1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2018, Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26  */
27 
28 #include <sys/vdev_impl.h>
29 #include <sys/vdev_draid.h>
30 #include <sys/dsl_scan.h>
31 #include <sys/spa_impl.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_rebuild.h>
34 #include <sys/zio.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 
39 /*
40  * This file contains the sequential reconstruction implementation for
41  * resilvering.  This form of resilvering is internally referred to as device
42  * rebuild to avoid conflating it with the traditional healing reconstruction
43  * performed by the dsl scan code.
44  *
45  * When replacing a device, or scrubbing the pool, ZFS has historically used
46  * a process called resilvering which is a form of healing reconstruction.
47  * This approach has the advantage that as blocks are read from disk their
48  * checksums can be immediately verified and the data repaired.  Unfortunately,
49  * it also results in a random IO pattern to the disk even when extra care
50  * is taken to sequentialize the IO as much as possible.  This substantially
51  * increases the time required to resilver the pool and restore redundancy.
52  *
53  * For mirrored devices it's possible to implement an alternate sequential
54  * reconstruction strategy when resilvering.  Sequential reconstruction
55  * behaves like a traditional RAID rebuild and reconstructs a device in LBA
56  * order without verifying the checksum.  After this phase completes a second
57  * scrub phase is started to verify all of the checksums.  This two phase
58  * process will take longer than the healing reconstruction described above.
59  * However, it has that advantage that after the reconstruction first phase
60  * completes redundancy has been restored.  At this point the pool can incur
61  * another device failure without risking data loss.
62  *
63  * There are a few noteworthy limitations and other advantages of resilvering
64  * using sequential reconstruction vs healing reconstruction.
65  *
66  * Limitations:
67  *
68  *   - Sequential reconstruction is not possible on RAIDZ due to its
69  *     variable stripe width.  Note dRAID uses a fixed stripe width which
70  *     avoids this issue, but comes at the expense of some usable capacity.
71  *
72  *   - Block checksums are not verified during sequential reconstruction.
73  *     Similar to traditional RAID the parity/mirror data is reconstructed
74  *     but cannot be immediately double checked.  For this reason when the
75  *     last active resilver completes the pool is automatically scrubbed
76  *     by default.
77  *
78  *   - Deferred resilvers using sequential reconstruction are not currently
79  *     supported.  When adding another vdev to an active top-level resilver
80  *     it must be restarted.
81  *
82  * Advantages:
83  *
84  *   - Sequential reconstruction is performed in LBA order which may be faster
85  *     than healing reconstruction particularly when using HDDs (or
86  *     especially with SMR devices).  Only allocated capacity is resilvered.
87  *
88  *   - Sequential reconstruction is not constrained by ZFS block boundaries.
89  *     This allows it to issue larger IOs to disk which span multiple blocks
90  *     allowing all of these logical blocks to be repaired with a single IO.
91  *
92  *   - Unlike a healing resilver or scrub which are pool wide operations,
93  *     sequential reconstruction is handled by the top-level vdevs.  This
94  *     allows for it to be started or canceled on a top-level vdev without
95  *     impacting any other top-level vdevs in the pool.
96  *
97  *   - Data only referenced by a pool checkpoint will be repaired because
98  *     that space is reflected in the space maps.  This differs for a
99  *     healing resilver or scrub which will not repair that data.
100  */
101 
102 
103 /*
104  * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
105  * SPA_MAXBLOCKSIZE.
106  */
107 static uint64_t zfs_rebuild_max_segment = 1024 * 1024;
108 
109 /*
110  * Maximum number of parallelly executed bytes per leaf vdev caused by a
111  * sequential resilver.  We attempt to strike a balance here between keeping
112  * the vdev queues full of I/Os at all times and not overflowing the queues
113  * to cause long latency, which would cause long txg sync times.
114  *
115  * A large default value can be safely used here because the default target
116  * segment size is also large (zfs_rebuild_max_segment=1M).  This helps keep
117  * the queue depth short.
118  *
119  * 32MB was selected as the default value to achieve good performance with
120  * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
121  * rebuild was unable to saturate all of the drives using smaller values.
122  * With a value of 32MB the sequential resilver write rate was measured at
123  * 800MB/s sustained while rebuilding to a distributed spare.
124  */
125 static uint64_t zfs_rebuild_vdev_limit = 32 << 20;
126 
127 /*
128  * Automatically start a pool scrub when the last active sequential resilver
129  * completes in order to verify the checksums of all blocks which have been
130  * resilvered. This option is enabled by default and is strongly recommended.
131  */
132 static int zfs_rebuild_scrub_enabled = 1;
133 
134 /*
135  * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
136  */
137 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
138 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx);
139 
140 /*
141  * Clear the per-vdev rebuild bytes value for a vdev tree.
