcSMatt Macy  * @tc		syndrome/result columns
1035eda14cbcSMatt Macy  * @tsize	size of syndrome/result columns
1036eda14cbcSMatt Macy  * @c		parity columns
1037eda14cbcSMatt Macy  * @mul		array of multiplication constants
1038eda14cbcSMatt Macy  */
1039eda14cbcSMatt Macy static void
raidz_rec_pr_abd(void ** t,const size_t tsize,void ** c,const unsigned * mul)1040eda14cbcSMatt Macy raidz_rec_pr_abd(void **t, const size_t tsize, void **c,
1041eda14cbcSMatt Macy     const unsigned *mul)
1042eda14cbcSMatt Macy {
1043eda14cbcSMatt Macy 	v_t *x = (v_t *)t[TARGET_X];
1044eda14cbcSMatt Macy 	v_t *y = (v_t *)t[TARGET_Y];
1045eda14cbcSMatt Macy 	const v_t * const xend = x + (tsize / sizeof (v_t));
1046eda14cbcSMatt Macy 	const v_t *p = (v_t *)c[CODE_P];
1047eda14cbcSMatt Macy 	const v_t *q = (v_t *)c[CODE_Q];
1048eda14cbcSMatt Macy 
1049eda14cbcSMatt Macy 	REC_PR_DEFINE();
1050eda14cbcSMatt Macy 
1051eda14cbcSMatt Macy 	for (; x < xend; x += REC_PR_STRIDE, y += REC_PR_STRIDE,
1052eda14cbcSMatt Macy 	    p += REC_PR_STRIDE, q += REC_PR_STRIDE) {
1053eda14cbcSMatt Macy 		LOAD(x, REC_PR_X);
1054eda14cbcSMatt Macy 		LOAD(y, REC_PR_Y);
1055eda14cbcSMatt Macy 		XOR_ACC(p, REC_PR_X);
1056eda14cbcSMatt Macy 		XOR_ACC(q, REC_PR_Y);
1057eda14cbcSMatt Macy 
1058eda14cbcSMatt Macy 		/* Save Pxy */
1059eda14cbcSMatt Macy 		COPY(REC_PR_X,  REC_PR_T);
1060eda14cbcSMatt Macy 
1061eda14cbcSMatt Macy 		/* Calc X */
1062eda14cbcSMatt Macy 		MUL(mul[MUL_PR_X], REC_PR_X);
1063eda14cbcSMatt Macy 		MUL(mul[MUL_PR_Y], REC_PR_Y);
1064eda14cbcSMatt Macy 		XOR(REC_PR_Y,  REC_PR_X);
1065eda14cbcSMatt Macy 		STORE(x, REC_PR_X);
1066eda14cbcSMatt Macy 
1067eda14cbcSMatt Macy 		/* Calc Y */
1068eda14cbcSMatt Macy 		XOR(REC_PR_T,  REC_PR_X);
1069eda14cbcSMatt Macy 		STORE(y, REC_PR_X);
1070eda14cbcSMatt Macy 	}
1071eda14cbcSMatt Macy }
1072eda14cbcSMatt Macy 
1073eda14cbcSMatt Macy 
1074eda14cbcSMatt Macy /*
1075eda14cbcSMatt Macy  * Reconstruct two data columns using PR parity
1076eda14cbcSMatt Macy  *
1077eda14cbcSMatt Macy  * @syn_method	raidz_syn_pr_abd()
1078eda14cbcSMatt Macy  * @rec_method	raidz_rec_pr_abd()
1079eda14cbcSMatt Macy  *
10807877fdebSMatt Macy  * @rr		RAIDZ row
1081eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
1082eda14cbcSMatt Macy  */
1083eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_pr_impl(raidz_row_t * rr,const int * tgtidx)10847877fdebSMatt Macy raidz_reconstruct_pr_impl(raidz_row_t *rr, const int *tgtidx)
1085eda14cbcSMatt Macy {
1086eda14cbcSMatt Macy 	size_t c;
1087eda14cbcSMatt Macy 	size_t dsize;
1088eda14cbcSMatt Macy 	abd_t *dabd;
10897877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
10907877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
1091eda14cbcSMatt Macy 	const size_t x = tgtidx[0];
1092eda14cbcSMatt Macy 	const size_t y = tgtidx[1];
10937877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
10947877fdebSMatt Macy 	const size_t ysize = rr->rr_col[y].rc_size;
10957877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
10967877fdebSMatt Macy 	abd_t *yabd = rr->rr_col[y].rc_abd;
1097eda14cbcSMatt Macy 	abd_t *tabds[2] = { xabd, yabd };
1098eda14cbcSMatt Macy 	abd_t *cabds[] = {
10997877fdebSMatt Macy 		rr->rr_col[CODE_P].rc_abd,
11007877fdebSMatt Macy 		rr->rr_col[CODE_R].rc_abd
1101eda14cbcSMatt Macy 	};
11027877fdebSMatt Macy 
11037877fdebSMatt Macy 	if (xabd == NULL)
11047877fdebSMatt Macy 		return ((1 << CODE_P) | (1 << CODE_R));
11057877fdebSMatt Macy 
1106eda14cbcSMatt Macy 	unsigned coeff[MUL_CNT];
11077877fdebSMatt Macy 	raidz_rec_pr_coeff(rr, tgtidx, coeff);
1108eda14cbcSMatt Macy 
1109eda14cbcSMatt Macy 	/*
1110eda14cbcSMatt Macy 	 * Check if some of targets are shorter then others.
