1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59 
60 
61 static ulong_t zfs_fsync_sync_cnt = 4;
62 
63 int
64 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
65 {
66 	int error = 0;
67 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
68 
69 	(void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
70 
71 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
72 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
73 			goto out;
74 		atomic_inc_32(&zp->z_sync_writes_cnt);
75 		zil_commit(zfsvfs->z_log, zp->z_id);
76 		atomic_dec_32(&zp->z_sync_writes_cnt);
77 		zfs_exit(zfsvfs, FTAG);
78 	}
79 out:
80 	tsd_set(zfs_fsyncer_key, NULL);
81 
82 	return (error);
83 }
84 
85 
86 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
87 /*
88  * Lseek support for finding holes (cmd == SEEK_HOLE) and
89  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
90  */
91 static int
92 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
93 {
94 	zfs_locked_range_t *lr;
95 	uint64_t noff = (uint64_t)*off; /* new offset */
96 	uint64_t file_sz;
97 	int error;
98 	boolean_t hole;
99 
100 	file_sz = zp->z_size;
101 	if (noff >= file_sz)  {
102 		return (SET_ERROR(ENXIO));
103 	}
104 
105 	if (cmd == F_SEEK_HOLE)
106 		hole = B_TRUE;
107 	else
108 		hole = B_FALSE;
109 
110 	/* Flush any mmap()'d data to disk */
111 	if (zn_has_cached_data(zp, 0, file_sz - 1))
112 		zn_flush_cached_data(zp, B_FALSE);
113 
114 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
115 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
116 	zfs_rangelock_exit(lr);
117 
118 	if (error == ESRCH)
119 		return (SET_ERROR(ENXIO));
120 
121 	/* File was dirty, so fall back to using generic logic */
122 	if (error == EBUSY) {
123 		if (hole)
124 			*off = file_sz;
125 
126 		return (0);
127 	}
128 
129 	/*
130 	 * We could find a hole that begins after the logical end-of-file,
131 	 * because dmu_offset_next() only works on whole blocks.  If the
132 	 * EOF falls mid-block, then indicate that the "virtual hole"
133 	 * at the end of the file begins at the logical EOF, rather than
134 	 * at the end of the last block.
135 	 */
136 	if (noff > file_sz) {
137 		ASSERT(hole);
138 		noff = file_sz;
139 	}
140 
141 	if (noff < *off)
142 		return (error);
143 	*off = noff;
144 	return (error);
145 }
146 
147 int
148 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
149 {
150 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
151 	int error;
152 
153 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
154 		return (error);
155 
156 	error = zfs_holey_common(zp, cmd, off);
157 
158 	zfs_exit(zfsvfs, FTAG);
159 	return (error);
160 }
161 #endif /* SEEK_HOLE && SEEK_DATA */
162 
163 int
164 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
165 {
166 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
167 	int error;
168 
169 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
170 		return (error);
171 
172 	if (flag & V_ACE_MASK)
173 #if defined(__linux__)
174 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
175 		    zfs_init_idmap);
176 #else
177 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
178 		    NULL);
179 #endif
180 	else
181 #if defined(__linux__)
182 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
183 #else
184 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
185 #endif
186 
187 	zfs_exit(zfsvfs, FTAG);
188 	return (error);
189 }
190 
191 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
192 
193 /*
194  * Read bytes from specified file into supplied buffer.
195  *
196  *	IN:	zp	- inode of file to be read from.
197  *		uio	- structure supplying read location, range info,
198  *			  and return buffer.
199  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
200  *			  O_DIRECT flag; used to bypass page cache.
201  *		cr	- credentials of caller.
202  *
203  *	OUT:	uio	- updated offset and range, buffer filled.
204  *
205  *	RETURN:	0 on success, error code on failure.
206  *
207  * Side Effects:
208  *	inode - atime updated if byte count > 0
209  */
210 int
211 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
212 {
213 	(void) cr;
214 	int error = 0;
215 	boolean_t frsync = B_FALSE;
216 
217 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
218 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 		return (error);
220 
221 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
222 		zfs_exit(zfsvfs, FTAG);
223 		return (SET_ERROR(EACCES));
224 	}
225 
226 	/* We don't copy out anything useful for directories. */
227 	if (Z_ISDIR(ZTOTYPE(zp))) {
228 		zfs_exit(zfsvfs, FTAG);
229 		return (SET_ERROR(EISDIR));
230 	}
231 
232 	/*
233 	 * Validate file offset
234 	 */
235 	if (zfs_uio_offset(uio) < (offset_t)0) {
236 		zfs_exit(zfsvfs, FTAG);
237 		return (SET_ERROR(EINVAL));
238 	}
239 
240 	/*
241 	 * Fasttrack empty reads
242 	 */
243 	if (zfs_uio_resid(uio) == 0) {
244 		zfs_exit(zfsvfs, FTAG);
245 		return (0);
246 	}
247 
248 #ifdef FRSYNC
249 	/*
250 	 * If we're in FRSYNC mode, sync out this znode before reading it.
251 	 * Only do this for non-snapshots.
252 	 *
253 	 * Some platforms do not support FRSYNC and instead map it
254 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
255 	 * only honor FRSYNC requests on platforms which support it.
256 	 */
257 	frsync = !!(ioflag & FRSYNC);
258 #endif
259 	if (zfsvfs->z_log &&
260 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
261 		zil_commit(zfsvfs->z_log, zp->z_id);
262 
263 	/*
264 	 * Lock the range against changes.