142  */
143 static void
144 clear_rebuild_bytes(vdev_t *vd)
145 {
146 	vdev_stat_t *vs = &vd->vdev_stat;
147 
148 	for (uint64_t i = 0; i < vd->vdev_children; i++)
149 		clear_rebuild_bytes(vd->vdev_child[i]);
150 
151 	mutex_enter(&vd->vdev_stat_lock);
152 	vs->vs_rebuild_processed = 0;
153 	mutex_exit(&vd->vdev_stat_lock);
154 }
155 
156 /*
157  * Determines whether a vdev_rebuild_thread() should be stopped.
158  */
159 static boolean_t
160 vdev_rebuild_should_stop(vdev_t *vd)
161 {
162 	return (!vdev_writeable(vd) || vd->vdev_removing ||
163 	    vd->vdev_rebuild_exit_wanted ||
164 	    vd->vdev_rebuild_cancel_wanted ||
165 	    vd->vdev_rebuild_reset_wanted);
166 }
167 
168 /*
169  * Determine if the rebuild should be canceled.  This may happen when all
170  * vdevs with MISSING DTLs are detached.
171  */
172 static boolean_t
173 vdev_rebuild_should_cancel(vdev_t *vd)
174 {
175 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
176 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
177 
178 	if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
179 		return (B_TRUE);
180 
181 	return (B_FALSE);
182 }
183 
184 /*
185  * The sync task for updating the on-disk state of a rebuild.  This is
186  * scheduled by vdev_rebuild_range().
187  */
188 static void
189 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
190 {
191 	int vdev_id = (uintptr_t)arg;
192 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
193 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
194 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
195 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
196 	uint64_t txg = dmu_tx_get_txg(tx);
197 
198 	mutex_enter(&vd->vdev_rebuild_lock);
199 
200 	if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
201 		vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
202 		vr->vr_scan_offset[txg & TXG_MASK] = 0;
203 	}
204 
205 	vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
206 	    NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
207 
208 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
209 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
210 	    REBUILD_PHYS_ENTRIES, vrp, tx));
211 
212 	mutex_exit(&vd->vdev_rebuild_lock);
213 }
214 
215 /*
216  * Initialize the on-disk state for a new rebuild, start the rebuild thread.
217  */
218 static void
219 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
220 {
221 	int vdev_id = (uintptr_t)arg;
222 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
223 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
224 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
225 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
226 
227 	ASSERT(vd->vdev_rebuilding);
228 
229 	spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
230 
231 	mutex_enter(&vd->vdev_rebuild_lock);
232 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
233 	vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
234 	vrp->vrp_min_txg = 0;
235 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
236 	vrp->vrp_start_time = gethrestime_sec();
237 	vrp->vrp_scan_time_ms = 0;
238 	vr->vr_prev_scan_time_ms = 0;
239 
240 	/*
241 	 * Rebuilds are currently only used when replacing a device, in which
242 	 * case there must be DTL_MISSING entries.  In the future, we could
243 	 * allow rebuilds to be used in a way similar to a scrub.  This would
244 	 * be useful because it would allow us to rebuild the space used by
245 	 * pool checkpoints.
246 	 */
247 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
248 
249 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
250 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
251 	    REBUILD_PHYS_ENTRIES, vrp, tx));
252 
253 	spa_history_log_internal(spa, "rebuild", tx,
254 	    "vdev_id=%llu vdev_guid=%llu started",
255 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
256 
257 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
258 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
259 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
260 
261 	mutex_exit(&vd->vdev_rebuild_lock);
262 }
263 
264 static void
265 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name)
266 {
267 	nvlist_t *aux = fnvlist_alloc();
268 
269 	fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
270 	spa_event_notify(spa, vd, aux, name);
271 	nvlist_free(aux);
272 }
273 
274 /*
275  * Called to request that a new rebuild be started.  The feature will remain
276  * active for the duration of the rebuild, then revert to the enabled state.
277  */
278 static void
279 vdev_rebuild_initiate(vdev_t *vd)
280 {
281 	spa_t *spa = vd->vdev_spa;
282 
283 	ASSERT(vd->vdev_top == vd);
284 	ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
285 	ASSERT(!vd->vdev_rebuilding);
286 
287 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
288 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
289 
290 	vd->vdev_rebuilding = B_TRUE;
291 
292 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
293 	    (void *)(uintptr_t)vd->vdev_id, tx);
294 	dmu_tx_commit(tx);
295 
296 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
297 }
298 
299 /*
300  * Update the on-disk state to completed when a rebuild finishes.
301  */
302 static void
303 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
304 {
305 	int vdev_id = (uintptr_t)arg;
306 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
307 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
308 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
309 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
310 
311 	mutex_enter(&vd->vdev_rebuild_lock);
312 
313 	/*
314 	 * Handle a second device failure if it occurs after all rebuild I/O
315 	 * has completed but before this sync task has been executed.