1111eda14cbcSMatt Macy 	 * They need to be replaced with a new buffer so that syndrome can
1112eda14cbcSMatt Macy 	 * be calculated on full length.
1113eda14cbcSMatt Macy 	 */
1114eda14cbcSMatt Macy 	if (ysize < xsize) {
1115eda14cbcSMatt Macy 		yabd = abd_alloc(xsize, B_FALSE);
1116eda14cbcSMatt Macy 		tabds[1] = yabd;
1117eda14cbcSMatt Macy 	}
1118eda14cbcSMatt Macy 
1119eda14cbcSMatt Macy 	raidz_math_begin();
1120eda14cbcSMatt Macy 
1121eda14cbcSMatt Macy 	/* Start with first data column if present */
1122eda14cbcSMatt Macy 	if (firstdc != x) {
1123f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1124f8b1db88SMartin Matuska 		raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1125eda14cbcSMatt Macy 	} else {
1126eda14cbcSMatt Macy 		raidz_zero(xabd, xsize);
1127eda14cbcSMatt Macy 		raidz_zero(yabd, xsize);
1128eda14cbcSMatt Macy 	}
1129eda14cbcSMatt Macy 
1130eda14cbcSMatt Macy 	/* generate q_syndrome */
1131eda14cbcSMatt Macy 	for (c = firstdc+1; c < ncols; c++) {
1132eda14cbcSMatt Macy 		if (c == x || c == y) {
1133eda14cbcSMatt Macy 			dabd = NULL;
1134eda14cbcSMatt Macy 			dsize = 0;
1135eda14cbcSMatt Macy 		} else {
11367877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
11377877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
1138eda14cbcSMatt Macy 		}
1139eda14cbcSMatt Macy 
1140f8b1db88SMartin Matuska 		abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 2,
1141eda14cbcSMatt Macy 		    raidz_syn_pr_abd);
1142eda14cbcSMatt Macy 	}
1143eda14cbcSMatt Macy 
1144eda14cbcSMatt Macy 	abd_raidz_rec_iterate(cabds, tabds, xsize, 2, raidz_rec_pr_abd, coeff);
1145eda14cbcSMatt Macy 
1146eda14cbcSMatt Macy 	/*
1147eda14cbcSMatt Macy 	 * Copy shorter targets back to the original abd buffer
1148eda14cbcSMatt Macy 	 */
1149eda14cbcSMatt Macy 	if (ysize < xsize)
1150f8b1db88SMartin Matuska 		raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
1151eda14cbcSMatt Macy 
1152eda14cbcSMatt Macy 	raidz_math_end();
1153eda14cbcSMatt Macy 
1154eda14cbcSMatt Macy 	if (ysize < xsize)
1155eda14cbcSMatt Macy 		abd_free(yabd);
1156eda14cbcSMatt Macy 
11577877fdebSMatt Macy 	return ((1 << CODE_P) | (1 << CODE_R));
1158eda14cbcSMatt Macy }
1159eda14cbcSMatt Macy 
1160eda14cbcSMatt Macy 
1161eda14cbcSMatt Macy /*
1162eda14cbcSMatt Macy  * Generate Q and R syndromes
1163eda14cbcSMatt Macy  *
1164eda14cbcSMatt Macy  * @xc		array of pointers to syndrome columns
1165eda14cbcSMatt Macy  * @dc		data column (NULL if missing)
1166eda14cbcSMatt Macy  * @tsize	size of syndrome columns
1167eda14cbcSMatt Macy  * @dsize	size of data column (0 if missing)
1168eda14cbcSMatt Macy  */
1169eda14cbcSMatt Macy static void