265 	 */
266 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
267 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
268 
269 	/*
270 	 * If we are reading past end-of-file we can skip
271 	 * to the end; but we might still need to set atime.
272 	 */
273 	if (zfs_uio_offset(uio) >= zp->z_size) {
274 		error = 0;
275 		goto out;
276 	}
277 
278 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
279 #if defined(__linux__)
280 	ssize_t start_offset = zfs_uio_offset(uio);
281 #endif
282 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
283 	ssize_t start_resid = n;
284 
285 	while (n > 0) {
286 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
287 		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
288 #ifdef UIO_NOCOPY
289 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
290 			error = mappedread_sf(zp, nbytes, uio);
291 		else
292 #endif
293 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
294 		    zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
295 			error = mappedread(zp, nbytes, uio);
296 		} else {
297 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
298 			    uio, nbytes);
299 		}
300 
301 		if (error) {
302 			/* convert checksum errors into IO errors */
303 			if (error == ECKSUM)
304 				error = SET_ERROR(EIO);
305 
306 #if defined(__linux__)
307 			/*
308 			 * if we actually read some bytes, bubbling EFAULT
309 			 * up to become EAGAIN isn't what we want here...
310 			 *
311 			 * ...on Linux, at least. On FBSD, doing this breaks.
312 			 */
313 			if (error == EFAULT &&
314 			    (zfs_uio_offset(uio) - start_offset) != 0)
315 				error = 0;
316 #endif
317 			break;
318 		}
319 
320 		n -= nbytes;
321 	}
322 
323 	int64_t nread = start_resid - n;
324 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
325 	task_io_account_read(nread);
326 out:
327 	zfs_rangelock_exit(lr);
328 
329 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
330 	zfs_exit(zfsvfs, FTAG);
331 	return (error);
332 }
333 
334 static void
335 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
336     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
337 {
338 	zilog_t *zilog = zfsvfs->z_log;
339 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
340 
341 	ASSERT(clear_setid_bits_txgp != NULL);
342 	ASSERT(tx != NULL);
343 
344 	/*
345 	 * Clear Set-UID/Set-GID bits on successful write if not
346 	 * privileged and at least one of the execute bits is set.
347 	 *
348 	 * It would be nice to do this after all writes have
349 	 * been done, but that would still expose the ISUID/ISGID
350 	 * to another app after the partial write is committed.
351 	 *
352 	 * Note: we don't call zfs_fuid_map_id() here because
353 	 * user 0 is not an ephemeral uid.
354 	 */
355 	mutex_enter(&zp->z_acl_lock);
356 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
357 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
358 	    secpolicy_vnode_setid_retain(zp, cr,
359 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
360 		uint64_t newmode;
361 
362 		zp->z_mode &= ~(S_ISUID | S_ISGID);
363 		newmode = zp->z_mode;
364 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
365 		    (void *)&newmode, sizeof (uint64_t), tx);
366 
367 		mutex_exit(&zp->z_acl_lock);
368 
369 		/*
370 		 * Make sure SUID/SGID bits will be removed when we replay the
371 		 * log. If the setid bits are keep coming back, don't log more
372 		 * than one TX_SETATTR per transaction group.
373 		 */
374 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
375 			vattr_t va = {0};
376 
377 			va.va_mask = ATTR_MODE;
378 			va.va_nodeid = zp->z_id;
379 			va.va_mode = newmode;
380 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
381 			    ATTR_MODE, NULL);
382 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
383 		}
384 	} else {
385 		mutex_exit(&zp->z_acl_lock);
386 	}
387 }
388 
389 /*
390  * Write the bytes to a file.
391  *
392  *	IN:	zp	- znode of file to be written to.
393  *		uio	- structure supplying write location, range info,
394  *			  and data buffer.
395  *		ioflag	- O_APPEND flag set if in append mode.
396  *			  O_DIRECT flag; used to bypass page cache.
397  *		cr	- credentials of caller.
398  *
399  *	OUT:	uio	- updated offset and range.
400  *
401  *	RETURN:	0 if success
402  *		error code if failure
403  *
404  * Timestamps:
405  *	ip - ctime|mtime updated if byte count > 0
406  */
407 int
408 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
409 {
410 	int error = 0, error1;
411 	ssize_t start_resid = zfs_uio_resid(uio);
412 	uint64_t clear_setid_bits_txg = 0;
413 
414 	/*
415 	 * Fasttrack empty write
416 	 */
417 	ssize_t n = start_resid;
418 	if (n == 0)
419 		return (0);
420 
421 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
422 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
423 		return (error);
424 
425 	sa_bulk_attr_t bulk[4];
426 	int count = 0;
427 	uint64_t mtime[2], ctime[2];
428 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
429 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
430 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
431 	    &zp->z_size, 8);
432 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
433 	    &zp->z_pflags, 8);
434 
435 	/*
436 	 * Callers might not be able to detect properly that we are read-only,
437 	 * so check it explicitly here.
438 	 */
439 	if (zfs_is_readonly(zfsvfs)) {
440 		zfs_exit(zfsvfs, FTAG);
441 		return (SET_ERROR(EROFS));
442 	}
443 
444 	/*
445 	 * If immutable or not appending then return EPERM.
446 	 * Intentionally allow ZFS_READONLY through here.