316 	 */
317 	if (vd->vdev_rebuild_reset_wanted) {
318 		mutex_exit(&vd->vdev_rebuild_lock);
319 		vdev_rebuild_reset_sync(arg, tx);
320 		return;
321 	}
322 
323 	vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
324 	vrp->vrp_end_time = gethrestime_sec();
325 
326 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
327 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
328 	    REBUILD_PHYS_ENTRIES, vrp, tx));
329 
330 	vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
331 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
332 
333 	spa_history_log_internal(spa, "rebuild",  tx,
334 	    "vdev_id=%llu vdev_guid=%llu complete",
335 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
336 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
337 
338 	/* Handles detaching of spares */
339 	spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
340 	vd->vdev_rebuilding = B_FALSE;
341 	mutex_exit(&vd->vdev_rebuild_lock);
342 
343 	/*
344 	 * While we're in syncing context take the opportunity to
345 	 * setup the scrub when there are no more active rebuilds.
346 	 */
347 	pool_scan_func_t func = POOL_SCAN_SCRUB;
348 	if (dsl_scan_setup_check(&func, tx) == 0 &&
349 	    zfs_rebuild_scrub_enabled) {
350 		dsl_scan_setup_sync(&func, tx);
351 	}
352 
353 	cv_broadcast(&vd->vdev_rebuild_cv);
354 
355 	/* Clear recent error events (i.e. duplicate events tracking) */
356 	zfs_ereport_clear(spa, NULL);
357 }
358 
359 /*
360  * Update the on-disk state to canceled when a rebuild finishes.
361  */
362 static void
363 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
364 {
365 	int vdev_id = (uintptr_t)arg;
366 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
367 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
368 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
369 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
370 
371 	mutex_enter(&vd->vdev_rebuild_lock);
372 	vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
373 	vrp->vrp_end_time = gethrestime_sec();
374 
375 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
376 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
377 	    REBUILD_PHYS_ENTRIES, vrp, tx));
378 
379 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
380 
381 	spa_history_log_internal(spa, "rebuild",  tx,
382 	    "vdev_id=%llu vdev_guid=%llu canceled",
383 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
384 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
385 
386 	vd->vdev_rebuild_cancel_wanted = B_FALSE;
387 	vd->vdev_rebuilding = B_FALSE;
388 	mutex_exit(&vd->vdev_rebuild_lock);
389 
390 	spa_notify_waiters(spa);
391 	cv_broadcast(&vd->vdev_rebuild_cv);
392 }
393 
394 /*
395  * Resets the progress of a running rebuild.  This will occur when a new
396  * vdev is added to rebuild.
397  */
398 static void
399 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
400 {
401 	int vdev_id = (uintptr_t)arg;
402 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
403 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
404 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
405 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
406 
407 	mutex_enter(&vd->vdev_rebuild_lock);
408 
409 	ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
410 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
411 
412 	vrp->vrp_last_offset = 0;
413 	vrp->vrp_min_txg = 0;
414 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
415 	vrp->vrp_bytes_scanned = 0;
416 	vrp->vrp_bytes_issued = 0;
417 	vrp->vrp_bytes_rebuilt = 0;
418 	vrp->vrp_bytes_est = 0;
419 	vrp->vrp_scan_time_ms = 0;
420 	vr->vr_prev_scan_time_ms = 0;
421 
422 	/* See vdev_rebuild_initiate_sync comment */
423 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
424 
425 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
426 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
427 	    REBUILD_PHYS_ENTRIES, vrp, tx));
428 
429 	spa_history_log_internal(spa, "rebuild",  tx,
430 	    "vdev_id=%llu vdev_guid=%llu reset",
431 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
432 
433 	vd->vdev_rebuild_reset_wanted = B_FALSE;
434 	ASSERT(vd->vdev_rebuilding);
435 
436 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
437 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
438 
439 	mutex_exit(&vd->vdev_rebuild_lock);
440 }
441 
442 /*
443  * Clear the last rebuild status.
444  */
445 void
446 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
447 {
448 	int vdev_id = (uintptr_t)arg;
449 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
450 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
451 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
452 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
453 	objset_t *mos = spa_meta_objset(spa);
454 
455 	mutex_enter(&vd->vdev_rebuild_lock);
456 
457 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
458 	    vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
459 		mutex_exit(&vd->vdev_rebuild_lock);
460 		return;
461 	}
462 
463 	clear_rebuild_bytes(vd);
464 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
465 
466 	if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
467 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
468 		VERIFY0(zap_update(mos, vd->vdev_top_zap,
469 		    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
470 		    REBUILD_PHYS_ENTRIES, vrp, tx));
471 	}
472 
473 	mutex_exit(&vd->vdev_rebuild_lock);
474 }
475 
476 /*
477  * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
478  * for updating the rebuild stats and limiting the number of in flight I/Os.