raidz_syn_qr_abd(void ** c,const void * dc,const size_t tsize,const size_t dsize)1170eda14cbcSMatt Macy raidz_syn_qr_abd(void **c, const void *dc, const size_t tsize,
1171eda14cbcSMatt Macy     const size_t dsize)
1172eda14cbcSMatt Macy {
1173eda14cbcSMatt Macy 	v_t *x = (v_t *)c[TARGET_X];
1174eda14cbcSMatt Macy 	v_t *y = (v_t *)c[TARGET_Y];
1175eda14cbcSMatt Macy 	const v_t * const xend = x + (tsize / sizeof (v_t));
1176eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
1177eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
1178eda14cbcSMatt Macy 
1179eda14cbcSMatt Macy 	SYN_QR_DEFINE();
1180eda14cbcSMatt Macy 
1181eda14cbcSMatt Macy 	MUL2_SETUP();
1182eda14cbcSMatt Macy 
1183eda14cbcSMatt Macy 	for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE) {
1184eda14cbcSMatt Macy 		LOAD(d, SYN_PQ_D);
1185eda14cbcSMatt Macy 		Q_D_SYNDROME(SYN_QR_D, SYN_QR_X, x);
1186eda14cbcSMatt Macy 		R_D_SYNDROME(SYN_QR_D, SYN_QR_X, y);
1187eda14cbcSMatt Macy 	}
1188eda14cbcSMatt Macy 	for (; x < xend; x += SYN_STRIDE, y += SYN_STRIDE) {
1189eda14cbcSMatt Macy 		Q_SYNDROME(SYN_QR_X, x);
1190eda14cbcSMatt Macy 		R_SYNDROME(SYN_QR_X, y);
1191eda14cbcSMatt Macy 	}
1192eda14cbcSMatt Macy }
1193eda14cbcSMatt Macy 
1194eda14cbcSMatt Macy 
1195eda14cbcSMatt Macy /*
1196eda14cbcSMatt Macy  * Reconstruct data using QR parity and QR syndromes
1197eda14cbcSMatt Macy  *
1198eda14cbcSMatt Macy  * @tc		syndrome/result columns
1199eda14cbcSMatt Macy  * @tsize	size of syndrome/result columns
1200eda14cbcSMatt Macy  * @c		parity columns
1201eda14cbcSMatt Macy  * @mul		array of multiplication constants
1202eda14cbcSMatt Macy  */
1203eda14cbcSMatt Macy static void
raidz_rec_qr_abd(void ** t,const size_t tsize,void ** c,const unsigned * mul)1204eda14cbcSMatt Macy raidz_rec_qr_abd(void **t, const size_t tsize, void **c,
1205eda14cbcSMatt Macy     const unsigned *mul)
1206eda14cbcSMatt Macy {
1207eda14cbcSMatt Macy 	v_t *x = (v_t *)t[TARGET_X];
1208eda14cbcSMatt Macy 	v_t *y = (v_t *)t[TARGET_Y];
1209eda14cbcSMatt Macy 	const v_t * const xend = x + (tsize / sizeof (v_t));
1210eda14cbcSMatt Macy 	const v_t *p = (v_t *)c[CODE_P];
1211eda14cbcSMatt Macy 	const v_t *q = (v_t *)c[CODE_Q];
1212eda14cbcSMatt Macy 
1213eda14cbcSMatt Macy 	REC_QR_DEFINE();
1214eda14cbcSMatt Macy 
1215eda14cbcSMatt Macy 	for (; x < xend; x += REC_QR_STRIDE, y += REC_QR_STRIDE,
1216eda14cbcSMatt Macy 	    p += REC_QR_STRIDE, q += REC_QR_STRIDE) {
1217eda14cbcSMatt Macy 		LOAD(x, REC_QR_X);
1218eda14cbcSMatt Macy 		LOAD(y, REC_QR_Y);
1219eda14cbcSMatt Macy 
1220eda14cbcSMatt Macy 		XOR_ACC(p, REC_QR_X);
1221eda14cbcSMatt Macy 		XOR_ACC(q, REC_QR_Y);
1222eda14cbcSMatt Macy 
1223eda14cbcSMatt Macy 		/* Save Pxy */
1224eda14cbcSMatt Macy 		COPY(REC_QR_X,  REC_QR_T);
1225eda14cbcSMatt Macy 