447 	 * See zfs_zaccess_common()
448 	 */
449 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
450 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
451 	    (zfs_uio_offset(uio) < zp->z_size))) {
452 		zfs_exit(zfsvfs, FTAG);
453 		return (SET_ERROR(EPERM));
454 	}
455 
456 	/*
457 	 * Validate file offset
458 	 */
459 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
460 	if (woff < 0) {
461 		zfs_exit(zfsvfs, FTAG);
462 		return (SET_ERROR(EINVAL));
463 	}
464 
465 	const uint64_t max_blksz = zfsvfs->z_max_blksz;
466 
467 	/*
468 	 * Pre-fault the pages to ensure slow (eg NFS) pages
469 	 * don't hold up txg.
470 	 * Skip this if uio contains loaned arc_buf.
471 	 */
472 	if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
473 		zfs_exit(zfsvfs, FTAG);
474 		return (SET_ERROR(EFAULT));
475 	}
476 
477 	/*
478 	 * If in append mode, set the io offset pointer to eof.
479 	 */
480 	zfs_locked_range_t *lr;
481 	if (ioflag & O_APPEND) {
482 		/*
483 		 * Obtain an appending range lock to guarantee file append
484 		 * semantics.  We reset the write offset once we have the lock.
485 		 */
486 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
487 		woff = lr->lr_offset;
488 		if (lr->lr_length == UINT64_MAX) {
489 			/*
490 			 * We overlocked the file because this write will cause
491 			 * the file block size to increase.
492 			 * Note that zp_size cannot change with this lock held.
493 			 */
494 			woff = zp->z_size;
495 		}
496 		zfs_uio_setoffset(uio, woff);
497 	} else {
498 		/*
499 		 * Note that if the file block size will change as a result of
500 		 * this write, then this range lock will lock the entire file
501 		 * so that we can re-write the block safely.
502 		 */
503 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
504 	}
505 
506 	if (zn_rlimit_fsize_uio(zp, uio)) {
507 		zfs_rangelock_exit(lr);
508 		zfs_exit(zfsvfs, FTAG);
509 		return (SET_ERROR(EFBIG));
510 	}
511 
512 	const rlim64_t limit = MAXOFFSET_T;
513 
514 	if (woff >= limit) {
515 		zfs_rangelock_exit(lr);
516 		zfs_exit(zfsvfs, FTAG);
517 		return (SET_ERROR(EFBIG));
518 	}
519 
520 	if (n > limit - woff)
521 		n = limit - woff;
522 
523 	uint64_t end_size = MAX(zp->z_size, woff + n);
524 	zilog_t *zilog = zfsvfs->z_log;
525 
526 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
527 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
528 	const uint64_t projid = zp->z_projid;
529 
530 	/*
531 	 * Write the file in reasonable size chunks.  Each chunk is written
532 	 * in a separate transaction; this keeps the intent log records small
533 	 * and allows us to do more fine-grained space accounting.
534 	 */
535 	while (n > 0) {
536 		woff = zfs_uio_offset(uio);
537 
538 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
539 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
540 		    (projid != ZFS_DEFAULT_PROJID &&
541 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
542 		    projid))) {
543 			error = SET_ERROR(EDQUOT);
544 			break;
545 		}
546 
547 		arc_buf_t *abuf = NULL;
548 		if (n >= max_blksz && woff >= zp->z_size &&
549 		    P2PHASE(woff, max_blksz) == 0 &&
550 		    zp->z_blksz == max_blksz) {
551 			/*
552 			 * This write covers a full block.  "Borrow" a buffer
553 			 * from the dmu so that we can fill it before we enter
554 			 * a transaction.  This avoids the possibility of
555 			 * holding up the transaction if the data copy hangs
556 			 * up on a pagefault (e.g., from an NFS server mapping).
557 			 */
558 			size_t cbytes;
559 
560 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
561 			    max_blksz);
562 			ASSERT(abuf != NULL);
563 			ASSERT(arc_buf_size(abuf) == max_blksz);
564 			if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
565 			    UIO_WRITE, uio, &cbytes))) {
566 				dmu_return_arcbuf(abuf);
567 				break;
568 			}
569 			ASSERT3S(cbytes, ==, max_blksz);
570 		}
571 
572 		/*
573 		 * Start a transaction.
574 		 */
575 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
576 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
577 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
578 		DB_DNODE_ENTER(db);
579 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
580 		    MIN(n, max_blksz));
581 		DB_DNODE_EXIT(db);
582 		zfs_sa_upgrade_txholds(tx, zp);
583 		error = dmu_tx_assign(tx, TXG_WAIT);
584 		if (error) {
585 			dmu_tx_abort(tx);
586 			if (abuf != NULL)
587 				dmu_return_arcbuf(abuf);
588 			break;
589 		}
590 
591 		/*
592 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
593 		 * committing the transaction!
594 		 */
595 
596 		/*
597 		 * If rangelock_enter() over-locked we grow the blocksize
598 		 * and then reduce the lock range.  This will only happen
599 		 * on the first iteration since rangelock_reduce() will
600 		 * shrink down lr_length to the appropriate size.
601 		 */
602 		if (lr->lr_length == UINT64_MAX) {
603 			uint64_t new_blksz;
604 
605 			if (zp->z_blksz > max_blksz) {
606 				/*
607 				 * File's blocksize is already larger than the
608 				 * "recordsize" property.  Only let it grow to
609 				 * the next power of 2.