479  */
480 static void
481 vdev_rebuild_cb(zio_t *zio)
482 {
483 	vdev_rebuild_t *vr = zio->io_private;
484 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
485 	vdev_t *vd = vr->vr_top_vdev;
486 
487 	mutex_enter(&vr->vr_io_lock);
488 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
489 		/*
490 		 * The I/O failed because the top-level vdev was unavailable.
491 		 * Attempt to roll back to the last completed offset, in order
492 		 * resume from the correct location if the pool is resumed.
493 		 * (This works because spa_sync waits on spa_txg_zio before
494 		 * it runs sync tasks.)
495 		 */
496 		uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
497 		*off = MIN(*off, zio->io_offset);
498 	} else if (zio->io_error) {
499 		vrp->vrp_errors++;
500 	}
501 
502 	abd_free(zio->io_abd);
503 
504 	ASSERT3U(vr->vr_bytes_inflight, >, 0);
505 	vr->vr_bytes_inflight -= zio->io_size;
506 	cv_broadcast(&vr->vr_io_cv);
507 	mutex_exit(&vr->vr_io_lock);
508 
509 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
510 }
511 
512 /*
513  * Initialize a block pointer that can be used to read the given segment
514  * for sequential rebuild.
515  */
516 static void
517 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
518     uint64_t asize)
519 {
520 	ASSERT(vd->vdev_ops == &vdev_draid_ops ||
521 	    vd->vdev_ops == &vdev_mirror_ops ||
522 	    vd->vdev_ops == &vdev_replacing_ops ||
523 	    vd->vdev_ops == &vdev_spare_ops);
524 
525 	uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
526 	    vdev_draid_asize_to_psize(vd, asize) : asize;
527 
528 	BP_ZERO(bp);
529 
530 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
531 	DVA_SET_OFFSET(&bp->blk_dva[0], start);
532 	DVA_SET_GANG(&bp->blk_dva[0], 0);
533 	DVA_SET_ASIZE(&bp->blk_dva[0], asize);
534 
535 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
536 	BP_SET_LSIZE(bp, psize);
537 	BP_SET_PSIZE(bp, psize);
538 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
539 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
540 	BP_SET_TYPE(bp, DMU_OT_NONE);
541 	BP_SET_LEVEL(bp, 0);
542 	BP_SET_DEDUP(bp, 0);
543 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
544 }
545 
546 /*
547  * Issues a rebuild I/O and takes care of rate limiting the number of queued
548  * rebuild I/Os.  The provided start and size must be properly aligned for the
549  * top-level vdev type being rebuilt.
550  */
551 static int
552 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
553 {
554 	uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
555 	vdev_t *vd = vr->vr_top_vdev;
556 	spa_t *spa = vd->vdev_spa;
557 	blkptr_t blk;
558 
559 	ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
560 	ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
561 
562 	vr->vr_pass_bytes_scanned += size;
563 	vr->vr_rebuild_phys.vrp_bytes_scanned += size;
564 
565 	/*
566 	 * Rebuild the data in this range by constructing a special block
567 	 * pointer.  It has no relation to any existing blocks in the pool.
568 	 * However, by disabling checksum verification and issuing a scrub IO
569 	 * we can reconstruct and repair any children with missing data.
570 	 */
571 	vdev_rebuild_blkptr_init(&blk, vd, start, size);
572 	uint64_t psize = BP_GET_PSIZE(&blk);
573 
574 	if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
575 		return (0);
576 
577 	mutex_enter(&vr->vr_io_lock);
578 
579 	/* Limit in flight rebuild I/Os */
580 	while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
581 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
582 
583 	vr->vr_bytes_inflight += psize;
584 	mutex_exit(&vr->vr_io_lock);
585 
586 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
587 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
588 	uint64_t txg = dmu_tx_get_txg(tx);
589 
590 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
591 	mutex_enter(&vd->vdev_rebuild_lock);
592 
593 	/* This is the first I/O for this txg. */
594 	if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
595 		vr->vr_scan_offset[txg & TXG_MASK] = start;
596 		dsl_sync_task_nowait(spa_get_dsl(spa),
597 		    vdev_rebuild_update_sync,
598 		    (void *)(uintptr_t)vd->vdev_id, tx);
599 	}
600 
601 	/* When exiting write out our progress. */
602 	if (vdev_rebuild_should_stop(vd)) {
603 		mutex_enter(&vr->vr_io_lock);
604 		vr->vr_bytes_inflight -= psize;
605 		mutex_exit(&vr->vr_io_lock);
606 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
607 		mutex_exit(&vd->vdev_rebuild_lock);
608 		dmu_tx_commit(tx);
609 		return (SET_ERROR(EINTR));
610 	}
611 	mutex_exit(&vd->vdev_rebuild_lock);
612 	dmu_tx_commit(tx);
613 
614 	vr->vr_scan_offset[txg & TXG_MASK] = start + size;
615 	vr->vr_pass_bytes_issued += size;
616 	vr->vr_rebuild_phys.vrp_bytes_issued += size;
617 
618 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
619 	    abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
620 	    ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
621 	    ZIO_FLAG_RESILVER, NULL));
622 
623 	return (0);
624 }
625 
626 /*
627  * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
628  */
629 static int
630 vdev_rebuild_ranges(vdev_rebuild_t *vr)
631 {
632 	vdev_t *vd = vr->vr_top_vdev;
633 	zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
634 	zfs_btree_index_t idx;
635 	int error;
636 
637 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
638 	    rs = zfs_btree_next(t, &idx, &idx)) {
639 		uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
640 		uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
641 
642 		/*
643 		 * zfs_scan_suspend_progress can be set to disable rebuild
644 		 * progress for testing.  See comment in dsl_scan_sync().