1226eda14cbcSMatt Macy 		/* Calc X */
1227eda14cbcSMatt Macy 		MUL(mul[MUL_QR_XQ], REC_QR_X);	/* X = Q * xqm */
1228eda14cbcSMatt Macy 		XOR(REC_QR_Y, REC_QR_X);	/* X = R ^ X   */
1229eda14cbcSMatt Macy 		MUL(mul[MUL_QR_X], REC_QR_X);	/* X = X * xm  */
1230eda14cbcSMatt Macy 		STORE(x, REC_QR_X);
1231eda14cbcSMatt Macy 
1232eda14cbcSMatt Macy 		/* Calc Y */
1233eda14cbcSMatt Macy 		MUL(mul[MUL_QR_YQ], REC_QR_T);	/* X = Q * xqm */
1234eda14cbcSMatt Macy 		XOR(REC_QR_Y, REC_QR_T);	/* X = R ^ X   */
1235eda14cbcSMatt Macy 		MUL(mul[MUL_QR_Y], REC_QR_T);	/* X = X * xm  */
1236eda14cbcSMatt Macy 		STORE(y, REC_QR_T);
1237eda14cbcSMatt Macy 	}
1238eda14cbcSMatt Macy }
1239eda14cbcSMatt Macy 
1240eda14cbcSMatt Macy 
1241eda14cbcSMatt Macy /*
1242eda14cbcSMatt Macy  * Reconstruct two data columns using QR parity
1243eda14cbcSMatt Macy  *
1244eda14cbcSMatt Macy  * @syn_method	raidz_syn_qr_abd()
1245eda14cbcSMatt Macy  * @rec_method	raidz_rec_qr_abd()
1246eda14cbcSMatt Macy  *
12477877fdebSMatt Macy  * @rr		RAIDZ row
1248eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
1249eda14cbcSMatt Macy  */
1250eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_qr_impl(raidz_row_t * rr,const int * tgtidx)12517877fdebSMatt Macy raidz_reconstruct_qr_impl(raidz_row_t *rr, const int *tgtidx)
1252eda14cbcSMatt Macy {
1253eda14cbcSMatt Macy 	size_t c;
1254eda14cbcSMatt Macy 	size_t dsize;
1255eda14cbcSMatt Macy 	abd_t *dabd;
12567877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
12577877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
1258eda14cbcSMatt Macy 	const size_t x = tgtidx[TARGET_X];
1259eda14cbcSMatt Macy 	const size_t y = tgtidx[TARGET_Y];
12607877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
12617877fdebSMatt Macy 	const size_t ysize = rr->rr_col[y].rc_size;
12627877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
12637877fdebSMatt Macy 	abd_t *yabd = rr->rr_col[y].rc_abd;
1264eda14cbcSMatt Macy 	abd_t *tabds[2] = { xabd, yabd };
1265eda14cbcSMatt Macy 	abd_t *cabds[] = {
12667877fdebSMatt Macy 		rr->rr_col[CODE_Q].rc_abd,
12677877fdebSMatt Macy 		rr->rr_col[CODE_R].rc_abd
1268eda14cbcSMatt Macy 	};
12697877fdebSMatt Macy 
12707877fdebSMatt Macy 	if (xabd == NULL)
12717877fdebSMatt Macy 		return ((1 << CODE_Q) | (1 << CODE_R));
12727877fdebSMatt Macy 
1273eda14cbcSMatt Macy 	unsigned coeff[MUL_CNT];
12747877fdebSMatt Macy 	raidz_rec_qr_coeff(rr, tgtidx, coeff);
1275eda14cbcSMatt Macy 
1276eda14cbcSMatt Macy 	/*
1277eda14cbcSMatt Macy 	 * Check if some of targets is shorter then others
1278eda14cbcSMatt Macy 	 * In this case, shorter target needs to be replaced with
1279eda14cbcSMatt Macy 	 * new buffer so that syndrome can be calculated.