610 				 */
611 				ASSERT(!ISP2(zp->z_blksz));
612 				new_blksz = MIN(end_size,
613 				    1 << highbit64(zp->z_blksz));
614 			} else {
615 				new_blksz = MIN(end_size, max_blksz);
616 			}
617 			zfs_grow_blocksize(zp, new_blksz, tx);
618 			zfs_rangelock_reduce(lr, woff, n);
619 		}
620 
621 		/*
622 		 * XXX - should we really limit each write to z_max_blksz?
623 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
624 		 */
625 		const ssize_t nbytes =
626 		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));
627 
628 		ssize_t tx_bytes;
629 		if (abuf == NULL) {
630 			tx_bytes = zfs_uio_resid(uio);
631 			zfs_uio_fault_disable(uio, B_TRUE);
632 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
633 			    uio, nbytes, tx);
634 			zfs_uio_fault_disable(uio, B_FALSE);
635 #ifdef __linux__
636 			if (error == EFAULT) {
637 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
638 				    cr, &clear_setid_bits_txg, tx);
639 				dmu_tx_commit(tx);
640 				/*
641 				 * Account for partial writes before
642 				 * continuing the loop.
643 				 * Update needs to occur before the next
644 				 * zfs_uio_prefaultpages, or prefaultpages may
645 				 * error, and we may break the loop early.
646 				 */
647 				if (tx_bytes != zfs_uio_resid(uio))
648 					n -= tx_bytes - zfs_uio_resid(uio);
649 				if (zfs_uio_prefaultpages(MIN(n, max_blksz),
650 				    uio)) {
651 					break;
652 				}
653 				continue;
654 			}
655 #endif
656 			/*
657 			 * On FreeBSD, EFAULT should be propagated back to the
658 			 * VFS, which will handle faulting and will retry.
659 			 */
660 			if (error != 0 && error != EFAULT) {
661 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
662 				    cr, &clear_setid_bits_txg, tx);
663 				dmu_tx_commit(tx);
664 				break;
665 			}
666 			tx_bytes -= zfs_uio_resid(uio);
667 		} else {
668 			/* Implied by abuf != NULL: */
669 			ASSERT3S(n, >=, max_blksz);
670 			ASSERT0(P2PHASE(woff, max_blksz));
671 			/*
672 			 * We can simplify nbytes to MIN(n, max_blksz) since
673 			 * P2PHASE(woff, max_blksz) is 0, and knowing
674 			 * n >= max_blksz lets us simplify further:
675 			 */
676 			ASSERT3S(nbytes, ==, max_blksz);
677 			/*
678 			 * Thus, we're writing a full block at a block-aligned
679 			 * offset and extending the file past EOF.
680 			 *
681 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
682 			 * arc buffer to a dbuf.
683 			 */
684 			error = dmu_assign_arcbuf_by_dbuf(
685 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
686 			if (error != 0) {
687 				/*
688 				 * XXX This might not be necessary if
689 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
690 				 * to be atomic.
691 				 */
692 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
693 				    cr, &clear_setid_bits_txg, tx);
694 				dmu_return_arcbuf(abuf);
695 				dmu_tx_commit(tx);
696 				break;
697 			}
698 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
699 			zfs_uioskip(uio, nbytes);
700 			tx_bytes = nbytes;
701 		}
702 		if (tx_bytes &&
703 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
704 		    !(ioflag & O_DIRECT)) {
705 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
706 		}
707 
708 		/*
709 		 * If we made no progress, we're done.  If we made even
710 		 * partial progress, update the znode and ZIL accordingly.
711 		 */
712 		if (tx_bytes == 0) {
713 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
714 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
715 			dmu_tx_commit(tx);
716 			ASSERT(error != 0);
717 			break;
718 		}
719 
720 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
721 		    &clear_setid_bits_txg, tx);
722 
723 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
724 
725 		/*
726 		 * Update the file size (zp_size) if it has changed;
727 		 * account for possible concurrent updates.
728 		 */
729 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
730 			(void) atomic_cas_64(&zp->z_size, end_size,
731 			    zfs_uio_offset(uio));
732 			ASSERT(error == 0 || error == EFAULT);
733 		}
734 		/*
735 		 * If we are replaying and eof is non zero then force
736 		 * the file size to the specified eof. Note, there's no
737 		 * concurrency during replay.
738 		 */
739 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
740 			zp->z_size = zfsvfs->z_replay_eof;
741 
742 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
743 		if (error1 != 0)
744 			/* Avoid clobbering EFAULT. */
745 			error = error1;
746 
747 		/*
748 		 * NB: During replay, the TX_SETATTR record logged by
749 		 * zfs_clear_setid_bits_if_necessary must precede any of
750 		 * the TX_WRITE records logged here.
751 		 */
752 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
753 		    NULL, NULL);
754 
755 		dmu_tx_commit(tx);
756 
757 		if (error != 0)
758 			break;
759 		ASSERT3S(tx_bytes, ==, nbytes);
760 		n -= nbytes;
761 
762 		if (n > 0) {
763 			if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
764 				error = SET_ERROR(EFAULT);
765 				break;
766 			}
767 		}
768 	}
769 
770 	zfs_znode_update_vfs(zp);
771 	zfs_rangelock_exit(lr);
772 
773 	/*
774 	 * If we're in replay mode, or we made no progress, or the
775 	 * uio data is inaccessible return an error.  Otherwise, it's
776 	 * at least a partial write, so it's successful.