645 		 */
646 		while (zfs_scan_suspend_progress &&
647 		    !vdev_rebuild_should_stop(vd)) {
648 			delay(hz);
649 		}
650 
651 		while (size > 0) {
652 			uint64_t chunk_size;
653 
654 			/*
655 			 * Split range into legally-sized logical chunks
656 			 * given the constraints of the top-level vdev
657 			 * being rebuilt (dRAID or mirror).
658 			 */
659 			ASSERT3P(vd->vdev_ops, !=, NULL);
660 			chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
661 			    start, size, zfs_rebuild_max_segment);
662 
663 			error = vdev_rebuild_range(vr, start, chunk_size);
664 			if (error != 0)
665 				return (error);
666 
667 			size -= chunk_size;
668 			start += chunk_size;
669 		}
670 	}
671 
672 	return (0);
673 }
674 
675 /*
676  * Calculates the estimated capacity which remains to be scanned.  Since
677  * we traverse the pool in metaslab order only allocated capacity beyond
678  * the vrp_last_offset need be considered.  All lower offsets must have
679  * already been rebuilt and are thus already included in vrp_bytes_scanned.
680  */
681 static void
682 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
683 {
684 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
685 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
686 	uint64_t bytes_est = vrp->vrp_bytes_scanned;
687 
688 	if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
689 		return;
690 
691 	for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
692 		metaslab_t *msp = vd->vdev_ms[i];
693 
694 		mutex_enter(&msp->ms_lock);
695 		bytes_est += metaslab_allocated_space(msp);
696 		mutex_exit(&msp->ms_lock);
697 	}
698 
699 	vrp->vrp_bytes_est = bytes_est;
700 }
701 
702 /*
703  * Load from disk the top-level vdev's rebuild information.
704  */
705 int
706 vdev_rebuild_load(vdev_t *vd)
707 {
708 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
709 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
710 	spa_t *spa = vd->vdev_spa;
711 	int err = 0;
712 
713 	mutex_enter(&vd->vdev_rebuild_lock);
714 	vd->vdev_rebuilding = B_FALSE;
715 
716 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
717 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
718 		mutex_exit(&vd->vdev_rebuild_lock);
719 		return (SET_ERROR(ENOTSUP));
720 	}
721 
722 	ASSERT(vd->vdev_top == vd);
723 
724 	err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
725 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
726 	    REBUILD_PHYS_ENTRIES, vrp);
727 
728 	/*
729 	 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
730 	 * not prevent a pool from being imported.  Clear the rebuild
731 	 * status allowing a new resilver/rebuild to be started.
732 	 */
733 	if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
734 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
735 	} else if (err) {
736 		mutex_exit(&vd->vdev_rebuild_lock);
737 		return (err);
738 	}
739 
740 	vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
741 	vr->vr_top_vdev = vd;
742 
743 	mutex_exit(&vd->vdev_rebuild_lock);
744 
745 	return (0);
746 }
747 
748 /*
749  * Each scan thread is responsible for rebuilding a top-level vdev.  The
750  * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
751  */
752 static __attribute__((noreturn)) void
753 vdev_rebuild_thread(void *arg)
754 {
755 	vdev_t *vd = arg;
756 	spa_t *spa = vd->vdev_spa;
757 	int error = 0;
758 
759 	/*
760 	 * If there's a scrub in process request that it be stopped.  This
761 	 * is not required for a correct rebuild, but we do want rebuilds to
762 	 * emulate the resilver behavior as much as possible.