1280eda14cbcSMatt Macy 	 */
1281eda14cbcSMatt Macy 	if (ysize < xsize) {
1282eda14cbcSMatt Macy 		yabd = abd_alloc(xsize, B_FALSE);
1283eda14cbcSMatt Macy 		tabds[1] = yabd;
1284eda14cbcSMatt Macy 	}
1285eda14cbcSMatt Macy 
1286eda14cbcSMatt Macy 	raidz_math_begin();
1287eda14cbcSMatt Macy 
1288eda14cbcSMatt Macy 	/* Start with first data column if present */
1289eda14cbcSMatt Macy 	if (firstdc != x) {
1290f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1291f8b1db88SMartin Matuska 		raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1292eda14cbcSMatt Macy 	} else {
1293eda14cbcSMatt Macy 		raidz_zero(xabd, xsize);
1294eda14cbcSMatt Macy 		raidz_zero(yabd, xsize);
1295eda14cbcSMatt Macy 	}
1296eda14cbcSMatt Macy 
1297eda14cbcSMatt Macy 	/* generate q_syndrome */
1298eda14cbcSMatt Macy 	for (c = firstdc+1; c < ncols; c++) {
1299eda14cbcSMatt Macy 		if (c == x || c == y) {
1300eda14cbcSMatt Macy 			dabd = NULL;
1301eda14cbcSMatt Macy 			dsize = 0;
1302eda14cbcSMatt Macy 		} else {
13037877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
13047877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
1305eda14cbcSMatt Macy 		}
1306eda14cbcSMatt Macy 
1307f8b1db88SMartin Matuska 		abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 2,
1308eda14cbcSMatt Macy 		    raidz_syn_qr_abd);
1309eda14cbcSMatt Macy 	}
1310eda14cbcSMatt Macy 
1311eda14cbcSMatt Macy 	abd_raidz_rec_iterate(cabds, tabds, xsize, 2, raidz_rec_qr_abd, coeff);
1312eda14cbcSMatt Macy 
1313eda14cbcSMatt Macy 	/*
1314eda14cbcSMatt Macy 	 * Copy shorter targets back to the original abd buffer
1315eda14cbcSMatt Macy 	 */
1316eda14cbcSMatt Macy 	if (ysize < xsize)
1317f8b1db88SMartin Matuska 		raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
1318eda14cbcSMatt Macy 
1319eda14cbcSMatt Macy 	raidz_math_end();
1320eda14cbcSMatt Macy 
1321eda14cbcSMatt Macy 	if (ysize < xsize)
1322eda14cbcSMatt Macy 		abd_free(yabd);
1323eda14cbcSMatt Macy 
1324eda14cbcSMatt Macy 
1325eda14cbcSMatt Macy 	return ((1 << CODE_Q) | (1 << CODE_R));
1326eda14cbcSMatt Macy }
1327eda14cbcSMatt Macy 
1328eda14cbcSMatt Macy 
1329eda14cbcSMatt Macy /*
1330eda14cbcSMatt Macy  * Generate P, Q, and R syndromes
1331eda14cbcSMatt Macy  *
1332eda14cbcSMatt Macy  * @xc		array of pointers to syndrome columns
1333eda14cbcSMatt Macy  * @dc		data column (NULL if missing)
1334eda14cbcSMatt Macy  * @tsize	size of syndrome columns
1335eda14cbcSMatt Macy  * @dsize	size of data column (0 if missing)
1336eda14cbcSMatt Macy  */
1337eda14cbcSMatt Macy static void
raidz_syn_pqr_abd(void ** c,const void * dc,const size_t tsize,const size_t dsize)1338eda14cbcSMatt Macy raidz_syn_pqr_abd(void **c, const void *dc, const size_t tsize,
1339eda14cbcSMatt Macy     const size_t dsize)
1340eda14cbcSMatt Macy {
1341eda14cbcSMatt Macy 	v_t *x = (v_t *)c[TARGET_X];
1342eda14cbcSMatt Macy 	v_t *y = (v_t *)c[TARGET_Y];
1343eda14cbcSMatt Macy 	v_t *z = (v_t *)c[TARGET_Z];
1344eda14cbcSMatt Macy 	const v_t * const yend = y + (tsize / sizeof (v_t));
1345eda14cbcSMatt Macy 	const v_t *d = (const v_t *)dc;
1346eda14cbcSMatt Macy 	const v_t * const dend = d + (dsize / sizeof (v_t));
1347eda14cbcSMatt Macy 