777 	 */
778 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
779 	    error == EFAULT) {
780 		zfs_exit(zfsvfs, FTAG);
781 		return (error);
782 	}
783 
784 	if (ioflag & (O_SYNC | O_DSYNC) ||
785 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
786 		zil_commit(zilog, zp->z_id);
787 
788 	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
789 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
790 	task_io_account_write(nwritten);
791 
792 	zfs_exit(zfsvfs, FTAG);
793 	return (0);
794 }
795 
796 int
797 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
798 {
799 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
800 	int error;
801 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
802 
803 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
804 		return (error);
805 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
806 	zfs_exit(zfsvfs, FTAG);
807 
808 	return (error);
809 }
810 
811 int
812 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
813 {
814 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
815 	int error;
816 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
817 	zilog_t	*zilog = zfsvfs->z_log;
818 
819 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
820 		return (error);
821 
822 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
823 
824 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
825 		zil_commit(zilog, 0);
826 
827 	zfs_exit(zfsvfs, FTAG);
828 	return (error);
829 }
830 
831 #ifdef ZFS_DEBUG
832 static int zil_fault_io = 0;
833 #endif
834 
835 static void zfs_get_done(zgd_t *zgd, int error);
836 
837 /*
838  * Get data to generate a TX_WRITE intent log record.
839  */
840 int
841 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
842     struct lwb *lwb, zio_t *zio)
843 {
844 	zfsvfs_t *zfsvfs = arg;
845 	objset_t *os = zfsvfs->z_os;
846 	znode_t *zp;
847 	uint64_t object = lr->lr_foid;
848 	uint64_t offset = lr->lr_offset;
849 	uint64_t size = lr->lr_length;
850 	dmu_buf_t *db;
851 	zgd_t *zgd;
852 	int error = 0;
853 	uint64_t zp_gen;
854 
855 	ASSERT3P(lwb, !=, NULL);
856 	ASSERT3P(zio, !=, NULL);
857 	ASSERT3U(size, !=, 0);
858 
859 	/*
860 	 * Nothing to do if the file has been removed
861 	 */
862 	if (zfs_zget(zfsvfs, object, &zp) != 0)
863 		return (SET_ERROR(ENOENT));
864 	if (zp->z_unlinked) {
865 		/*
866 		 * Release the vnode asynchronously as we currently have the
867 		 * txg stopped from syncing.
868 		 */
869 		zfs_zrele_async(zp);
870 		return (SET_ERROR(ENOENT));
871 	}
872 	/* check if generation number matches */
873 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
874 	    sizeof (zp_gen)) != 0) {
875 		zfs_zrele_async(zp);
876 		return (SET_ERROR(EIO));
877 	}
878 	if (zp_gen != gen) {
879 		zfs_zrele_async(zp);
880 		return (SET_ERROR(ENOENT));
881 	}
882 
883 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
884 	zgd->zgd_lwb = lwb;
885 	zgd->zgd_private = zp;
886 
887 	/*
888 	 * Write records come in two flavors: immediate and indirect.
889 	 * For small writes it's cheaper to store the data with the
890 	 * log record (immediate); for large writes it's cheaper to
891 	 * sync the data and get a pointer to it (indirect) so that
892 	 * we don't have to write the data twice.
893 	 */
894 	if (buf != NULL) { /* immediate write */
895 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
896 		    offset, size, RL_READER);
897 		/* test for truncation needs to be done while range locked */
898 		if (offset >= zp->z_size) {
899 			error = SET_ERROR(ENOENT);
900 		} else {
901 			error = dmu_read(os, object, offset, size, buf,
902 			    DMU_READ_NO_PREFETCH);
903 		}
904 		ASSERT(error == 0 || error == ENOENT);
905 	} else { /* indirect write */
906 		/*
907 		 * Have to lock the whole block to ensure when it's
908 		 * written out and its checksum is being calculated
909 		 * that no one can change the data. We need to re-check
910 		 * blocksize after we get the lock in case it's changed!
911 		 */
912 		for (;;) {
913 			uint64_t blkoff;
914 			size = zp->z_blksz;
915 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
916 			offset -= blkoff;
917 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
918 			    offset, size, RL_READER);
919 			if (zp->z_blksz == size)
920 				break;
921 			offset += blkoff;
922 			zfs_rangelock_exit(zgd->zgd_lr);
923 		}
924 		/* test for truncation needs to be done while range locked */
925 		if (lr->lr_offset >= zp->z_size)
926 			error = SET_ERROR(ENOENT);
927 #ifdef ZFS_DEBUG
928 		if (zil_fault_io) {
929 			error = SET_ERROR(EIO);
930 			zil_fault_io = 0;
931 		}
932 #endif
933 		if (error == 0)
934 			error = dmu_buf_hold(os, object, offset, zgd, &db,
935 			    DMU_READ_NO_PREFETCH);
936 
937 		if (error == 0) {
938 			blkptr_t *bp = &lr->lr_blkptr;
939 
940 			zgd->zgd_db = db;
941 			zgd->zgd_bp = bp;
942 
943 			ASSERT(db->db_offset == offset);
944 			ASSERT(db->db_size == size);
945 
946 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
947 			    zfs_get_done, zgd);
948 			ASSERT(error || lr->lr_length <= size);
949 
950 			/*
951 			 * On success, we need to wait for the write I/O
952 			 * initiated by dmu_sync() to complete before we can
953 			 * release this dbuf.  We will finish everything up
954 			 * in the zfs_get_done() callback.