763 	 */
764 	dsl_pool_t *dsl = spa_get_dsl(spa);
765 	if (dsl_scan_scrubbing(dsl))
766 		dsl_scan_cancel(dsl);
767 
768 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
769 	mutex_enter(&vd->vdev_rebuild_lock);
770 
771 	ASSERT3P(vd->vdev_top, ==, vd);
772 	ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
773 	ASSERT(vd->vdev_rebuilding);
774 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
775 	ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
776 
777 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
778 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
779 	vr->vr_top_vdev = vd;
780 	vr->vr_scan_msp = NULL;
781 	vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
782 	mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
783 	cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
784 
785 	vr->vr_pass_start_time = gethrtime();
786 	vr->vr_pass_bytes_scanned = 0;
787 	vr->vr_pass_bytes_issued = 0;
788 
789 	vr->vr_bytes_inflight_max = MAX(1ULL << 20,
790 	    zfs_rebuild_vdev_limit * vd->vdev_children);
791 
792 	uint64_t update_est_time = gethrtime();
793 	vdev_rebuild_update_bytes_est(vd, 0);
794 
795 	clear_rebuild_bytes(vr->vr_top_vdev);
796 
797 	mutex_exit(&vd->vdev_rebuild_lock);
798 
799 	/*
800 	 * Systematically walk the metaslabs and issue rebuild I/Os for
801 	 * all ranges in the allocated space map.
802 	 */
803 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
804 		metaslab_t *msp = vd->vdev_ms[i];
805 		vr->vr_scan_msp = msp;
806 
807 		/*
808 		 * Removal of vdevs from the vdev tree may eliminate the need
809 		 * for the rebuild, in which case it should be canceled.  The
810 		 * vdev_rebuild_cancel_wanted flag is set until the sync task
811 		 * completes.  This may be after the rebuild thread exits.
812 		 */
813 		if (vdev_rebuild_should_cancel(vd)) {
814 			vd->vdev_rebuild_cancel_wanted = B_TRUE;
815 			error = EINTR;
816 			break;
817 		}
818 
819 		ASSERT0(range_tree_space(vr->vr_scan_tree));
820 
821 		/* Disable any new allocations to this metaslab */
822 		spa_config_exit(spa, SCL_CONFIG, FTAG);
823 		metaslab_disable(msp);
824 
825 		mutex_enter(&msp->ms_sync_lock);
826 		mutex_enter(&msp->ms_lock);
827 
828 		/*
829 		 * If there are outstanding allocations wait for them to be
830 		 * synced.  This is needed to ensure all allocated ranges are
831 		 * on disk and therefore will be rebuilt.
832 		 */
833 		for (int j = 0; j < TXG_SIZE; j++) {
834 			if (range_tree_space(msp->ms_allocating[j])) {
835 				mutex_exit(&msp->ms_lock);
836 				mutex_exit(&msp->ms_sync_lock);
837 				txg_wait_synced(dsl, 0);
838 				mutex_enter(&msp->ms_sync_lock);
839 				mutex_enter(&msp->ms_lock);
840 				break;
841 			}
842 		}
843 
844 		/*
845 		 * When a metaslab has been allocated from read its allocated
846 		 * ranges from the space map object into the vr_scan_tree.
847 		 * Then add inflight / unflushed ranges and remove inflight /
848 		 * unflushed frees.  This is the minimum range to be rebuilt.
849 		 */
850 		if (msp->ms_sm != NULL) {
851 			VERIFY0(space_map_load(msp->ms_sm,
852 			    vr->vr_scan_tree, SM_ALLOC));
853 
854 			for (int i = 0; i < TXG_SIZE; i++) {
855 				ASSERT0(range_tree_space(
856 				    msp->ms_allocating[i]));
857 			}
858 
859 			range_tree_walk(msp->ms_unflushed_allocs,
860 			    range_tree_add, vr->vr_scan_tree);
861 			range_tree_walk(msp->ms_unflushed_frees,
862 			    range_tree_remove, vr->vr_scan_tree);
863 
864 			/*
865 			 * Remove ranges which have already been rebuilt based
866 			 * on the last offset.  This can happen when restarting
867 			 * a scan after exporting and re-importing the pool.
868 			 */
869 			range_tree_clear(vr->vr_scan_tree, 0,
870 			    vrp->vrp_last_offset);
871 		}
872 
873 		mutex_exit(&msp->ms_lock);
874 		mutex_exit(&msp->ms_sync_lock);
875 
876 		/*
877 		 * To provide an accurate estimate re-calculate the estimated
878 		 * size every 5 minutes to account for recent allocations and
879 		 * frees made to space maps which have not yet been rebuilt.
880 		 */
881 		if (gethrtime() > update_est_time + SEC2NSEC(300)) {
882 			update_est_time = gethrtime();
883 			vdev_rebuild_update_bytes_est(vd, i);
884 		}
885 
886 		/*
887 		 * Walk the allocated space map and issue the rebuild I/O.