1348eda14cbcSMatt Macy 	SYN_PQR_DEFINE();
1349eda14cbcSMatt Macy 
1350eda14cbcSMatt Macy 	MUL2_SETUP();
1351eda14cbcSMatt Macy 
1352eda14cbcSMatt Macy 	for (; d < dend;  d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE,
1353eda14cbcSMatt Macy 	    z += SYN_STRIDE) {
1354eda14cbcSMatt Macy 		LOAD(d, SYN_PQR_D);
1355eda14cbcSMatt Macy 		P_D_SYNDROME(SYN_PQR_D, SYN_PQR_X, x)
1356eda14cbcSMatt Macy 		Q_D_SYNDROME(SYN_PQR_D, SYN_PQR_X, y);
1357eda14cbcSMatt Macy 		R_D_SYNDROME(SYN_PQR_D, SYN_PQR_X, z);
1358eda14cbcSMatt Macy 	}
1359eda14cbcSMatt Macy 	for (; y < yend; y += SYN_STRIDE, z += SYN_STRIDE) {
1360eda14cbcSMatt Macy 		Q_SYNDROME(SYN_PQR_X, y);
1361eda14cbcSMatt Macy 		R_SYNDROME(SYN_PQR_X, z);
1362eda14cbcSMatt Macy 	}
1363eda14cbcSMatt Macy }
1364eda14cbcSMatt Macy 
1365eda14cbcSMatt Macy 
1366eda14cbcSMatt Macy /*
1367eda14cbcSMatt Macy  * Reconstruct data using PRQ parity and PQR syndromes
1368eda14cbcSMatt Macy  *
1369eda14cbcSMatt Macy  * @tc		syndrome/result columns
1370eda14cbcSMatt Macy  * @tsize	size of syndrome/result columns
1371eda14cbcSMatt Macy  * @c		parity columns
1372eda14cbcSMatt Macy  * @mul		array of multiplication constants
1373eda14cbcSMatt Macy  */
1374eda14cbcSMatt Macy static void
raidz_rec_pqr_abd(void ** t,const size_t tsize,void ** c,const unsigned * const mul)1375eda14cbcSMatt Macy raidz_rec_pqr_abd(void **t, const size_t tsize, void **c,
1376eda14cbcSMatt Macy     const unsigned * const mul)
1377eda14cbcSMatt Macy {
1378eda14cbcSMatt Macy 	v_t *x = (v_t *)t[TARGET_X];
1379eda14cbcSMatt Macy 	v_t *y = (v_t *)t[TARGET_Y];
1380eda14cbcSMatt Macy 	v_t *z = (v_t *)t[TARGET_Z];
1381eda14cbcSMatt Macy 	const v_t * const xend = x + (tsize / sizeof (v_t));
1382eda14cbcSMatt Macy 	const v_t *p = (v_t *)c[CODE_P];
1383eda14cbcSMatt Macy 	const v_t *q = (v_t *)c[CODE_Q];
1384eda14cbcSMatt Macy 	const v_t *r = (v_t *)c[CODE_R];
1385eda14cbcSMatt Macy 
1386eda14cbcSMatt Macy 	REC_PQR_DEFINE();
1387eda14cbcSMatt Macy 
1388eda14cbcSMatt Macy 	for (; x < xend; x += REC_PQR_STRIDE, y += REC_PQR_STRIDE,
1389eda14cbcSMatt Macy 	    z += REC_PQR_STRIDE, p += REC_PQR_STRIDE, q += REC_PQR_STRIDE,
1390eda14cbcSMatt Macy 	    r += REC_PQR_STRIDE) {
1391eda14cbcSMatt Macy 		LOAD(x, REC_PQR_X);
1392eda14cbcSMatt Macy 		LOAD(y, REC_PQR_Y);
1393eda14cbcSMatt Macy 		LOAD(z, REC_PQR_Z);
1394eda14cbcSMatt Macy 
1395eda14cbcSMatt Macy 		XOR_ACC(p, REC_PQR_X);
1396eda14cbcSMatt Macy 		XOR_ACC(q, REC_PQR_Y);
1397eda14cbcSMatt Macy 		XOR_ACC(r, REC_PQR_Z);
1398eda14cbcSMatt Macy 
1399eda14cbcSMatt Macy 		/* Save Pxyz and Qxyz */
1400eda14cbcSMatt Macy 		COPY(REC_PQR_X, REC_PQR_XS);
1401eda14cbcSMatt Macy 		COPY(REC_PQR_Y, REC_PQR_YS);
1402eda14cbcSMatt Macy 
1403eda14cbcSMatt Macy 		/* Calc X */
1404eda14cbcSMatt Macy 		MUL(mul[MUL_PQR_XP], REC_PQR_X);	/* Xp = Pxyz * xp   */
1405eda14cbcSMatt Macy 		MUL(mul[MUL_PQR_XQ], REC_PQR_Y);	/* Xq = Qxyz * xq   */
1406eda14cbcSMatt Macy 		XOR(REC_PQR_Y, REC_PQR_X);
1407eda14cbcSMatt Macy 		MUL(mul[MUL_PQR_XR], REC_PQR_Z);	/* Xr = Rxyz * xr   */
1408eda14cbcSMatt Macy 		XOR(REC_PQR_Z, REC_PQR_X);		/* X = Xp + Xq + Xr */
1409eda14cbcSMatt Macy 		STORE(x, REC_PQR_X);
1410eda14cbcSMatt Macy 