955 			 */
956 			if (error == 0)
957 				return (0);
958 
959 			if (error == EALREADY) {
960 				lr->lr_common.lrc_txtype = TX_WRITE2;
961 				/*
962 				 * TX_WRITE2 relies on the data previously
963 				 * written by the TX_WRITE that caused
964 				 * EALREADY.  We zero out the BP because
965 				 * it is the old, currently-on-disk BP.
966 				 */
967 				zgd->zgd_bp = NULL;
968 				BP_ZERO(bp);
969 				error = 0;
970 			}
971 		}
972 	}
973 
974 	zfs_get_done(zgd, error);
975 
976 	return (error);
977 }
978 
979 
980 static void
981 zfs_get_done(zgd_t *zgd, int error)
982 {
983 	(void) error;
984 	znode_t *zp = zgd->zgd_private;
985 
986 	if (zgd->zgd_db)
987 		dmu_buf_rele(zgd->zgd_db, zgd);
988 
989 	zfs_rangelock_exit(zgd->zgd_lr);
990 
991 	/*
992 	 * Release the vnode asynchronously as we currently have the
993 	 * txg stopped from syncing.
994 	 */
995 	zfs_zrele_async(zp);
996 
997 	kmem_free(zgd, sizeof (zgd_t));
998 }
999 
1000 static int
1001 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1002 {
1003 	int error;
1004 
1005 	/* Swap. Not sure if the order of zfs_enter()s is important. */
1006 	if (zfsvfs1 > zfsvfs2) {
1007 		zfsvfs_t *tmpzfsvfs;
1008 
1009 		tmpzfsvfs = zfsvfs2;
1010 		zfsvfs2 = zfsvfs1;
1011 		zfsvfs1 = tmpzfsvfs;
1012 	}
1013 
1014 	error = zfs_enter(zfsvfs1, tag);
1015 	if (error != 0)
1016 		return (error);
1017 	if (zfsvfs1 != zfsvfs2) {
1018 		error = zfs_enter(zfsvfs2, tag);
1019 		if (error != 0) {
1020 			zfs_exit(zfsvfs1, tag);
1021 			return (error);
1022 		}
1023 	}
1024 
1025 	return (0);
1026 }
1027 
1028 static void
1029 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1030 {
1031 
1032 	zfs_exit(zfsvfs1, tag);
1033 	if (zfsvfs1 != zfsvfs2)
1034 		zfs_exit(zfsvfs2, tag);
1035 }
1036 
1037 /*
1038  * We split each clone request in chunks that can fit into a single ZIL
1039  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1040  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1041  * us room for storing 1022 block pointers.
1042  *
1043  * On success, the function return the number of bytes copied in *lenp.
1044  * Note, it doesn't return how much bytes are left to be copied.
1045  */
1046 int
1047 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1048     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1049 {
1050 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1051 	objset_t	*inos, *outos;
1052 	zfs_locked_range_t *inlr, *outlr;
1053 	dmu_buf_impl_t	*db;
1054 	dmu_tx_t	*tx;
1055 	zilog_t		*zilog;
1056 	uint64_t	inoff, outoff, len, done;
1057 	uint64_t	outsize, size;
1058 	int		error;
1059 	int		count = 0;
1060 	sa_bulk_attr_t	bulk[3];
1061 	uint64_t	mtime[2], ctime[2];
1062 	uint64_t	uid, gid, projid;
1063 	blkptr_t	*bps;
1064 	size_t		maxblocks, nbps;
1065 	uint_t		inblksz;
1066 	uint64_t	clear_setid_bits_txg = 0;
1067 
1068 	inoff = *inoffp;
1069 	outoff = *outoffp;
1070 	len = *lenp;
1071 	done = 0;
1072 
1073 	inzfsvfs = ZTOZSB(inzp);
1074 	outzfsvfs = ZTOZSB(outzp);
1075 	inos = inzfsvfs->z_os;
1076 	outos = outzfsvfs->z_os;
1077 
1078 	/*
1079 	 * Both source and destination have to belong to the same storage pool.
1080 	 */
1081 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1082 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1083 		return (SET_ERROR(EXDEV));
1084 	}
1085 
1086 	/*
1087 	 * We need to call zfs_enter() potentially on two different datasets,
1088 	 * so we need a dedicated function for that.
1089 	 */
1090 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1091 	if (error != 0)
1092 		return (error);
1093 
1094 	ASSERT(!outzfsvfs->z_replay);
1095 
1096 	error = zfs_verify_zp(inzp);
1097 	if (error == 0)
1098 		error = zfs_verify_zp(outzp);
1099 	if (error != 0) {
1100 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1101 		return (error);
1102 	}
1103 
1104 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1105 	    SPA_FEATURE_BLOCK_CLONING)) {
1106 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1107 		return (SET_ERROR(EXDEV));
1108 	}
1109 
1110 	/*
1111 	 * We don't copy source file's flags that's why we don't allow to clone
1112 	 * files that are in quarantine.