888 		 */
889 		error = vdev_rebuild_ranges(vr);
890 		range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
891 
892 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
893 		metaslab_enable(msp, B_FALSE, B_FALSE);
894 
895 		if (error != 0)
896 			break;
897 	}
898 
899 	range_tree_destroy(vr->vr_scan_tree);
900 	spa_config_exit(spa, SCL_CONFIG, FTAG);
901 
902 	/* Wait for any remaining rebuild I/O to complete */
903 	mutex_enter(&vr->vr_io_lock);
904 	while (vr->vr_bytes_inflight > 0)
905 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
906 
907 	mutex_exit(&vr->vr_io_lock);
908 
909 	mutex_destroy(&vr->vr_io_lock);
910 	cv_destroy(&vr->vr_io_cv);
911 
912 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
913 
914 	dsl_pool_t *dp = spa_get_dsl(spa);
915 	dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
916 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
917 
918 	mutex_enter(&vd->vdev_rebuild_lock);
919 	if (error == 0) {
920 		/*
921 		 * After a successful rebuild clear the DTLs of all ranges
922 		 * which were missing when the rebuild was started.  These
923 		 * ranges must have been rebuilt as a consequence of rebuilding
924 		 * all allocated space.  Note that unlike a scrub or resilver
925 		 * the rebuild operation will reconstruct data only referenced
926 		 * by a pool checkpoint.  See the dsl_scan_done() comments.
927 		 */
928 		dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
929 		    (void *)(uintptr_t)vd->vdev_id, tx);
930 	} else if (vd->vdev_rebuild_cancel_wanted) {
931 		/*
932 		 * The rebuild operation was canceled.  This will occur when
933 		 * a device participating in the rebuild is detached.
934 		 */
935 		dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
936 		    (void *)(uintptr_t)vd->vdev_id, tx);
937 	} else if (vd->vdev_rebuild_reset_wanted) {
938 		/*
939 		 * Reset the running rebuild without canceling and restarting
940 		 * it.  This will occur when a new device is attached and must
941 		 * participate in the rebuild.
942 		 */
943 		dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
944 		    (void *)(uintptr_t)vd->vdev_id, tx);
945 	} else {
946 		/*
947 		 * The rebuild operation should be suspended.  This may occur
948 		 * when detaching a child vdev or when exporting the pool.  The
949 		 * rebuild is left in the active state so it will be resumed.
950 		 */
951 		ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
952 		vd->vdev_rebuilding = B_FALSE;
953 	}
954 
955 	dmu_tx_commit(tx);
956 
957 	vd->vdev_rebuild_thread = NULL;
958 	mutex_exit(&vd->vdev_rebuild_lock);
959 	spa_config_exit(spa, SCL_CONFIG, FTAG);
960 
961 	cv_broadcast(&vd->vdev_rebuild_cv);
962 
963 	thread_exit();
964 }
965 
966 /*
967  * Returns B_TRUE if any top-level vdev are rebuilding.
968  */
969 boolean_t
970 vdev_rebuild_active(vdev_t *vd)
971 {
972 	spa_t *spa = vd->vdev_spa;
973 	boolean_t ret = B_FALSE;
974 
975 	if (vd == spa->spa_root_vdev) {
976 		for (uint64_t i = 0; i < vd->vdev_children; i++) {
977 			ret = vdev_rebuild_active(vd->vdev_child[i]);
978 			if (ret)
979 				return (ret);
980 		}
981 	} else if (vd->vdev_top_zap != 0) {
982 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
983 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
984 
985 		mutex_enter(&vd->vdev_rebuild_lock);
986 		ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
987 		mutex_exit(&vd->vdev_rebuild_lock);
988 	}
989 
990 	return (ret);
991 }
992 
993 /*
994  * Start a rebuild operation.  The rebuild may be restarted when the
995  * top-level vdev is currently actively rebuilding.
996  */
997 void
998 vdev_rebuild(vdev_t *vd)
999 {
1000 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1001 	vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
1002 
1003 	ASSERT(vd->vdev_top == vd);
1004 	ASSERT(vdev_is_concrete(vd));
1005 	ASSERT(!vd->vdev_removing);
1006 	ASSERT(spa_feature_is_enabled(vd->vdev_spa,
1007 	    SPA_FEATURE_DEVICE_REBUILD));
1008 
1009 	mutex_enter(&vd->vdev_rebuild_lock);
1010 	if (vd->vdev_rebuilding) {
1011 		ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1012 
1013 		/*
1014 		 * Signal a running rebuild operation that it should restart
1015 		 * from the beginning because a new device was attached.  The
1016 		 * vdev_rebuild_reset_wanted flag is set until the sync task
1017 		 * completes.  This may be after the rebuild thread exits.