1411eda14cbcSMatt Macy 		/* Calc Y */
1412eda14cbcSMatt Macy 		XOR(REC_PQR_X, REC_PQR_XS); 		/* Pyz = Pxyz + X */
1413eda14cbcSMatt Macy 		MUL(mul[MUL_PQR_YU], REC_PQR_X);  	/* Xq = X * upd_q */
1414eda14cbcSMatt Macy 		XOR(REC_PQR_X, REC_PQR_YS); 		/* Qyz = Qxyz + Xq */
1415eda14cbcSMatt Macy 		COPY(REC_PQR_XS, REC_PQR_X);		/* restore Pyz */
1416eda14cbcSMatt Macy 		MUL(mul[MUL_PQR_YP], REC_PQR_X);	/* Yp = Pyz * yp */
1417eda14cbcSMatt Macy 		MUL(mul[MUL_PQR_YQ], REC_PQR_YS);	/* Yq = Qyz * yq */
1418eda14cbcSMatt Macy 		XOR(REC_PQR_X, REC_PQR_YS); 		/* Y = Yp + Yq */
1419eda14cbcSMatt Macy 		STORE(y, REC_PQR_YS);
1420eda14cbcSMatt Macy 
1421eda14cbcSMatt Macy 		/* Calc Z */
1422eda14cbcSMatt Macy 		XOR(REC_PQR_XS, REC_PQR_YS);		/* Z = Pz = Pyz + Y */
1423eda14cbcSMatt Macy 		STORE(z, REC_PQR_YS);
1424eda14cbcSMatt Macy 	}
1425eda14cbcSMatt Macy }
1426eda14cbcSMatt Macy 
1427eda14cbcSMatt Macy 
1428eda14cbcSMatt Macy /*
1429eda14cbcSMatt Macy  * Reconstruct three data columns using PQR parity
1430eda14cbcSMatt Macy  *
1431eda14cbcSMatt Macy  * @syn_method	raidz_syn_pqr_abd()
1432eda14cbcSMatt Macy  * @rec_method	raidz_rec_pqr_abd()
1433eda14cbcSMatt Macy  *
14347877fdebSMatt Macy  * @rr		RAIDZ row
1435eda14cbcSMatt Macy  * @tgtidx	array of missing data indexes
1436eda14cbcSMatt Macy  */
1437eda14cbcSMatt Macy static raidz_inline int
raidz_reconstruct_pqr_impl(raidz_row_t * rr,const int * tgtidx)14387877fdebSMatt Macy raidz_reconstruct_pqr_impl(raidz_row_t *rr, const int *tgtidx)
1439eda14cbcSMatt Macy {
1440eda14cbcSMatt Macy 	size_t c;
1441eda14cbcSMatt Macy 	size_t dsize;
1442eda14cbcSMatt Macy 	abd_t *dabd;
14437877fdebSMatt Macy 	const size_t firstdc = rr->rr_firstdatacol;
14447877fdebSMatt Macy 	const size_t ncols = rr->rr_cols;
1445eda14cbcSMatt Macy 	const size_t x = tgtidx[TARGET_X];
1446eda14cbcSMatt Macy 	const size_t y = tgtidx[TARGET_Y];
1447eda14cbcSMatt Macy 	const size_t z = tgtidx[TARGET_Z];
14487877fdebSMatt Macy 	const size_t xsize = rr->rr_col[x].rc_size;
14497877fdebSMatt Macy 	const size_t ysize = rr->rr_col[y].rc_size;
14507877fdebSMatt Macy 	const size_t zsize = rr->rr_col[z].rc_size;
14517877fdebSMatt Macy 	abd_t *xabd = rr->rr_col[x].rc_abd;
14527877fdebSMatt Macy 	abd_t *yabd = rr->rr_col[y].rc_abd;
14537877fdebSMatt Macy 	abd_t *zabd = rr->rr_col[z].rc_abd;
1454eda14cbcSMatt Macy 	abd_t *tabds[] = { xabd, yabd, zabd };
1455eda14cbcSMatt Macy 	abd_t *cabds[] = {
14567877fdebSMatt Macy 		rr->rr_col[CODE_P].rc_abd,
14577877fdebSMatt Macy 		rr->rr_col[CODE_Q].rc_abd,
14587877fdebSMatt Macy 		rr->rr_col[CODE_R].rc_abd
1459eda14cbcSMatt Macy 	};
14607877fdebSMatt Macy 
14617877fdebSMatt Macy 	if (xabd == NULL)
14627877fdebSMatt Macy 		return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
14637877fdebSMatt Macy 
1464eda14cbcSMatt Macy 	unsigned coeff[MUL_CNT];
14657877fdebSMatt Macy 	raidz_rec_pqr_coeff(rr, tgtidx, coeff);
1466eda14cbcSMatt Macy 
1467eda14cbcSMatt Macy 	/*
1468eda14cbcSMatt Macy 	 * Check if some of targets is shorter then others
1469eda14cbcSMatt Macy 	 * In this case, shorter target needs to be replaced with
1470eda14cbcSMatt Macy 	 * new buffer so that syndrome can be calculated.