1113 	 */
1114 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1115 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1116 		return (SET_ERROR(EACCES));
1117 	}
1118 
1119 	if (inoff >= inzp->z_size) {
1120 		*lenp = 0;
1121 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1122 		return (0);
1123 	}
1124 	if (len > inzp->z_size - inoff) {
1125 		len = inzp->z_size - inoff;
1126 	}
1127 	if (len == 0) {
1128 		*lenp = 0;
1129 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1130 		return (0);
1131 	}
1132 
1133 	/*
1134 	 * Callers might not be able to detect properly that we are read-only,
1135 	 * so check it explicitly here.
1136 	 */
1137 	if (zfs_is_readonly(outzfsvfs)) {
1138 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1139 		return (SET_ERROR(EROFS));
1140 	}
1141 
1142 	/*
1143 	 * If immutable or not appending then return EPERM.
1144 	 * Intentionally allow ZFS_READONLY through here.
1145 	 * See zfs_zaccess_common()
1146 	 */
1147 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1148 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1149 		return (SET_ERROR(EPERM));
1150 	}
1151 
1152 	/*
1153 	 * No overlapping if we are cloning within the same file.
1154 	 */
1155 	if (inzp == outzp) {
1156 		if (inoff < outoff + len && outoff < inoff + len) {
1157 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1158 			return (SET_ERROR(EINVAL));
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * Maintain predictable lock order.
1164 	 */
1165 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1166 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1167 		    RL_READER);
1168 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1169 		    RL_WRITER);
1170 	} else {
1171 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1172 		    RL_WRITER);
1173 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1174 		    RL_READER);
1175 	}
1176 
1177 	inblksz = inzp->z_blksz;
1178 
1179 	/*
1180 	 * We cannot clone into files with different block size.
1181 	 */
1182 	if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) {
1183 		error = SET_ERROR(EXDEV);
1184 		goto unlock;
1185 	}
1186 
1187 	/*
1188 	 * Offsets and len must be at block boundries.
1189 	 */
1190 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1191 		error = SET_ERROR(EXDEV);
1192 		goto unlock;
1193 	}
1194 	/*
1195 	 * Length must be multipe of blksz, except for the end of the file.
1196 	 */
1197 	if ((len % inblksz) != 0 &&
1198 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1199 		error = SET_ERROR(EXDEV);
1200 		goto unlock;
1201 	}
1202 
1203 	error = zn_rlimit_fsize(outoff + len);
1204 	if (error != 0) {
1205 		goto unlock;
1206 	}
1207 
1208 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1209 		error = SET_ERROR(EFBIG);
1210 		goto unlock;
1211 	}
1212 
1213 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1214 	    &mtime, 16);
1215 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1216 	    &ctime, 16);
1217 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1218 	    &outzp->z_size, 8);
1219 
1220 	zilog = outzfsvfs->z_log;
1221 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1222 	    sizeof (bps[0]);
1223 
1224 	uid = KUID_TO_SUID(ZTOUID(outzp));
1225 	gid = KGID_TO_SGID(ZTOGID(outzp));
1226 	projid = outzp->z_projid;
1227 
1228 	bps = kmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1229 
1230 	/*
1231 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1232 	 * in a separate transaction; this keeps the intent log records small
1233 	 * and allows us to do more fine-grained space accounting.
1234 	 */
1235 	while (len > 0) {
1236 		size = MIN(inblksz * maxblocks, len);
1237 
1238 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1239 		    uid) ||
1240 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1241 		    gid) ||
1242 		    (projid != ZFS_DEFAULT_PROJID &&
1243 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1244 		    projid))) {
1245 			error = SET_ERROR(EDQUOT);
1246 			break;
1247 		}
1248 
1249 		/*
1250 		 * Start a transaction.
1251 		 */
1252 		tx = dmu_tx_create(outos);
1253 
1254 		nbps = maxblocks;
1255 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, tx, bps,
1256 		    &nbps);
1257 		if (error != 0) {
1258 			dmu_tx_abort(tx);
1259 			/*
1260 			 * If we are tyring to clone a block that was created
1261 			 * in the current transaction group. Return an error,
1262 			 * so the caller can fallback to just copying the data.
1263 			 */
1264 			if (error == EAGAIN) {
1265 				error = SET_ERROR(EXDEV);
1266 			}
1267 			break;
1268 		}
1269 		/*
1270 		 * Encrypted data is fine as long as it comes from the same
1271 		 * dataset.
1272 		 * TODO: We want to extend it in the future to allow cloning to
1273 		 * datasets with the same keys, like clones or to be able to
1274 		 * clone a file from a snapshot of an encrypted dataset into the
1275 		 * dataset itself.
1276 		 */
1277 		if (BP_IS_PROTECTED(&bps[0])) {
1278 			if (inzfsvfs != outzfsvfs) {
1279 				dmu_tx_abort(tx);
1280 				error = SET_ERROR(EXDEV);
1281 				break;
1282 			}
1283 		}
1284 
1285 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1286 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1287 		DB_DNODE_ENTER(db);
1288 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1289 		DB_DNODE_EXIT(db);
1290 		zfs_sa_upgrade_txholds(tx, outzp);
1291 		error = dmu_tx_assign(tx, TXG_WAIT);
1292 		if (error != 0) {
1293 			dmu_tx_abort(tx);
1294 			break;
1295 		}
1296 
1297 		/*
1298 		 * Copy source znode's block size. This only happens on the
1299 		 * first iteration since zfs_rangelock_reduce() will shrink down
1300 		 * lr_len to the appropriate size.