1018 		 */
1019 		if (!vd->vdev_rebuild_reset_wanted)
1020 			vd->vdev_rebuild_reset_wanted = B_TRUE;
1021 	} else {
1022 		vdev_rebuild_initiate(vd);
1023 	}
1024 	mutex_exit(&vd->vdev_rebuild_lock);
1025 }
1026 
1027 static void
1028 vdev_rebuild_restart_impl(vdev_t *vd)
1029 {
1030 	spa_t *spa = vd->vdev_spa;
1031 
1032 	if (vd == spa->spa_root_vdev) {
1033 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1034 			vdev_rebuild_restart_impl(vd->vdev_child[i]);
1035 
1036 	} else if (vd->vdev_top_zap != 0) {
1037 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1038 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1039 
1040 		mutex_enter(&vd->vdev_rebuild_lock);
1041 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1042 		    vdev_writeable(vd) && !vd->vdev_rebuilding) {
1043 			ASSERT(spa_feature_is_active(spa,
1044 			    SPA_FEATURE_DEVICE_REBUILD));
1045 			vd->vdev_rebuilding = B_TRUE;
1046 			vd->vdev_rebuild_thread = thread_create(NULL, 0,
1047 			    vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1048 			    maxclsyspri);
1049 		}
1050 		mutex_exit(&vd->vdev_rebuild_lock);
1051 	}
1052 }
1053 
1054 /*
1055  * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
1056  * feature flag must be active and the rebuild in the active state.   This
1057  * cannot be used to start a new rebuild.
1058  */
1059 void
1060 vdev_rebuild_restart(spa_t *spa)
1061 {
1062 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1063 
1064 	vdev_rebuild_restart_impl(spa->spa_root_vdev);
1065 }
1066 
1067 /*
1068  * Stop and wait for all of the vdev_rebuild_thread's associated with the
1069  * vdev tree provide to be terminated (canceled or stopped).
1070  */
1071 void
1072 vdev_rebuild_stop_wait(vdev_t *vd)
1073 {
1074 	spa_t *spa = vd->vdev_spa;
1075 
1076 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1077 
1078 	if (vd == spa->spa_root_vdev) {
1079 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1080 			vdev_rebuild_stop_wait(vd->vdev_child[i]);
1081 
1082 	} else if (vd->vdev_top_zap != 0) {
1083 		ASSERT(vd == vd->vdev_top);
1084 
1085 		mutex_enter(&vd->vdev_rebuild_lock);
1086 		if (vd->vdev_rebuild_thread != NULL) {
1087 			vd->vdev_rebuild_exit_wanted = B_TRUE;
1088 			while (vd->vdev_rebuilding) {
1089 				cv_wait(&vd->vdev_rebuild_cv,
1090 				    &vd->vdev_rebuild_lock);
1091 			}
1092 			vd->vdev_rebuild_exit_wanted = B_FALSE;
1093 		}
1094 		mutex_exit(&vd->vdev_rebuild_lock);
1095 	}
1096 }
1097 
1098 /*
1099  * Stop all rebuild operations but leave them in the active state so they
1100  * will be resumed when importing the pool.
1101  */
1102 void
1103 vdev_rebuild_stop_all(spa_t *spa)
1104 {
1105 	vdev_rebuild_stop_wait(spa->spa_root_vdev);
1106 }
1107 
1108 /*
1109  * Rebuild statistics reported per top-level vdev.
1110  */
1111 int
1112 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1113 {
1114 	spa_t *spa = tvd->vdev_spa;
1115 
1116 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1117 		return (SET_ERROR(ENOTSUP));
1118 
1119 	if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1120 		return (SET_ERROR(EINVAL));
1121 
1122 	int error = zap_contains(spa_meta_objset(spa),
1123 	    tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1124 
1125 	if (error == ENOENT) {
1126 		memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1127 		vrs->vrs_state = VDEV_REBUILD_NONE;
1128 		error = 0;
1129 	} else if (error == 0) {
1130 		vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1131 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1132 
1133 		mutex_enter(&tvd->vdev_rebuild_lock);
1134 		vrs->vrs_state = vrp->vrp_rebuild_state;
1135 		vrs->vrs_start_time = vrp->vrp_start_time;
1136 		vrs->vrs_end_time = vrp->vrp_end_time;
1137 		vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1138 		vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1139 		vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1140 		vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1141 		vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1142 		vrs->vrs_errors = vrp->vrp_errors;
1143 		vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1144 		    vr->vr_pass_start_time);
1145 		vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1146 		vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1147 		mutex_exit(&tvd->vdev_rebuild_lock);
1148 	}
1149 
1150 	return (error);
1151 }
1152 
1153 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW,
1154 	"Max segment size in bytes of rebuild reads");
1155 
1156 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW,
1157 	"Max bytes in flight per leaf vdev for sequential resilvers");
1158 
1159 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1160 	"Automatically scrub after sequential resilver completes");
1161