1471eda14cbcSMatt Macy 	 */
1472eda14cbcSMatt Macy 	if (ysize < xsize) {
1473eda14cbcSMatt Macy 		yabd = abd_alloc(xsize, B_FALSE);
1474eda14cbcSMatt Macy 		tabds[1] = yabd;
1475eda14cbcSMatt Macy 	}
1476eda14cbcSMatt Macy 	if (zsize < xsize) {
1477eda14cbcSMatt Macy 		zabd = abd_alloc(xsize, B_FALSE);
1478eda14cbcSMatt Macy 		tabds[2] = zabd;
1479eda14cbcSMatt Macy 	}
1480eda14cbcSMatt Macy 
1481eda14cbcSMatt Macy 	raidz_math_begin();
1482eda14cbcSMatt Macy 
1483eda14cbcSMatt Macy 	/* Start with first data column if present */
1484eda14cbcSMatt Macy 	if (firstdc != x) {
1485f8b1db88SMartin Matuska 		raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1486f8b1db88SMartin Matuska 		raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1487f8b1db88SMartin Matuska 		raidz_copy(zabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1488eda14cbcSMatt Macy 	} else {
1489eda14cbcSMatt Macy 		raidz_zero(xabd, xsize);
1490eda14cbcSMatt Macy 		raidz_zero(yabd, xsize);
1491eda14cbcSMatt Macy 		raidz_zero(zabd, xsize);
1492eda14cbcSMatt Macy 	}
1493eda14cbcSMatt Macy 
1494eda14cbcSMatt Macy 	/* generate q_syndrome */
1495eda14cbcSMatt Macy 	for (c = firstdc+1; c < ncols; c++) {
1496eda14cbcSMatt Macy 		if (c == x || c == y || c == z) {
1497eda14cbcSMatt Macy 			dabd = NULL;
1498eda14cbcSMatt Macy 			dsize = 0;
1499eda14cbcSMatt Macy 		} else {
15007877fdebSMatt Macy 			dabd = rr->rr_col[c].rc_abd;
15017877fdebSMatt Macy 			dsize = rr->rr_col[c].rc_size;
1502eda14cbcSMatt Macy 		}
1503eda14cbcSMatt Macy 
1504f8b1db88SMartin Matuska 		abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 3,
1505eda14cbcSMatt Macy 		    raidz_syn_pqr_abd);
1506eda14cbcSMatt Macy 	}
1507eda14cbcSMatt Macy 
1508eda14cbcSMatt Macy 	abd_raidz_rec_iterate(cabds, tabds, xsize, 3, raidz_rec_pqr_abd, coeff);
1509eda14cbcSMatt Macy 
1510eda14cbcSMatt Macy 	/*
1511eda14cbcSMatt Macy 	 * Copy shorter targets back to the original abd buffer
1512eda14cbcSMatt Macy 	 */
1513eda14cbcSMatt Macy 	if (ysize < xsize)
1514f8b1db88SMartin Matuska 		raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
1515eda14cbcSMatt Macy 	if (zsize < xsize)
1516f8b1db88SMartin Matuska 		raidz_copy(rr->rr_col[z].rc_abd, zabd, 0, zsize);
1517eda14cbcSMatt Macy 
1518eda14cbcSMatt Macy 	raidz_math_end();
1519eda14cbcSMatt Macy 
1520eda14cbcSMatt Macy 	if (ysize < xsize)
1521eda14cbcSMatt Macy 		abd_free(yabd);
1522eda14cbcSMatt Macy 	if (zsize < xsize)
1523eda14cbcSMatt Macy 		abd_free(zabd);
1524eda14cbcSMatt Macy 
1525eda14cbcSMatt Macy 	return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
1526eda14cbcSMatt Macy }
1527eda14cbcSMatt Macy 
1528eda14cbcSMatt Macy #endif /* _VDEV_RAIDZ_MATH_IMPL_H */
1529