1301 		 */
1302 		if (outlr->lr_length == UINT64_MAX) {
1303 			zfs_grow_blocksize(outzp, inblksz, tx);
1304 			/*
1305 			 * Round range lock up to the block boundary, so we
1306 			 * prevent appends until we are done.
1307 			 */
1308 			zfs_rangelock_reduce(outlr, outoff,
1309 			    ((len - 1) / inblksz + 1) * inblksz);
1310 		}
1311 
1312 		dmu_brt_clone(outos, outzp->z_id, outoff, size, tx, bps, nbps,
1313 		    B_FALSE);
1314 
1315 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1316 		    &clear_setid_bits_txg, tx);
1317 
1318 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1319 
1320 		/*
1321 		 * Update the file size (zp_size) if it has changed;
1322 		 * account for possible concurrent updates.
1323 		 */
1324 		while ((outsize = outzp->z_size) < outoff + size) {
1325 			(void) atomic_cas_64(&outzp->z_size, outsize,
1326 			    outoff + size);
1327 		}
1328 
1329 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1330 
1331 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1332 		    size, inblksz, bps, nbps);
1333 
1334 		dmu_tx_commit(tx);
1335 
1336 		if (error != 0)
1337 			break;
1338 
1339 		inoff += size;
1340 		outoff += size;
1341 		len -= size;
1342 		done += size;
1343 	}
1344 
1345 	kmem_free(bps, sizeof (bps[0]) * maxblocks);
1346 	zfs_znode_update_vfs(outzp);
1347 
1348 unlock:
1349 	zfs_rangelock_exit(outlr);
1350 	zfs_rangelock_exit(inlr);
1351 
1352 	if (done > 0) {
1353 		/*
1354 		 * If we have made at least partial progress, reset the error.
1355 		 */
1356 		error = 0;
1357 
1358 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1359 
1360 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1361 			zil_commit(zilog, outzp->z_id);
1362 		}
1363 
1364 		*inoffp += done;
1365 		*outoffp += done;
1366 		*lenp = done;
1367 	}
1368 
1369 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1370 
1371 	return (error);
1372 }
1373 
1374 /*
1375  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1376  * but we cannot do that, because when replaying we don't have source znode
1377  * available. This is why we need a dedicated replay function.
1378  */
1379 int
1380 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1381     const blkptr_t *bps, size_t nbps)
1382 {
1383 	zfsvfs_t	*zfsvfs;
1384 	dmu_buf_impl_t	*db;
1385 	dmu_tx_t	*tx;
1386 	int		error;
1387 	int		count = 0;
1388 	sa_bulk_attr_t	bulk[3];
1389 	uint64_t	mtime[2], ctime[2];
1390 
1391 	ASSERT3U(off, <, MAXOFFSET_T);
1392 	ASSERT3U(len, >, 0);
1393 	ASSERT3U(nbps, >, 0);
1394 
1395 	zfsvfs = ZTOZSB(zp);
1396 
1397 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1398 	    SPA_FEATURE_BLOCK_CLONING));
1399 
1400 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1401 		return (error);
1402 
1403 	ASSERT(zfsvfs->z_replay);
1404 	ASSERT(!zfs_is_readonly(zfsvfs));
1405 
1406 	if ((off % blksz) != 0) {
1407 		zfs_exit(zfsvfs, FTAG);
1408 		return (SET_ERROR(EINVAL));
1409 	}
1410 
1411 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1412 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1413 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1414 	    &zp->z_size, 8);
1415 
1416 	/*
1417 	 * Start a transaction.
1418 	 */
1419 	tx = dmu_tx_create(zfsvfs->z_os);
1420 
1421 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1422 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1423 	DB_DNODE_ENTER(db);
1424 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1425 	DB_DNODE_EXIT(db);
1426 	zfs_sa_upgrade_txholds(tx, zp);
1427 	error = dmu_tx_assign(tx, TXG_WAIT);
1428 	if (error != 0) {
1429 		dmu_tx_abort(tx);
1430 		zfs_exit(zfsvfs, FTAG);
1431 		return (error);
1432 	}
1433 
1434 	if (zp->z_blksz < blksz)
1435 		zfs_grow_blocksize(zp, blksz, tx);
1436 
1437 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE);
1438 
1439 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1440 
1441 	if (zp->z_size < off + len)
1442 		zp->z_size = off + len;
1443 
1444 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1445 
1446 	/*
1447 	 * zil_replaying() not only check if we are replaying ZIL, but also
1448 	 * updates the ZIL header to record replay progress.
1449 	 */
1450 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
1451 
1452 	dmu_tx_commit(tx);
1453 
1454 	zfs_znode_update_vfs(zp);
1455 
1456 	zfs_exit(zfsvfs, FTAG);
1457 
1458 	return (error);
1459 }
1460 
1461 EXPORT_SYMBOL(zfs_access);
1462 EXPORT_SYMBOL(zfs_fsync);
1463 EXPORT_SYMBOL(zfs_holey);
1464 EXPORT_SYMBOL(zfs_read);
1465 EXPORT_SYMBOL(zfs_write);
1466 EXPORT_SYMBOL(zfs_getsecattr);
1467 EXPORT_SYMBOL(zfs_setsecattr);
1468 EXPORT_SYMBOL(zfs_clone_range);
1469 EXPORT_SYMBOL(zfs_clone_range_replay);
1470 
1471 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1472 	"Bytes to read per chunk");
1473